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Abstract

We present our position on the elusive quest for
a general-purpose framework for specifying and
studying deep learning architectures. Our opin-
ion is that the key attempts made so far lack a
coherent bridge between specifying constraints
which models must satisfy and specifying their
implementations. Focusing on building a such
a bridge, we propose to apply category theory—
precisely, the universal algebra of monads valued
in a 2-category of parametric maps—as a single
theory elegantly subsuming both of these flavours
of neural network design. To defend our position,
we show how this theory recovers constraints in-
duced by geometric deep learning, as well as im-
plementations of many architectures drawn from
the diverse landscape of neural networks, such as
RNNs. We also illustrate how the theory naturally
encodes many standard constructs in computer
science and automata theory.

1. Introduction
One of the most coveted aims of deep learning theory is
to provide a guiding framework from which all neural net-
work architectures can be principally and usefully derived.
Many elegant attempts have recently been made, offering
frameworks to categorise or describe large swathes of deep
learning architectures: Cohen et al. (2019); Xu et al. (2019);
Bronstein et al. (2021); Chami et al. (2022); Papillon et al.
(2023); Jogl et al. (2023); Weiler et al. (2023) to name a few.
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We observe that there are, typically, two broad ways in
which deep learning practitioners describe models. Firstly,
neural networks can be specified in a top-down manner,
wherein models are described by the constraints they should
satisfy (e.g. in order to respect the structure of the data they
process). Alternatively, a bottom-up approach describes
models by their implementation, i.e. the sequence of tensor
operations required to perform their forward/backward pass.

1.1. Our Opinion

It is our opinion that ample effort has already been given to
both the top-down and bottom-up approaches in isolation,
and that there hasn’t been sufficiently expressive theory to
address them both simultaneously. If we want a general
guiding framework for all of deep learning, this needs to
change. To substantiate our opinion, we survey a few ongo-
ing efforts on both sides of the divide.

One of the most successful examples of the top-down frame-
work is geometric deep learning (Bronstein et al., 2021,
GDL), which uses a group- and representation-theoretic
perspective to describe neural network layers via symmetry-
preserving constraints. The actual realisations of such layers
are derived by solving equivariance constraints.

GDL proved to be powerful: allowing, e.g., to cast convolu-
tional layers as an exact solution to linear translation equiv-
ariance in grids (Fukushima et al., 1983; LeCun et al., 1998),
and message passing and self-attention as instances of per-
mutation equivariant learning over graphs (Gilmer et al.,
2017; Vaswani et al., 2017). It also naturally extends to
exotic domains such as spheres (Cohen et al., 2018), meshes
(de Haan et al., 2020b) and geometric graphs (Fuchs et al.,
2020). While this elegantly covers many architectures of
practical interest, GDL also has inescapable constraints.

Firstly, usability of GDL principles to implement architec-
tures directly correlates with how easy it is to resolve equiv-
ariance constraints. While PyG (Fey & Lenssen, 2019),
DGL (Wang, 2019) and Jraph (Godwin et al., 2020) have
had success for permutation-equivariant models, and e3nn
(Geiger & Smidt, 2022) for E(3)-equivariant models, it is
hard to replicate such success for areas where it is not known
how to resolve equivariance constraints.
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Because of its focus on groups, GDL is only able to repre-
sent equivariance to symmetries, but not all operations we
may wish neural networks to align to are invertible (Worrall
& Welling, 2019) or fully compositional (de Haan et al.,
2020a). This is not a small collection of operations either;
if we’d like to align a model to an arbitrary algorithm (Xu
et al., 2019), it is fairly common for the target algorithm to ir-
reversibly transform data, for example when performing any
kind of a path-finding contraction (Dudzik & Veličković,
2022). Generally, in order to reason about alignment to
constructs in computer science, we must go beyond GDL.

On the other hand, bottom-up frameworks are most com-
monly embodied in automatic differentiation packages, such
as TensorFlow (Abadi et al., 2016), PyTorch (Paszke
et al., 2019) and JAX (Bradbury et al., 2018). These frame-
works have become indispensable in the implementation
of deep learning models at scale. Such packages often
have grounding in functional programming: perhaps JAX
is the most direct example, as it is marketed as “compos-
able function transformations”, but such features permeate
other deep learning frameworks as well. Treating neural
networks as “pure functions” allows for rigorous analysis on
their computational graph, allowing a degree of type- and
shape-checking, as well as automatic tensor shape inference
and fully automated backpropagation passes.

The issues, again, happen closer to the boundary between the
two directions—specifying and controlling for constraint
satisfaction is not simple with tensor programming. Infer-
ring general properties (semantics) of a program from its
implementation (syntax) alone is a substantial challenge for
all but the simplest programs, pointing to a need to model
more abstract properties of computer science than exist-
ing frameworks can offer directly. The similarity of the
requirement on both sides leads us to our present position.

1.2. Our Position

It is our position that constructing a guiding framework for
all of deep learning, requires robustly bridging the top-down
and bottom-up approaches to neural network specification
with a unifying mathematical theory, and that the concepts
for this bridging should be coming from computer science.
Moreover, such a framework must generalise both group the-
ory and functional programming—and a natural candidate
for achieving this is category theory.

It is worth noting that ours is not the first approach to either
(a) observe neural networks through the lens of computer
science constructs (Baydin et al., 2018), (b) explore the con-
nection between syntax and semantics in neural networks
(Sonoda et al., 2023a;b; 2024) (b) apply Category Theory
to machine learning (Gavranović, 2020).

However, we are unaware of any prior work that tackles the

connection of neural network architectures and the algebras
of parametric maps, as we will do in this paper. Further,
prior art in syntax-semantics connections either assumes that
the operations are taking place in some topological space
or that neural network architectures have a very specific
form—our framework assumes neither. Lastly, prior pa-
pers exploring Category Theory and Machine Learning are
fragmented, scarce, and not cohesive—our paper seeks to
establish a common, unifying framework for how category
theory can be applied to AI.

To defend our position, we will demonstrate a unified cat-
egorical framework that is expressive enough to rederive
standard GDL concepts (invariance and equivariance), spec-
ify implementations of complex neural network building
blocks (recurrent neural networks), as well as model other
intricate deep learning concepts such as weight tying.

1.3. The Power of Category Theory

To understand where we are going, we must first put the
field of category theory in context. Minimally, it may be
conceived of as a battle-tested system of interfaces that
are learned once, and then reliably applied across scien-
tific fields. Originating in abstract mathematics, specifically
algebraic topology, category theory has since proliferated,
and been used to express ideas from numerous fields in an
uniform manner, helping reveal their previously unknown
shared aspects. Other than modern pure mathematics, which
it thoroughly permeates, these fields include systems the-
ory (Capucci et al., 2022; Niu & Spivak, 2023), bayesian
learning (Braithwaite et al., 2023; Cho & Jacobs, 2019), and
information theory and probability (Leinster, 2021; Bradley,
2021; Sturtz, 2015; Heunen et al., 2017; Perrone, 2022).

This growth has resulted in a reliable set of mature theories
and tools; from algebra, geometry, topology, combinatorics
to recursion and dependent types, etc. all of them with a
mutually compatible interface. Recently category theory has
started to be applied to machine learning, in automatic dif-
ferentiation (Vákár & Smeding, 2022; Alvarez-Picallo et al.,
2021; Gavranović, 2022; Elliott, 2018), topological data
analysis (Guss & Salakhutdinov, 2018), natural language
processing (Lewis, 2019), causal inference (Jacobs et al.,
2019; Cohen, 2022), even producing an entire categorical
picture of gradient-based learning – from architectures to
backprop – in Cruttwell et al. (2022); Gavranović (2024),
with a more implementation-centric view in Nguyen & Wu
(2022), and important earlier work (Fong et al., 2021).

1.3.1. ESSENTIAL CONCEPTS

Before we begin, we recall three essential concepts in cate-
gory theory, that will be necessary for following our exposi-
tion. First, we define a category, an elegant axiomatisation
of a compositional structure.

2



Categorical Deep Learning

Definition 1.1 (Category). A category, C, consists of a col-
lection1 of objects, and a collection of morphisms between
pairs of objects, such that:

• For each object A ∈ C, there is a unique identity mor-
phism idA : A→ A.

• For any two morphisms f : A → B and g : B → C,
there must exist a unique morphism which is their
composition g ◦ f : A→ C .

subject to the following conditions:

• For any morphism f : A→ B, it holds that idB ◦ f =
f ◦ idA = f .

• For any three composable morphisms f : A → B,
g : B → C, h : C → D, composition is associative,
i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f .

We denote by C(A,B) the collection of all morphisms from
A ∈ C to B ∈ C.

We provide a typical first example:

Example 1.2 (The Set Category). Set is a category whose
objects are sets, and morphisms are functions between them.

And another example, important for geometric DL:

Example 1.3 (Groups and monoids as categories). A group,
G, can be represented as a category, BG, with a single
object (G), and morphisms g : G → G corresponding to
elements g ∈ G, where composition is given by the group’s
binary operation. Note that G is a group if and only if these
morphisms are isomorphisms, that is, for each g : G→ G
there exists h : G→ G such that h◦g = g◦h = idG. More
generally, we can identify one-object categories, whose
morphisms are not necessarily invertible, with monoids.

The power of category theory starts to emerge when we
allow different categories to interact. Just as there are func-
tions of sets and homomorphisms of groups, there is a more
generic concept of structure preserving maps between cate-
gories, called functors.

Definition 1.4 (Functor). Let C and D be two categories.
Then, F : C → D is a functor between them, if it maps each
object and morphism of C to a corresponding one in D, and
the following two conditions hold:

• For any object A ∈ C, F (idA) = idF (A).

• For any composable morphisms f, g in C, F (g ◦ f) =
F (g) ◦ F (f).

1The term “collection”, rather than set, avoids Russell’s para-
dox, as objects may themselves be sets. Categories that can be
described with sets are known as small categories.

An endofunctor on C is a functor F : C → C.

Just as a functor is an interaction between categories, a natu-
ral transformation specifies an interaction between functors;
this is the third and final concept we cover here.

Definition 1.5 (Natural transformation). Let F : C → D
andG : C → D be two functors between categories C andD.
A natural transformation α : F ⇒ G consists of a choice,
for every object X ∈ C, of a morphism αX : F (X) →
G(X) in D such that, for every morphism f : X → Y in C,
it holds that αY ◦ F (f) = G(f) ◦ αX .

The morphism αX is called the component of the natural
transformation α at the object X .

The components of a natural transformation assemble into
“naturality squares”, commutative diagrams:

F (X) F (Y )

G(X) G(Y )

F (f)

αX

G(f)

αY

where a diagram commutes if, for any two objects, any two
paths connecting them correspond to the same morphism.

2. From Monad Algebras to Equivariance
Having set up the essential concepts, we proceed on our
quest to define a categorical framework which subsumes
and generalises geometric deep learning (Bronstein et al.,
2021). First, we will define a powerful notion (monad alge-
bra homomorphism) and demonstrate that the special case
of monads induced by group actions is sufficient to describe
geometric deep learning. Generalising from monads and
their algebras to arbitrary endofunctors and their algebras,
we will find that our theory can express functions that pro-
cess structured data from computer science (e.g. lists and
trees)2 and behave in stateful ways like automata.

2.1. Monads and their Algebras

Definition 2.1 (Monad). Let C be a category. A monad on
C is a triple (M,η, µ) where M : C → C is an endofunctor,
and η : idC ⇒ M and µ : M ◦ M ⇒ M are natural
transformations (where here ◦ is functor composition),
making diagrams in Definition B.1 commute.

Example 2.2 (Group action monad). Let G be a group.
Then the triple (G×−, η, µ) is a monad on Set, where

• G × − : Set → Set is an endofunctor mapping a set
X to the set G×X;

2To the best of our knowledge, these ideas were first conjec-
tured in Olah (2015) in the language of functional programming.
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• η : idSet ⇒ G×− : Set→ Set whose component at a
set X is the function x 7→ (e, x) where e is the identity
element of the group G; and

• µ : G × G × − ⇒ G × − : Set → Set whose com-
ponent at a set X is the function (g, h, x) 7→ (gh, x)
with the implicit multiplication that of the group G.

Group action monads are formal theories of group actions,
but they do not allow us to actually execute them on data.
This is what algebras do.

Definition 2.3 (Algebra for a monad). An algebra for a
monad (M,η, µ) on a category C is a pair (A, a), whereA ∈
C is a carrier object and a :M(A)→ A is a morphism of
C (structure map) making the following diagram commute:

A M(A) M(M(A)) M(A)

A M(A) A

ηA

a a

a

M(a)

µA

Example 2.4 (Group actions). Group actions for a group G
arise as algebras of the aforementioned group action monad
G×−. Consider the carrier RZw×Zh , thought of as data on
a w×h grid, and any of the usual group actions on Zw×Zh:
translation, rotation, permutation, scaling, or reflections.

Each of these group actions induce an algebra on the carrier
set RZw×Zh . For instance, the translation group (Zw ×
Zh,+, 0) induces the algebra

▶: Zw × Zh × RZw×Zh → RZw×Zh

defined as ((i′, j′) ▶ x)(i, j) = x(i − i′, j − j′). Here x
represents the grid data, i, j specific pixel locations, and
i′, j′ the translation vector. We also specifically mention the
trivial action of any group πX : G×X → X by projection.

A monad algebra can capture a particular input or output
for group equivariant neural networks (as its carrier). That
being said, geometric deep learning concerns itself with
linear equivariant layers between these inputs and outputs.
In order to be able to describe those, we need to establish
the concept of a morphism of algebras for a monad.

Definition 2.5 (M -algebra homomorphism). Let (M,µ, η)
be a monad on C, and (A, a) and (B, b) be M -algebras.
An M -algebra homomorphism (A, a)→ (B, b) is a mor-
phism f : A→ B of C s.t. the following commutes:

M(A) M(B)

A B

a b

f

M(f)

We recover equivariant maps as morphisms of algebras.

Example 2.6 (Equivariant maps). Equivariant maps are
group action monad algebra homomorphisms. Consider any
action from Example 2.4. An endomorphism of such an
action—that is, a G-algebra on RZw×Zh—is an endormor-
phism of RZw×Zh which induces a commutative diagram

G× RZw×Zh G× RZw×Zh

RZw×Zh RZw×Zh

▶ ▶

f

G×f

which, elementwise, unpacks to the equation

f(g ▶ x) = g ▶ f(x)

The translation example, for instance, recovers the equa-
tion f(((i′, j′) ▶ x)(i, j)) = (i′, j′) ▶ f(x)(i, j) which
reduces to the usual constraint: f(x(i − i′, j − j′)) =
f(x)(i− i′, j − j′).

The concept of invariance — a special case of equivariance
— is unpacked in the Appendix (Example H.3). It’s worth
reflecting on the fact that we have just successfully derived
the key aim of geometric deep learning: finding neural
network layers that are monad algebra homomorphisms of
monads associated with group actions!

Indeed, the template illustrated in Example 2.6 is sufficient
to explain any architectures which are explained by Geomet-
ric DL; should the reader wish to see concrete examples—
deriving graph neural networks (Veličković, 2023), Spher-
ical CNNs (Cohen et al., 2018) and G-CNNs (Cohen &
Welling, 2016)—they may be found in Appendix C.

To concretely derive such layers from these constraints, we
need to make concrete the category in which f : A → B
lives. A standard choice is to use Vect, a category where
objects are finite-dimensional vector spaces and morphisms
are linear maps between these spaces. In such a setting,
morphisms can be specified as matrices, and the equivari-
ance condition places constraints on the matrix’s entries,
resulting in effects such as weight sharing or weight tying.
We provide a detailed derivation for two examples on a
two-pixel grid in Appendix H.1.
Remark 2.7. When our monad is of the formM×−, withM
a monoid, algebras are equivalent toM -actions, i.e. functors
BM → Set, where BM is the one-object category given
in Example 1.3, and algebra morphisms are equivalent to
natural transformations. So in this case, our definition of
equivariance coincides with the functorial version given in
de Haan et al. (2020a). But the connection here is much
deeper—for any monad, we can think of its algebras, which
we can think of as the semantics of the monad, as functors
on certain categories encoding the monad’s syntax, such as
Lawvere theories. For example, Dudzik & Veličković (2022)
use the fact that functors on the category of finite polynomial
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diagrams3 encode the algebraic structure of commutative
semirings. We give further details on this connection in
Appendix D.

2.2. Endofunctors and their (Co)algebras

Geometric deep learning, while elegant, is fundamentally
constrained by the axioms of group theory. Monads and
their algebras, however, are naturally generalised beyond
group actions. Here we show how, by studying (co)algebras
of arbitrary endofunctors, we can rediscover standard com-
puter science constructs like lists, trees and automata. This
rediscovery is not merely a passing observation; in fact, the
endofunctor view of lists and trees turns out to naturally map
to implementations of neural architectures such as recurrent
and recursive neural networks; see Appendix I.

Then, in the next section we’ll show how these more min-
imal structures, endofunctors and their algebras, may be
augmented into the more structured notions of monads and
their algebras.

Definition 2.8 (Algebra for an endofunctor). Let C be a
category and F : C → C an endofunctor on C. An algebra
for F is a pair (A, a) where A is an object of C and a :
F (A)→ A is a morphism of C.

Note that, compared to Definition 2.3, there are no equations
this time; F is not equipped with any extra structure with
which the structure map of an algebra could be compatible.
Examples of endofunctor algebras abound (Jacobs, 2016),
many of which are familiar to computer scientists.

Example 2.9 (Lists). Let A be a set, and consider the end-
ofunctor 1 + A × − : Set → Set. The set List(A) of lists
of elements of type A together with the map [Nil,Cons] :
1 +A× List(A)→ List(A) forms an algebra of this endo-
functor.4: Here Nil and Cons are two constructors for lists,
allowing us to represent lists as the following datatype:

data List a = Nil
| Cons a (List a)

It describes List(A) inductively, as being formed either out
of the empty list, or an element of type A and another list.
In Figure 1 we will see how this relates to folding RNNs.

Example 2.10 (Binary trees). Let A be a set. Consider the
endofunctor A + (−)2 : Set → Set. The set Tree(A) of
binary trees with A-labelled leaves, together with the map
[Leaf,Node] : A+ Tree(A)2 → Tree(A) forms an algebra
of this endofunctor. Here Leaf and Node are constructors for
binary trees, enabling the following datatype representation:

3Equivalently, the category of finitary dependent polynomial
functors.

4[f, g] : A+B → C is notation for maps out of a coproduct;
where f : A → C and g : B → C

data Tree a = Leaf a
| Node (Tree a) (Tree a)

It describes Tree(A) inductively, as being formed either out
of a single A-labelled leaf or two subtrees.5 In Figure 1 we
will relate this to recursive neural networks.

Dually, we also study coalgebras for an endofunctor (where
the structure morphism a : A→ F (A) points the other way
(Definition B.2). Intuitively, while algebras offer us a way
to model computation guaranteed to terminate, coalgebras
offer us a way to model potentially infinite computation.
They capture the semantics of programs whose guarantee is
not termination, bur rather productivity (Atkey & McBride,
2013), and as such are excellent for describing servers, op-
erating systems, and automata (Rutten, 2000; Jacobs, 2016).
We will use endofunctor coalgebras to describe one such
automaton—the Mealy machine (Mealy, 1955).

Example 2.11 (Mealy machines). Let O and I be sets of
possible outputs and inputs, respectively. Consider the
endofunctor (I → O × −) : Set → Set. Then the set
MealyO,I of Mealy machines with outputs in O and inputs
in I , together with the map next : MealyO,I → (I →
O ×MealyO,I) is a coalgebra of this endofunctor.

data Mealy o i = MkMealy {
next :: i -> (o, Mealy o i)

}

This describes Mealy machines coinductively, as systems
which, given an input, produce an output and another Mealy
machine. In Figure 1 we will relate this to full recurrent
neural networks, and, in Examples H.4 and H.7 we coalge-
braically express two other fundamental classes of automata:
streams and Moore machines.

We have expressed data structures and automata using
(co)algebras for an endofunctor. Just as in the case of GDL,
in order to describe (linear) layers of neural networks be-
tween them, we need to establish the concept of a homo-
morphism of endofunctor (co)algebras. The definition of
a homomorphism of algebras for an endofunctor mirrors6

Definition 2.5, while the definition of a homomorphism of
coalgebras has the structure maps pointing the other way.

Example 2.12 (Folds over lists as algebra homomorphisms).
Consider the endofunctor (1 +A×−) from Example 2.9,
and an algebra homomorphism from (List(A), [Nil,Cons])

5This framework can also model any variations, e.g., n-ary
trees with A-labelled leaves as algebras of A+ List(−), or binary
trees with A-labelled nodes as algebras of 1 +A× (−)2.

6Because it does not rely on the extra structure monads have.
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to any other (1 +A×−)-algebra (X, [r0, r1]):

1 +A× List(A) 1 +A×X

List(A) X

[Nil,Cons]

fr

[r0,r1]

1+A×fr

Then the map fr : List(A) → X is, necessarily, a fold
over a list, a concept from functional programming which
describes how a single value is obtained by operating over a
list of values. It is implemented by recursion on the input:

f r :: List a -> x
f r Nil = r 0 ()
f r (Cons h t) = r 1 h (f r t)

This recursion is structural in nature, meaning it satisfies
the following two equations which arise by unpacking the
algebra homomorphism equations elementwise:

fr(Nil) = r0(•) (1)
fr(Cons(h, t)) = r1(h, fr(t)) (2)

Equation (1) tells us that we get the same result if we apply
fr to Nil or apply r0 to the unique element of the singleton
set7. Equation (2) tells us that, starting with the head and
tail of a list, we get the same result if we concatenate the
head to the tail, and then process the entire list with fr, or if
we process the tail first with fr, and then combine the result
with the head using r1.

It is important to remark that these equations generalise
equivariance constraints over a list structure. Both group
equivariance and Equations (1) and (2) intuitively specify a
function that is predictably affected by certain operations—
but for the case of lists, these operations (concatenating) are
not group actions, as attaching an element to the front of the
list does not leave the list unchanged.
Remark 2.13. Interestingly, given an algebra (X, [r0, r1]),
there can only ever be one algebra homomorphism from lists
to it! This is because (List(A), [Nil,Cons]) is an initial ob-
ject (Definition A.2) in the category of (1+A×−)-algebras.
The fact that these are initial arises from a deeper fact related
to the fact that, in many cases, for a given endofunctor there
is a monad whose category of monad algebras is equivalent
to the original category of endofunctor algebras. We note
this because the construction which takes us from one to
the other, the so-called algebraically free monad on an end-
ofunctor, will be seen in Part 3 to derive RNNs and other
similar architectures from first principles.

Example 2.14 (Tree folds as algebra homomorphisms).
Consider the endofunctorA+(−)2 from Example 2.10, and

7Where () was used to denote it in Haskell notation.

an algebra homomorphism from (Tree(A), [Leaf,Node]) to
any other (A+ (−)2)-algebra (X, [r0, r1]):

A+ Tree(A)2 A+X2

Tree(A)2 X

[Leaf,Node]

fr

[r0,r1]

A+f2
r

Then the map fr is necessarily a fold over a tree. As with
lists, it is implemented by recursion on the input, which is
structural in nature:

f r :: Tree a -> x
f r (Leaf a) = r 0 a
f r (Node l r) = r 1 (f r l) (f r r)

This means that it satisfies the following two equations
which arise by unpacking the algebra homomorphism equa-
tions elementwise:

fr(Leaf(a)) = r0(a) (3)
fr(Node(l, r)) = r1(fr(l), fr(r)) (4)

These can also be thought as describing generalised equiv-
ariance over binary trees, analogously to lists.

Dual to algebra homomorphisms and folds over inductive
data structures, coalgebra homomorphisms are categorical
semantics of unfolds over coinductive data structures.
Example 2.15 (Unfolds as coalgebra homomorphisms).
Consider the endofunctor (I → O×−) from Example 2.11,
and a coalgebra homomorphism from (MealyO,I , next) to
any other (I → O ×−)-coalgebra (X,n):

X MealyO,I

(I → O ×X) (I → O ×MealyO,I)

n next

fn

(I→O×fn)

The map fn here can be thought of as a generalised unfold,
a concept from functional programming describing how a
potentially infinite data structure is obtained from a single
value. It is implemented by a corecursive function:

f n :: x -> Mealy o i
f n x = MkMealy

\i -> let (o', x') = n x i
in (o', f n x')

which is again structural in nature. This means that it satis-
fies the following two equations which arise by unpacking
the coalgebra homomorphism equations elementwise:

n(x)(i)1 = next(fn(x))(i)1 (5)
fn(n(x)(i)2) = next(fn(x))(i)2 (6)
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Equation (5) tells us that the output of the Mealy machine
produced by fn at state x and input i is given by the output
of n at state x and input i, and Equation (6) tells us that the
next Mealy machine produced at x and i is the one produced
by fn at n(x)2(i).

This, too, generalises equivariance constraints, now de-
scribing an interactive automaton which is by no means
invertible. Instead, it is dynamic in nature, producing out-
puts which are dependent on the current state of the machine
and previously unknown inputs. Lastly, in Examples H.5
and H.8, we show that two kinds of automata—streams and
Moore machines—are also examples of coalgebra homo-
morphisms. Just as before, we can embed all of our objects
and morphisms into Vect to study the weight sharing con-
straints induced by such a condition—see Example H.5.

2.3. Where to Next?

Let’s take a step back and understand what we’ve done.
We have shown that an existing categorical framework uni-
formly captures a number of different data structures and
automata, as particular (co)algebras of an endofunctor. By
choosing a well-understood data structure, we induce a struc-
tural constraint on the control flow of the corresponding
neural network, by utilising homomorphisms of these end-
ofunctor (co)algebras. These follow the same recipe as
monad algebra homomorphisms, and hence can be thought
of as generalising equivariance—describing functions be-
yond what geometric deep learning can offer.

This is concrete evidence for our position—that categorical
algebra homomorphisms are suitable for capturing various
constraints one can place on deep learning architectures.
Our evidence so far rested on endofunctor algebras, which
are a particularly fruitful variant.

However, this construct leaves much to be desired. One ma-
jor issue is that, to prescribe any notion of weight sharing,
for all of these examples we have implicitly assumed ho-
momorphisms to be linear transformations by placing them
into the category Vect. But most neural networks aren’t
simply linear maps, meaning that these analyses are limited
to analysing their individual layers. In the standard example
of recurrent neural networks, an RNN cell is an arbitrary
differentiable function, usually composed out of a sequence
of linear and non-linear maps. Further, in both practice and
theory, neural networks are treated as parametric functions.
Specifically, in frameworks like JAX, the parameters often
need to be passed explicitly to any forward or backward pass
of a neural network.

How can we explicitly model parameters and non-linear
maps, without abandoning the presented categorical frame-
work? Furthermore, in practice—with recurrent or recursive
(Socher et al., 2013) neural networks, for instance—there

are established techniques for weight sharing. Can we estab-
lish formal criteria for when these techniques are correct?
Just as how we generalised GDL to the setting of category
theory, we can go further: to the setting of 2-categories—the
setting we use to study parametric morphisms.

3. 2-Categories and Parametric Morphisms
While category theory is a powerful framework, it leaves
much to be desired in terms of higher-order relationships
between morphisms. It only deals with sets of morphisms,
with no possible way to compare elements of these sets.
This is where the theory of 2-categories comes in, which
deals with an entire category of morphisms. While in a (1-
)category, one has objects and morphisms between objects,
in a 2-category one has objects (known as 0-morphisms),
morphisms between objects (1-morphisms), and morphisms
between morphisms (2-morphisms). We have, in fact, al-
ready secretly seen an instance of a 2-category, Cat, when
defining the essential concepts of category theory. Specifi-
cally, in Cat, objects are categories, morphisms are functors
between them, and 2-morphisms are natural transforma-
tions between functors.

3.1. The 2-category Para

In this section we define an established 2-category Para
(Cruttwell et al., 2022; Capucci et al., 2022), and proceed to
unpack the manner which we posit weight sharing can be
modelled formally in it.

While it shares objects with the category Set, its 1-
morphisms are not functions, but parametric functions. That
is, a 1-morphism A → B here consists of a pair (P, f),
where P ∈ Set and f : P ×A→ B.

Para morphisms admit an elegant
graphical formalism. Parameters
(P ) are drawn vertically, signifying
that they are part of the morphism,
and not objects.

B
f

P

A

The 2-category Para models the algebra of composition of
neural networks; the sequential composition of paramet-
ric morphisms composes the parameter spaces in parallel
(Figure 4).

The 2-morphisms in Para capture reparameterisations be-
tween parametric functions. Importantly, this allows for the
explicit treatment of weight tying, where a parametric mor-
phism (P×P, f) can have its weights tied by precomposing
with the copy map ∆P : P → P × P .
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Figure 1. Parametric (co)algebras provide a high-level framework for describing structured computation in neural networks.
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This 2-category8 is one of the key components in the cate-
gorical picture of gradient-based learning (Cruttwell et al.,
2022). But we hypothesise that more is true (Appendix I):

It is our position that the 2-category Para and 2-categorical
algebra valued in it provide a formal theory of neural

network architectures, establish formal criteria for weight
tying correctness and inform design of new architectures.

3.2. 2-dimensional Categorical Algebra

2-category theory is markedly richer than 1-category theory.

While diagrams in a 1-category either commute or do not
commute, in a 2-category, they serve as a 1-skeleton to
which 2-morphisms attach. In any 2-category a square
may: commute, pseudo-commute, lax-commute, or oplax9

commute, meaning, respectively, that relevant paths paths
are equal, isomorphic, or there is a 2-morphism from one to
the other in one direction or the other. The diagrams below
present these four options, with 2-morphisms denoted by
double arrows.

• • • • • • • •

• • • • • • • •
=

∼=

In the long run, we expect that all of these notions will apply
to, either explaining or specifying, aspects of neural architec-
ture past, present and future. Focusing on just one of them,

8More precisely, the construction Para( ). See Appendix G.
9Often also called colax.

the lax algebras are sufficient to derive recursive, recurrent,
and similar neural networks from first principles. Notably,
morphisms of lax algebras are also expressive enough to
capture 1-cocycles, used to formalise asynchronous neural
networks in (Dudzik et al., 2024)—see Appendix H.1.

Interestingly, this story of how an individual recurrent, re-
cursive, etc. neural network cell generates a full recursive,
recurrent etc. neural network is a particular 2-categorical
analogue to the story of algebraically free monads on an
endofunctor we briefly mentioned in Remark 2.13.

For all the examples of endofunctors in Section 2.2, there is
a monad whose category of algebras FreeMnd(F ) is equiv-
alent to the category of algebras for the original endofunc-
tor F . We obtain FreeMnd(F ) by iterating F until it sta-
bilises, meaning further application of the endofunctor does
not change the composition. Functional programmers may
recognise this from the implementation of free monads in
Haskell, while formally this is defined using colimits (see
Appendix B.2). Using this concept, we can define a functor
mapping an F -algebra (A, a) to the FreeMnd(F )-algebra
(A, lim−→(a ◦Fa ◦F 2a ◦ · · · ◦Fna)), connecting appropriate
endofunctor algebras to monad algebras.

But in the 2-dimensional case, we study the relationship be-
tween Lax-AlgEndo(F ) and Lax-AlgMnd(FreeMnd(F )) and
need contend not only with generating the 1-dimensional
structure map, but also the 2-cells of the lax algebra for a
monad.

To reconcile this with concrete applications, we note that we
do not need to study general 2-endofunctors and 2-monads
on Para. Rather, examples which concern us arise from spe-
cific 1-categorical algebras (group action monads, inductive
types, etc.), which are augmented into 2-monads on Para.
As we prove in Theorem G.10, the lax cells of such algebras
are actually comonoids. The fact that we can duplicate or
delete entries in vectors—the essence of tying weights—is

8
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the informal face of this comonoid structure.

We can now describe, even if space constraints prevent us
from adequate level of detail, the universal properties of re-
current, recursive, and similar models: they are lax algebras
for free parametric monads generated by parametric end-
ofunctors! Having lifted the concept of algebra introduced
in Part 2 into 2-categories, we can now describe several
influential neural networks fully (not just their individual
layers!) from first principles of functional programming.

4. New Horizons
Our framework gives the correct definition of numerous
variants of structured networks as universal parametric coun-
terparts of known notions in computer science. This imme-
diately opens up innumerable avenues for research.

Firstly, any results of categorical deep learning as presented
here rely on choosing the right category to operate in; much
like results in geometric deep learning relied on the choice
of symmetry group. However, we have seen that monad
algebras—which generalise equivariance constraints—can
be parametric, and lax. As a consequence, the kinds of
equivariance constraints we can learn become more general:
we hypothesise neural networks that can learn not merely
conservation laws (as in Alet et al. (2021)), but verifiably
correct logical argument, or code. This has ramifications
for code synthesis: we can, for example, specify neural
networks that learn only well-typed functions by choosing
appropriate algebras as their domain and codomain.

This is made possible by our framework’s generality: for
example, by choosing polynomial functors as endofunctors
we get access to containers (Abbott et al., 2003; Altenkirch
et al., 2010), a uniform way to program with and reason
about datatypes and polymorphic functions. By combin-
ing these insights with recent advances enabling purely
functional differentiation through inductive and coinduc-
tive types (Nunes & Vákár, 2023), we open new vistas for
type-safe design and implementation of neural networks in
functional languages.

One major limitation of geometric deep learning was that it
was typically only able to deal with individual neural net-
work layers, owing to its focus on linear equivariant func-
tions (see e.g. Maron et al. (2018) for the case of graphs).
All nonlinear behaviours can usually be obtained through
composition of such layers with nonlinearities, but GDL
typically makes no attempt to explain the significance of
the choice of nonlinearity—which is known to often be a
significant decision (Shazeer, 2020). Within our framework,
we can reason about architectural blocks spanning multiple
layers—as evidenced by our weight tying examples—and
hence we believe CDL should enable us to have a theory of
architectures which properly treats nonlinearities.

Our framework also offers a proactive path towards equi-
table AI systems. GDL already enables the architectural
imposition of protected classes invariance (see Choraria
et al. (2021) for example). This deals, at least partially, both
with issues of inequity in training data and inequity in al-
gorithms since such an invariant model is, by construction,
exclusively capable of inference on the dimensions of latent
representation which are orthogonal to protected class.

With CDL, we hope to enable even finer grained control.
By way of categorical logic, we hope that CDL will lead
us to a new and deeper understanding of the relationship
between architecture and logic, in particular clarifying the
logics of inductive bias. We hope that our framework will
eventually allow us to specify the kinds of arguments the
neural networks can use to come to their conclusions. This
is a level of expressivity permitting reliable use for assessing
bias, fairness in the reasoning done by AI models deployed
at scale. We thus believe that this is the right path to AI
compliance and safety, and not merely explainable, but
verifiable AI.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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phy, K. Machine learning on graphs: A model and com-
prehensive taxonomy. The Journal of Machine Learning
Research, 23(1):3840–3903, 2022.

Cho, K. and Jacobs, B. Disintegration and bayesian
inversion via string diagrams. 29(7):938–971, 2019.
ISSN 0960-1295, 1469-8072. doi: 10.1017/
S0960129518000488. URL http://arxiv.org/
abs/1709.00322.

Choraria, M., Ferwana, I., Mani, A., and Varshney, L. R.
Balancing fairness and robustness via partial invari-
ance. NeurIPS 2021 Workshop on Algorithmic Fairness
through the Lens of Causality and Robustness, 2021. URL
https://arxiv.org/abs/2112.09346.

Cohen, T. Towards a grounded theory of causation for
embodied ai. arXiv preprint arXiv:2206.13973, 2022.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.
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A. Category Theory Basics
The natural notion of ‘sameness‘ for categories is equivalence:

Definition A.1 (Equivalence). An equivalence between two categories C and D, written C ∼→ D, consists of a pair of
functors F : C → D and G : D → C together with natural isomorphisms (natural transformations where every component
has an inverse) F ◦G ∼= 1D and G ◦ F ∼= 1C .

Definition A.2 (Initial object). An object I in a category C is called initial if for every X ∈ C it naturally holds that
C(I,X) ∼= 1, meaning that there is only one map of type I → X .

Definition A.3 (Terminal object). An object T in a category C is called terminal if for every X ∈ C it naturally holds that
C(X,T ) ∼= 1, meaning that there is only one map of type X → T .

Definition A.4 (Limit). For categories J and C, a diagram of shape J in C is a functor D : J → C. A cone to a diagram
D consists of an object C ∈ C and a natural transformation from a functor constant at C to the functor D, i.e. a family of
morphisms cj : C → D(j) for each object j ∈ J , such that for any f : i→ j in C the following diagram commutes:

C D(i)

D(j)

D(f)

ci

cj

A morphism of cones θ : (C, cj)→ (C ′, c′j) is a morphism θ in C making each diagram

C C ′

D(j)

c′j

θ

cj

commute. The limit of a diagram D, written lim←−D, is the terminal object in the category Cone(D) of cones to D and
morphisms between them.

Definition A.5 (Colimit). The colimit lim−→D of a diagram D : J op → C is the initial object in the category Cocone(D) of
cocones to D, where a cocone (C, cj : D(j)→ C) has the dual property of a cone (above) with the morphisms reversed.
Small (respectively κ-directed, connected, ...) colimits are colimits for which the indexing category J is small (respectively
κ-directed, connected, ...).

Example A.6. A terminal object in C is a limit of the unique diagram from the empty category to C. Similarly an initial
object is an example of a colimit.

B. 1-Categorical Algebra
Definition B.1 (Monad coherence diagrams). A triple (M,η, µ) of:

• an endofunctor M : C → C;

• a natural transformations η : idC ⇒M ; and

• a natural transformation µ :M ◦M ⇒M

constitute a monad if the following diagrams commute:

M M ◦M M ◦M ◦M M ◦M

M M ◦M M

µ

η

µ µ

M◦µ

µ

Definition B.2 (Coalgebra for an endofunctor). Let C be a category and F an endofunctor on C. A coalgebra for F is a pair
(A, a) where A is an object of C and a : A→ F (A) is a morphism of C.
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B.1. Well-pointed Endofunctors and Algebraically Free Monads

In this subsection we’ll relate endofunctors and their algebras to monads and their algebras by way of well-pointed
endofunctors and the transfinite construction for an algebraically free monad on such an endofunctor.

Definition B.3. A pointed endofunctor (F, σ) comprises an endofunctor F : C → C, and a natural transformation
σ : idC ⇒ F . A pointed endofunctor is said to be well-pointed if the whiskering of F and σ either from the left or the right
gives the same result, or in other words, if the natural transformations σ ◦ F and F ◦ σ (which are of type F ⇒ F ◦ F ) are
equal.

An algebra for a pointed endofunctor (F, σ) is an algebra (A, a) for the endofunctor F for which the following diagram
commutes:

A FA

A

a

σA

idA

Remark B.4. As well-pointedness is a property, and not structure, algebras for well-pointed endofunctors are just algebras
for the pointed endofunctors. Morphisms of algebras for pointed endofunctors are morphisms of algebras for the underlying
endofunctor.

Example B.5 (Monads and pointed endofunctors, idempotent monads and well-pointed endofunctors). The unit and
underlying endofunctor of a monad constitute a pointed endofunctor. If moreover that monad is idempotent, then that
pointed endofunctor is well-pointed.

Definition B.6. For a given endofunctor F , its algebras and algebra homomorphisms form a category we denote by
AlgEndo(F ). For (F, σ) a (well)-pointed endofunctor we denote by AlgPendo(F ) the category of algebras for F and
homomorphisms thereof. For (F, µ, η) a monad its algebras and homomorphisms thereof form a category we denote by
AlgMnd(F ).

Lemma B.7. Suppose F is an endofunctor on a category C with coproducts. Then there is an equivalence of categories
AlgEndo(F )

∼→ AlgPendo(F + idC).

Definition B.8. Given an endofunctor F : C → C, an algebraically free monad on F is a monad FreeMnd(F ) together with
an equivalence of categories AlgEndo(F )

∼→ AlgMnd(FreeMnd(F )) which preserves the respective functors to C that forget
the algebraic structure.

B.2. Kelly’s Unified Transfinite Construction

The existence theorem for algebraically free monads is Kelly’s unified transfinite construction (Kelly, 1980).

Definition B.9 (Reflective subcategory). A full subcategory D of a category C is reflective if the inclusion functor
F : D → C admits a left adjoint G : C → D. A reflective subcategory of a presheaf category is called a locally presentable
category.

Example B.10 (Categories are reflective in graphs). The category of small categories is a reflective subcategory of the
category of graphs, which is itself a presheaf category.

Example B.11 (Ubiquity of local presentability). Nearly every category often encountered in practice is a locally presentable
category. The categories of monoids, groups, rings, vector spaces, and modules are locally presentable. As are the categories
of topological spaces, manifolds, metric spaces, and uniform spaces. While its beyond the scope of this document to
expound too much upon it, local presentability is a particularly powerful notion of what it means for objects and morphisms
to be of things defined by equalities of set-sized expressions.

Definition B.12 (Accessible category and accessible functor). For an ordinal κ, a κ-accessible category C is a category
such that:

• C has κ-directed colimits; and

• there is a set of κ-compact objects which generates C under κ-directed colimits.

A κ-accessible functor F : C → D is an functor between κ-accessible functor which preserves κ-filtered colimits.
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Remark B.13. The accessibility of a functor can be thought of as an upper-bound on the arity of the operations which it
abstracts. For example finite sums of finite sums are again finite sums.

Definition B.14. Let C be a κ-accessible locally presentable category and F : C → C a pointed κ-accessible endofunctor.
Let Fκ be the κ-directed colimit of the diagram

F 0 → F 1 → F 2 → · · · → Fκ

where F 0 = idC and Fα+1 = F ◦ Fα for α < κ and Fα = lim−→β<αF
β for α a limit ordinal.

Lemma B.15. For C and F as above, Fκ is a monad. The unit is the canonical inclusion of idC into the colimit Fκ and the
multiplication comes from the preservation of κ-filtered colimits by F .

Theorem B.16. Assume the hypotheses of Lemma B.15 with κ the ordinal in those hypotheses. Then AlgPendo(F ) is
equivalent to AlgMnd(F

κ) - i.e. Fκ is an algebraically free monad for F .

Remark B.17. For the endofunctors F we study here, Free(F ) ∼→ (F+ id)ω is the underlying endofunctor of an algebraically
free monad for F , Free(F ).

The above formula can be related to the explicit formula for computing free monads, which has a dual formula in the case of
cofree comonads (Ghani et al.).

Proposition B.18 ((Co)free (co)monads, explicitly). Let F : C → C be an endofunctor. Then FreeMnd(F ), the free monad
on F is given by FreeMnd(F )(Z) = Fix(X 7→ F (X) + Z). Dually, we compute CofreeCmnd(F ), the cofree comonad on F
as CofreeCmnd(F )(Z) = Fix(X 7→ F (X)× Z).
Example B.19 (Free monad on 1 +A×−). Free monad on the endofunctor 1 +A×− is List−+1(A) : Set→ Set, the
endofunctor mapping an object Z to the set ListZ+1(A) of lists of elements of type A whose last element is not [], i.e. an
element of type 1, but instead an element of type Z + 1. That is, these are lists which end potentially with an element of Z.

Example B.20 (Free monad onA+(−)2). The free monad on the endofunctorA+(−)2 is given by Tree(A+−) : Set→ Set,
mapping a set Z to the set of trees with A+ Z labelled leaves.

Example B.21 (Cofree comonad on O ×−). The cofree comonad on the endofunctor O ×− is Stream(O ×−), mapping
an object Z to the set of streams whose outputs are of type O × Z.

Example B.22 (Cofree comonad on (I → O ×−)). The cofree comonad of the endofunctor (I → O ×−) is Fix(X 7→
(I → O ×X)×−), mapping a set Z to a set of hybrids of Moore and Mealy machines, outputting an additional element of
Z at each step which does not depend on I .

C. Additional Geometric Deep Learning Examples
To further illustrate the power of categorical deep learning as a framework that subsumes geometric deep learning (Bronstein
et al., 2021), as well as make the reader more comfortable in manipulating monad algebras and their homomorphisms, we
provide three additional examples deriving equivariance constraints of established geometric deep learning architectures,
leveraging the framework of CDL.

All of these examples should be familiar to Geometric DL practitioners, and are covered in detail by prior papers (Maron
et al., 2018; Cohen et al., 2018; Thomas et al., 2018; Cohen & Welling, 2016), hence we believe that relegating their exact
derivations to appendices is appropriate in our work.

Before we begin, we recall the core template of our work: that we represent neural networks f : A→ B as monad algebra
homomorphisms between two algebras (A, a) and (B, b), for a monad (M,η, µ):

M(A) M(B)

A B

a b

f

M(f)

and that geometric deep learning can be recovered by making our monad be the group action monad; M(X) = G×X .
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C.1. Permutation-equivariant Learning on Graphs

leading to graph neural networks (Veličković, 2023).

Σn × Rn × Rn×n Σn × Rn

Rn × Rn×n Rn

Σn×f

PX,A PX

f

In this case:

• The group G = Σn is the permutation group of n elements,

• The carrier object for the algebras includes (scalar) node features Rn and, potentially, adjacency matrices Rn×n,

• The structure map for the first algebra, PX,A : Σn × Rn × Rn×n → Rn × Rn×n, executes the permutation:
PX,A(σ,X,A) = (P(σ)X,P(σ)AP(σ)⊤), where P(σ) is the permutation matrix specified by σ.

• The structure map for the second algebra, PX , still executes the permutation, but only over the node features. This
reduction is not strictly necessary, but is often the standard when designing graph neural networks—as they are often
assumed to not modify their underlying computational graph. We deliberately assume this reduction here to illustrate
how our framework can handle neural networks transitioning across different algebras.

C.2. Rotation-equivariant Learning on Spheres

leading to the first layer of spherical CNNs (Cohen et al., 2018).

SO(3)× (S2 → R) SO(3)× (SO(3)→ R)

S2 → R SO(3)→ R

SO(3)×f

ρS2 ρSO(3)

f

In this case:

• The group G = SO(3) is the special orthogonal group of 3D rotations.

• The carrier object for the first algebra is S2 → R; (scalar) data defined over the sphere. Note that in practice, this will
usually be discretised, so we will be able to represent it using matrices.

• The structure map of the first algebra, ρS2 : SO(3)× (S2 → R)→ (S2 → R), executes a 3D rotation on the spherical
data, as follows: ρS2((α, β, γ), ψ) = ϕ, such that ϕ(x) = ψ(R(α, β, γ)−1x), where R(α, β, γ) is the rotation matrix
specified by the ZYZ-Euler angles (α, β, γ) ∈ SO(3). This (inverse) rotation is applied to points x ∈ S2 on the sphere.

• The carrier object for the second algebra is SO(3)→ R; (scalar) data defined over rotation matrices. Once again, this
will usually be discretised in practice.

• The structure map of the second algebra, ρSO(3) : SO(3) × (SO(3) → R) → (SO(3) → R) now executes
a 3D rotation over the rotation-matrix data, as follows: ρSO(3)((α, β, γ), ψ) = ϕ such that ϕ(R(α′, β′, γ′)) =
ψ(R(α, β, γ)−1R(α′, β′, γ′)).

17



Categorical Deep Learning

C.3. G-equivariant Learning on G

leading to G-CNNs (Cohen & Welling, 2016), as well as the subsequent layers of spherical CNNs (Cohen et al., 2018).

G× (G→ R) G× (G→ R)

G→ R G→ R

G×f

AG AG

f

In this case:

• The group G is also the domain of the carrier objects (G→ R).

• Both algebras’ structure map follows the execution of the regular representation ofG,AG : G×(G→ R)→ (G→ R),
by composition, as follows: AG(g, ψ)(h) = ψ(g−1h).

D. Lawvere Theories and Syntax
de Haan et al. (2020a) expanded the theory of equivariant layers in neural networks using the abstraction of natural
transformations of functors. In this section, we will explain how to understand morphisms of monad algebras in the same
terms.

Indeed, this comparison is crucial to understanding the syntax of monads, in addition to the semantics given by their category
of algebras.

Definition D.1. If C is a category, a presheaf on C is a functor Cop → Set. The category whose objects are presheaves and
morphisms are natural transformations is denoted Psh(C).

Fix a monad T on Set and let CT denote its category of algebras and algebra homomorphisms.

Given an algebra A ∈ CT , the easiest way to interpret A as a functor is via the Yoneda embedding CT → Psh(CT ), which
identifies A with the presheaf [−, A]. It is a standard result that the Yoneda functor is fully faithful, which means that we
can identify morphisms as algebras with morphisms as presheaves.

Furthermore, these presheaves have a special property. If lim−→ j is a small colimit in CT , then [lim−→ j, A] = lim←−[j, A],
essentially by the definition of limits and colimits.

Definition D.2. If C is a category and J is a class of small colimits in C, then a J-continuous presheaf on C is a presheaf
F ∈ Psh(C) satisfying F (lim−→ j) = lim←−F (j) for all j ∈ J . The corresponding full subcategory of Psh(C) is denoted
CPshJ(C), or simply CPsh(C) in the case that J is the class of all small colimits. We will also use

∐
to refer to the class of

all coproducts, + to refer to the class of binary coproducts, and ∅ to refer to the empty class.

It turns out that CT has a nice property: it is a strongly compact category, meaning that every continuous presheaf is
representable as above by an object of CT . In other words, we have the identification CT = CPsh(CT ).

However, it is usually impractical to work with the entire category CT . When possible, we want to reason in terms of a more
tractable subcategory. These will provide us with workable syntax for our monad. Following (Brandenburg, 2021), we make
use of Ehresmann’s concept of a “colimit sketch”: a category equipped with a restricted class of colimits. Rather than giving
the general definition, we will describe a few special cases of prime interest.

Definition D.3. The Kleisli category KT is the full subcategory of CT on the free algebras. The finitary Kleisli category
KN

T is the full subcategory on the free algebras of the form TS for S a finite set. And the unary Kleisli category K1
T is the

full one-object subcategory on the free algebra T1.

We have the following sequence of nested full subcategories:

CT ⊃ KT ⊃ KN
T ⊃ K1

T
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By composing with these inclusions, we get a sequence of functors between presheaf categories:

Psh(CT )→ Psh(KT )→ Psh(KN
T )→ Psh(K1

T )

By restricting our class of colimits, we can restrict this to the corresponding continuous presheaf categories:

CT ∼= CPsh(CT )→ CPsh⨿(KT )→ CPsh+(KN
T )→ CPsh∅(K1

T )

It turns out that in many cases, these arrows are equivalences of categories.

Definition D.4. In the case that CT → CPsh⨿(KT ) is an equivalence, we say that Kop
T is the infinitary Lawvere theory for

T .

Remark D.5. In fact, all monads have an infinitary Lawvere theory. For a proof, see (Brandenburg, 2021).

Definition D.6. In the case that CT → CPsh+(KN
T ) is an equivalence, we say that (KN

T )
op is the Lawvere theory for T ,

and T is a finitary monad.

Example D.7. If T is the monad sending a set S to the free commutative semiring on S, then CT is the category of
commutative semirings. Since the axioms for commutative semirings consist of equations with a finite number of variables,
T has a Lawvere theory (KN

T )
op.

It is well known that this is the category of “finite polynomials”, see e.g. (Gambino & Kock, 2013). This connection was
observed in (Dudzik & Veličković, 2022) to relate message passing in Graph Neural Networks to polynomial functors.

In fact, we could further restrict this theory to just the four objects {T0, T1, T2, T3}, because we can fully axiomatise
commutative semirings with only three variables, e.g. a(b+ c) = ab+ ac.

Example D.8 (Monoids). If CT → CPsh∅(K1
T ) is an equivalence, then in fact CT ∼= Psh(K1

T ), which is the category of
M -sets for the monoid M = (K1

T )
op. So we can see that “unary Lawvere theories” exactly correspond to monads of the

form M ×−, where M is a monoid.

Example D.9 (Suplattices). Not all monads are finitary; that is, not all monads have an associated Lawvere theory.

For an example of a non-finitary monad, let P : Set→ Set be the covariant powerset functor. That is, P(S) is the set of all
subsets of S, and if f : S → T is a function, then P(f) : P(S)→ P(T ) is defined by P(f)(A) := {f(a) | a ∈ A}.

We equip P with the monad structure given by the unit 1→ P sending s ∈ S to {s} ∈ P(S) and the composition P2 → P
sending A ⊂ P(S) to

⋃
A∈AA.

The category of P-algebras CP is the category of suplattices, which is the category of posets with all least upper bounds,
and morphisms preserving them. Equivalently, a suplattice is given by a set L together with a join map

∨
P(L) → L

satisfying unit and composition axioms.

Implementing
∨

requires implementing operations Lκ → L for arbitrarily large cardinal numbers κ, so we can see intuitively
that suplattices are not described by a finitary theory.

Note that the Kleisli category KP is equivalent to the category of sets and relations.

Example D.10 (Semilattices). While P above isn’t finitary, it has a finitary counterpart Pfin, the functor that takes each set
to its finite subsets.

Algebras for Pfin are sometimes called join-semilattices, partial orders where every finite subset has a least upper bound.
It is a nice exercise to show that a join-semilattice is equivalently a commutative idempotent monoid.

E. Monoidal Categories and Actegories
Monoidal categories and actegories are the ‘categorified‘ version of monoids and actions.

Definition E.1 (Strict monoidal category, (Johnson et al., Def. 1.2.1)). LetM be a category. We callM a strict monoidal
category if it is equipped with the following data a functor ⊗ :M×M →M called the monoidal product; an object
I ∈M called the monoidal unit, such that
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• A⊗ (B ⊗ C) = (A⊗B)⊗ C for all A,B,C ∈M;

• A⊗ I = A = I ⊗A for all A ∈M;

• f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h for all f, g, h ∈M;

• id⊗ f = f = f ⊗ id for all f ∈M.

Definition E.2 (Actegories, see (Capucci & Gavranović, 2023)). Let (M,⊗, I, α, λ, ρ) be a monoidal category. An
M-actegory C is a category C together with a functor ▶:M×C → C together with natural isomorphisms ηX : I ▶ X ∼= X
and µM,N : (M ⊗N) ▶ X ∼=M ▶ (N ▶ X), such that:

• Pentagonator. For all M,N,P ∈M and C ∈ C the following diagram commutes.

(M ⊗N)⊗ P ▶ C M ⊗N ▶ P ▶ C

M ▶ N ▶ P ▶ C

M ⊗ (N ⊗ P ) ▶ C M ▶ N ⊗ P ▶ C

µM⊗N,P,C

αM,N,P▶C

µM,N,P▶C

µC,M⊗N,P

M▶µN,P,C

(7)

• Left and right unitors. For all C ∈ C and M ∈M The diagrams below commute.

I ⊗M ▶ C (M ⊗ I) ▶ C

I ▶M ▶ C M ▶ C M ▶ C M ▶ I ▶ C

µI,M,C
λM▶C ρM▶C

µM,I,C

ηM▶C M▶ηC

(8)

Remark E.3. Just as one may assume a monoidal category to be strict, via MacLane’s coherence theorem, we may assume
actegories are strict as well (Capucci & Gavranović, 2023, Remark 3.4). That is to say, we may assume for anM actegory
(C,▶) that:

• The unitor ηX is an equality, i.e. that I ▶ ( ) = idC are equal as functors of type C → C; and

• The multiplicator µM,N is an equality, i.e. that (( ) ⊗ ( ) ▶ ( ) = ( ) ▶ ( ) ▶ ( ) are equal as functors of type
M×M× C → C

We will call such a structure a strict actegory. We will use these later on to simplify exposition and some theorems.

Example E.4 (Monoidal action). Any monoidal category gives rise to a self-action.

Example E.5 (Families actegories). Any category C with coproducts has an action ▶: Set× C → C which maps (X,A) to
the coproduct of |X| copies of A.

E.1. Morphisms of Actegories

Definition E.6 (Actegorical strong monad). Let (C,▶) be aM-actegory. A monad (T, µ, η) on C is called strong10 if
it is equipped with a natural transformation σP,A : P ▶ T (A) → T (P ▶ A), called strength such that diagrams in
Definition E.9 commute.

Example E.7. All monads of the form A×− : Set→ Set are strong for the actegory (Set,×), for any monoid A. This
includes G×− : Set→ Set from Example 2.2.11

10Another name for this is a M-linear morphism, used in (Capucci & Gavranović, 2023)
11The strength is in fact a natural isomorphism.
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Definition E.8 (Actegorical strong endofunctor). Let (C,▶) be aM-actegory. An endofunctor F on C is called strong if it
is equipped with a natural transformation σP,A : P ▶ F (A)→ F (P ▶ A), called a strength such that diagrams AS1 and
AS2 in Definition E.9 commute.

Definition E.9 (Actegorical strong monad coherence diagrams). A monad (T, µ, η) on the category C of aM-actegory
(C,▶) is called strong if it is equipped with a natural transformation σP,A : P ▶ T (A) → T (P ▶ A), called strength
making the diagrams below commute:

AS1: Compatibility of strength and the monoidal unit.

I ▶ T (A) T (I ▶ A)

T (A)

σI,A

T (λA)
λT (A)

AS2: Compatibility of strength and actegory multiplicator.

(P ⊗Q) ▶ T (X) P ▶ (Q ▶ T (X))

P ▶ T (Q ▶ X)

T ((P ⊗Q) ▶ X) T (P ▶ (Q ▶ X))

σP⊗Q,X

αP,Q,T (X)

P▶σQ,X

σP,Q▶X

T (αP,Q,X)

AS3: Compat. of strength and monad multiplication.

A ▶ T (T (X)) A ▶ T (X)

T (A ▶ T (X))

T (T (A ▶ X)) T (A ▶ X)

A▶µX

σA,X

σA,T (X)

T (σA,T (X))

µA▶X

AS4: Compatibility of strength and monad unit.

M ▶ X

M ▶ T (X) T (M ▶ X)

M▶ηX

σM,X

ηM▶X

Example E.10. The examples of endofunctors from Examples 2.9 to 2.11, H.4 and H.7 are all strong endofunctors, and
their appropriate free monads are strong too. See Appendix (Example E.11)

Example E.11. Below we present a list the data of strengths σP,X of some relevant endofunctors and (on the left) and their
corresponding free monads (on the right).

Given the endofunctor 1 +A×− : Set→ Set, its strength
σP,X : P × (1 +A×X)→ 1 +A× P ×X is given by:

σP,X(p, inl(•)) = inl(•)
σP,X(p, inr(a, x)) = inr(a, p, x)

Given the free monad List−+1(A) : Set→ Set, its strength
σP,Z : P × ListZ+1(A)→ ListP×Z+1(A) is given by:

σP,Z(p,Nil) = Nil

σP,Z(p, z) = (p, z)

σP,Z(p,Cons(a, as)) = Cons(a, σP,Z(p, as))

Given the endofunctor A+ (−)2, its strength
σP,X : P × (A+X2)→ A+ (P ×X)2 is given by:

σP,X(p, inl(a)) = inl(a)
σP,X(p, inr(x, x′)) = inr((p, x), (p, x′))

Given the free monad Tree(A+−) : Set→ Set, its strength
σP,Z : P × Tree(A+ Z)→ Tree(A+ P × Z) is given by:

σP,Z(p, Leaf(inl(a))) = Leaf(a)

σP,Z(p, Leaf(inr(z))) = Leaf(inr(p, z))
σP,Z(p,Node(l, r)) = Node(σP,Z(p, l), σP,Z(p, r))

F. 2-Categorical Algebra
Good references for 2-categorical algebra are (Lack, 2010) or (Kelly, 2005). The latter deals with the more general notion of
enriched categories of which 2-categories are a particular example.
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F.1. 2-monads and their Lax Algebras

A 2-monad can conscisely be defined as a Cat-enriched monad (see Johnson et al., Sec. 6.5) An unpacking of its definition
follows.

Definition F.1 (2-monad). A 2-monad on a 2-category C comprises:

• A 2-endofunctor T on C;

• A 2-natural transformation µ : T 2 ⇒ T ; and

• A 2-natural transformation η : idC ⇒ T ;

such that the (Cat-enriched variant of) the axioms in Definition B.1 hold.

Definition F.2 (Lax T -algebra for a 2-monad). Let (T, η, µ) be a 2-monad on C. A lax T -algebra is a pair (A, r, ϵA, δA)
where A is an object of C, a : T (A)→ A is a morphism in C, and ϵA and δA are the following 2-morphisms in C:

T (A) T (T (A)) T (A)

A A T (A) A

a
ηA a

a

µA

T (a)
δA

ϵA

such that the lax unity and lax associativity conditions (Johnson et al., Eq. 6.5.6 and 6.5.7) are satisfied.

Definition F.3 (Lax algebra homomorphism). Let E be a 2-category, T a 2-monad on E , and (A, a, ϵA, δA) and (B, b, ϵB , δB)
be lax T -algebras. Then a lax algebra morphism from (A, a, ϵA, δA)→ (B, b, ϵB , δB) is pair (f, κ) where f : A→ B is a
morphism in E and κ is a 2-morphism spanned by the following diagram

T (A) T (B)

A B

a b

f

T (f)

κ

such that the diagrams in (Johnson et al., Def. 6.5.9) commute.

Lax algebras and lax algebra homomorphisms for the 2-monad T form the category Lax-AlgMnd(T ).

Example F.4 (2-monad for M -modules). If M is a monoid, it is useful to study “M -modules”, which we define to be
monoids equipped with a compatible action of M .12 For example, the situation of a group acting on a vector space is
fundamental in representation theory. We can interpret such modules in terms of the 2-monad disc(M) × − on the
2-category Cat.

Here disc(M) is the category whose objects are elements of M , and whose morphisms are just the identity arrows. Since
M is a monoid, disc(M) is a monoidal category, so disc(M)×− is a 2-monad.

As the set of monoid endomorphisms on a monoid A is isomorphic to the set of endofunctors on the category given by the
delooping of the said monoid, an M -module can be seen to be a one-object algebra for this 2-monad. Indeed, this is just a
special case of an actegory.

Example F.5 (Cocycles as lax morphisms). The monoid cocycles, or “crossed homomorphisms”, used in (Dudzik et al.,
2024) to study asynchrony in algorithms and networks, can be described as lax morphisms for 2-monad algebras. As above,
if A is an M -module, then BA is an algebra for disc(M)×−. A lax morphism 1→ BA is a natural transformation of the
unique functor M → BA, which is equivalently just a set map D :M → A. The axiom for compositionality is exactly the
(right) 1-cocycle condition for D, so 1-cocycles are the same as lax morphisms 1→ BA.

12Contrary to a mere M -action A, where A is a set, in a M -module A, A comes equipped with a monoid structure too.
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G. The 2-category Para(C)
Definition G.1 (Para, compare (Cruttwell et al., 2022; Capucci et al., 2022) ). Given a monoidal category (M,⊗, I) and an
M-actegory C, let Para▶(C) be the 2-category whose:

• Objects are the objects of C;

• Morphisms X → Y are pairs (P, f), where P is an object ofM and f : P ▶ X → Y is a morphism of C;

B
f

P

A

Figure 2. String diagram representation of a parametric morphism. We often draw the parameter wire on the vertical axis to signify that
the parameter object is part of the data of the morphism.

• 2-morphisms (P, f)⇒ (P ′, f ′) : X → Y are 1-morphisms r : P ′ → P ofM such that the triangle

P ▷ X

Y

P ′ ▷ X

r▷X

f ′

f

commutes (equivalently an equality of parametric string diagrams as in Figure 3).

B
f

P ′

A

r

P

B

fr

P ′

A

=

Figure 3. String diagram of reparameterisation. The reparameterisation map r is drawn vertically.

• Identity morphism on X is the parametric map (I, ηX
−1), where η is the unitor of the underlying actegory.

where composition of morphisms (P, f) : X → Y and (Q, g) : Y → Z is (Q⊗ P, h) where h is the composite

(Q⊗ P ) ▶ X
µQ,P,X−−−−−→ Q ▶ (P ▶ X)

Q▶f−−−→ Q ▶ Y
g−→ Z

and composition of 2-morphisms is given by the composition ofM.
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B
f

P

A Cg

Q P ⊗Q

A C
h=

Figure 4. String diagram representation of the composition of parametric morphisms. By treating parameters on a separate axis we obtain
an elegant graphical depiction of their composition.

Remark G.2. When the actegory is strict the identities of the actegory reduce to being the parametric morphisms of the form
(I, idX)

Example G.3 (Real Vector Spaces and Smooth Maps). Consider the cartesian category Smooth whose objects are real
vector spaces, and morphisms are smooth functions. As this category is cartesian, we can form Para(Smooth) modelling
parametric smooth functions.

Lemma G.4 (Embedding of C into Para(C)). There is a 2-functor γ : C → Para(C) which is identity-on-objects and treats
every morphism f : A→ B as trivially parametric, i.e. as (I, f ◦ η−1

A ).13

Remark G.5. When the actegory (C,▶) is strict the trivially parametric functions do not require precomposition with the
unitor of actegory. That is to say a morphism f : X → Y of C is sent to the parametric morphism (I, f) : X → Y .

Theorem G.6 (γ preserves connected colimits). Suppose (M, η, µ) is a strict monoidal category, that (C,▶) is anM-
actegory, and thatX ▶ ( ) : C → C preserves connected colimits. Then, the 2-functor γ : C → Para(C) preserves connected
colimits.

Remark G.7. While in C they are the only kind of colimits, the colimits we mean in Para(C) are strict colimits. The
relationship to other flavours of colimit is a topic of ongoing research.

Proof. Note that for a cone over a trivially parameterised connected diagram to commute, the parameters of the 1-cells of
the cone must all be the same. Then, since ▶ preserves connected colimits by hypothesis, we may assemble the following
chain of isomorphisms.

Tr1 (Para (C))
(
lim−→d∈DXd, Y

)
∼→

∐
P∈M

C
(
P ▷ lim−→d∈DXd, Y

)
∼→

∐
P∈M

C
(
lim−→d∈DP ▷ Xd, Y

)
∼→

∐
P∈M

lim←−d∈DC (P ▷ Xd, Y )

∼→ Ob (M)× lim←−d∈DC (P ▷ Xd,Y)

∼→ lim←−d∈D (Ob (M)× C (P ▷ Xd, Y ))

∼→ lim←−d∈D

( ∐
P∈M

C (P ▷ Xd, Y )

)
∼→ lim←−d∈D (Tr1 (Para (C)) (Xd, Y ))

Example G.8. FixM-actegory (C,▶), and a monad (T, µ, η) on C with actegorical strength σ :M ▶ T (X)→ T (M ▶
X). Then this gives us a 2-monad on Para▶(T ) on Para▶(C) whose underlying 2-endofunctor:

• Acts as T does on objects14; and

13Here we are treating C as 2-category with only identity 2-morphisms.
14This is well defined since Ob(Para(C)) = Ob(C)
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• Sends (P, f) : X → Y to (P, f ′), where f ′ is the composite

P ▶ T (X)
σP,X−−−→ T (P ▶ X)

T (f)−−−→ T (Y )

• Sends r : P → P ′ to itself.

and the unit and multiplication 2-natural transformations are defined as follows:

• Unit Para▶(η) : idPara▶(C) ⇒ Para▶(T ) whose component at X : C is the element of Para▶(C)(X,T (X)) given by
the parametric morphism (I, uX), where uX is the composite

I ▶ X
η▶
X

−1

−−−→ X
ηT
X−−→ T (X)

For every parametric map (P, f) ∈ Para(C)(X,Y ) we have the strictly natural square in Equation (9). The 2-cell is
given by the reparameterisation βP,I : P ⊗ I → I⊗P which is identity since we are assumingM is strict monoidal. It
can be checked that this indeed satisfies the conditions of a 2-morphism in Para▶(C). This makes Para▶(η) a 2-natural
transformation.

X Y

T (X) T (Y )
T (f)◦σP,X

(I,u)

(P,f)

(I,uY )
βP,I

(9)

• Multiplication Para▶(µ) : Para▶(T )
2 ⇒ Para▶(T ) whose component at X ∈ Para▶(C) is the parametric morphism

(I,mX) where mX is the composite

I ▶ T 2(X)
η▶
X

−1

−−−→ T 2(X)
µT
X−−→ T (X)

For every parametric morphism (P, f) ∈ Para▶(C)(X,Y ) we have the strictly natural square in Equation (10). It is
again given by βP,I , and is strict becauseM is strict monoidal. It can be checked that this too satisfies the conditions
of a 2-morphism in Para▶(C) This makes Para▶(µ) a 2-natural transformation.

T 2(X) T 2(Y )

T (X) T (Y )
T (f)◦σP,X

(I,mx) (I,mY )

(P,(T (f)◦σP,X)◦σP,T (X))

βP,I

(10)

Lastly, we need to check that this indeed satisfies the 2-monad coherence conditions. Since the parameters of the components
of Para▶(η) and Para▶(µ) are all trivial, this becomes straightforward to check.

Remark G.9. For strictly monoidalM and a strict actegory (C,▶) the unit and multiplication of Para(T ) are exactly the
unit and multiplication of T .

The following theorem shows us how out of the abstract 2-categorical framework the notion of weight tying (usage of the
same weight in two different places obtained by copying the value) arises automatically as the structure of a comonoid
induced by a lax algebra of a strong actegorical monad on C.

Theorem G.10 (Lax (co)algebras for Para▶(T ) induce comonoids). Let (C,▶) be a M-actegory and T : C → C a
strong actegorical monad on C. Consider a lax algebra (A, (P, a), ϵA, δA) for the induced 2-monad Para(T ). Then P is a
comonoid inM where ϵA is the data of its counit, and δA the data of its comultiplication, and the comonoid laws follow
from lax algebra coherence conditions. Dually, the same statement holds for a lax coalgebra of a Para(T ) comonad.
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Proof. We start by unpacking the data of the lax algebra 2-cells.

T (X) T (T (X)) T (X)

X X T (X) X
(I,λX)

(I,ηT
X◦η▶

X
−1

)

(P,a)

(I,mx)

(P,T (a)◦σP,X)

(P,a)

(P,a)
δP

ϵP

We can see that they are given by two reparameterisations: ϵP : P ⊗ I → I and δP : I ⊗ P → P ⊗ P . These uniquely
determine the morphisms which we call !P : P → I and ∆P : P → P ⊗ P respectively. To show that this is indeed a
comonoid, we need to unpack the lax algebra laws. We note that all the conditions unpack only to conditions on morphisms
inM. It is relatively tedious, but straightforward to check that these conditions ensure that !P and ∆P satisfy the comonoid
laws.

Corollary G.11. The functor Lax-AlgMnd(Para(T )) → CoMon(C) × Lax(→, C) which takes lax algebras for Para(T )
to the pair of the underlying comonoid parameter and the C-morphism which interprets the parametric structure map is
full-and-faithful.

Proof. The proof is formal and left to the reader.

Conjecture G.12. Given a cartesian monoidal category (M,×, 1), anM-actegory (C,▶), and a strong endofunctor F on
C such that F and C satsify the hypotheses of Theorem B.16, then the assignment of a lax algebra (X, (P, f)) to

(X, ((P, !P : P → 1,∆P : P → P × P ), laxlim−−−→((P, f) ◦ Para(F )(P, f) ◦ · · · ◦ Para(F )α(P.f)) : FκX → X))

defines an equivalence of categories

Lax-AlgEndo(Para(F ))→ Lax-AlgMnd(F
κ)

H. Weight Tying Examples
H.1. Examples from Geometric Deep Learning

Example H.1 (Linear equivariant layers for a pair of pixels). Consider the category Vect of finite-dimensional vector
spaces and linear maps. For simplicity, we will assume that the carrier set for our data is RZ2 , which is a pair of pixels.
Consider a linear endofunction on such data, fW : RZ2 → RZ2 . It is well known that this function can be represented as a

multiplication with a 2× 2 matrix W =

[
w1 w3

w2 w4

]
.

Now consider the group of 1D translations (Z2,+, 0)—which in this case amounts to pixel swaps—and the induced action
▶ on RZ2 . If f : RZ2 → RZ2 is equivariant with respect to ▶, then via Example 2.6, for any input [x1, x2] ∈ RZ2 it must
hold that [

w1x2 + w2x1
w3x2 + w4x1

]
=

[
w3x1 + w4x2
w1x1 + w2x2

]
(11)

This implies that w3 = w2 and w4 = w1, meaning every W is of the form

[
w1 w2

w2 w1

]
where the weight tying makes the matrix a symmetric one. Any neural network fW satisfying this constraint will be a linear
translation equivariant layer over Z2, and can be used as a building block to construct geometric deep learning architectures.
Remark H.2 (Circulants and CNNs). Note that this concept generalises to larger input domains (e.g. RZk for k > 2).
Generally, it is a well-known fact in signal processing that, for fW to satisfy a linear translation equivariance constraint, W
must be a circulant matrix. Circulant matrices are known in neural networks as convolutional layers, the essence of modern
CNNs (Fukushima et al., 1983; LeCun et al., 1998).
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Example H.3 (Invariant maps). Invariant maps are also (G×−)-algebra homomorphisms where the codomain is a trivial
group action. Specifically, setting the domain to any of the group actions from Example 2.6, the corresponding induced
commutative diagram is below:

G× RZw×Zh G× RZw×Zh

RZw×Zh RZw×Zh

▶ π2

f

G×f

Elementwise, the commutativity of that diagram unpacks to the equation

f(g ▶ x) = f(x)

The translation example, for instance, recovers the equation f(((i′, j′) ▶ x)(i, j)) = (i′, j′) ▶ f(x)(i, j) which reduces to
f(x(i− i′, j − j′)) = f(x)(i, j). Intuitively, it states that, for any displacement (i′, j′), the result of translating the input by
(i′, j′) and then applying the function f is the same as just applying f .

We can run the analogous calculation with weight sharing here. We consider the same linear endofunction fW ∈ RZ2 → RZ2

on a pair of pixels (represented as a matrix W =

[
w1 w3

w2 w4

]
), and the same group of translations (Z2,+, 0) on the domain,

but this time we consider the identity endomorphism on the codomain. If fW is invariant to ▶, then Example H.3 for any
input [x1, x2] ∈ RZ2 it has to hold that [

w1x2 + w2x1
w3x2 + w4x1

]
=

[
w1x1 + w2x2
w3x1 + w4x2

]
(12)

implying w1 = w2 and w3 = w4, meaning the equivariance induced a particular weight tying scheme

[
w1 w3

w1 w3

]

in which the matrix has shared rows. Note that this implies that each of the pixel values in the output of fW will be the same,
and hence this layer could also be represented as just a single dot product with

[
w1 w3

]
, eliminating the grid structure in

the original set. Such a layer would not be an endofunction on RZ2 , however, which was our initial space of exploration.

H.2. Examples from Automata Theory

H.2.1. STREAMS

Example H.4 (Streams). Let O be a set, thought of as the set of outputs. Consider the endofunctor from O×− : Set→ Set.
Then the set Stream(O) of streams15 with outputs O, together with the map ⟨output, next⟩ : Stream(O)→ O×Stream(O)
forms a coalgebra of this endofunctor. They have a representation as the following datatype

data Stream o = MkStream {
output :: o
next :: Stream o

}

This datatype describes streams coinductively, as something from which we can always extract an output, and another
stream. In Example I.3 we will see how this will be related to unfolding recurrent neural networks.

Example H.5 (Unfolds to streams as coalgebra homomorphisms). Consider the endofunctor (O ×−) from Example H.4,
and a coalgebra homomorphism from any other (O ×−)-coalgebra (X, ⟨o, n⟩) into (Stream(O), ⟨output, next⟩:

15An infinite sequence of outputs, isomorphic to the set (N → O) of functions from the natural numbers into O.
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X Stream(O)

O ×X O × Stream(O)

⟨o,n⟩

fo,n

O×fo,n

⟨output,next⟩

Then the map fo,n : X → Stream(O) is necessarily a unfold to a stream, a concept from functional programming describing
how a stream of vaues can be obtained from a single value. It is implemented by corecursion on the input:

fo,n :: x -> Stream o
fo,n x = MkStream (o x) (fo,n (n x))

This corecursion is structural in nature, meaning it satisfies the following two equations which arise by unpacking the algebra
homomorphism equations elementwise:

o(x) = output(fo,n(x)) (13)
fo,n(n(x)) = next(fo,n(x)) (14)

Here Equation (13) tells us that the output of the stream produced by fo,n at x is o(x), and Equation (14) tells us that the
rest of the stream is the stream produced by fo,n at x is fo,n(n(x)).

Remark H.6. Analogous to Remark 2.13, there can only ever be one unfold of this type. This is because streams are a
terminal object in the category of (O ×−)-coalgebras.

We can study the weight sharing induced by streams. Consider the category Vect and the coreader comonad R×− given
by the output set R. Fix a coalgebra (R, ⟨o, n⟩), and represent the coalgebra map with scalars wo and wn, denoting the
output and the next state, respectively. Then the universal coalgebra homomorphism is a linear map fo,n : R→ Stream(R)
satisfying Equations (13) and (14). If we represent this as an infinite-dimensional matrix[

w1 w2 w3 w4 . . .
]

then the induced weight sharing scheme removes any degrees of freedom: the matrix is completely determined by wo and
wn, and is of the form: [

wo wnwo w2
nwo w3

nwo . . .
]

H.2.2. MOORE MACHINES.

Example H.7 (Moore machines). Let O and I be sets, thought of as sets of outputs and inputs, respectively. Consider the
endofunctor O × (I → −) : Set→ Set. Then the set MooreO,I of Moore Machines with O-labelled outputs and I-labelled
inputs together with the map ⟨output, next⟩ : MooreO,I → O × (I → MooreO,I) forms a coalgebra for this endofunctor.
They can be represented as the following datatype.

data Moore o i = MkMoore {
output :: o,
nextStep :: (i -> Moore o i)

}

Like with Mealy machines, this description is coinductive. From a Moore machine we can always extract an output and a
function which given an input produces another Moore machine. In Example I.5 we will see how this will be related to
general recurrent neural networks of a particular form.

Example H.8 (Unfolds to Moore machines are terminal (O ×−)-coalgebras). Consider the endofunctor O × (I → −)
from Example H.7, and any other (O ×−)-coalgebra (X, ⟨o, n⟩) to (MooreO,I , ⟨output, next⟩:
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X MooreO,I

O × (I → X) O × (I → MooreO,I)

⟨o,n⟩ ⟨output,next⟩

fo,n

O×(I→fo,n)

Then the map fo,n is a necessarily an unfold to a Moore machine, a function describing how a Moore machine is obtained
from a single value. It is a corecursive function as below:

fm :: x -> Moore o i
fm x = MkMoore (m1 x) (λi 7→ fm (m2 x i))

which is structural in nature, meaning it satisfies the following two equations which arise by unpacking the coalgebra
homomorphism equations elementwise:

o(x) = output(fo,n(x)) (15)
fo,n(n(x)(i)) = next(fo,n(x))(i) (16)

Here Equation (15) tells us that the output of the Moore machine produced by fo,n at state x is given by the output of n at
state x, and Equation (16) tells us that the next Moore machine produced at x and i is the one produced by fo,n at n(x)(i).

I. Parametric 2-endofunctors and their Algebras
Just like before, often at our disposal we will have a more minimal structure. Instead of requiring a strong 2-monad, we can
instead require merely a strong 2-endofunctor. The data of an algebra for a 2-endofunctor will be the same as the algebra for
an endofunctor Definition 2.8.

Example I.1 (Folding RNN cell). Consider the endofunctor 1+A×− from Example 2.9. Via strength from Example E.10
we can form the 2-endofunctor Para(1 +A×−) : Para(Set)→ Para(Set). Then a folding recurrent neural network arises
as its algebra.

More concretely, an algebra here consists of the carrier set S (name suggestively chosen to denote hidden state) and a
parametric map (P, cellrcnt) ∈ Para(Set)(1 + A× S, S). Via the isomorphism P × (1 + A× S) ∼= P + P × A× S we
can break cellrcnt into two pieces: the choice of the initial hidden state cellrcnt

0 : P → X and the folding recurrent neural
network cell cellrcnt

1 : P × A ×X → X , as shown in the figure below. We will see how iterating this construction will

1 +A× S

S

(P,cellrcnt)

A

S S

P

S

P

Figure 5. An algebra for Para(1 +A×−) consists of a recurrent neural network cell and an initial hidden state.

produce a folding recurrent neural network which consumes a sequence of inputs and iteratively updates its hidden state.16

Example I.2 (Recursive NN cell). Consider the endofunctor A+(−)2 from Example 2.10. Via strength from Example E.10
we can form the 2-endofunctor Para(A+ (−)2) on Para(Set). Then a recursive neural network arises as its algebra.

More concretely, an algebra here consists of the carrier set S and a parametric map (P, cellrcsv) ∈ Para(Set)(A+ S2, S).
Via the isomorphism P × (A + S2) ∼= P + P × A × S2 we can break cellrcsv into two pieces: the choice of the initial
hidden state cellrcsv

0 : P → S and the recursive neural network cell cellrcsv
1 : P × A × S2 → S, as shown in the figure

below.
16We note here that the hidden state is allowed to depend on the parameter, something which is not possible in the usual definition of a

recurrent neural network cell.
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A+ S2

S

(P,cellrcsv) X
X

P

X

P

X
A

Figure 6. An algebra for Para(A+ (−)2) consists of a recursive neural network cell and an initial hidden state.

Example I.3 (Unfolding RNN cell). Consider the endofunctor O ×− from Example H.4. Via strength σP,X : P × (O ×
X)

∼=−→ O × P ×X we can form the 2-endofunctor Para(O ×−) : Para(Set)→ Para(Set). Then an unfolding recurrent
neural network arises as its coalgebra.

More concretely, a coalgebra here consists of the carrier set S, and a parametric map (P, ⟨cello, celln⟩) ∈ Para(Set)(S,O×
S). Here ⟨cello, celln⟩ consists of maps cello : P × S → O which computes the output and celln : P × S → S which
computes the next state.17 We will see how iterating this construction will produce an unfolding recurrent neural network

S

O × S

(P,⟨cello,celln⟩)

O

S

P

S

Figure 7. An algebra for the Para(O ×−) 2-endofunctor consists of an unfolding recurrent neural network cell.

which given a starting state produces a stream of outputs O.

Example I.4 (Mealy machine cell / Full RNN cell). Consider the endofunctor I → O×− from Example 2.11. Via strength
from Example E.10 we can form the 2-endofunctor Para(I → O ×−) : Para(Set)→ Para(Set). Then a Mealy machine
cell arises as its coalgebra.

More concretely, a coalgebra here consists of the carrier set S and a parametric map (P, cellMealy) ∈ Para(Set)(S, I →
O × S). Here cellMealy can be thought of as a map P × S → I → O × S, as shown in the figure below. We interpret it as a

S

(I → O × S)

(P,cellMealy)

I

S

P O

S

Figure 8. An algebra for Para((I → O ×−) 2-endofunctor consists of an object S and a map f : P × S × I → O × S which we have
taken the liberty to uncurry.

full recurrent neural network consuming a hidden state S, input I and producing an output O and an updated hidden state S.

This suggests that recurrent neural networks can be thought of as learnable Mealy machines, a perspective seldom advocated
for in the literature.

Example I.5 (Moore machine cell). Consider the endofunctor O × (I → −) from Example H.7. Via strength σP,X :
P × O × (I → O) → O × (I → P × X) defined as (p, o, f) 7→ (o, λi 7→ (p, f(i))) we can form the 2-endofunctor
Para(O × (I → −)) : Para(Set)→ Para(Set). Then a Moore machine cell arises as its coalgebra.

More concretely, a coalgebra here consists of the carrier set S and a parametric map (P, cellMoore) ∈ Para(Set)(S,O×(I →
S)). Here cellMoore can be thought of as a map P × S → O × (I → S), as shown in the figure below. We can break it
down into two pieces cellMoore

o : P × S → O and cellMoore
n : P × S × I → S.

17By universal property of the product we can treat them as one cell of type P × S → O × S or as two cells.
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X

O × (I → X)

(P,cellMoore)

O

P

X

I

X

P

X

Figure 9. An algebra for Para(O × (I → −)) as a parametric Moore cell. Here the output O does not depend on the current input I .

J. Unrolling Neural Networks via Transfinite Construction
We will now reap the benefits of the transfinite construction of free monads on endofunctors, and unpack the corresponding
unrolling of these networks. Specifically, with Theorem G.10 hinting towards the path of having weight tying arise abstractly
out of the categorical framework, we unpack the unrolling of these networks. For the purposes of space and clarity, the
unpaking is done as lax homomorphism of algebras for 2-endofunctors instead of for 2-monads.

Example J.1 (Iterated Folding RNN). Consider an algebra (P, cellrcnt) of Para(1 + A × −), i.e. a folding RNN cell
(Example I.1). Its unrolling is a Para(1 +A×−)-algebra homomorphism below, where ∆P : P → P ×P is the copy map.

1 +A× List(A) 1 +A×X

List(A) X

γ([Nil,Cons]) (P,cellrcnt)

Para(1+A×−)((P,frcnt))

∆P

(P,frcnt)

(17)

Here the map frcnt is the parametric analogue of a fold (Example 2.12):

frcnt :: (p, List a) -> x
frcnt p Nil = cellrcnt p (inl ())
frcnt p (Cons a as) = cellrcnt p (inr a (frcnt p as))

We can see that frcnt is structurally recursive: it processes the head of the list by applying cellrcnt to the parameter p and the
output of the frcnt with the same parameter, and the tail of the same list.

A

X

AAA

P

Figure 10. String diagram representation of the unrolled “folding” recurrent neural network.

We proceed to show that ∆P is indeed a valid reparameterisation for these parametric morphisms. Unpacking
the composition on top right side, and the bottom left side of Equation (17), respectively, yields parametric maps

P × P × (1 +A× List(A))→ X P × (1 +A× List(A))→ X

whose implementations are, respectively:

(p, q, inl(•)) 7→ cellrcnt(p, inl(•))
(p, q, inr(a, as)) 7→ cellrcnt(q, a, f(p, as))

(p, •) 7→ cellrcnt(p, inl(•))
(p, (a, as)) 7→ cellrcnt(p, a, f(p, as))

It is easy to see that ∆P is a valid reparameterisation between them, “tying” the parameters p and q together.
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Example J.2 (Iterated unfolding RNN). Consider a coalgebra (P, ⟨cello, celln⟩) of Para(O ×−), i.e. an unfolding RNN
cell (Example I.3). Its unrolling is a Para(O ×−)-coalgebra homomorphism below:

X Stream(O)

O ×X O × Stream(O)

(P,⟨cello,celln⟩)

(P,fo,n)

Para(O×−)((P,fo,n))

γ(⟨output,next⟩)∆P (18)

Here fo,n : P ×X → Stream(O) is the parametric analogue of an unfold (Example H.5):

fo,n :: (p, x) -> Stream o
fo,n p x = MKStream (cello p x) (fo,n p (celln x))

We can see that fo,n is structurally corecursive: it produces a stream whose head is cello(p, x), and whose tail is the stream
produced by fo,n at celln(p, x).

S

P

OOOO

. . .

O

S

. . .

Figure 11. String diagram representation of the unrolled “unfolding” recurrent neural network.

Example J.3 (Iterated Recursive NN). Consider an algebra (P, cellrcsv) of Para(A+ (−)2), i.e. a recursive neural network
cell (Example I.2). Its unrolling is a Para(A+ (−)2)-algebra homomorphism below:

A+ Tree(A)2 A+X2

Tree(A) X

∼= (P,cellrcsv)

Para(A+(−)2)((P,frcsv))

∆P

(P,frcsv)

(19)

Here frcsv is a function with the following implementation

frcsv :: (p, Tree a) -> x
frcsv p (Leaf a) = cellrcsv p (inl a)
frcsv p (Node l r) = cellrcsv p inr (f (frcsv p l) (frcsv p r)

This function too performs weight sharing, as the recursive call to subtrees is done with the same parameter p.

X

X

P

XA

A

A

A

A

Figure 12. String diagram representation of the unrolled recursive neural network.
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Example J.4 (Iterated Mealy machine cell). Consider an algebra (P, cellMealy) of Para(I → O ×−), i.e. a Mealy machine
cell (Example 2.11). Its unrolling is a Para(I → O ×−)-algebra homomorphism below:

X MealyO,I

(I → O ×X) (I → O ×MealyO,I)

(P,n) γ(next)

(P,fn)

Para(I→O×−)((P,fn))

∆P (20)

Here fn is a corecursive function with the following implementation

f n :: (p, x) -> Mealy o i
f n (p, x) = MkMealy $ \i -> let (o', x') = n p x i

in (o', f n p x')

I

S

III

OOOO

S

I

O

P

. . .

Figure 13. String diagram representation of a parametric Mealy machine — a recurrent neural network.

Example J.5 (Iterated Moore machine cell). Consider a coalgebra (P, cellMoore) of Para(O × (I → −)), i.e. a Moore
machine cell (Example H.7). Its unrolling is a Para(O × (I → −))-coalgebra homomorphism below:

X MooreO,I

O × (I → X) (I → O ×MooreO,I)

(P,fn)

(P,⟨o,n⟩) γ(next)
∆P

Para(O×(I→−))((P,fn))

(21)

In code, fn is a corecursive function

f n :: (p, x) -> Moore o i
f n (p, x) = MkMoore $ \i -> (o p x, f n p (n p x i))

O

X

I

X

P

O

I

X

P

X

O

I

X

P

X . . .

P

P

Figure 14. String diagram representation of an unrolled Moore machine.
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