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Abstract
The success of large language models (LLMs) in
text generation has inspired their application to
image generation. However, existing methods ei-
ther rely on specialized designs with inductive bi-
ases or adopt LLMs without fully exploring their
potential in vision tasks. In this work, we system-
atically investigate the design space of LLMs for
image generation and demonstrate that LLMs can
achieve near state-of-the-art performance with-
out domain-specific designs, simply by making
proper choices in tokenization methods, modeling
approaches, scan patterns, vocabulary design, and
sampling strategies. We further analyze autore-
gressive models’ learning and scaling behavior,
revealing how larger models effectively capture
more useful information than the smaller ones.
Additionally, we explore the inherent differences
between text and image modalities, highlighting
the potential of LLMs across domains. The ex-
ploration provides valuable insights to inspire
more effective designs when applying LLMs to
other domains. With extensive experiments, our
proposed model, ELM achieves an FID of 1.54
on 256×256 ImageNet and an FID of 3.29 on
512×512 ImageNet, demonstrating the powerful
generative potential of LLMs in vision tasks.

1. Introduction
In the domain of artificial intelligence generated content
(AIGC), text and image generation (Brown, 2020; Ho et al.,
2022) represent the principal focal points. Despite their
shared goal of content generation, these two modalities pre-
dominantly employ distinct methods. On the one hand, text
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generation is commonly facilitated by autoregressive (AR)
language models, like LLaMA-3 (Touvron et al., 2023a) and
GPT-4 (Achiam et al., 2023), which operate by predicting
subsequent tokens based on preceding ones in a sequence.
On the other hand, image generation predominantly utilizes
diffusion models, such as Dall·E 3 (Betker et al., 2023)
and Stable Diffusion v3 (Esser et al., 2024), which learn to
gradually denoise images for all pixels simultaneously.

The recent success of large language models (LLMs) has
bolstered the research community’s confidence to achieve
artificial general intelligence (AGI) and inspired their ap-
plication in computer vision tasks, such as image (Esser
et al., 2021; Yu et al., 2021; Tian et al., 2024) and video
generation (Kondratyuk et al., 2024). A significant advan-
tage of integrating LLMs into image generation is the ability
to transfer established techniques from text-based applica-
tions, such as enabling undefined output length (Xiao et al.,
2023) and speed-up strategies (Kwon et al., 2023). More-
over, the scalability of LLMs makes them the preferred
foundation for building unified multi-modal models (Team
et al., 2023; Kondratyuk et al., 2024). Nevertheless, LLMs
for image generation remain underexplored. Recent efforts
often rely on domain-specific strategies, such as sequenc-
ing visual tokens from low to high resolution (Tian et al.,
2024), using continuous space modeling with diffusion loss
(Li et al., 2024), or randomly permuting image tokens to
utilize bidirectional information (Yu et al., 2024a). These
approaches introduce inductive biases depending on domain
knowledge, which may limit LLMs’ true potential. Mean-
while, preliminary attempts (Esser et al., 2021; Chang et al.,
2022; Yu et al., 2022; Sun et al., 2024; Tian et al., 2024; Yu
et al., 2024b) take a simpler approach by discretizing images
into token sequences with vector-quantization (VQ) autoen-
coders and training LLMs on token prediction objectives,
leaving much of the design space unexplored.

In this study, we delve into the potential of language models
for image generation tasks. Start with image tokenization,
we compare VQGAN (Van Den Oord et al., 2017; Esser
et al., 2021) and BAE (binary autoencoder) (Wang et al.,
2023; Yu et al., 2023). Our comparison involving recon-
struction ability, scalability, and generation performance
shows that BAE consistently outperforms VQGAN across
all dimensions. Despite this, current language model-based
image generation methods largely rely on VQGAN (Yu
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Figure 1: Generated samples by ELM-2B with 2-12 tokenizer trained on ImageNet. Top-row: generated 512× 512 samples;
mid-row: generated 256× 256 samples; others: generated unfixed-size-samples with streaming behavior.

et al., 2022; Chang et al., 2022; Li et al., 2023; Sun et al.,
2024). We believe that a more powerful tokenizer for images
can lead to significantly better generation performance.

We then investigate the performance of two primary lan-
guage modeling approaches for image generation: au-
toregressive (AR) models and masked language models
(MLMs). Consistent with findings in the language domain
(Henighan et al., 2020; Liao et al., 2020; Zhang et al., 2024;
Chang & Bergen, 2024), AR models demonstrate superior
image generation ability and scalability compared to MLMs.
We explore different token scanning patterns for flattening
2D image tokens; textbfrow-major raster scanning achieves
the best performance. By leveraging the flexibility of the
binary codes produced by BAE, we investigate code decom-
position strategies. Through our exploration, we refine the
attempt in (Yu et al., 2023) and conclude that splitting the
original code into two subcodes reduces learning complex-
ity, improves performance, and saves computational costs.
During inference, we explore the optimal sampling strate-
gies for AR models and MLMs, highlighting the importance
of randomness in generating realistic images.

We analyze how AR models learn to generate images by
examining attention scores across different layers and model
sizes. Our findings indicate that AR models effectively learn

the importance of local information for image generation.
However, larger models also capture global information,
which is more difficult for smaller models to learn, helping
to explain the performance improvements observed with
increasing model size. Additionally, we observe that image
tokens exhibit greater randomness and lack the inherent or-
derliness compared to text tokens, showing the fundamental
difference between the language and vision domains, which
presents challenges for training image generation with the
token prediction objective. LLMs achieving high image
generation performance highlights their potential across do-
mains.

Our research deepens the understanding of the LLM’s capa-
bility and behavior in vision generation. The insights can
contribute to the design of more efficient and unified large
models. In conclusion, our main contributions include:

• We thoroughly examine two prevalent language model-
ing methods, AR models and MLMs, within the realm
of image generation. Our findings suggest that AR
holds greater potential in image generation.

• Leveraging BAE as the image tokenizer, our results
reveal that appropriate vocabulary decomposition helps
improve performance and reduce computational costs.
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• We show that AR models can learn effective image pat-
terns without inductive bias, identify distinct patterns
across model sizes, and offer a concise explanation of
the scaling law.

• Combining all key ingredients of the design space, we
reach a strong Elucidated Language model for iMage
generation, termed as ELM, and achieve top-tiered
performance on the ImageNet benchmark.

2. Preliminary
2.1. Image Tokenization

Image tokenization typically involves an encoder ENC, a
quantizer QUANT, and a decoder DEC. Given an im-
age x ∈ RH×W×3, ENC encodes it to latent variables
z = ENC(x) ∈ R

H
f ×W

f ×D. Each spatial vector zij in z
is then quantized to discrete code qk. Let the quantized
latent be denoted as zq, x̂ = DEC(zq) denotes the recon-
structed image (Van Den Oord et al., 2017; Razavi et al.,
2019; Esser et al., 2021; Yu et al., 2023; Hu et al., 2023).
All the codes form a codebook Q = {qk}Kk=1 ⊂ RD, which
can be viewed as the “vocabulary” if we regard the im-
age as a special kind of language. A sequence of tokens
q = (q1, q2, ..., qL), where L = H

f × W
f , is obtained by

reshaping zq .

VQGAN trains the codebook Q alongside ENC and
DEC. In this method, each spatial latent vector zij ∈ RD

“looks up” the nearest code qk by minimizing the Euclidean
distance (Razavi et al., 2019; Esser et al., 2021):

zq =

(
arg min

qk∈Q
∥zij − qk∥

)
∈ R

H
f ×W

f ×D. (1)

BAE discretizes the scalar value at each position of zij ,
converting it to a binary value (Fajtl et al., 2020; Wang et al.,
2023; Yu et al., 2023). Specifically, suppose the latent vector
zij ∈ RD is normalized, then each value zd, d ∈ {1, ..., D}
at the d-th position of zij is obtained by:

zdq = sign(zd) =

{
0, if zd < 0.5,

1, otherwise.
(2)

In this way, the codebook is structured within a binary latent
space, with K = 2D. This method is also named “look-up
free” quantization (LFQ) (Yu et al., 2023) because the code
can be directly converted into an index by transforming the
binary value into a decimal value. The sign function can
be replaced by Bernoulli sampling, then zq = Bernoulli(z)
(Wang et al., 2023).

2.2. Modeling Methods

Autoregressive (AR) Models involve a sequence of dis-
crete tokens q = (q1, q2, ..., qL), where each token ql is

drawn from a vocabulary Q of size K. The AR model as-
sumes that the probability of the current token ql depends
only on its preceding tokens (q1, q2, ..., ql−1), framing the
generation task as a ‘next-token’ prediction, with a uni-
directional attention mechanism. Specifically, the network
learns the probability p(q) = ΠL

l=1p(ql | q1, · · · , ql−1),
with the loss function:

Lar = −Ex∼p(x) [log p(q)] (3)

Masked Language Models (MLMs) involves a binary
mask m = [ml]

L
l to replace a subset of tokens in q with

[MASK], then predict the masked tokens based on the un-
masked ones from both directions. Specifically, if mi = 1,
qi is replaced by [MASK]; otherwise, it remains unchanged.
Denote qM the result after applying mask m to q. Hence,
these models optimize the following loss function:

Lmlm = −Ex∼p(x)

 ∑
∀l∈[0,L], ml=1

log p(ql | qM )

 (4)

3. Elucidating the Design Space of language
models for image generation

In this section, we comprehensively explore the design space
of adopting language models for vision generation, includ-
ing the tokenizer choice, modeling choice, scan pattern
choice, model scalability analysis, vocabulary decomposi-
tion strategy, and sampling strategy, and conduct compre-
hensive experiments on the 256×256 ImageNet (Deng et al.,
2009) benchmark, mainly use Fréchet Inception Distance
(FID) (Heusel et al., 2017) as the evaluation metric.

3.1. Tokenizer Choice: VQGAN v.s. BAE

Table 1: Comparison of VQGAN and BAE1. Tokenizers are
trained on the ImageNet. Generation models are L sized.

VQGAN BAE

K 1024 16384 216 220 224 232

rFID 10.54 7.41 3.32 2.24 1.77 1.68

gFID(M.) 11.21 7.81 3.96 3.65 3.91 -
gFID(A.) 9.68 6.71 2.78 2.46 2.68 -

In VQGAN, “code collapse” is a critical issue where a large
portion of the codebook remains unused as the codebook
size increases, severely limiting the model’s efficiency and
scalability (Zhu et al., 2024; Baykal et al., 2024). This
problem does not occur in BAE, where discrete codes are
generated using scalar quantization (Mentzer et al., 2023).

1In this work, we adopt a down-sampling factor of f = 16 for
image tokenizers.
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This approach guarantees 100% code utilization (Appendix
A.5.2) and achieves better reconstruction capabilities (rFID).
We also compare the generation capabilities (gFID) of both
tokenizers using different codebook sizes (K) and genera-
tion modeling approaches, i.e., MLM and AR. Among all
the results, BAE consistently demonstrates superior perfor-
mance (Table 1). Based on the above reasons, we build our
generation model on BAE tokenizer instead of VQGAN.

For BAE, we observe that the introduction of Bernoulli Sam-
pling during quantization improves generation performance
(Table 10). Incorporating the probabilistic element reduces
the model’s sensitivity to prediction errors (Englesson &
Azizpour, 2021), leading to a more robust generation.

3.2. Modeling Method Choice: AR v.s. MLM

In this subsection, we evaluate the performance of AR and
MLM in image generation with the same BAE tokenizer
with a vocabulary size of 216 and training strategy.
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Figure 2: Comparison of AR and MLM on image gen-
eration with 50,000 generated samples. AR consistently
outperforms MLM across various model sizes.

Figure 2 presents the FID score and Inception Score (IS)
(Salimans et al., 2016) over the training epochs for both
AR and MLM. The results show that AR consistently out-
performs MLM across various model sizes. Additionally,
AR exhibits higher training efficiency compared to MLM,
particularly as the model size increases. Research in the
language domain has widely recognized that AR models
possess greater generative capabilities than MLMs, particu-
larly as model scales increase (Radford et al., 2019; Raffel
et al., 2020; Henighan et al., 2020). Our findings align with
these works. Besides, for MLM-XL and MLM-XXL, a
clear divergence between FID and IS is observed in the later
stages of training, where FID continues to improve, while IS
declines. Studies point out that when models overfit to gen-
erate highly realistic samples (low FID), they may sacrifice
diversity, which negatively impacts IS (Chong & Forsyth,
2020; Benny et al., 2021). This issue does not occur with
AR models, further highlighting the superiority of AR over
MLM in maintaining both quality and diversity.

3.3. Scan Pattern Choice
For AR modeling, converting 2D image tokens into 1D
sequences involves the challenge of choosing an appropriate

(a) row-raster (b) column-raster (c) row-zigzag (d) column-zigzag (e) diagonal-zigzag

Figure 3: Scan pattern choices of converting 2D image
tokens into 1D sequences.

scan pattern. In this study, we explore five possible options:
row-raster, column-raster, row-zigzag, column-zigzag, and
diagonal-zigzag, as illustrated in Figure 3. The results
(Table 2) reveal the various scanning patterns achieve good
performance, demonstrating that AR models can effectively
learn image generation regardless of the scanning pattern.
In our subsequent exploration, for AR models, we adopt
the row-major raster scanning method, which is the most
natural one and yields the best results among all scanning
methods.

Table 2: Comparison of different scan pattern choices. Tok-
enizer: BAE; AR model size: L.

pattern (a) (b) (c) (d) (e)

gFID 2.47 2.88 2.62 2.79 2.71

3.4. Learning and Scaling Behavior

To further understand the model’s learned patterns, we visu-
alize the attention maps of AR models with different sizes.
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Figure 4: Visualization of average attention score of head 0
in AR models over 100 images. We show the results of L
(top row), and XL (bottom row) models with the BAE 2-10
tokenizer, respectively. Both models effectively learned to
focus on localized information. However, the XL model
learns to capture richer global information.
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The results reveal that the attention mechanism is primarily
focused on local regions of the image, indicating that the
AR transformer models effectively learn the importance of
local patterns for image generation (Vaswani et al., 2017).
This finding is notable because the model was trained with-
out any inductive biases tailored to image data, highlighting
the strong capability of AR transformer models across dif-
ferent domains. Besides, for the attention pattern, models of
varying sizes showed subtle differences: the L-sized model
mainly focused on local information, struggling to capture
long-term relations. In contrast, larger models (XL) with
more layers exhibited longer-range attention in certain lay-
ers, suggesting they also learn global features (Figure 4)
This capability contributes to improved generation perfor-
mance, as evidenced by better visual quality and lower FID
scores.

Clearly, the scaling law (Henighan et al., 2020; Kaplan
et al., 2020) holds for AR models in image generation tasks,
as reflected in lower training loss (Figure 15), improved
generation performance, and an enhanced ability to capture
global information as the model size increases.

3.5. Vocabulary Design

The vocabulary size K in the BAE tokenizer is determined
by the code dimension D, ie, K = 2D. When the vo-
cabulary size exceeds a certain threshold, such as 216 (ie,
65,536), next-token prediction becomes significantly more
challenging (Ali et al., 2023) and may even become infea-
sible due to memory constraints. Despite these limitations,
the tokenizer’s effectiveness largely depends on the code
dimension, increased code dimension results in an improved
reconstruction ability (Figure 5). Recent research also indi-
cates that a stronger tokenizer leads to a better generation
performance in AR models (Tao et al., 2024). Therefore,
addressing the challenge posed by larger codebook sizes
(greater D) is crucial.

Fortunately, the flexibility of binary-quantized codes allows
us to decompose each code into multiple subcodes (Yu et al.,
2023), resulting in feasible vocabularies. For instance, an 8-
bit code like [1, 0, 1, 0, 0, 0, 1, 1] can be split into two 4-bit
codes: [1, 0, 1, 0] and [0, 0, 1, 1]. As a result, we convert the
embedding matrix from a size of 28 × Dfeature into two
matrices of size 24 ×Dfeature, where Dfeature is the fea-
ture dimension within the AR model. The final embedding
is achieved by concatenating the two indexed embeddings
and applying a projection to map the dimension back to
Dfeature. Separate prediction heads are applied.

We conduct experiments using AR models with BAE that
have varying code dimensions (D = 16, 20, 24, and 32).
Quantizers with and without code decomposition are viewed
as distinct tokenizers; for example, for D = 16, “1-16”
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Figure 5: AR model performance with different BAE.

means the original tokenizer, and “2-8” denotes the code
is split into two 8-bit subcodes. Several key insights are
revealed through our design:

• Optimal decomposition. A decomposition into two sub-
codes is generally optimal, which also reduces computa-
tional costs, leading to more efficient and effective gener-
ation (detailed result in Table 12). Dealing with two sub-
vocabularies of a smaller size leads to a more manageable
set of possible outcomes, largely reducing the cognitive load
on the model (Ali et al., 2023; Yang, 2024). Meanwhile, fur-
ther increasing the number of subcodes significantly raises
the prediction complexity, and the model struggles to opti-
mize across three or more classification tasks simultaneously
(Limisiewicz et al., 2023). (An increasing training loss was
observed when moving from tokenizers 2-8 to 3-8 and 4-8
in XL and XXL models, as in Figure 14).

• Vocabulary complexity and model capacity. Larger
code dimensions also introduce more complex vocabularies,
making it harder for the model to predict the next token.
Clearly, more complex tokenizers require more powerful
models for effective learning (Tao et al., 2024). For example,
the 2-10 tokenizer is optimal for L and XL models, while
the 2-12 tokenizer performs best with the XXL model.

These findings demonstrate the trade-offs between model
scale, vocabulary complexity, and decomposition strategies,
highlighting the potential of the AR model’s ability to effec-
tively handle complex tokenization while maintaining high
performance across model scales.

3.6. Sampling Strategy

Sampling strategy plays a crucial role in vision generation
for both diffusion models (Karras et al., 2022; Ma et al.,
2023) and language models (Chang et al., 2022; Sun et al.,
2024). In this subsection, we thoroughly explore the sam-
pling strategies for both AR and MLM, including classifier-
free guidance (CFG) (Ho & Salimans, 2022) scale, the in-
troduction of randomness, and the number of generation
iterations for the MLMs.

First, regarding the CFG scale, a linearly increased CFG
scale shows the best performance among various scheduling
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methods (Table 13). Secondly, a high degree of randomness
is crucial during the sampling process (Figure 6) for both
methods. Regarding the introduction of randomness, for
the AR model, randomness primarily derives from the top-k
filter used when selecting next-token indices based on their
confidence scores; a larger k introduces more randomness.
For the MLM, randomness stems from the coefficient τ
of Gumbel noise added to the [MASK] token predicted
confidence; a larger τ results in greater randomness. Visual
results (Figure 17, 18 and 19) further reflect the influence of
CFG and top-k sampling for AR models and the difference
from language domain.

Moreover, empirical results in (Figure 6) also indicate when
model size and vocabulary increase, the need for random-
ness diminishes, indicating that larger models are capable
of capturing a broader range of patterns and making more
accurate predictions. This observation aligns with the atten-
tion and scalability analysis discussed earlier, where larger
models demonstrated enhanced capacity to manage both
local and global information, reducing the need for stochas-
ticity to generate realistic samples.

Figure 6: The influence of ‘randomness’ during sampling.
Left: top-k on AR; right: τ on MLM.

Finally, in the context of MLM-based image generation,
the number of sampling iterations typically ranges from
1 to the total sequence length. Our experiments indicate
that approximately 10 iterations strike an effective balance
between generation quality and computational efficiency
(Figure 20), highlighting the sampling efficiency advantage
of MLMs over their AR counterparts.

3.7. ELM Model

After thoroughly exploring the design space of language
models for image generation, via combining the better de-
sign trick, we reach our final Elucidated Language model for
iMage generation (ELM). ELM adopts BAE as the image
tokenizer and AR as the modeling method with a row-raster
scanning pattern; and splits the quantized image code into
two subcodes. The vocabulary should align with the model’s
capacity. Larger vocabularies require more powerful mod-
els to handle the next-token prediction task (2-12 tokenizer
for ELM-XXL), while smaller models perform better with
simpler vocabularies (2-10 tokenizer for ELM-L and XL).
For sampling strategy, we choose a high randomness and a
linear CFG scale. In total, we construct four ELM versions:

ELM-L (2-10), ELM-XL (2-10), ELM-XXL (2-12), and
ELM-2B (2-12), with parameters ranging from 315M to
1.9B.

4. Experimental Results
4.1. Conditional Image Generation

In this section, we compare our ELM models with other pop-
ular image generation models on the 256×256 ImageNet.
We compare with Diffusion Models including DiT (Peebles
& Xie, 2023) and SiT (Ma et al., 2024); Masked Language
Models such as MaskGIT (Chang et al., 2022); Autoregres-
sive models, including VQGAN (Esser et al., 2021) and
LlamaGen (Sun et al., 2024); Visual Autoregressive Model
(VAR) (Tian et al., 2024) and Masked Autoregressive Model
(MAR) (Li et al., 2024). The comparison result is presented
in Table 3.

Table 3: Comparison results of class-conditional image
generation on 256×256 ImageNet. * indicates that the
model generates samples at a resolution of 384×384, which
are then resized to 256×256. -re denotes rejection sampling
is used.

Type Model Para. FID↓ IS↑ Pre.↑ Rec.↑

Diff.

DiT-L/2 458M 5.02 167.2 - -
DiT-XL/2 675M 2.27 278.2 0.83 0.57
SiT-XL/2 (ODE) 675M 2.15 258.1 0.81 0.60
SiT-XL/2 (SDE) 675M 2.06 277.5 0.83 0.59

MLM MaskGIT 227M 6.18 182.1 0.8 0.51
MaskGIT-re 227M 4.02 355.6 - -

AR

VQGAN 227M 18.65 80.4 0.78 0.26
VQGAN-re 1.4B 5.20 280.3 - -
LlamaGen-L 343M 3.81 248.3 0.83 0.52
LlamaGen-XL 775M 3.39 227.08 0.81 0.54
LlamaGen-XXL 1.4B 3.09 253.61 0.83 0.53
LlamaGen-3B 3.1B 3.05 222.33 0.80 0.58
LlamaGen-3B* 3.1B 2.18 263.33 0.81 0.58

VAR

VAR-d16 310M 3.30 274.4 0.84 0.51
VAR-d20 600M 2.57 302.6 0.83 0.56
VAR-d24 1.0B 2.09 312.9 0.82 0.59
VAR-d30 2.0B 1.97 334.7 0.81 0.61
VAR-d30-re 2.0B 1.80 356.40 0.83 0.57

MAR
MAR-B 208M 2.31 281.7 0.82 0.57
MAR-L 479M 1.78 296.0 0.81 0.60
MAR-H 943M 1.55 303.7 0.81 0.62

AR
ELM-L (2-10) 315M 2.17 288.59 0.82 0.55
ELM-XL (2-10) 757M 1.79 332.99 0.80 0.59
ELM-XXL (2-12) 1.4B 1.58 330.43 0.80 0.60
ELM-2B (2-12) 1.9B 1.54 332.69 0.81 0.60

We generate 50,000 samples to evaluate performance us-
ing FID, IS, Precision, and Recall following (Dhariwal &
Nichol, 2021). Implementation details can be found in the
Appendix A.5. Our method (ELM) exhibits scaling law be-
havior, with performance improving as model size increases.
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Our tokenizers, ie, BAE, are only trained on ImageNet, we
believe further training on larger datasets, like OpenImages
(Kuznetsova et al., 2020), would enhance the tokenizer and
further boost the generation capability of our ELMs.

4.2. Efficient transfer to higher resolution

We further train our model on 512×512 ImageNet to vali-
date the effectiveness of the AR mechanism in seamlessly
transferring from low-resolution (short-sequence) to high-
resolution (long-sequence) image generation tasks. Specif-
ically, we fine-tune a model pre-trained on 256×256 Im-
ageNet directly on 512×512 ImageNet. Remarkably, we
found that the model achieved excellent performance with
only a few epochs of fine-tuning, effectively transitioning
from generating 256 tokens to generating 1024 tokens. This
significantly improves the efficiency of training image gen-
eration models on high-resolution datasets, as the model
can first be trained on smaller resolutions and then fine-
tuned with minimal effort for larger resolutions. The results
on 512×512 ImageNet are presented in Table 4, with 50
epochs of fine-tuning.

Table 4: Comparison results of class-conditional image
generation on 512×512 ImageNet.

Model Para. Steps FID↓ IS↑ Pre.↑ Rec.↑

DiT-XL/2 675M 3000k 3.04 240.82 0.84 0.54

MaskGIT 227M 1500k 7.32 156.0 0.78 0.50

ELM-L (2-8) 312M 250k 4.82 246.87 0.81 0.59
ELM-XL (2-12) 757M 250k 3.29 321.21 0.81 0.60

4.3. Visualization of the scaling law

According to the scaling law of ELM transformers, both
loss and performance improve as training data and model
parameter size increase. In our experiments, although the
original image data (ImageNet) remains unchanged, the
token set effectively scales up with different BAEs. We
present generated samples using different sizes of ELM
models (L, XL, XXL) and tokenizers (1-16, 2-10, 2-12)
to illustrate the scaling behavior of ELM models in image
generation. Following (Tian et al., 2024), we maintain the
same seed and teacher-forced initial tokens across models.
The results in Figure 7 clearly demonstrate performance
improvements as both the token set and model size scale up.

4.4. Generalization of ELM

To further demonstrate the generalization and applicability
of ELM, we evaluate its ability to generate samples from
novel classes and perform image editing tasks, with the
results in Appendix A.2. Additionally, we test our method
on specific datasets, including a human face dataset and a
texture dataset, to highlight its versatility; the results are

presented in Appendix A.3. These experiments effectively
showcase the robustness and adaptability of our approach.

5. Related Work
Large Language Models Language models are founda-
tional tools in natural language processing, designed to pre-
dict the likelihood of sequences of words or tokens, using
Transformer architectures with self-attention mechanism
(Vaswani et al., 2017). There are two primary types: au-
toregressive (AR) models, like GPT (Radford et al., 2019;
Brown, 2020; Achiam et al., 2023), LLaMA (Touvron et al.,
2023a;b; Dubey et al., 2024), etc., which generate text one
token at a time in a left-to-right fashion, and masked lan-
guage models (MLM), such as BERT (Devlin, 2018), T5
(Raffel et al., 2020), etc., which predict masked tokens
within a sequence using bidirectional context. AR models
are particularly effective for text generation due to their
sequential nature, while MLMs are better suited for repre-
sentation learning by leveraging global context (Chang &
Bergen, 2024). The scaling law (Henighan et al., 2020; Ka-
plan et al., 2020), which describes the relationship between
the growth of model parameters, dataset sizes, computa-
tional resources, and performance improvements, highlights
the immense potential of AR models.

Vision Generation Vision generation is a key focus in the
current AIGC field, primarily relying on diffusion proba-
bilistic models, which generate images by progressively de-
noising a random Gaussian noise (Song et al., 2020; Peebles
& Xie, 2023; Chen et al., 2023). Transformer architectures
are also the dominant backbone in these tasks (Yu et al.,
2021; Peebles & Xie, 2023). Language models have also
been applied to vision tasks. For instance, (Chang et al.,
2022), (Li et al., 2023), and (Chang et al., 2023) use bidi-
rectional MLMs for image generation, while (Esser et al.,
2021), (Yu et al., 2022), and (Sun et al., 2024) employ AR
models. Specifically, (Tian et al., 2024), (Li et al., 2024),
and (Yu et al., 2024a) incorporate domain-specific designs
to adapt AR models for image generation tasks. Moreover,
AR models offer a path toward developing unified models
for general artificial intelligence across different modali-
ties, as seen in systems like Gemini (Team et al., 2023) and
Chameleon (Team, 2024). Apart from existing works, our
study emphasizes exploring the inherent potential of the
vanilla AR paradigm in the vision domain with minimal
modifications. We also investigate the learning behavior of
language models, underscoring the versatility and potential
of AR models across different modalities.

6. Discussion and Conclusion
Token Randomness in Image Data While images can
be discretized and treated as token sequences, the inherent
differences between vision and text still exist. In our exper-
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Figure 7: Scaling up behavior of tokenizer and model size. From left to right and top to bottom, there is a trend of improved
image detail and structure. It reflects the enhanced generation ability that comes with a more refined tokenizer and a larger
model.

iments, we observe that the training loss did not converge
well with the token-prediction paradigm, whether AR or
MLM, on image tokens, a similar result is also presented
in Henighan et al. (2020). However, the models can still
generate high-quality images with a low FID, indicating that
they have learned sufficient patterns for image generation,
although the training loss remains high.

Our analysis shows that image tokens exhibit a distribu-
tion much closer to a random, uniform distribution when
compared to language tokens, and they exhibit a lack of
orderliness based on bigram distribution and n-gram mod-
els’ perplexity (Appendix A.4). These observations lead
to several key implications. First, it suggests that image
data lacks the inherent structure and sequential order that
typically present in language data, implying that image gen-
eration is less dependent on strict sequential patterns and
more on local patterns relevant to visual reconstruction
(Ulyanov et al., 2018), aligning with our earlier analysis of
the learning behavior of AR models in image generation.

Second, a token distribution close to uniform indicates that
the generation task has a higher tolerance for errors (Zhang
et al., 2016; Arpit et al., 2017). Since all tokens are nearly
equally probable, the model can afford to make less precise
token predictions without significantly impacting the quality
of the generated output. This characteristic explains why
our model, despite its high training loss, can still gener-
ate high-quality images and underscores the importance of
incorporating randomness during inference.

Conclusion In this work, we thoroughly investigate the
use of language models for image generation. We eluci-
date the design space of language models for vision gener-
ation, including tokenizer choice, model choice, scan pat-
tern choice, model scalability, vocabulary design, and sam-
pling strategy through extensive comparative experiments.
Through our analysis, we have the following findings: (1)
BAE demonstrates superior performance as an image tok-
enizer compared to traditional VQGAN approaches; (2) AR
models consistently outperform MLMs and show a strong
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scaling law, (3) row-major raster scanning performs best
for flattening image tokens, (4) larger vocabulary size and a
decomposition design benefit the image generation, (5) sam-
pling strategies should also allow for greater randomness
and a linear CFG scale. By combining these designs, we
reach our final ELM model with near SOTA performance on
ImageNet. We hope this work will motivate further usage
of the AR model across other domains.

Impact Statement
This research demonstrates the potential of language mod-
els in image generation, advancing AIGC and multimodal
AI. The work has broad applications in creativity, educa-
tion, and visualization, but raises ethical concerns, such as
misuse in generating harmful content or biases in outputs.
Future efforts should focus on responsible development and
safeguards to ensure positive societal impact while fostering
innovation in generative AI.
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Lübbering, M., Leveling, J., Klug, K., Ebert, J., Doll, N.,
Buschhoff, J. S., et al. Tokenizer choice for llm training:
Negligible or crucial? arXiv preprint arXiv:2310.08754,
2023.

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,
E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., et al. A closer look at memorization in
deep networks. In International conference on machine
learning, pp. 233–242. PMLR, 2017.

Baykal, G., Kandemir, M., and Unal, G. Edvae: Mitigating
codebook collapse with evidential discrete variational
autoencoders. Pattern Recognition, 156:110792, 2024.

Benny, Y., Galanti, T., Benaim, S., and Wolf, L. Evaluation
metrics for conditional image generation. International
Journal of Computer Vision, 129:1712–1731, 2021.

Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L.,
Ouyang, L., Zhuang, J., Lee, J., Guo, Y., et al. Improving
image generation with better captions. Computer Science.
https://cdn. openai. com/papers/dall-e-3. pdf, 2023.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Chang, H., Zhang, H., Jiang, L., Liu, C., and Freeman,
W. T. Maskgit: Masked generative image transformer. In

Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11315–11325, 2022.

Chang, H., Zhang, H., Barber, J., Maschinot, A., Lezama, J.,
Jiang, L., Yang, M.-H., Murphy, K., Freeman, W. T.,
Rubinstein, M., et al. Muse: Text-to-image genera-
tion via masked generative transformers. arXiv preprint
arXiv:2301.00704, 2023.

Chang, T. A. and Bergen, B. K. Language model behavior:
A comprehensive survey. Computational Linguistics, 50
(1):293–350, 2024.

Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang, Z.,
Kwok, J., Luo, P., Lu, H., et al. Pixart-α: Fast training
of diffusion transformer for photorealistic text-to-image
synthesis. arXiv preprint arXiv:2310.00426, 2023.

Chong, M. J. and Forsyth, D. Effectively unbiased fid and
inception score and where to find them. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 6070–6079, 2020.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , and
Vedaldi, A. Describing textures in the wild. In Proceed-
ings of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2014.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Englesson, E. and Azizpour, H. Consistency regularization
can improve robustness to label noise. arXiv preprint
arXiv:2110.01242, 2021.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12873–12883, 2021.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J.,
Saini, H., Levi, Y., Lorenz, D., Sauer, A., Boesel, F., et al.
Scaling rectified flow transformers for high-resolution

9



Elucidating the design space of language models for image generation

image synthesis. In Forty-first International Conference
on Machine Learning, 2024.

Fajtl, J., Argyriou, V., Monekosso, D., and Remagnino, P.
Latent bernoulli autoencoder. In International Conference
on Machine Learning, pp. 2964–2974. PMLR, 2020.

Fan, A., Lewis, M., and Dauphin, Y. Hierarchical neural
story generation. arXiv preprint arXiv:1805.04833, 2018.

Gale, W. A. and Church, K. W. What’s wrong with adding
one. Corpus-based research into language: In honour of
Jan Aarts, pp. 189–200, 1994.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C.,
Jackson, J., Jun, H., Brown, T. B., Dhariwal, P., Gray, S.,
Hallacy, C., Mann, B., Radford, A., Ramesh, A., Ryder,
N., Ziegler, D. M., Schulman, J., Amodei, D., and Mc-
Candlish, S. Scaling laws for autoregressive generative
modeling, 2020.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M.,
and Salimans, T. Cascaded diffusion models for high
fidelity image generation. Journal of Machine Learning
Research, 23(47):1–33, 2022.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. arXiv preprint
arXiv:1904.09751, 2019.

Hu, T., Chen, F., Wang, H., Li, J., Wang, W., Sun, J., and
Li, Z. Complexity matters: Rethinking the latent space
for generative modeling. Advances in Neural Information
Processing Systems, 36:29558–29579, 2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in neural information processing systems, 35:
26565–26577, 2022.

Kondratyuk, D., Yu, L., Gu, X., Lezama, J., Huang, J.,
Schindler, G., Hornung, R., Birodkar, V., Yan, J., Chiu,
M.-C., et al. Videopoet: A large language model for
zero-shot video generation. In Proceedings of the 41st
International Conference on Machine Learning, volume

235 of Proceedings of Machine Learning Research, pp.
25105–25124. PMLR, 21–27 Jul 2024.

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin,
I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M.,
Kolesnikov, A., et al. The open images dataset v4: Uni-
fied image classification, object detection, and visual re-
lationship detection at scale. International journal of
computer vision, 128(7):1956–1981, 2020.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Li, T., Chang, H., Mishra, S., Zhang, H., Katabi, D., and
Krishnan, D. Mage: Masked generative encoder to unify
representation learning and image synthesis. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2142–2152, 2023.

Li, T., Tian, Y., Li, H., Deng, M., and He, K. Autoregres-
sive image generation without vector quantization. arXiv
preprint arXiv:2406.11838, 2024.

Liao, Y., Jiang, X., and Liu, Q. Probabilistically masked
language model capable of autoregressive generation in
arbitrary word order. arXiv preprint arXiv:2004.11579,
2020.

Limisiewicz, T., Balhar, J., and Mareček, D. Tokenization
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A. Appendix
A.1. Selected samples

Figure 8: Selected 256×256 samples in different classes with ELM-2B (2-12).
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Figure 9: Generated 512×512 images.
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A.2. Generalization Ability of ELM models

We evaluated the model’s performance on generating images with interpolated class conditions, specifically, αA+(1−α)B,
where A and B are two distinct class labels, α ∈ [0, 1]. This approach effectively tests how the model learns and adapts
to conditions, especially under complex scenarios. The results show that the model effectively learns the conditional
information, rather than simply memorizing it. Interestingly, when the interpolated classes share similarities, such as a
golden retriever and a husky, the model generates images that blend features of both classes when α is around 0.5. In
contrast, for unrelated classes like a sorrel and a beer bottle, the generated images only reflect the features of the class with
the higher weight.

We also evaluate the image editing task by selecting specific regions of the original image and transforming them into other
objects based on class conditions. The results further emphasize the flexibility of ELM across diverse application scenarios.
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Figure 10: Zero-shot generalization performance of ELM. Class interpolation generate images with interpolated class
condition, i.e., αA + (1 − α)B,α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Image editing allows the model to edit the masked region
based on specific class condition.
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A.3. Performance on different datasets

We also conduct experiments on specialized datasets distinct from ImageNet to assess the robustness and versatility of
ELM models. Specifically, we select CelebA (Liu et al., 2015), which includes 202,599 human face images across 10,177
identities, and the Describable Texture Dataset (DTD) (Cimpoi et al., 2014) that comprises 5,640 images across 47 different
categories. We train an ELM-L model with a 2-8 tokenizer on each dataset for 400 epochs using a batch size of 256. The
qualitative results (Figure 11 and 12) from these experiments demonstrate the high performance of our model across diverse
types of tasks.

Figure 11: Generated human face images with 256×256.

braided bubbly chequered crystalline gauzy honey-combed interlaced waffledpleated zigzagged

Figure 12: Generated special texture images with 256×256.
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A.4. Intrinsic difference between language and images

We choose ImageNet from the image domain; OpenWebText and Shakespeare2 from the language. The information of the
tokenized dataset is shown in Table 5 and the KL-divergence between uniform distribution is shown in Table 6.

We can see that from Table 6, compared to text generation, image generation exhibits a higher randomness. Note that
although VQGAN generates tokens with a lower level of randomness, the major reason is the low code utilization-only less
than 10% code from the vocabulary is used, and the generated image quality is not satisfying due to the extremely low token
utilization.

Table 5: Vocabulary (Codebook) information of image and text.

ImageNet OpenWebText WallStreetJournal3

Tokenizer VQGAN BAE BPE BPE

Vocab size 16384 65536 47589 19979
Token num of train set 327M 327M 9B 38M
Token num of val set 12M 12M 4M 1.5M

Table 6: KL-divergence between token distribution and Uniform Distribution, along with the perplexity of n-gram models.

ImageNet OpenWebText WallStreetJournal

Tokenizer VQGAN (V=16384) BAE (V=65536) BPE (V=47589) BPE (V=19979)

unigram bigram unigram bigram unigram bigram unigram bigram

Train 1.00 2.16 0.24 0.17 3.25 3.35 - -

Val 0.90 2.12 0.22 0.03 3.27 1.94 - -

Perplexity 4 368 210 5 52,538 596,855 2087 395 962 170

A.5. Additional Experiment Results

Implementation Details For the BAE tokenizer, we followed the configuration in (Wang et al., 2023), utilizing Bernoulli
sampling during quantization, and trained it for 400 epochs on the ImageNet dataset. For the transformer model, we adopted
the LLaMA-2 (Touvron et al., 2023b) architecture, as referenced in (Sun et al., 2024). The depth and feature dimensions of
each model size are detailed in Table 7. All language models were trained on 80GB A800 GPUs with a batch size of 256,
for 400 epochs, using a constant learning rate of 1e-4, weight decay of 0.05, and the AdamW optimizer with β1 0.9 and β2

0.95. The L and XL-sized models were trained on 8 A800 GPUs, requiring approximately 6.4 and 10 days, respectively, to
complete 400 epochs. The XXL-sized model, trained on 16 A800 GPUs (2 nodes with 8 GPUs each), took around 12 days
to finish training.

For the AR model, we implement mainly follow (Sun et al., 2024), except for the 2B-sized model. The MLM and AR models
use the same model architecture. For the MLMs training strategy, we mainly follow (Chang et al., 2022). Specifically,
at each training step, we sample a mask ratio for each sample, mask tokens based on this ratio, and train the model to
predict the masked tokens. The mask ratio follows a cosine schedule across the generation iterations, meaning the process
transitions from less to more information. Early in training, most tokens are masked; as training progresses, the mask ratio
sharply decreases, revealing more tokens for the model to handle in later stages.

During the exploration of the design space and other ablation studies, we calculate the FID score using only 30,000 samples
for efficiency, except for key comparisons such as language modeling choices (AR vs. MLM). Specifically, unless otherwise
noted, the FID results in Section 3, where we elucidate the design space, are calculated based on 30,000 generated samples.

2Obtained from https://github.com/karpathy/nanoGPT
3The information is obtained from Standford lecture note: https://web.stanford.edu/ jurafsky/slp3/3.pdf
4We calculate the perplexity with Laplace smoothing(Gale & Church, 1994). The first 10 percent of the training data is select the

efficiently calculate the perplexity of OpenWebText.
5Although the VQGAN tokenizer exhibits lower perplexity compared to BAE, its extremely low code utilization significantly impacting

the tokenizer’s effectiveness.
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It is worth noting that the FID values obtained this way are consistently higher than those calculated with 50k samples. For
a fair comparison with other methods, we generate 50,000 samples in the comparison results presented in the Section 4.

Table 7: Transformer model architecture information with different sizes.

Size depth dimension num of head

ELM-L 24 1024 16
ELM-XL 36 1280 20
ELM-XXL 48 1536 24
ELM-2B 48 1792 28

A.5.1. EFFICIENCY ANALYSIS

While our study primarily focuses on understanding the modeling behavior and generation quality of LLMs for image
synthesis, we briefly summarize efficiency-related insights for completeness. Given that modern LLM acceleration
techniques—such as KV-cache, FlashAttention, and quantization—are mature and directly transferable to our setting, we do
not emphasize efficiency optimization in the main body.

Overall, AR models offer superior training efficiency, MLM achieves the fastest inference, and memory usage differences
mainly emerge at inference due to AR’s KV-cache overhead. Detailed comparisons are reported in Table 8.

Table 8: Comparison of training and inference efficiency across models.

Model Params (M) FLOPs (G) Training Epochs (Converge/Total) Inference Time (s/img)

DiT/XL-2 675 118.64 ∼160 / 1400 0.39 (50 steps)
MLM-XL 741 189.51 ∼200 / 400 0.10 (10 steps)
AR-XL 741 189.98 ∼100 / 400 0.15 (256 steps w/ KV-cache)

A.5.2. RESULTS OF DIFFERENT TOKENIZERS: BAE v.s. VQGAN

We trained BAE on the ImageNet dataset using the same model architecture and loss functions as VQGAN from the taming
transformers framework (Esser et al., 2021). For a fair comparison, we evaluated the VQGAN-16384 model6 that also
trained on the ImageNet dataset, and assessed its code utilization (see Figure 13. The results clearly demonstrate that
BAE outperforms VQGAN, achieving lower reconstruction FID (rFID) and generation FID (gFID) (Table 1 and 9) and
significantly higher code utilization (100% v.s. 8%).

co
un

ts
 (l

og
 s

ca
le

)

10#

10$

10%

10&

10'

10(

10)
0             5000  10000        15000        20000        25000        30000        35000       40000        45000        50000        55000    60000       65000

(a) BAE-65536

10#

10$

10%

10&

10'

10(

10)

10*

co
un

ts
 (l

og
 s

ca
le

)

0                     100 200                  300                   400                  500                  600                  700     800                  900                 1000 

(b) VQGAN-16384

Figure 13: BAE-16 exhibits a higher code utilization than VQGAN. This figure shows a log count number of the
appearance of codes on the ImageNet training dataset in sorted order. (a) BAE-16, with a code dimension of 16, has 65,536
unique codes and achieves 100% code utilization, with no code showing extremely low usage. In contrast, (b) VQGAN,
with a codebook size of 16,384, only utilizes around 1,000 codes, and many of these codes have extremely low utilization.

6Downloaded from https://github.com/CompVis/taming-transformers

17

https://github.com/CompVis/taming-transformers


Elucidating the design space of language models for image generation

Table 9: Generation FID of L models with different image tokenizers. A. denotes AR, M. denots MLM. All models are
trained on the ImageNet for 1,000,000 iterations, about 200 epochs. ‘cfg1-3’ denotes classifier-free guidance (cfg) scale
gradually increased to 3.0 following a linear schedule across inference iteration. ‘cfg1.5’ denotes the cfg remains fixed at
1.5 during inference.

tokenizer code dim v. size & top-k cfg1-3 FID(A.) cfg1-3 FID(M.) cfg1.5 FID(A.) cfg1.5 FID(M.)

VQGAN 256 16,384 6.71 7.81 8.12 8.98

BAE 16 65,536 2.78 3.96 3.87 5.01

Table 10: The influence of Bernoulli sampling with BAE on FID (30k) of generation. We test on AR-L model with BAE
with D = 16, and the model is trained for 150 epochs.

cfg constant 2 linear1-3

w. Bernoulli 4.72 2.88
w.o. Bernoulli 5.05 3.13

A.5.3. RESULT OF BAE W. AND W.O BERNOULLI SAMPLING

When using BAE to tokenize image feature codes into discrete tokens, the process can either be deterministic, by directly
converting values to 0 or 1 based on a threshold, or nondeterministic by incorporating Bernoulli sampling during quantization.
We compared both methods to assess their impact on the generation task. As shown in Table 10, the nondeterministic
approach clearly performs better. This result aligns with the inherent randomness of image token distribution, as discussed
in Section 6, and offers greater tolerance for classification errors during next-token prediction.

A.5.4. RESULTS OF DIFFERENT MODELING METHODS: AR v.s. MLM

Table 11 shows the detailed final result of the different-sized AR models and MLMs using the basic BAE on the ImageNet
256×256 dataset. Clearly, AR models always show better performance than MLMs.

Table 11: Comparison of AR and MLM on ImageNet 256×256. The auto-encoder is BAE with code dimension 16. The
FID results are obtained on 50,000 generation images.

Size Method FID↓ sFID↓ IS↑ Precision↑ Recall↑

L MLM 3.67 5.34 272.23 0.8561 0.4597
AR 2.38 4.78 271.54 0.8201 0.5650

XL MLM 3.13 4.95 261.59 0.8159 0.5355
AR 2.14 4.92 289.33 0.8162 0.5834

XXL MLM 3.12 4.86 281.75 0.8393 0.4947
AR 2.10 4.89 301.22 0.8284 0.5839

A.5.5. COMPARISON BETWEEN CODE-DECOMPOSITION STRATEGIES

Table 12 shows the detailed results of AR models with different BAE tokenizers. The code decomposition strategy
significantly influences the model parameter size and the generation performance. For the code decomposition strategy,
splitting a large vocabulary into two smaller sub-vocabularies yields optimal performance by balancing vocabulary size
with the number of classification heads. However, using more than two classification heads increases the model’s training
complexity and impacts learning effectiveness. Figure 14 shows the training loss curves of AR models with 2-8 and 3-8
tokenizers. Both begin with the same initial loss, but clearly, models with 2-8 tokenizers converge better than those with 3-8
across various model sizes. This demonstrates that making three classifications at each position during next-token prediction
significantly increases the learning complexity, affecting convergence efficiency.

In general, larger code dimensions improve generation performance by offering finer granularity, but they also introduce
more complex vocabularies, making it increasingly challenging for the model to predict the next token accurately, therefore,
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the vocabulary size should match the generation model’s capacity.

Table 12: Comparisons of AR models on class-conditional ImageNet 256×256 benchmark.

Model Tokenizer Params. FID↓ sFID↓ IS↑ Precision↑ Recall↑

L

1-16 443M 2.38 4.78 271.54 0.8201 0.565
2-8 312M 2.34 4.86 281.29 0.8190 0.5573

2-10 316M 2.17 4.83 288.59 0.8168 0.5536
2-12 328M 2.34 5.12 316.08 0.8197 0.5487

XL

1-16 900M 2.14 4.92 289.33 0.8162 0.5834
2-8 737M 2.01 4.50 298.99 0.8069 0.5979

2-10 741M 1.73 4.50 332.38 0.8183 0.5823
2-12 757M 1.79 4.82 328.99 0.8027 0.5903
3-8 740M 1.99 5.29 329.66 0.8070 0.5906

XXL

1-16 1.56B 2.10 4.89 301.22 0.8284 0.5839
2-10 1.37B 1.65 4.33 328.08 0.8144 0.5933
2-12 1.39B 1.58 4.78 330.43 0.8034 0.6091
3-8 1.37B 1.67 4.99 325.06 0.8020 0.6054
4-8 1.37B 2.02 5.66 321.37 0.7913 0.602

2B 2-12 1.90B 1.54 4.81 332.69 0.8093 0.5968
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(a) AR-XL with 2-8 and 3-8 tokenizer
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(b) AR-XXL with 3-8 and 4-8 tokenizer

Figure 14: Different vocabulary decomposition strategies vary a lot on the training losses. Clearly, introducing more
than two classification heads will increase the model’s training complexity and learning effectiveness.

A.5.6. SCALING BEHAVIOR OF AR MODELS

To further illustrate the scaling behavior of AR models, in addition to the learning pattern visualization and image generation
results we present on the main pages, we also provide the convergence curves during training. Figure 15 shows the loss
trends for all AR model sizes (L, XL, XXL, and 2B) with the 2-12 tokenizer. All models successfully converged, and the
final loss consistently decreased as the model size increased.

A.5.7. COMPARISON BETWEEN SAMPLING STRATEGIES

For MLMs, we conduct a search to find the optimal CFG scale, iteration number, and temperature τ for the Gumbel noise.
For AR models, we search for the best CFG scale and top-k threshold.

Classifier-free guidance (CFG) plays a crucial role in conditional image generation, but it involves balancing the trade-off
between image diversity and individual image quality. We searched for the optimal CFG scale for all models. Additionally,
we found that using a dynamic CFG schedule significantly improves performance. We tested several CFG scheduling
methods (see Figure 16), with the results summarized in Table 13. Figure 17 and 18 further show the qualitative comparison
of different CFG scale.

Notably, the effect of top-k varies substantially between vision and language domains. In image generation, small k (e.g.,
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Figure 15: AR exhibits a good scaling law. Training losses of all AR models are with the BAE 2-12 tokenizer. All models
were trained for 2,000,000 iterations, equivalent to 400 epochs, except the 2B model, which had to be stopped earlier due to
time constraints.

Table 13: Different CFG strategies vary greatly on FID. All results are based on AR-L with tokenizer 2-10.

CFG-scale 1.5 2 2.5 cos1-4 log1-4 linear1-4 square1-4 r-square1-4

FID (30k) 2.98 3.35 3.58 2.86 2.70 2.48 4.94 3.57

Figure 16: Curves of CGF scale with respect to iteration times under different CFG schedules.

Table 14: The influence of top-k in sampling process for AR models with decomposed vocabulary.

2-8 2-10 2-12

k 180 210 256 800 900 1024 2600 2800 3000

L 2.97 2.84 2.74 2.55 2.50 2.48 2.68 2.56 2.67

XL 2.46 2.36 2.40 2.13 2.11 2.03 2.11 2.10 2.11

XXL - - - 2.08 2.04 1.95 1.90 1.90 1.95

<100) leads to overly smooth, low-diversity outputs, and optimal values often reach k ≈ 0.5× vocabulary size to capture
texture richness (Figure 19). In contrast, text generation typically requires only k = 20–100 to achieve diverse, fluent
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Constant CFG 1.5 Constant CFG 4.0 Linear CFG 1.0-3.0 Linear CFG 1.0-6.0

Figure 17: Visual comparison of different CFG setting. The top-k is set to 500. Clearly, compared to a constant CFG
value, a gradually increasing CFG value tends to enhance image diversity and the alignment with the real data distribution,
explains a better FID score. Besides, smaller CFG value also brings more diversity and more background details.

Constant CFG 1.5 Constant CFG 4.0 Linear CFG 1.0-3.0 Linear CFG 1.0-6.0

Figure 18: Visual comparison of different CFG settings. The top-k is set to 100. Compared to the CFG scale, top-k
setting has more influence on the image visual quality. When k is small, a linearly increased CFG scale will bring more
diversity and background information.

outputs, even with vocabularies of 50,000–128,000 tokens (Holtzman et al., 2019; Fan et al., 2018). This reflects fundamental
differences in the distributional properties of visual and linguistic data.
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Top-k: 10 Top-k: 100 Top-k: 500 Top-k: 1,000

Figure 19: Visual comparison of different top-k settings. The CFG is set to a constant value of 2. Clearly, when the
value of k is small, the generated images tend to be overly smooth and sharp, lacking background and fine details. In
contrast, larger k values lead to images with richer details that better align with the distribution of real-world datasets.
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Figure 20: The influence of iteration time (different mask ratio) in sampling process on FID scores for MLMs.

Table 15: The best sampling strategy regard to FID score for all models.

Method Tokenizer Model Best Strategy

MLM 1-16 L linear CFG 1-3; τ=9.0, iteration number=10
1-16 XL & XXL linear CFG 1-3; τ=5.0, iteration number=10

AR

1-16 L& XL & XXL linear CFG 1-3; top-k=65536 (all)
2-8 L linear CFG 1-4; top-k=256 (all)
2-8 XL & XXL linear CFG 1-4; top-k=210
2-10 L linear CFG 1-4; top-k=1024 (all)
2-10 XL & XXL linear CFG 1-5; top-k=1024 (all)
2-12 L & XL & XXL linear CFG 1-5; top-k=2800
3-8 XL & XXL linear CFG 1-5; top-k=180
4-8 XXL linear CFG 1-5; top-k=180
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A.6. The flexibility of ELM to generate any-size image

To further explore the capability of AR models in image generation, we generate images with more than 16×16 tokens
without modifying the model (Figure 21). Although the model’s receptive field is limited to 256 tokens, we can easily
generate ‘streaming’ images by looking back at a few tokens. This demonstrates the greater flexibility of AR models
compared to diffusion models, highlighting the potential of AR models for applications in other domains.

Figure 21: AR models are flexible to generate images with any size based on previous context.

A.7. Limitation

Our work has limitations. While we propose several improvements for AR models, the fundamental issue of optimizing
highly random token distributions remains. Traditional next-token prediction using classification loss may not be the most
optimal training objective for such tasks, suggesting that more suitable objectives should be explored in future research. For
instance, MAR (Li et al., 2024) has made promising progress by introducing diffusion loss into AR models, while VAR
(Tian et al., 2024) presents a valuable perspective by altering the image tokenization approach. We hope our analysis will
inspire further exploration and innovation in utilizing language models for vision generation, as well as other modalities.

A.8. More generated samples

We present more randomly picked 256 × 256 samples here to straightforwardly show the performance of our model.

23



Elucidating the design space of language models for image generation

Figure 22: Randomly sampled images from classes 88 (macaw), 130 (flamingo), and 145 (king penguin).
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Figure 23: Randomly sampled images from classes 107 (jelly fish), 980 (volcano), and 511 (convertible).
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