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ABSTRACT

Multimodal learning often suffers from modality imbalance, where dominant
modalities overshadow weaker ones and unimodal encoders lack a shared rep-
resentational goal. We propose a new end-to-end multimodal supervised con-
trastive learning framework, Prototype-guided Modality contribution Balancing
(ProMoBal), that integrates prototype-centered multimodal representation learn-
ing with sample-adaptive fusion. At its core, ProMoBal promotes a new regular
simplex geometry for multimodal representation learning, where class prototypes
are symmetrically arranged on a shared hypersphere that consistently spans both
unimodal and fused representation spaces. This geometry provides a common ref-
erence for aligning unimodal and fused embeddings, while the proposed adaptive
fusion mechanism mitigates modality balance on a per-sample basis. Extensive
experiments with five benchmark datasets—spanning audio–video, image–text,
and three-modality gesture recognition—show that ProMoBal consistently out-
performs state-of-the-art multimodal supervised learning methods, achieving ac-
curacy gains of up to 21% over unimodal baselines.

1 INTRODUCTION

Multimodal learning integrates heterogeneous data from different modalities to enhance a model’s
ability to perceive the world (Baltrušaitis et al., 2018). By jointly analyzing these diverse data types,
multimodal models can extract complementary information and thus overcome the limitations of
relying on a single modality (Joze et al., 2020). This paradigm has been widely applied to a wide
range of tasks, such as action recognition (Shahroudy et al., 2017), emotion recognition (Song et al.,
2022; Ranganathan et al., 2016), and audio-visual speech recognition (Mroueh et al., 2015; Oneat, ă
& Cucu, 2022). Yet, multimodal learning faces a key challenge, modality imbalance, where hetero-
geneous data often contain both dominant and weaker modalities (Huang et al., 2022; Fan et al.,
2023). In the standard setup, features from different modalities are fused into a joint representation
and supervision is provided only via the fused output. While simple and effective, this approach
optimizes all encoders solely via a fusion loss, often allowing a dominant modality to drive learning
and leaving weaker modalities undertrained, thereby exacerbating modality imbalance.

We highlight two key aspects of modality imbalance. (1) Objective mismatch. To mitigate modal-
ity imbalance, multitask-like approaches (Fan et al., 2023; Du et al., 2023; Wang et al., 2020)
introduce unimodal losses alongside the fusion loss, thereby providing direct supervision to each
encoder. This encourages each modality to learn discriminative features and promotes more bal-
anced training across modalities. However, Wei & Hu (2024) argue that jointly optimizing unimodal
and fusion objectives is inherently difficult, as a unimodal encoder cannot generally satisfy both,
leading to conflicts during optimization. To address this, gradient modulation has been proposed
to align the descent directions of unimodal and fusion losses (Wei & Hu, 2024), and a two-stage
strategy has been introduced to separately optimize unimodal and fusion embeddings (Fan et al.,
2024). Although partly effective, these approaches do not resolve the root cause—that a unimodal
encoder cannot simultaneously satisfy both objectives. We conjecture that this limitation is partly
because unimodal and fusion features pursue incoherent representational aims—unimodal features
emphasize modality-specific discrimination, while fusion features emphasize modality-invariant
representations—thereby inducing conflicts in their learning dynamics. Instead, if unimodal en-
coders are encouraged to capture modality-specific information, while both unimodal and fusion
embeddings are simultaneously optimized toward a common goal, the embeddings may be jointly
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Figure 1: Overview of proposed representation learning (with two classes indicated by different
colors; Modality 2 and 1 denote the dominant and weaker modalities, respectively). (a) A geo-
metric configuration promoted by existing multimodal representation learning methods, that
may result in fused representations biased toward the dominant modality, Modality 2. Distortions in
the dominant modality’s geometry, if present, may propagate to fused features and degrade perfor-
mance. (b) The new configuration promoted by proposed ProMoBal that jointly aligns unimodal
( ) and sample-adaptively fused features (■) with shared prototypes (⋆), yielding fused represen-
tations that capture balanced modality-specific cues and modality-invariant structure. In addition,
we align unimodal classifiers (skyblue sticks) to the prototypes. The configuration prevents fused
features from being biased toward the dominant modality and mitigates distortions inherited from it.

learned without conflict, ultimately retaining modality-specific cues while also acquiring modality-
invariant structure. (2) Sample-specific modality contribution: In realistic scenarios, the amount
of effective information provided by each modality varies across samples (Wei et al., 2024). Con-
ventional fusion strategies, e.g., concatenation, sum, and affine transformation, however, typically
assign uniform weights across all samples, failing to capture these variations. For example, in an
audio–video setting, if the majority of samples carry stronger cues in the audio modality, simple
concatenation tends to bias the fusion toward audio. As a result, samples that rely more on video
information become underrepresented, leading to suboptimal fusion embeddings. This underscores
the importance of considering per-sample modality contributions in deriving fusion embeddings.

To overcome the two key challenges discussed above, we propose a novel end-to-end (E2E) multi-
modal supervised contrastive learning (MSCL) framework, Prototype-guided Modality Balancing,
referred to as ProMoBal. Our aim is to promote the new prototype-centered geometric configuration
in Figure 1(b) in which both unimodal and fused representations are jointly aligned. To this end, we
propose the following two complementary strategies:

• Unified prototype-based objective. We align both unimodal and fusion embeddings with
shared prototypes—our common goal—while preserving modality-specific information in uni-
modal encoders. This reduces objective conflicts and ultimately promotes representations that
retain modality-specific cues while capturing modality-invariant structure.

• Sample-adaptive fusion. We introduce a sample-adaptive balancing mechanism that adjusts
modality contributions at both the sample level and the feature-dimension level, thereby mitigat-
ing imbalance between dominant and weaker modalities.

These enable ProMoBal to produce fused representations that integrate complementary cues from
modalities in a balanced manner while maintaining invariance to modality differences, particularly
on a per-sample basis. Our extensive experiments with five benchmark datasets demonstrate that

• The ProMoBal framework consistently outperforms existing state-of-the-art (SOTA) multi-
modal supervised learning baselines. In particular, ProMoBal achieves consistent improvements
even on a dataset with three modalities and across diverse modality types, highlighting its broad
applicability.

Further empirical analysis demonstrates that ProMoBal promotes modality-balanced and class-
balanced representations, and smoother decision boundaries.
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2 RELATED WORKS

Modality imbalance in multimodal learning. First, we review existing multimodal supervised
learning methods specifically designed to address the modality-imbalance problem. Among them,
OGM-GE (Peng et al., 2022), AGM (Li et al., 2023), MMPareto (Wei & Hu, 2024), and LFM (Yang
et al., 2024) adopt gradient modulation; PMR (Fan et al., 2023) employs prototype alignment regu-
larization; ReconBoost (Hua et al., 2024) and MLA (Zhang et al., 2024) alternate modality updates
during training; and DI-MML (Fan et al., 2024) adopts a two-stage training strategy, separately
optimizing unimodal and fusion embeddings. The above existing methods overlook two important
factors: (1) the objective mismatch between unimodal and fusion embeddings, and (2) the sample-
specific variability in modality contributions. The proposed ProMoBal framework aims to mitigate
these issues by jointly optimizing unimodal and fused embeddings under a common prototype-
centered representational goal, while balancing modality contributions on a per-sample basis.

Multimodal contrastive learning (CL). To pretrain multimodal models (specifically, unimodal en-
coders and a fusion module), multimodal self-supervised CL has been widely adopted (Radford
et al., 2021), where paired multimodal samples are treated as positive while others are treated as
negatives, i.e., an instance-level CL. In the supervised setting, methods such as GMC (Poklukar
et al., 2022), DI-MML (Fan et al., 2024), and LFM (Yang et al., 2024) also employ instance-level
CL. Unlike self-supervised approaches, they additionally use class labels to jointly train either uni-
modal classifiers or a fusion classifier. Although these approaches use CL to exploit cross-modal
interactions, they do not consider the per-sample modality contributions in fusing unimodal embed-
dings. As a result, the fusion embeddings tend to follow the dominant modality, as illustrated in
Figure 1(a). Different from the MSCL methods above, the proposed ProMoBal framework employs
a class-level CL approach: within each modality, samples from the same class are treated as positives
and those from different classes as negatives, with the contrastive objective applied independently
per modality (i.e., no cross-modal pairing). We further augment this objective with shared class pro-
totypes that act as anchors, providing a common reference for representation learning. Moreover,
by additionally regulating modality contributions via sample-level fusion embedding generation, we
encourage the representations to converge toward the new geometric configuration in Figure 1(b).

3 METHODS

We outline the problem formulation and overall architecture of ProMoBal in §3.1, and present its
key innovations in unimodal representation learning, fused representation learning, and classifier
alignment in §3.2, §3.3, and §3.4, respectively.

3.1 OVERVIEW

3.1.1 PROBLEM FORMULATION

Our general goal is to learn a mapping from the input space X to the target space Y = {1, 2, .., C},
where C is the number of classes. Each sample xi consists of M modality-specific components:
xi = {xi

m}Mm=1, where xi
m denotes the mth modality of the ith input. Each modality has a cor-

responding encoder fm(·) that extracts a feature representation zim ∈ RD from the input xi
m,

where D is the feature dimension. Each modality is further equipped with a linear classifier gm(·)
that outputs a logit vector lim ∈ RC from zim, i.e., lim = gm(zim) = Wmzim + bm. Here,
Wm = [(w1

m)⊤, . . . , (wC
m)⊤]⊤ ∈ RC×D denotes the classifier weight matrix for the mth modality,

and bm∈RC is the corresponding bias vector. We derive a fusion feature zifus ∈ RD from unimodal
features: zifus = Φ(zi1, . . . , z

i
M ), where we design a sample-adaptive fusion module Φ(·). In CL, we

ℓ2-normalize all representations to unit length. We produce logits from the fusion feature by com-
puting its similarity with shared class prototypes P = [p⊤

1 , . . . ,p
⊤
C ]

⊤ ∈ RC×D: lifus = Pzifus ∈ RC .
We learn ProMoBal in a supervised learning manner with {(xi, yi) : ∀i}, where we define our
common goal in learning unimodal and fused embeddings as follows:

Definition (Common goal). In the context of learning unimodal and fused embeddings {zim, zifus :
m = 1, . . . ,M,∀i}, we define the common goal as the alignment of both feature types with the same
set of shared class prototypes {pc : c = 1, . . . , C}.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Overall architecture of ProMoBal (proposed MSCL with M = 2). We overview all
proposed innovations—unimodal and fused representation learning losses {Luni,Lfus}, per-sample
fusion module Φ, and classifier alignment loss LCA—in §3.1.2. All representations {z1, z2, zfus} are
ℓ2-normalized in CL.

The goal of the proposed ProMoBal framework is to jointly optimize unimodal and fusion features
with respect to the common goal defined above, while forming fusion features by dynamically bal-
ancing modality contributions on a per-sample basis. Figure 1(b) illustrates our geometric objective
in representation learning.

3.1.2 OVERALL ARCHITECTURE

We design an E2E architecture to achieve the above goal, as illustrated in Figure 2. We propose the
following key components in ProMoBal:

(1) Unimodal representation learning: We propose a Prototype-based Unimodal Contrastive
Learning (Pro-UCL) loss Luni that encourages unimodal embeddings to cluster around shared
prototypes and drives the embeddings of each class to collapse to the vertices of a shared reg-
ular simplex1. This preserves modality-specific discrimination via supervised CL within each
modality while aligning all unimodal embeddings under the common goal. In addition, we equip
each unimodal encoder with an individual cross-entropy (CE) objective LCE,m. See the unimodal
branches with {Luni,LCE,m : m = 1, 2} in Figure 2.

(2) Fused representation learning: We propose a Sample-Adaptive Modality Contribution Bal-
ancing (SaMoBal) fusion module Φ that adjusts per-sample, per-dimension contributions of
each modality in deriving fused embeddings, by promoting their alignment with the prototype
of the target class. This adaptive mechanism mitigates modality imbalance by preventing domi-
nant modalities from overwhelming weaker ones, yielding more balanced fusion embeddings. In
addition, we propose the Prototype–Fusion Distillation (Pro-FD) loss that distills a prototype-
based reference distribution encoding the relational structure among prototypes into fused em-
beddings. This further encourages the fused representations to capture modality-invariant infor-
mation encoded in shared prototypes. See the fusion branch with Lfus in Figure 2.

(3) Classifier alignments: We propose a Classifier Alignment (CA) loss LCA that aligns unimodal
classifier weights with shared prototypes, a unified reference for the common goal. See the clas-
sifier alignments in Figure 2.

3.2 UNIMODAL REPRESENTATION LEARNING

To learn modality-specific discrimination rather than being dominated by a fusion loss, we equip
each unimodal encoder with an individual classifier and CE loss LCE,m, m = 1, . . . ,M (Fan et al.,
2023; Du et al., 2023; Wang et al., 2020; Fan et al., 2024). However, if only this approach is used,
geometric configurations of unimodal representations across different modalities are misaligned; see
Figure 1(a). To achieve an aligned configuration across modalities as illustrated in Figure 1(b), we
introduce a new unimodal supervised CL approach in the following section.

1In the proposed regular simplex configuration for multimodal learning, shared prototypes of different
classes are placed on the hypersphere in a symmetric and equidistant manner. See Figure 1(b).
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3.2.1 PRO-UCL: PROTOTYPE-BASED UNIMODAL CONTRASTIVE LEARNING

We propose the Pro-UCL loss Luni, a prototype-augment variant of supervised contrastive learning
(Khosla et al., 2020) for multimodal learning, where we explicitly incorporate shared class proto-
types along with multiple positive samples to guide unimodal representations:

Luni,m := − 1

|B|
∑
i∈B

1

|P(i)|
∑

j∈P(i)

log
exp(zim · zjm/τ)∑C

c=1
1

|B(c)|
∑

k∈B(c) exp(z
i
m · zkm/τ)

, ∀m, (1)

and Luni = 1
M

∑M
m=1 Luni,m, where i denotes the index of an anchor sample, B = {1, . . . , N}

denote the index set of all samples in a batch, and the notation | · | indicates the cardinality of a
set. Here, we define the set of indices of all positive samples in a batch, including the index of the
corresponding prototype but excluding the anchor index i: P(i) := {n ∈ B̃ \ {i} : yn = yi}, where
B̃ := B∪{N+1, . . . , N+C} denotes augmented B with shared class prototypes {p1, . . . ,pC}. We
define the set of indices of all samples with class c in a batch, including the corresponding prototype
index: B(c) := {n ∈ B̃ : yn = c}, c ∈ Y . τ ∈ R>0 is temperature parameter. By including shared
prototypes in every batch, we can effectively handle all classes, even if some are absent from a batch.

Extending results in (Graf et al., 2021; Zhu et al., 2022), we obseve the following for (1) (τ = 1):

Luni ≥
1

M |B|

M∑
m=1

∑
i∈B

log

(
1+(C−1)exp

(
1

C−1

∑
c∈Y\{yi}

1

|B(c)|
∑

j∈B(c)

zim ·zjm︸ ︷︷ ︸
repulsion incl. shared prototypes

− 1

|P(i)|
∑

k∈P(i)

zim ·zkm︸ ︷︷ ︸
attraction incl. shared prototype

))
,

where Y\{yi} indicates the set of all classes except yi (ith anchor’s class). This observation sug-
gests that each unimodal representation is attracted to the corresponding shared class prototype and
repelled from the others. Minimizing the proposed Pro-UCL loss in (1) can promote that unimodal
embeddings of each class collapse to their shared class prototypes and eventually the vertices of a
regular simplex (Papyan et al., 2020; Zhu et al., 2022). This symmetric geometry configuration has
been empirically shown to provide important benefits, such as improved generalization performance
(Papyan et al., 2020), by providing a balanced feature space across classes.

As shown above, the Luni,m loss in (1) uses positive and negative samples within each modality
to promote attraction and repulsion, respectively, thereby enabling each unimodal encoder to learn
modality-specific discriminative representations. Moreover, by incorporating shared prototypes, the
Luni loss in (1) further aligns unimodal embeddings across modalities under a common reference,
encouraging a coherent geometry that facilitates modality-invariant representation learning.

Class averaging. The proposed loss in (1) uses the class averaging mechanism (Zhu et al., 2022) in
its denominator to improve the effectiveness of incorporating shared prototypes in each class. With-
out this mechanism—i.e., when naively incorporating shared prototypes into the standard supervised
contrastive learning framework (Khosla et al., 2020)—each class typically contains many samples
but only a single prototype, causing a repulsion term to be dominated by sample contributions.

3.3 FUSED REPRESENTATION LEARNING

We propose SaMoBal module Φ that derives fused embeddings by adjusting contributions of each
modality on both per-sample and per-dimension basis, along with its training & inference processes.

3.3.1 SAMOBAL: SAMPLE-ADAPTIVE MODALITY CONTRIBUTION BALANCING (TRAIN)

To learn balanced fused representations, our key idea is to derive fusion embeddings by adaptively
selecting, for each sample and dimension, the unimodal embeddings that best align with a prototype
from the ground-truth (GT) class, referred to as the GT prototype. See Figure 3(a). Specifically,
for each training sample i and each dimension d, we compare unimodal features {(zim)d : m =
1, . . . ,M} with the corresponding GT class prototype (pc=yi

)d, and select the most similar features
among modalities to construct a fused embedding (zifus)d, for d = 1, . . . , D.
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for d = 1 to D do
s1,d=Sim((z1)d, (pc)d)
s2,d=Sim((z2)d, (pc)d)
(s′1,d, s

′
2,d)=Gumbel(s1,d, s2,d)

(zfus)d=

{
(z2)d, if s′1,d<s′2,d,

(z1)d, otherwise.

(a) Overview (b) Pseudo-code

Figure 3: An illustration and pseudo-code for the
SaMoBal module in fusion learning (for each sam-
ple; M=2, c=yi). The module adaptively adjusts the
modality contribution at the feature-dimension level.
Here, Gumbel(·) denote the Gumbel-softmax.

To make this hard selection process dif-
ferentiable, we use the Gumbel-Softmax
(Jang et al., 2016) that approximates the
non-differentiable argmax operation dur-
ing training by injecting Gumbel noise and
using a softmax with temperature, enabling
gradients to flow, while still yielding hard
selections in the forward pass. In particular,
we use the straight-through estimation trick
(Van Den Oord et al., 2017). In forward
pass, for each sample i and dimension d,
we apply Gumbel-Softmax to the similarity
scores {sim,d = Sim((zim)d, (pyi

)d) : ∀m}
to produce a near one-hot vector of size M , and then apply argmax to select the modality feature
with the highest score, where Sim(·) denotes a similarity function (here, instantiated as cosine simi-
larity in our implementation). The pseudo-code in Figure 3(b) illustrates this process (sample index i
omitted for clarity). In the backward pass, gradients are computed through the soft Gumbel-Softmax
distribution, allowing the model to approximate hard selections while remaining fully differentiable.
With this scheme, we preserve discrete choices while still allowing gradients to flow through all
modality features, including those not selected, thereby enabling effective E2E training.

We aim to optimize the SaMoBal module so that it learns to select modality features most con-
sistent with the correct class. Yet, alignment to the GT prototype alone does not ensure that fused
embeddings respect the relative geometry among all prototypes. The next section addresses this.

3.3.2 PRO-FD: PROTOTYPE–FUSION DISTILLATION

We propose the Pro-FD loss Lfus that distills the prototype-based reference distribution into the fused
embedding. Unlike hard CE supervision, this reference distribution encodes the geometric relational
structure among prototypes, enabling the fused representation to learn not only the target class but
also its relative position within the prototype space.

We first define the following two distributions for each sample i:

ψi
ref(c) :=

exp(pyi · pc)∑C
c′=1 exp(pyi

· pc′)
and ψi

fus(c) :=
exp(zifus · pc)∑C

c′=1 exp(z
i
fus · pc′)

, (2)

for c = 1, . . . , C. Here, (1) {ψi
ref(c) : ∀c} denotes the reference distribution, which for each

sample i encodes the geometric relational structure among prototypes {pc : ∀c} by evaluating their
relative similarities to the ground-truth prototype pyi

; and (2) {ψi
fus(c) : ∀c} denotes the fused

embedding distribution, which for each sample i represents the class likelihoods predicted from
the fused embedding zifus with respect to the prototype space.

To align the fused distribution ψi
fus with the reference ψi

ref, we adopt Sinkhorn Knowledge Distilla-
tion (SinKD) instead of the conventional Kullback-Leibler (KL) divergence. Unlike KL that ignores
geometric relationships among prototypes and may mislead optimization when prototypes are cor-
related, SinKD formulates alignment as an optimal transport problem based on pairwise prototype
distances. This enables ψi

fus to capture both the target prototype and its relative position to others,
thus reflecting the global prototype geometry encoded in ψi

ref.

Finally, we define the Pro-FD loss by Lfus := 1
|B|
∑|B|

i=1 SinKD({ψi
fus(c)}Cc=1, {ψi

ref(c)}Cc=1). This
loss encourages the fused representations to form class-balanced prototype-centered structures,
where no single class prototype dominates the alignment and inter-class relations are proportion-
ally preserved. By reflecting the global prototype geometry, the fused embeddings develop smoother
decision boundaries and demonstrate stronger generalization in multimodal fusion.

3.3.3 SAMOBAL (INFERENCE)

In training, SaMoBal aligns fused embeddings with the GT prototype, thereby learning a selection
rule that favors the correct class. At inference, however, the GT label is unknown. We apply the same
rule to every prototype, producing a set of candidate fused embeddings. Among these, we choose
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the candidate that shows the strongest alignment with the prototype from which it was derived, as
the final fused representation. This procedure mirrors the selection behavior obtained from training.

Specifically, we first apply the same selection mechanism with every prototype pc, yielding C can-
didate fusion embeddings for each sample i, {zifus,c : c = 1, . . . , C}.2 Next, we score each candidate
zifus,c by measuring its strongest alignment with the prototype bank P, and we choose the candidate
with the highest score as the final fused embedding:

ẑifus = zifus,ĉ, ĉ = argmax
c=1,...,C

rc, {rc = max
k=1,...,C

p⊤
k z

i
fus,c : c = 1, . . . , C}. (3)

Finally, we compute prediction logits from the selected fused embedding: l̂ifus = Pẑifus.

3.4 CA: CLASSIFIER ALIGNMENTS

We re-frame an ideal geometric configuration in single-modal learning (Papyan et al., 2020) for
multimodal learning. See the illustration in Figure 1(b). Via the designs proposed in §3.2–3.3, we
can promote the new representational geometric configuration illustrated in Figure 1(b). Yet, the
proposed designs may not sufficiently promote that unimodal classifiers are aligned with shared
prototypes; see their geometric illustrations in Figure 1(b).

In single-modal learning, the alignment between class prototypes, e.g., class means, and weights of
a linear classifier is a defining property of the ideal geometric configuration (Papyan et al., 2020). To
promote an analogous alignment property in the multimodal setting, we propose the CA loss LCA
that aligns unimodal linear classifiers with shared prototypes:

Lm
CA :=

∥∥∥Wm∥−1
F Wm − ∥P∥−1

F P
∥∥2
F
, (4)

and LCA = 1
M

∑M
m=1 Lm

CA, where ∥·∥F denotes the Frobenius norm.

Geometric properties: In conjunction with the approaches in §3.2–3.3, this alignment induces a
symmetric geometry across the representation and classifier spaces, in both unimodal and fused
learning, thereby realizing the overall proposed configuration in Figure 1(b). This implies that uni-
modal and fused representations can take different forms to capture modality-specific and/or invari-
ant information, yet their directions on the unit sphere are encouraged to align, and their classifica-
tion outcomes are promoted to be consistent across unimodal and fusion settings.

3.5 OVERALL PROMOBAL LOSS

Our overall loss is given by L :=λuniLuni+λCELCE+λfusLfus+λCALCA, where {λuni, λCE, λfus, λCA}
are hyperparameters that control the balance among losses. Here, LCE := 1

M

∑M
m=1 Lm

CE.

Effects: Our framework produces a balanced and geometry-aware multimodal representation with
the following effects: (1) modality balance is achieved by the SaMoBal module, which adaptively
regulates per-sample, per-dimension contributions of each modality; (2) modality-specific discrim-
ination is preserved by unimodal CE losses and the Pro-UCL objective that promote class separa-
tion within each modality; (3) Modality-invariant information merges as unimodal embeddings are
aligned to shared prototypes by Pro-UCL and fused embeddings are further distilled by Pro-FD to
reflect the prototype geometry; (4) class balance arises from the prototype-centered geometry pro-
moted by Pro-UCL and Pro-FD, preventing dominance by any single class and promoting uniform
representation across all classes.

Together with the geometric properties in the previous section, these effects yield representations
that are discriminative, invariant, balanced, and geometrically consistent across modalities.

4 RESULTS AND DISCUSSION

This section presents our main experimental results and discussions. In addition to the main results
presented in the paper, we provide ablation studies on the four primary components of ProMoBal,
an analysis of the SaMoBal module with different selection schemes, etc. in §B–E of the appendix.

2Following convention, we replace the Gumbel-Softmax used in training with a standard softmax during
inference.
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Table 1: Performance comparisons with different multimodal learning baselines.

Methods CREMA-D KineticsSounds Sarcasm Twitter2015 NVGesture
ACC MAP ACC MAP ACC F1 ACC F1 ACC F1

Unimodal 1 63.17 68.61 54.12 56.69 81.36 80.65 73.67 68.49 78.22 78.33
Unimodal 2 45.83 58.79 55.62 58.37 71.81 70.73 58.63 43.33 78.63 78.65
Unimodal 3 - - - - - - - - 81.54 81.83

Concat. 63.31 68.41 64.55 71.31 82.86 82.43 70.11 63.86 81.33 81.47
Sum 63.44 69.08 64.97 71.03 82.94 82.47 73.12 66.61 82.99 83.05
GMC 65.99 70.62 65.87 71.39 84.06 83.40 74.54 68.88 83.12 83.41

OGM-GE 66.94 71.73 66.06 71.44 83.23 82.66 74.92 68.74 - -
PMR 66.59 70.36 66.56 71.93 83.61 82.49 74.25 68.62 - -
AGM 67.07 73.58 66.02 72.52 84.28 83.44 74.83 69.11 82.78 82.82

ReconBoost 74.84 81.24 70.85 74.24 84.37 83.17 74.42 68.34 84.13 86.32
MMPareto 74.87 75.15 70.00 78.50 83.48 82.84 73.58 67.29 83.82 84.24

MLA 79.43 85.72 70.04 74.13 84.26 83.48 73.52 67.13 83.73 83.87
LFM 83.62 90.06 72.53 78.38 84.97 84.57 75.01 70.57 84.36 84.68

DI-MML 82.34 88.25 70.64 75.72 85.32 85.13 74.83 68.61 - -
ProMoBal 85.68 91.85 76.6 81.22 89.17 88.65 77.08 72.52 86.84 86.97

4.1 EXPERIMENTAL SETUPS

We compared the proposed ProMoBal framework with numerous multimodal supervised learning
methods, including three SOTA MSCL methods—DI-MML (Fan et al., 2024), LFM (Yang et al.,
2024), and GMC (Poklukar et al., 2022), across five benchmark multimodal classification datasets.

Datasets: For audio–video multimodal classification, we used CREMA-D (Cao et al., 2014)
and Kinetics-Sounds (Arandjelovic & Zisserman, 2017). For image–text multimodal classifica-
tion, we used Sarcasm (Cai et al., 2019) Twitter2015 (Yu & Jiang, 2019). For reg-green-blue
(RGB)–depth–optical flow (OF) multimodal analysis, we used NVGesture (Molchanov et al., 2016).
See details of the datasets, implementation, and preprocessing in §A in the appendix.

Baseline settings: Unimodal 1 and Unimodal 2 correspond to audio and video in the audio–video
datasets, and to image and text in the image–text datasets. For the NVGesture dataset, Unimodal 1,
Unimodal 2, and Unimodal 3 denote RGB, OF, and depth modalities, respectively. In the Concat. and
Sum settings, fusion embeddings were obtained by concatenation and summation, respectively, un-
der the standard setup that uses only the fusion CE loss. Following Yang et al. (2024), we used the
default unimodal encoders, based on convolutional neural networks or transformers, depending on
the dataset—e.g., ResNet (He et al., 2016), I3D (Carreira & Zisserman, 2017), and BERT (Devlin
et al., 2019). All existing multimodal learning methods are referenced in §2.

Evaluation metrics: Following Yang et al. (2024), we used accuracy (ACC) and mean average
precision (MAP) for the audio-video datasets, and ACC and Macro F1 score (F1) for the image-text
and RGB-depth-OF datasets. ACC measures the proportion of correctly classified samples. MAP is
the mean of the average precision scores computed across all classes. The F1 score is the average
of the class-wise F1 scores, reflecting the model’s overall balance between precision and recall. All
metrics are reported as percentages (%).

4.2 COMPARISONS BETWEEN DIFFERENT MULTIMODAL SUPERVISED LEARNING METHODS

Experimental results in Table 13 demonstrate that the proposed ProMoBal framework consistently
outperforms all SOTA multimodal learning baselines across datasets, regardless of the unimodal en-
coder architectures. Specifically, the proposed ProMoBal improves accuracy by more than 2% and
up to 4% across datasets, compared with existing multimodal learning baselines. Even in the three-
modality setup (i.e., NVGesture), ProMoBal outperformed existing multimodal learning baselines,
highlighting the broad applicability of the proposed method. On the Twitter2015 dataset—where
existing multimodal learning baselines show little or no gain over unimodal training— our approach
achieved substantial improvements. Finally, compared with unimodal learning, the proposed Pro-

3For consistency, we adopted some baseline results from Yang et al. (2024).
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(a) Audio ( samples) (b) Video (▲ samples) (c) Fusion (■ samples)

Figure 4: Visualization of unimodal and fused representations on a hypersphere (CREMA-D
test). ⋆ indicates a class prototype, and different colors indicate features from different classes.

MoBal improved accuracy by more than 4% and up to 21% across all datasets, underscoring the
effectiveness of multimodal representation learning via ProMoBal.

4.3 VISUALIZATION OF PROMOBAL REPRESENTATIONS

Figure 4 visualizes unimodal and fused representations produced by the ProMoBal framework on
the unit hypersphere. This visualization demonstrates that proposed ProMoBal can promote the
new representational geometry illustrated in Figure 1(b). Specifically, (1) unimodal representations
are encouraged to move toward their shared prototypes, while (2) the prototypes themselves are
promoted to align in a regular simplex geometry. At the same time, (3) fused representations are
encouraged to align with their target prototypes while preserving the relative geometry among all
prototypes. We expect that such a configuration reduces modality imbalance by selecting prototype-
consistent features at each dimension, thereby preventing dominant modalities from overwhelming
the fused space. We also expect that in the fused embedding space, decision boundaries become
smoother. We show in §B of the appendix that fused representations exhibit stronger feature collapse
and a clearer regular simplex geometry than unimodal ones.

4.4 ANALYSIS OF MODALITY CONTRIBUTIONS IN PROMOBAL

Table 2: Empirical analysis of modality contributions

Datasets CREMA-D NVGesture
Modalities Audio Video RGB OF Depth

Selection rate (%) 51.09 48.91 33.08 33.03 33.89

Table 2 examines whether ProMoBal
effectively balances modality con-
tributions by quantifying how often
each modality is selected by the pro-
posed SaMoBal fusion module (sum-
ming to 100%). The selection rates
across modalities are well balanced—even in the three-modality setup—indicating that no single
modality dominates or is suppressed. In other words, ProMoBal ensures fair use of all modalities,
preventing imbalance and fully leveraging their complementary information in fusion.

5 CONCLUSION

The rapid proliferation of multimodal sensors in real-world applications demands frameworks that
can effectively integrate diverse modalities. As their number and diversity grow, maintaining bal-
anced and geometrically consistent representations becomes a critical challenge.

In this work, we proposed ProMoBal, an E2E MSCL framework that promotes our new regular
simplex geometry tailored for multimodal representation learning, where shared prototypes serve as
a common reference for both unimodal and fused embeddings. Together with its sample-adaptive
fusion mechanism, ProMoBal promotes balanced contributions across modalities, preventing dom-
inance by stronger modalities. Through its key components—Pro-UCL, SaMoBal, Pro-FD, and
CA—ProMoBal encourages complementary outcomes: promoting modality and class balance, pre-
serving modality-specific discrimination, capturing modality-invariant information, and encourag-
ing geometry-consistent embeddings. Our extensive experiments with five benchmark datasets show
that ProMoBal consistently outperforms SOTA multimodal supervised learning methods. We be-
lieve these findings highlight the potential of geometry-aware design and sample-adaptive fusion as
a foundation for future multimodal learning research. For future work, we plan to investigate the
computational costs of ProMoBal, which grow with the number of modalities and classes.
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ProMoBal: Prototype-guided Modality Balancing
in multimodal contrastive learning (Appendix)

For clarify and completeness, this appendix provides additional details, analysis, and results:

• §A details our experimental setups, including datasets and implementations.
• §B quantitatively analyzes unimodal and fusion representations in the perspective of the pro-

posed regular simplex geometry.
• §C reports ablation studies examining the contribution of each component.
• §D evaluates variants of the SaMoBal module with different selection schemes.
• §E compares saliency-based visual explanations from the proposed ProMoBal framework

against other multimodal learning methods.

A DETAILS OF EXPERIMENTAL SETUPS

A.1 DATASET DETAILS

This section provides details of the five benchmark datasets used in this study:

• The CREMA-D audio–video dataset (Cao et al., 2014), designed for emotion recognition with
six categories, consists of 7,442 clips, including 6,698 for training and 744 for testing.

• The KineticsSounds audio–video dataset (Arandjelovic & Zisserman, 2017), designed for ac-
tion recognition with 31 categories, contains 19,000 video clips, with 15,000 for training, 1,900
for validation, and 1,900 for testing.

• The Sarcasm image-text dataset (Cai et al., 2019), designed for sarcasm detection with two cat-
egories, includes 24,635 image–text pairs, divided into 19,816 for training, 2,410 for validation,
and 2,409 for testing.

• The Twitter2015 image-text dataset (Yu & Jiang, 2019), designed for emotion recognition with
three categories, consists of 5,338 image–text pairs, with 3,179 for training, 1,122 for validation,
and 1,037 for testing.

• The NVGesture RGB-depth-OF dataset (Molchanov et al., 2016), designed for dynamic hand
gesture recognition with 25 categories, contains 1,532 samples, with 1,050 for training and 482
for testing.

A.2 IMPLEMENTATION DETAILS

This section provides implementation details. We conducted all experiments using PyTorch v2.0.0
(Paszke et al., 2017) and NVIDIA GeForce RTX 4090 GPUs.

A.2.1 UNIMODAL ENCODERS

For all datasets, we followed the unimodal encoder architectures in Yang et al. (2024):

• For the audio–video datasets, CREMA-D and KineticsSounds, we used ResNet-18 (He et al.,
2016) as the backbone and set the feature dimension D to 512.

• For the image–text datasets, Sarcasm and Twitter2015, we employed ResNe-50 (He et al., 2016)
for image encoding and BERT (Devlin et al., 2019) for text processing, with D = 1024.

• For the RGB–depth–OF dataset, NVGesture, we adopted I3D (Carreira & Zisserman, 2017) as
the unimodal encoder and set D = 1024.

A.2.2 HYPERPARAMETERS FOR THE PROPOSED FRAMEWORK

Optimization parameters. We followed the following optimization setup in (Yang et al., 2024):

• For the audio–visual (i.e., CREMA-D and KineticsSounds) and RGB–depth–OF datasets (i.e.,
NVGesture), we used stochastic gradient descent with momentum 0.9 and weight decay 0.1.

• For the image–text datasets (i.e., Sarcasm and Twitter2015), we used the Adam optimizer with
an initial learning rate of 2× 10−5.
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Table A1: Accuracy comparisons of ProMoBal under varying balancing parameter combinations (in
%).

Balancing parameters Datasets
Luni Lfus LCA CREMA-D KineticsSounds Sarcasm Twitter2015 NVGesture

1 1 1 84.93 76.53 88.75 76.57 85.06
0.7 1 1 83.96 75.92 88.71 76.92 84.95
1 3 1 84.26 75.24 88.59 76.66 86.27

0.7 3 1 85.27 74.86 88.38 76.18 85.94
1 1 3 84.70 75.24 89.17 77.08 86.02

0.7 1 3 85.68 75.27 88.46 75.85 86.84
1 3 3 84.53 76.66 88.42 76.35 85.65

0.7 3 3 84.12 76.11 88.04 75.51 85.15

• For all datasets, the learning rate was decayed by a factor of 0.1 at epoch 70.

We set the initial learning rate to 0.01 for CREMA-D and NVGesture, and 0.1 for KineticsSounds.
We set the batch size B as follows: for CREMA-D, B = 16; for KineticsSounds, Sarcasm, and
Twitter2015, B = 64; and for NVGesture, B = 4. We trained the ProMoBal model for 150 epochs,
for all datasets.

Balancing parameters among proposed losses. In tuning the balancing param-
eters {λuni, λfus, λCA} in §3.5, we evaluated the corresponding training losses
{λuniLuni, λfusLfus, λCALCA} at the initial epoch and selected parameter values that ensured
balanced contributions, i.e., λuniLuni ≈ λfusLfus ≈ λCALCA. We fixed λCE = 1 throughout all
experiments. The parameter combinations selected through this scheme are as follows:

• For the CREMA-D and NVGesture datasets, {λuni = 0.7, λfus = 1, λCA = 3};
• For the Sarcasm and Twitter2015 datasets, {λuni = 1, λfus = 1, λCA = 3};
• For the KineticsSounds dataset, {λuni = 1, λfus = 3, λCA = 3};

Using the aforementioned tuning scheme, we consistently observed reliable classification perfor-
mance across all benchmark datasets. Table A1 reports inference accuracy (in %) with different
balancing parameter combinations. Note that across all balancing parameter combinations in Ta-
ble A1, the proposed ProMoBal consistently outperformed existing multimodal learning baselines.

A.2.3 HYPERPARAMETERS FOR EXISTING MULTIMODAL LEARNING BASELINES

For fair comparisons, we followed the default settings of existing multimodal learning baselines,
except for the initial learning rate for GMC and DI-MML. To achieve the best performance for
each dataset, we tuned the learning rates of GMC and DI-MML. Specifically, we selected initial
learning rates of {10−1, 10−1, 2×10−5, 2×10−5, 10−2} for GMC and {10−3, 10−1, 2×10−5, 2×
10−5,N/A} for DI-MML, corresponding to the CREMA-D, KineticsSounds, Sarcasm, Twitter2015,
and NVGesture datasets, respectively. Note that we could not apply DI-MML to the NVGesture
dataset, as it does not support three modalities.

A.3 DATA PREPARATION

For fair comparisons, we followed the preprocessing procedures used in prior works:

• For the audio–video datasets, CREMA-D and KineticsSounds, we adopted the preprocessing
schemes of Yang et al. (2024) and Fan et al. (2024). We converted audio data into spectrograms
of size 257×299 for CREMA-D and 257×1004 for KineticsSounds using the librosa library
(McFee et al., 2015).

• For the image–text datasets, Sarcasm and Twitter2015, we followed the preprocessing proce-
dures in Yang et al. (2024). We resized all images to 224× 224 and truncated text sequences to
a maximum length of 128 tokens.

• For the NVGesture dataset, we adopted the preprocessing protocols of Wu et al. (2022) and
Yang et al. (2024). We randomly sampled 64 consecutive frames from each video, zero–padding
sequences shorter than 64 frames, and resized all frames to 224× 224.
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Table A2: Analysis of fused and unimodal representations (the ↓ and ↑ symbols indicate that the
lower the better and higher the better, respectively).

Metrics
Datasets

CREMA-D NVGesture
Audio Video Fusion RGB OF Depth Fusion

FC in (A1)↓ 0.55 0.62 0.51 0.60 0.63 0.59 0.56
RS in (A2)↑ 0.81 0.78 0.83 0.81 0.78 0.85 0.88

Table A3: Ablation study for the primary components of the proposed ProMoBal (ACC (%)).

Components Datasets

Luni SaMoBal Lfus LCA
CREMA-D NVGesture

Audio Video Fusion RGB OF Depth Fusion
No unimodal

representation learning × ⃝ ⃝ ⃝ 65.13 78.54 82.53 76.76 77.39 83.22 85.48

No fused
representation learning

⃝ × ⃝ ⃝ 65.73 72.61 71.27 77.90 73.55 82.97 83.76
⃝ ⃝ × ⃝ 66.53 78.96 83.42 77.88 74.07 83.82 86.39
⃝ × × ⃝ 64.38 77.82 68.41 78.01 74.92 83.46 82.37

No classifier
alignments ⃝ ⃝ ⃝ × 67.24 72.32 73.70 76.65 74.61 82.71 83.02

ProMoBal ⃝ ⃝ ⃝ ⃝ 68.07 80.91 85.68 78.62 79.01 84.16 86.84

B UNIMODAL VS. FUSED REPRESENTATION ANALYSIS

This section analyzes fused representations in comparison with unimodal ones. We employed two
widely used metrics, alignment and uniformity (Chen et al., 2020; He et al., 2020; Li et al., 2022;
Wang & Isola, 2020). In this study, we denote alignment as the Feature Collapse (FC) metric and
uniformity as the Regular Simplex (RS) metric.

Feature Collapse: The FC metric averages distances between features from the same class (Wang
& Isola, 2020; Li et al., 2022):

FC :=
1

C

C∑
c=1

1

|Fc|2
∑

zi,zj∈Fc

∥∥zi − zj
∥∥
2
, (A1)

where Fc denotes the set of all features belonging to cth class. This metric measures how the features
from the same class align to the class means. A smaller FC value indicates greater compactness
among samples within the same class.

Regular Simplex: The RS metric averages distances between different class means in the represen-
tation space (Wang & Isola, 2020; Li et al., 2022):

RS :=
1

C(C − 1)

C∑
c=1

C∑
c′=1
c′ ̸=c

∥µc − µc′∥2 , (A2)

where µc denotes the cth class mean. This metric evaluates how well the class means are uniformly
distributed on a unit hypersphere, i.e., the degree of a regular simplex configuration. The higher RS
value, the better separation between different classes, i.e., closer to a regular simplex configuration.

The results in Table A2 show that fused representations exhibit stronger feature collapse and a
clearer regular simplex geometry than unimodal ones, supporting our argument in §4.3. This implies
that fusion effectively leverages complementary modality information to form more compact and
uniformly separated class representations.

C ABLATION STUDIES

Ablation studies in Table A3 examine the contribution of each component in ProMoBal by an-
alyzing classification accuracy of unimodal and fused embeddings. To quantify their impact, we
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Table A4: Comparisons between different selection schemes in the proposed SaMoBal module.

Selection schemes
Datasets

CREMA-D NVGesture
ACC (%) MAP (%) ACC (%) F1 (%)

Hard 84.57 91.11 85.27 85.42
Soft 82.98 90.06 83.85 84.22
Ours 85.68 91.85 86.84 86.97

systematically removed each component and grouped the analysis into three categories: unimodal
representation learning, fused representation learning, and classifier alignments.

Unimodal representation learning: Removing proposed Luni in §3.2.1 substantially degrades uni-
modal accuracy and weakens fusion performance, as unimodal features no longer achieve a common
prototype-based representation goal.

Fused representation learning: We replaced the proposed SaMoBal module Φ in §3.3.1 and §3.3.3
with simple concatenation and substituted proposed Lfus in §3.3 with the standard CE loss. Without
SaMoBal, weaker modalities are suppressed due to the absence of sample-level balancing. Without
Lfus, the fused embeddings are only aligned to the GT prototype but fail to capture the relational
geometry among all prototypes, leading to degraded fusion accuracy.

Classifier alignments: Removing proposed LCA in §3.4 lowers overall performance, as the model
does not strongly induces a symmetric geometric configuration between the representation and clas-
sifier spaces.

Overall, Table A3 shows that the best performance arises when all components are integrated to-
gether, underscoring the synergistic effect of the proposed framework.

D ANALYSIS OF DIFFERENT SELECTION SCHEMES IN THE SAMOBAL
MODULE

This section analyzes variants of the SaMoBal module, particularly using different selection schemes
on a per-sample basis: “hard”, “soft”, and ours in Figure 3. We describe each selection scheme with
the training perspective as follows (for simplicity):

• In the hard selection scheme, we constructed fused embeddings by choosing the modality fea-
ture with the highest similarity to its corresponding prototype in each dimension. We replaced
the Gumbel-Softmax and straight-through estimation (STE) trick in SaMoBal with a standard
softmax.

• In the soft selection scheme, we computed fusion embeddings by weighted averaging, com-
bining unimodal features in proportion to their cosine similarity scores. Specifically, for the
dth dimension, given similarity scores {s1,d, . . . , sM,d} with the prototype, we compute the
weights as (w1,d, . . . wM,d) = Softmax(s1,d, . . . , sM,d), and then obtain the fusion feature as
(zfus)d =

∑M
m=1 wm,d(zm)d, d = 1, . . . , D. We apply this procedure at the sample level.

• Ours corresponds to the proposed selection scheme in §3.3.1.

In inference, we used the proposed inference scheme (3) consistently to the hard and soft selection
schemes.

From the results in Table A4, we draw two key observations:

• Hard selection is more effective than soft selection: Hard selection proved more effective than
soft selection by focusing on the modality feature most consistent with the prototype at each di-
mension. This suggests that hard selection yields fusion embeddings that are more discriminative
while maintaining modality invariance.

• Approximating hard selection in a differentiable manner is effective: The approximation of
hard selector using the Gumbel-softmax and STE trick (see §3.3.1) allows the model to retain
the benefits of discrete, prototype-consistent feature selection, while enabling end-to-end opti-
mization through gradient backpropagation. This combination yields more discriminative and
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modality-invariant fusion embeddings, ultimately improving multimodal classification perfor-
mance.

E SALIENCY-BASED VISUAL EXPLANATIONS BETWEEN DIFFERENT
MULTIMODAL SUPERVISED LEARNING METHODS

We used Grad-CAM (Selvaraju et al., 2017) to visualize and explain the image regions attended by
the visual modality. Grad-CAM assigns importance scores to each pixel in a feature map, thereby
providing visual explanations of the regions most critical for the model’s predictions.

Figure A1 compares visual explanations obtained with simple concatenation, DI-MML (Fan et al.,
2024), and the proposed ProMoBal, with the captions under each image indicating the corresponding
paired text. The proposed ProMoBal framework attends more precisely to image regions aligned
with the semantic cues in the paired text. This demonstrates that our method effectively exploits
both text and visual modalities, guiding them toward a common goal and thereby enabling more
effective multimodal learning.
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Image Concat. DI-MML ProMoBal (ours)

(a) The most delicious breakfast in the world ! So love sandwich ! ! Lint . . . . T also liked it !

(b) RT @ SLAMonline : T Drops 22 Points in Game 3 Win Over Warriors

(c) Great Opportunity in T , CA ! ! ! Check it out ! Buenos Dias ! ! !

(d) RT @ MileyCyrus : Tigger in T Germany

Figure A1: Comparisons of saliency-based visual explanations between different multimodal super-
vised learning methods (Twitter2015 dataset). The captions indicate the text cues paired with each
image.
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