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Abstract

Spherical or omni-directional images offer an im-
mersive visual format appealing to a wide range
of computer vision applications. However, geo-
metric properties of spherical images pose a ma-
jor challenge for models and metrics designed
for ordinary 2D images. We show that direct ap-
plication of Fréchet Inception Distance (FID) is
insufficient for quantifying geometric fidelity in
spherical images. To remedy this, we introduce
Omnidirectional FID (OmniFID), an extension
of FID, which additionally captures field-of-view
requirements of the spherical format.

1. Introduction
Spherical images, offering a full 360-degree horizontal and
180-degree vertical field of view hold immense potential
for a broad range of computer vision applications such as
virtual reality, game design and immersive panoramic image
viewing. However, spherical images have geometric prop-
erties not exhibited by regular 2D images. Most existing
datasets are not representative of this format of images, con-
sequently most existing models, such as generative models,
are also not directly applicable or optimized for spherical
images. To reduce this challenge, we can project between
a spherical 3D image and 2D representations of it. How-
ever, such projections present a series of trade-offs between
conformity to the spherical image, and representing area of
the sphere equally on the 2D plane. A wide range of map
projections have been developed to project spherical images
to the plane, among which equirectangular and cubemap
projections are the most commonly used in practice (Zucker
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& Higashi, 2018). These projections have been designed
to improve on specific properties, such as reducing distor-
tions in the resulting viewpoint images (Chen et al., 2018;
Chiariotti, 2021; Hussain & Kwon, 2021). For successful
application, models applied on such representations must
be aware of the inherent distortions in order to adhere to the
geometric constraints of the 3D sphere.

One of the key metrics to measure image fidelity for genera-
tive 2D image models is FID (Heusel et al., 2017). Having
been reported in a range of works on generation of spheri-
cal images (Chen et al., 2022; Lu et al., 2023; Wang et al.,
2023; Akimoto et al., 2022), FID has also been established
as the de-facto fidelity metric for spherical images. How-
ever, in this paper we demonstrate that FID fails to capture
distortions related to the unique geometric requirements of
spherical images when applied on equirectangular projec-
tions. This is a severe limitation of the metric for spherical
image applications. We show this by proposing a noise trans-
formation of equirectangular images, effectively reducing
the field of view with little distortion in its 2D equirectan-
gular representation. Fundamentally, the FID metric relies
on features extracted from the Inception V3 convolutional
neural network trained on ordinary 2D linear perspective im-
ages (Szegedy et al., 2016). Hence, to increase compatibility
of the underlying Inception network with spherical image
data, we present an extension of FID, namely Omnidirec-
tional FID. OmniFID utilizes cubemap representations as
an alternative to the hitherto primarily used equirectangular
representations. Unlike equirectangular images, cubemap
views are the result of rectilinear projections, providing bet-
ter conformity to the shapes in the actual spherical rendering.
Further, since the resulting views are square, the aspect ratio
is maintained while resizing to 299× 299 pixels in the FID
calculations. Through our experiments we showcase that
OmniFID is able to capture reductions in field-of-view, a
crucial aspect for a quality metric for spherical image gen-
eration, while maintaining other positive properties of FID,
such as sensitivity to noise.

2. Related work
Fréchet Inception Distance (FID) is a widely established
metric often used to measure image fidelity for evaluating
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Figure 1. Visually, it is difficult to recognize field-of-view issues
in the equirectangular format, but the problem is evident when ren-
dered as a sphere and looking up/down. Top left: original spherical
image with 180◦ vertical FOV represented as an equirectangular
image. Top right: Resulting noisy equirectangular image, with a
reduced vertical FOV of 140◦. Bottom row: comparison of result-
ing views when looking upwards and downwards, respectively, in
the two spherical images.

image generative models, in part due to some agreement
with human perception and sensitivity to various noise types
(Heusel et al., 2017). Under the assumption that this ex-
tends to equirectangular projections of spherical images, a
majority of works in generative spherical imagery employ
FID on this 2D representation as the main performance
metric to measure the quality of generated images (Chen
et al., 2022; Lu et al., 2023; Wang et al., 2023; Akimoto
et al., 2022). However, unlike regular images, 2D represen-
tations of spherical images must satisfy unique geometric
constraints. We showcase the shortcomings of FID in evalu-
ating geometric fidelity of spherical images, and we present
an extension of the metric enabling a more efficient evalua-
tion designed for spherical images by leveraging projections
of spherical images. As such, our paper is an addition to
prior works like (Naeem et al., 2020; Borji, 2022) that detect
and tackle issues with FID. Additionally, we note that using
different projections for increasing compatibility of 2D im-
age pretrained models with spherical images has previously
been explored in other works like (Eder et al., 2020) for
semantic segmentation.

3. Omnidirectional FID Evaluation Metric
The traditional FID metric (Heusel et al., 2017) is computed
between two sets of images, typically to assess the quality
of a generative model by comparing the distance between
the training set distribution and a corresponding generated
distribution. All images from both image distributions are
passed through the Inception V3 (Szegedy et al., 2016)
convolutional model to obtain 2048-dimensional feature
vectors. For each dataset, the obtained feature vectors are
assumed to follow a multivariate Gaussian distribution with
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Figure 2. Although recent spherical image generation models
(Text-2-Sphere and Image-2-Sphere) have begun achieving low
FID scores, models are still struggling to produce images with
full 180◦ vertical field-of-view and no seams. Above, we show
equirectangular images from the models Text2Light (Chen et al.,
2022) and AOG-Net (Lu et al., 2023) (top row in each block),
along with their reported FID score. These images are from their
respective papers. Below each image we display a perspective
view when looking backwards, showing the resulting stitching
across image borders (and at the poles). We find that FID does
not sufficiently capture geometry fidelity issues in the generated
images, such as benches converging to a point at the poles, or
inconsistencies across image borders.

mean µ and covariance matrix Σ. The distance between the
two distributions is then calculated using the Wasserstein-2
distance in R2048 (Heusel et al., 2017), i.e. as

FID(X1, X2) := dW−2 (N (µ1,Σ1) ,N (µ2,Σ2))

= ‖µ1 − µ2‖+ tr
(

Σ1 + Σ2 − 2 (Σ1Σ2)
1
2

)
Although the underlying Gaussian assumptions have been
shown to be faulty (Luzi et al., 2023), FID has been es-
tablished as a popular metric due to sensitivity to noise
and some correlation with human perception (Heusel et al.,
2017).

Notably, however, spherical images present additional ge-
ometric structure compared to regular 2D images. It is not
clear a priori whether the features produced by the Incep-
tion backbone, and hence the FID metric by extension, will
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Figure 3. FID results compared to our modification, OmniFID, for
detecting issues with field-of-view reductions on the 360-Indoor
spherical image dataset (Chou et al., 2019). FID increases negligi-
bly, despite reducing the vertical field-of-view from 180 degrees to
140 degrees, while our proposed OmniFID captures the difference.
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Figure 4. Visualisation of our proposed Omnidirectional FID. Uti-
lizing cubemaps and using view-point dependent image features
allows OmniFID to detect issues with the spherical geometry, such
as insufficient field-of-view.

capture divergences from these geometric constraints, even
when the ground truth reference set contains proper projec-
tions of spherical images. Indeed, local image properties
may well look reasonable, but global information in 2D
representations is required to assess whether the geometric
constraints are fulfilled (e.g. seamless stitching at poles and
across image borders). Given the proven record of FID,
rather than tampering with the metric itself, we adapt the
data to the metric, improving behaviour on spherical images.

Increasing compatibility of FID to spherical images In
order to improve conformity of the spherical images to the
Inception backbone of the FID metric, we utilize the com-
monly used tangential spherical cubemap projection as the
grounds for evaluation. Since transformations between pro-
jections will incur some image quality degradation (Hanhart
et al., 2018), we believe it crucial to evaluate image fidelity
on representations that are optimized for rendering for a rep-
resentative evaluation. Further, since hardware and shaders
have been optimized both for equirectangular and cubemap
projections, evaluation on cubemap projections is not only
valid, but perhaps even desirable. We note that although
we focus on evaluation on the tangential spherical cubemap
in this work, fair comparisons are also possible on other
cubemap representations and re-projections, as long as the
representations are unified. This could be relevant if genera-
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Figure 5. Visualisation of the noise transformation used for reduc-
ing field-of-view in spherical images. The proposed transformation
reduces vertical field-of-view while maintaining proportions in the
central horizontal parts of the equirectangular image.

tive models are to be evaluated for a specific shader or other
transforms of the representations.

For a spherical image dataset X , we denote the set of 2D
images resulting from cubemap projections by

CX := {CXF , CXR , CXB , CXL , CXU , CXD }, (1)

with the resulting view-specific image sets being denoted
as CXview, where F , R, B, L, U , and D represent the front,
right, back, left, up, and down view of the cubemap projec-
tions, respectively. Visually, cubemaps are often represented
as a dice with its faces folded out (see e.g. Figure 4). With
the notation above we focus on the set structure of the indi-
vidual cubemap views.

A priori we expect that the Inception feature distribu-
tions across cubemap views will differ. Concretely, we
hypothesize that the feature vectors of the frontal views
(front/right/left/back) are identically distributed, since the
orientation of these views are arbitrary, but that the up and
down view feature distributions will be dissimilar. Prop-
erties of the tangential spherical cubemap projection addi-
tionally support this, since structural distortions are larger
at the polar faces (upwards and downward) compared to
frontal faces, as a results of stitching at the poles. To get
empirical evidence for this at the feature level, we compare
the feature means of the different views on the 360-Indoor
dataset (Chou et al., 2019). Between any two frontal views,
the L2 distances between mean features are 0.34 ± 0.13,
while it is 24.27± 0.69 and 33.13± 0.59 between frontal
views and up/down views, respectively. The L2 distance is
17.05 between the average features of up and down views.

OmniFID On this basis, we group the cubemap views CX
into three disjoint subsets according to semantic similarities
between frontal views F := {F,R,B,L}, upward views U
and downward views D. The Frontal group consists of four
times as many perspective images as Up and Down. Since
FID is biased by sample size (Chong & Forsyth, 2020), we
average the Inception features within each view group of the
perspective images for every cubemap, denoted by FID.
We then compute the FID metrics over the resulting subsets
individually and average over the resulting distances, giving
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our proposed extension OmniFID:

OmniFID(X1, X2) :=
1

3

∑
V ∈{U,D,F}

FID(CX1

V , CX2

V )

(2)

OmniFID can be extended to perspective images from finer
partitionings of the sphere. In particular, icosahedron tan-
gent images (Eder et al., 2020) provide a fitting way to
reduce distortion in the 2D perspective images at the cost of
less semantic content in individual views, additional com-
putation, and overlapping content between images. Due
to properties of the icosahedron, tangent images can be
grouped based on the latitude of their centers, as done with
regular cubemaps above. As an example, a base level 0
icosahedron subdivision of the sphere gives 20 perspective
images, which come in four groups of five images with cen-
ters at the same latitude. OmniFID20, with the superscript
denoting the number of perspective images, can then be
computed on these images by first computing the Inception
features on each image, averaging the features over each of
the four groups, and computing the corresponding latitude-
wise FID scores. OmniFID20 can then be obtained by
averaging the FID scores as before. In our experiments we
focus on using cubemaps, and demonstrate that this parti-
tioning is adequate for detecting structural issues related to
field-of-view in spherical images.

4. Experiments

Field-of-view reduction noise In order to evaluate the abil-
ity of FID to capture issues related to the geometric require-
ments of spherical images, we construct a noise transforma-
tion for reducing the vertical field-of-view in equirectangular
projections of spherical images. The noise transformation is
visualized in Figure 5, and the effects, which are a common
artifact in generated equirectangular images, can be seen
in Figure 1. Concretely, the field-of-view is reduced by an
angle v by first cropping the top and bottom horizontal parts

of the equirectangular image corresponding to
1

2
v each. The

central 90◦ horizontal part of the image is kept fixed, while

the remaining parts of the image, each covering 90◦ − 1

2
v,

are resized using bi-linear interpolation to re-obtain the orig-
inal image resolution. This is equivalent to ignoring the

upper and lower
1

2
v of the field-of-view of the spherical

image when performing the equirectangular projection.

For our evaluations of FID and OmniFID, we use the 360-
Indoor dataset (Chou et al., 2019), a collection of 3335
equirectangular images of indoor scenes with 360◦ hori-
zontal and 180◦ vertical field-of-view. The images have
resolution 1920× 960, and we resize them to 1024× 512.
Compared to other datasets of spherical images, 360-Indoor

is optimal for this purpose since it has both full field-of-view
and has enough samples for the mean and covariance esti-
mates in the FID and OmniFID metrics to be valid, although
the number of samples is still low. In the experiments, we
use an uncorrupted copy of the 360-Indoor dataset, and a
copy which we gradually corrupt - here with reduction of
vertical field-of-view.

In Figure 3, we see that decreasing the field-of-view from
180 to 140 degrees results in an FID of just 10. This is a
particularly low value considering the bias of FID dependent
on sample size, since the 360-Indoor dataset contains just
3335 spherical images (Chong & Forsyth, 2020). Further,
when comparing with other types of noise (as shown in
Figure 6), it is also evident that FID captures this geometric
issue insufficiently. On the other hand, OmniFID crucially
captures the difference in geometric fidelity between the
real and corrupted dataset. This confirms that while FID
fails to capture important aspects of the quality of spherical
images, the adjustments made in OmniFID allows the metric
to better quantify fidelity related to vertical field-of-view.

Noise sensitivity The FID metric became an established
metric in part due to its sensitivity to various forms of noise
(Heusel et al., 2017). In Appendix A we validate that Om-
niFID has not lost these properties of the FID metric through
our extension. We compare the two metrics on various types
and degrees of image corruptions. As above, we use two
copies of the 360-Indoor dataset, gradually corrupting one
with salt & pepper noise, Gaussian noise, and Gaussian
blurring, respectively. We then compute FID and OmniFID
between the two dataset. For each type of corruption, we
increase the noise across four increasing levels of noise
strengths. We note that the noise is applied on the equirect-
angular image, i.e. before transforming the images to cube-
maps for OmniFID. The results are visualized in Figure 6,
along with example equirectangular images showing the
level of noise. We observe that for the different noise types,
OmniFID follows the trend of FID closely, demonstrating
that our extension retains these desired properties of FID.
We further note that similarities between the FID and Om-
niFID scores across these types of noise confirm that the
difference in scores on the field-of-view reduction task are
not a matter of scaling.

Qualitative evaluation of OmniFID In Appendix B we
compare OmniFID and FID scores on generated examples
of varying quality from a set of different checkpoints based
on a version of Dreambooth (Imagen) model (Saharia et al.,
2022; Ruiz et al., 2023), trained on internal data sources
and finetuned on our dataset. We showcase that OmniFID
decreases as adherence of generated images to the spherical
structure improves, while FID is unaffected - in fact, the
lowest of the FID scores are achieved on a set of images
with clear geometric issues.
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5. Conclusion
In this work we showcased that the standard image fidelity
metric FID, commonly used in evaluation of generative mod-
els, fails to capture crucial properties of spherical images
associated with their unique geometrical constraints. To
remedy the limitations of existing 2D image-based metrics,
we presented an extension of FID, called OmniFID. Our
experiments demonstrate the effectiveness of our proposed
metric to measure geometry fidelity for spherical images
through utilizing cubemap representations.
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A. Sensitivity to noise
Here we present experiments providing empirical evidence that OmniFID has not lost the noise sensitivity of the FID metric
through our extension using averages of Inception features from perspective images. We compare the OmniFID and FID on
various types and degrees of image corruptions. We use two copies of the 360-Indoor dataset, gradually corrupting one with
salt & pepper noise, Gaussian noise, and Gaussian blurring, respectively. We then compute FID and OmniFID between
the two dataset. For each type of corruption, we increase the noise across four increasing levels of noise strengths. We
note that the noise is applied on the equirectangular image, i.e. before transforming the images to cubemaps for OmniFID.
The results are visualized in Figure 6, along with example equirectangular images showing the level of noise. We observe
that for the different noise types, OmniFID follows the trend of FID closely, demonstrating that our extension retains these
desired properties of FID.

B. Qualitative evaluation of OmniFID
To qualitatively evaluate our proposed Omnidirectional FID, we compute FID and OmniFID on generated images from three
different checkpoints of a finetuned text-to-image generative model. The model is based on a version of Imagen (Saharia
et al., 2022) trained on internal datasources, and finetuned using Dreambooth (Ruiz et al., 2023) with a batch size of 16. We
finetune the model on the 360-Indoor equirectangular image dataset (Chou et al., 2019) and use captions generated by a
multimodal language model. This gives us 3252 image-caption pairs after removing duplicate and empty captions.

The captions were generated by giving the multimodal model prompts with few-shot examples describing the content of
corresponding equirectangular images, followed by keywords of e.g. style, lighting, and indoor/outdoor. An example of such
a given few-shot example caption is: ”living room with couches, TV, coffee tables and fireplace. french style decoration,
daylight, indoor”. Finally, we edit the prompt to be ”a panoramic view of a <caption>”.

Below, we show example equirectangular image generations from model checkpoints after 5000, 10000, and 20000 steps
(Figure 7, Figure 8, Figure 9, respectively). The visualized generations are generated from the same prompts across
the different checkpoints, where the corresponding prompts were selected randomly. Results show that the FID score is
near-constant across the checkpoints (33.96, 35.42, 34.95, respectively). Further, although the example generations from
the 5000 step model demonstrate that the model has issues constructing realistic geometry, the FID score is lowest for this
checkpoint. On the contrary, OmniFID decreases monotonically over the checkpoints as geometry fidelity improves (63.39,
60.38, 55.07, respectively).
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Figure 6. FID compared to our OmniFID on various noise types unrelated to the spherical geometry (salt & pepper, Gaussian noise, and
Gaussian blur). Noise is applied to the equirectangular image before it is transformed to the cubemap. OmniFID retains the noise-related
properties of FID.
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Figure 7. Four example equirectangular generations of a text-to-image model fine-tuned on 360-Indoor after 5000 steps. Under each gener-
ation we show the cubemap images to illustrate the geometry of the rendered views (top left to bottom right: front/right/back/left/up/down).
FID is 33.96, OmniFID is 63.39.

.
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Figure 8. Four example equirectangular generations of a text-to-image model fine-tuned on 360-Indoor after 10000 steps. Under each gener-
ation we show the cubemap images to illustrate the geometry of the rendered views (top left to bottom right: front/right/back/left/up/down).
FID is 35.42, OmniFID is 60.38.

.
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Figure 9. Four example equirectangular generations of a text-to-image model fine-tuned on 360-Indoor after 20000 steps. Under each gener-
ation we show the cubemap images to illustrate the geometry of the rendered views (top left to bottom right: front/right/back/left/up/down).
FID is 34.95, OmniFID is 55.07.
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