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ABSTRACT

Bias is a common problem inherent in recommender systems, which is entangled
with users’ preferences and poses a great challenge to unbiased learning. For
debiasing tasks, the doubly robust (DR) method and its variants show superior
performance due to the double robustness property, that is, DR is unbiased when
either imputed errors or learned propensities are accurate. However, our theoret-
ical analysis reveals that DR usually has a large variance. Meanwhile, DR would
suffer unexpectedly large bias and poor generalization caused by inaccurate im-
puted errors and learned propensities, which usually occur in practice. In this
paper, we propose a principled approach that can effectively reduce the bias and
variance simultaneously for existing DR approaches when the error imputation
model is misspecified. In addition, we further propose a novel semi-parametric
collaborative learning approach that decomposes imputed errors into parametric
and nonparametric parts and updates them collaboratively, resulting in more accu-
rate predictions. Both theoretical analysis and experiments demonstrate the supe-
riority of the proposed methods compared with existing debiasing methods.

1 INTRODUCTION

Addressing various tasks in recommender systems (RSs) with causality-based methods has become
increasingly popular (Wu et al., 2022b). Causality-based recommendation has shown its great po-
tential in both numeric experiments and theoretical analyses across extensive literature (Chen et al.,
2020; Wang et al., 2019). Generally, the basic question faced in RS is that ”what would the feed-
back be if recommending an item to a user”, requiring to estimate the causal effect of a recom-
mendation on user feedback. To answer the question, many methods have been proposed, such
as inverse propensity score (IPS) (Schnabel et al., 2016), self-normalized inverse propensity score
(SNIPS) (Swaminathan & Joachims, 2015), error imputation based (EIB) methods (Steck, 2010),
and doubly robust (DR) methods (Chen et al., 2021; Wang et al., 2019; 2021; Dai et al., 2022; Ding
et al., 2022). Among them, the DR method and its variants show superior performance. We compare
and evaluate these methods in terms of three desired properties, including doubly robust (Hernán &
Robins, 2020; Wu et al., 2022c), robust to small propensities (Rosenbaum, 2020), and low vari-
ance (Tan, 2007). Failing to meet any of them may lead to sub-optimal performance (Molenberghs
et al., 2015; van der Laan & Rose, 2011). Our theoretical analysis shows that DR has much greater
variance and is less robust to small propensities compared to EIB (Kang & Schafer, 2007), even
though the imputed errors and the learned propensities are accurate. Meanwhile, DR would suffer
unexpectedly large bias and poor generalization caused by inaccurate imputed errors and learned
propensities, which usually occur in practice.

In this paper, we first propose a novel targeted doubly robust (TDR) method, that can capture the
merits of both DR and EIB effectively, by leveraging the targeted learning technique (van der Laan
& Rose, 2011; 2018). TDR can effectively reduce the bias and variance simultaneously for existing
DR approaches when the imputed errors are less accurate. Remarkably, TDR provides a model-
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agnostic framework and can be assembled into any DR method by updating its error imputation
model, resulting in more accurate predictions.

To further reduce the bias and variance during the training process, we propose a novel uniform-
data-free TDR-based collaborative learning (TDR-CL) approach that decomposes imputed errors
into a parametric imputation model part and a nonparametric error part, where the latter adaptively
rectifies the residual bias of the former. By updating the two parts collaboratively, TDR-CL achieves
a more accurate and robust prediction. Both theoretical analysis and experiments demonstrate the
superiority of TDR and TDR-CL compared with existing methods.

2 PRELIMINARIES

Many debiasing tasks in RS can be formulated using the widely adopted potential outcome frame-
work (Neyman, 1990; Rubin, 1974). Denote U = {u}, I = {i} and D = U ×I as the sets of users,
items and user-item pairs, respectively. Let xu,i, ru,i, and ou,i be the feature, feedback, and exposure
status of user-item pair (u, i), where ou,i = 1 or 0 represents whether the item i is exposed to user
u or not. Define ru,i(1) as the potential outcome if ou,i had been set to 1, which is observed only
when ou,i = 1. In RS, we are often interested in answering the causal question: ”if we recommend
products to users, what would be the feedback?”. This question can be formulated as to learn the
quantity E (ru,i(1)|xu,i), i.e., it requires to predict ru,i(1) using feature xu,i, where E denotes the
expectation with respect to the target distribution P. Many classical tasks in RS can be defined as
estimating this quantity, such as rating prediction (Schnabel et al., 2016) and post-click conversion
rate prediction (Guo et al., 2021). More examples can be found in Wu et al. (2022b).

Let fθ(xu,i) be a model used to predict ru,i(1) with parameter θ. Ideally, if all ru,i(1) for (u, i) ∈ D
were observed, θ can be trained directly by optimizing the following ideal loss

Lideal = |D|−1
∑

(u,i)∈D

eu,i,

where eu,i is the prediction error, e.g., the squared loss eu,i = (ru,i(1)−fθ(xu,i))
2. However, since

ru,i(1) is observed only when ou,i = 1, the ideal loss is non-computable. Restricting the analysis
to non-missing data will obtain biased conclusions, as the observed data may form an unrepresenta-
tive sample of the target population. Different debiasing methods are designed to approximate and
substitute the ideal loss. For example, the IPS and EIB estimators are given as

LIPS = |D|−1
∑

(u,i)∈D

ou,ieu,i/p̂u,i, LEIB = |D|−1
∑

(u,i)∈D

[ou,ieu,i + (1− ou,i)êu,i],

where p̂u,i is an estimate of propensity score pu,i := P(ou,i = 1|xu,i), êu,i is an estimate of
prediction error gu,i := E[eu,i|xu,i], i.e., it fits eu,i using xu,i. The DR estimator is formulated as

LDR = |D|−1
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
,

which enjoys doubly robust property, i.e., it is an unbiased estimator of ideal loss when either im-
puted errors or learned propensities are accurate.

3 MOTIVATION

DR approaches have been extensively studied in RS for various debiasing tasks for its double ro-
bustness, e.g., rating prediction (Wang et al., 2019; 2020a; Li et al., 2023b;c), learning-to-rank
(LTR) (Saito, 2020; Oosterhuis, 2022), and post-click conversion rate prediction (Guo et al., 2021;
Dai et al., 2022), etc. However, the DR still have several limitations that need to resolved. We first
show that DR has a large variance and is sensitive to small propensities as shown in Proposition 1
(see Appendix A for proofs).
Proposition 1. If p̂u,i and êu,i are accurate estimates of pu,i and gu,i, respectively, i.e., p̂u,i = pu,i,
êu,i = gu,i, then IPS, EIB and DR estimators are unbiased, and their variances satisfy

Var(LEIB) ≤ Var(LDR) ≤ Var(LIPS),
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where the equality holds if and only if pu,i = 1 for all (u, i) ∈ D. In addition, when pu,i tends to 0,
Var(LIPS) and Var(LDR) tends to infinity, and Var(LEIB) tends to its minimum.

Proposition 1 shows that the EIB estimator is low-variance and robust to small propensities (Tan,
2007; Imbens & Rubin, 2015; Wu et al., 2021; 2022a). In RS, some small propensities will ap-
pear inevitably due to the sparsity of the exposed data, resulting in a significant difference between
Var(LEIB) and Var(LDR). Nevertheless, EIB usually has a large bias and is not preferred in prac-
tice. Proposition 1 provides a motivation to develop an estimator that combines the low-variance
and robustness to small propensities of EIB with the double robustness of DR.

In summary, DR outperforms IPS in terms of both bias and variance. When compared with EIB, if
êu,i is inaccurate but p̂u,i is accurate, DR tends to have a smaller bias, but if both êu,i and p̂u,i are
accurate, then EIB has a smaller variance. If êu,i is accurate but p̂u,i is inaccurate, then EIB may be
superior to DR in terms of both bias and variance. In practice, both p̂u,i and êu,i are likely to be at
least mildly inaccurate, so choosing from EIB and DR involves the bias-variance trade-off. Ideally,
it is desirable to develop a method that is robust to small propensities, with lower bias and variance
compared to previous DR methods, while maintaining the double robustness.

4 COLLABORATIVE LEARNING DEBIASING FRAMEWORK

4.1 TARGETED DOUBLY ROBUST ESTIMATOR

We first bridge the explicit form of the DR estimator and the EIB estimator by noting that

LDR =
1

|D|
∑

(u,i)∈D

[ou,ieu,i + (1− ou,i)êu,i]︸ ︷︷ ︸
LEIB

+
1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
1− p̂u,i
p̂u,i︸ ︷︷ ︸

correction term

, (1)

where LDR is formally equivalent to adding a correction term using learned propensities to LEIB .
The correction term has an important role in the bias-variance trade-off for the estimations of the
ideal loss as shown in Proposition 1. Specifically, compared with LEIB , LDR can reduce bias by
adding the correction term. As a compromise, the correction term will increase the variance of the
DR estimator. Thus, if êu,i is computed in a manner that ensures that

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
1− p̂u,i
p̂u,i

= 0. (2)

then the EIB estimator would have small bias and the DR estimator would have small variance.

For equation (2) to hold, a naive method is taking it as a constraint condition when training the er-
ror imputation model. However, the constraint (2) may degrade the accuracy of the imputed errors
because it will restrict the hypothesis space of the error imputation model. Instead of directly esti-
mating êu,i satisfying the constraint (2), we propose to exploit the extra information on propensities
when training the error imputation model. The basic idea of the proposed TDR estimator consists
of the following two steps.

Step 1 (Initialization). Let êu,i be the imputed error obtained by using any of the existing DR
methods.

Step 2 (Targeting). Update êu,i by fitting an extended one-parameter model as follows

ẽu,i(η) = êu,i + η(1/p̂u,i − 1) (3)

which includes a single variable 1/p̂u,i − 1 and the offset ĥ(xu,i). The parameter η is solved by
minimizing the squared loss between ẽu,i(η) and eu,i in the exposed events. Then the proposed
TDR estimator is given as

LTDR = |D|−1
∑

(u,i)∈D

[
ẽu,i + ou,i(eu,i − ẽu,i)/p̂u,i

]
.

The targeting step enlarges the hypothesis space of ẽu,i compared to êu,i, and does not sacrifice the
accuracy of the error imputation model, due to the introduce of an error correction term 1/p̂u,i−1 to
estimate eu,i. Theorem 1 shows the validity and preservation of TDR (see Appendix B for proofs).
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Theorem 1. The imputed error ẽu,i obtained with TDR satisfies the following properties:
(a) (validity) ẽu,i satisfies equation (2), which implies TDR would have smaller bias than EIB and
smaller variance than DR based on the initial imputed error êu,i.
(b) (preservation) η̂ in the targeting step will converge to 0 and renders ẽu,i = êu,i when êu,i already
satisfies equation (2).

From Theorem 1, TDR guarantees that equation (2) always holds, regardless of the choice of the
initial imputed errors. In addition, TDR inherits the desirable properties of EIB, such as low-variance
and robust to small propensities, since equations (1) and (2) implies that the TDR estimator can be
regarded as an EIB estimator.

TDR would reduce the variance of DR as shown in Theorem 1, a further question is whether the
variance-reduction will come at the expense of an increase in bias? Remarkably, TDR has no sacri-
fice of bias. Specifically, it can be shown (see Appendix C) that the bias of both LDR and LTDR are
composed of the product of the errors of the propensity model and imputation model weighted by
1/p̂u,i. Therefore, given the same learned propensities, the more accurate the imputed errors are, the
smaller the bias is. Since TDR updates êu,i by adding an extra term 1/p̂u,i − 1, so ẽu,i is expected
to be more accurate than êu,i, resulting in a smaller bias for LTDR than LDR.

Importantly, the TDR provides a model-agnostic framework due to the free choice of the initial
imputed errors in Step 1, which has great potentially strengths for recommendation. TDR can be
assembled into any competing DR approach (Wang et al., 2019; Guo et al., 2021; Dai et al., 2022), by
updating its error imputation model with the targeting step. This extra targeting step tends to reduce
both the bias and variance of the competing DR approach, resulting in more accurate predictions.
Next, Theorem 2 indicates the double robustness of the TDR estimator (see Appendix C for proofs).
Theorem 2. The proposed TDR estimator have the following properties:
(a) (unbiasedness under accurate imputed errors) LTDR is unbiased if ẽu,i accurately estimates
gu,i.
(b) (unbiasedness under accurate learned propensities) Suppose that p̂u,i accurate estimates pu,i,
and the validity of êu,i doesn’t hold, then LEIB is biased, while LTDR is unbiased.

Besides, Theorem 2(b) reveals that TDR can remove the bias of LEIB even though the initial im-
puted errors are inaccurate, provided the learned propensities are accurate.

4.2 SEMI-PARAMETRIC COLLABORATIVE LEARNING

In this subsection, we propose a novel TDR-based collaborative learning (TDR-CL) approach, in
which the imputed errors ẽu,i are decomposed into a parametric error imputation model part êu,i
and a nonparametric targeting part ωu,i ≜ η(1/p̂u,i − 1) as in Section 4.1, i.e., ẽu,i = êu,i + ωu,i.
The latter corrects the residuals of the error imputation model. By updating both the parametric
and nonparametric parts collaboratively, the bias and variance of the TDR estimator can be further
reduced, resulting in more accurate predictions.

First, the embedding of each user u and item i is obtained by matrix factorization, and the stack
layer gets the embedding xu,i by concatenation. TDR-based learning methods require estimated
propensities for all user-item pairs, thus the Naive Bayes approach is no longer applicable. To
handle this problem, the pre-trained propensities are obtained by conducting logistic regression of
ou,i on xu,i, and the model parameters are used as the initialization of pξ(xu,i) in the iterative
learning process. Given both the parametric error imputation part êu,i = gϕ(xu,i) and nonparametric
targeting part ωu,i, the propensity model pξ(xu,i) and the prediction model fθ(xu,i) are updated
simultaneously using the training loss

LTDR−CL (θ, ξ, ϕ) = LTDR + |D|−1
∑

(u,i)∈D

[
− ou,i · log p̂u,i − (1− ou,i) · log(1− p̂u,i)

]
,

where p̂u,i = pξ(xu,i), eu,i = (fθ(xu,i) − ru,i(1))
2, ẽu,i = (fθ (xu,i) − gϕ (xu,i) − ωu,i− ⊥

(fθ(xu,i)))
2 with ⊥ the operator that sets the gradient of the operand to zero thus ∇θ ⊥

(fθ (xu,i)) = 0 and ⊥ (fθ (xu,i)) = fθ (xu,i).

Then, unlike traditional alternative learning algorithms that directly use the parametric part gϕ (xu,i)
as ẽu,i, the proposed collaborative learning additionally uses ωu,i as a non-parametric correction
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Algorithm 1: The Proposed Targeted Doubly Robust Collaborative Learning, TDR-CL

Input: observed ratings Ro, pre-trained learned propensities P̂, and ωu,i = 0.
1 while stopping criteria is not satisfied do
2 for number of steps for training the prediction and propensity model do
3 Sample a batch of user-item pairs {(uj , ij)}Jj=1 from D;
4 Update θ and ξ by descending along the gradient∇θ,ξLTDR−CL (θ, ξ, ϕ);
5 end
6 for number of steps for training the imputation model with targeting step do
7 Sample a batch of user-item pairs {(uk, ik)}Kk=1 from O;
8 Update ϕ by descending along the gradient∇ϕLe(θ, ξ, ϕ);
9 Sample a batch of user-item pairs {(ul, il)}Ll=1 from D;

10 η∗ ← argmin
η

∑
ou,i(eu,i(θ)− êu,i(ϕ)− η(1/p̂u,i − 1))2;

11 Update ωu,i ← ωu,i + η∗(1/p̂u,i − 1) for all user-item pairs.
12 end
13 end

term summed with gϕ (xu,i) to correct the estimation of eu,i. Specifically, given the prediction
model and the propensity model, ẽu,i first updates its parametric part gϕ (xu,i) by minimizing

Le(θ, ξ, ϕ) = |D|−1
∑

(u,i)∈D

ou,i (ẽu,i − eu,i)
2
/p̂u,i,

where eu,i = ru,i(1) − fθ (xu,i) , ẽu,i = gϕ (xu,i) + ωu,i. Next, the targeting step described in
Section 4.1 is applied to further update the imputed errors ẽu,i. Through calculating the optimal step
size for line search η∗ = argmin

η

∑
ou,i(eu,i(θ) − êu,i(ϕ) − η(1/p̂u,i − 1))2, the non parametric

targeted error term ωu,i is updated by adding η∗(1/p̂u,i − 1).

In summary, the proposed learning approach collaboratively update the parametric term êu,i =
gϕ (xu,i) and the nonparametric term ωu,i to achieve a better trade-off to estimate eu,i, which can
reduce the bias of the existing DR methods such as DR-JL (Wang et al., 2019) and MRDR-DL (Guo
et al., 2021), by further modeling for the fitted residuals of the parametric parts êu,i. On the other
hand, as shown in Theorems 1 and 2, when êu,i is already an accurate estimate of eu,i, the introduc-
tion of the targeted error term ẽu,i satisfies no-harm property and the unbiasedness is maintained.
We summarized the proposed TDR-CL approach in Alg. 1.

5 SEMI-SYNTHETIC EXPERIMENTS

In this section, following the previous studies (Schnabel et al., 2016; Wang et al., 2019; Saito, 2020;
Guo et al., 2021), we aim to answer the following research question (RQ) on the semi-synthetic
datasets:

RQ1. Does the proposed TDR estimator in estimating the ideal loss have both the statistical
properties of lower bias and variance in the presence of selection bias?

5.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. MovieLens 100K1 (ML-100K) is a dataset of 100,000 missing-not-at-
random (MNAR) ratings from 943 users and 1,682 movies collected from movie recommendation
ratings. MovieLens 1M2 (ML-1M) is a larger dataset of 1,000,209 MNAR ratings from 6,040 users
and 3,952 movies. Following the data preprocessing procedure of previous studies (Schnabel et al.,
2016; Wang et al., 2019; Saito, 2020; Guo et al., 2021), we first use matrix factorization (Koren
et al., 2009) to complete the rating matrix in the five-scale. Then for each predicted ratings Ru,i ∈

1https://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/movielens/1m/
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Table 1: Mean and standard deviation of the relative error on the Naive, EIB, IPS, DR and TDR.
Dataset Method ONE THREE FIVE ROTATE SKEW CRS

Naive 0.0688 ± 0.0025 0.0790 ± 0.0028 0.1027 ± 0.0028 0.1378 ± 0.0011 0.0265 ± 0.0021 0.1062 ± 0.0022
EIB 0.5442 ± 0.0016 0.5878 ± 0.0017 0.6167 ± 0.0018 0.2533 ± 0.0004 0.3584 ± 0.0007 0.1443 ± 0.0007

ML-100K IPS 0.0338 ± 0.0033 0.0390 ± 0.0037 0.0511 ± 0.0033 0.0696 ± 0.0026 0.0129 ± 0.0027 0.0526 ± 0.0026
DR 0.0140 ± 0.0034 0.0180 ± 0.0037 0.0150 ± 0.0034 0.0401 ± 0.0016 0.0101 ± 0.0027 0.0237 ± 0.0025

TDR 0.0053 ± 0.0026* 0.0035 ± 0.0025* 0.0066 ± 0.0032* 0.0325 ± 0.0015* 0.0029 ± 0.0020* 0.0193 ± 0.0025*

Naive 0.0682 ± 0.0007 0.0783 ± 0.0007 0.1014 ± 0.0008 0.1377 ± 0.0005 0.0256 ± 0.0007 0.1054 ± 0.0006
EIB 0.5437 ± 0.0005 0.5872 ± 0.0005 0.6157 ± 0.0005 0.2531 ± 0.0001 0.3575 ± 0.0002 0.1442 ± 0.0001

ML-1M IPS 0.0343 ± 0.0009 0.0394 ± 0.0009 0.0508 ± 0.0009 0.0687 ± 0.0006 0.0130 ± 0.0008 0.0528 ± 0.0007
DR 0.0130 ± 0.0009 0.0168 ± 0.0009 0.0133 ± 0.0009 0.0399 ± 0.0005 0.0090 ± 0.0008 0.0229 ± 0.0007

TDR 0.0054 ± 0.0009* 0.0031 ± 0.0009* 0.0076 ± 0.0009* 0.0324 ± 0.0005* 0.0031 ± 0.0008* 0.0187 ± 0.0007*

Note: * means statistically significant results (p-value ≤ 0.001) using the paired-t-test compared with the best baseline.

{1, 2, 3, 4, 5}, we assign the pu,i ∈ (0, 1) with pu,i = pαmax(1,5−Ru,i). Finally, we replace the
predicted ratings Ru,i with rtrue

u,i in {0.1, 0.3, 0.5, 0.7, 0.9} and sample the binary click indicator and
conversion label with the Bernoulli sampling ou,i ∼ Bern(pu,i), ru,i ∼ Bern(rtrueu,i ),∀(u, i) ∈ D,
where Bern(·) denotes the Bernoulli distribution.

Predicted Metrics. The following prediction metrics are used to evaluate the debiasing performance
under different scenarios.
• ONE: r̂u,i is identical to the rtrue

u,i , except that |{(u, i) | rtrue
u,i = 0.9}| randomly selected rtrue

u,i of 0.1
are flipped to 0.9.
• THREE: Same as ONE, but flipping rtrue

u,i of 0.3 instead.
• FIVE: Same as ONE, but flipping rtrue

u,i of 0.5 instead.
• ROTATE: r̂u,i = ru,i − 0.2 when ru,i ≥ 0.3, and r̂u,i = 0.9 when ru,i = 0.1.
• SKEW: r̂u,i follows the truncated Gaussian distribution N[0.1,0.9](µ = rtrue

u,i , σ = (1− rtrue
u,i )/2).

• CRS: r̂u,i = 0.2 if the rtrue
u,i ≤ 0.6. Otherwise, r̂u,i = 0.6.

Experimental Details. For each prediction matrix R̂ = {r̂u,i(1) : (u, i) ∈ D}, the proposed TDR
is compared with Naive (Koren et al., 2009), EIB (Hernández-Lobato et al., 2014; Steck, 2010),
IPS (Saito et al., 2020; Schnabel et al., 2016), and DR (Wang et al., 2019; Saito, 2020) methods. We
obtain the propensities by 1/p̂u,i = (1 − β)/pu,i + β/pe, where pe = |D|−1

∑
(u,i)∈D ou,i, and β

is randomly sampled from [0, 1] to introduce noises. Define êu,i = CE(
∑

(u,i)∈O ru,iwu,i, r̂u,i),

where wu,i = (1/p̂u,i)
/
(
∑

(u,i)∈O 1/p̂u,i), CE denotes the cross entropy loss. For EIB and
DR, the imputed error is computed as ẽu,i = êu,i, For TDR, ẽu,i = êu,i + η∗(1/p̂u,i − 1),
where η∗ = argmin

η

∑
(u,i)∈O(eu,i − êu,i − η(1/p̂u,i − 1))2. The performance of the estima-

tors is based on the absolute relative error (RE) of the estimated and ideal loss RE(Lest) =

|Lideal(R̂)−Lest(R̂)|/Lideal(R̂), where Lest denotes the estimator to be compared. RE evaluates
the accuracy of the estimated loss, and a smaller RE value indicates a higher estimation accuracy.

5.2 EXPERIMENT RESULTS (RQ1)

In Table 1, we report the means and standard deviations of the RE of the five estimators for each
predicted matrix over 20 times of sampling. On the one hand, the average RE of the IPS, DR and
TDR methods is significantly lower than that of the Naive method, verifying the validity of causal-
based debiasing methods. The proposed TDR achieves the lowest RE in all settings, attributed to the
introduced correction term ωu,i for estimating eu,i, that further reduces the bias of DR. The direct
application of the EIB method is even worse than the Naive method, attributed to the challenge to
make an accurate estimate of eu,i. On the other hand, same as the conclusion of Theorem 1, the
standard deviation of the EIB method is significantly lower compared to the IPS and DR methods.
The proposed TDR method combines the advantages of the EIB in terms of lower standard devia-
tions than IPS and DR in all settings, reflecting stronger robustness. It can be concluded that the
estimation accuracy and robustness of the proposed method are significantly improved compared to
the previous methods.
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6 REAL-WORLD EXPERIMENTS

In this section, we conduct experiments to evaluate the proposed methods on two real-world bench-
mark datasets containing missing-at-random (MAR) ratings. Throughout, our methods are imple-
mented without uniform data to estimate the propensities, which differs from the existing Naive
Bayes approach. We aim to answer the following RQs:

RQ2. How do the proposed methods compare with the existing methods in terms of debiasing
performance in practice?

RQ3. How does the collaborative learning phase design affect the performance of our methods?

RQ4. Do our methods stably perform well under different learned propensities?

6.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. MAR ratings are necessary to evaluate the performance of debiasing
methods on real-world datasets. Following previous studies, we take the following two benchmark
datasets: Coat Shopping3 has 4,640 MAR and 6,960 MNAR ratings of 290 users to 300 Coats.
Music! R34 has 54,000 MAR and 311,704 MNAR ratings of 15,400 users to 1,000 songs.

Baselines. We take the widely used Matrix Factorization (MF) as the base model (Koren et al.,
2009), and compare the proposed methods with the following baselines: Base Model (Koren et al.,
2009), IPS (Schnabel et al., 2016), SNIPS (Swaminathan & Joachims, 2015), IPS with asymmetric
training (IPS-AT) (Saito, 2020), CVIB (Wang et al., 2020b), DIB (Liu et al., 2021), DR (Saito, 2020),
DR-JL (Wang et al., 2019), DR-CL, MRDR-JL (Guo et al., 2021), MRDR-CL, where DR-CL and
MRDR-CL are performed using the proposed Alg. 1, but without the targeting step update (lines
9-11), also for comparison purpose. In addition, the proposed TDR-based methods include TDR,
TDR-JL, and TMRDR-JL implemented by a single targeting step, and TDR-CL and TMRDR-CL
implemented by collaborative learning approach as shown in Alg. 1. The real-world experimental
protocols and details are provided in Appendix D.

6.2 PERFORMANCE COMPARISON (RQ2)

In Table 2, we report the performance of various debiasing methods using MSE, AUC, NDCG@5,
and NDCG@10 as evaluation metrics. For previous de-biasing methods, propensity-based IPS,
SNIPS, IPS-AT, and information bottleneck-based CVIB and DIB all outperform the base model.
The doubly robust methods, such as DR-JL, DR-CL, MRDR-JL, and MRDR-CL, using alternating
learning and outperforming DR, which are considered as the most competitive baselines. The pro-
posed TDR estimators are implemented by both single-step and collaborative learning, respectively,
based on DR and MRDR as initialized error imputation models, outperforming the baseline meth-
ods significantly on all AUC, NDCG@5, and NDCG@10 metrics, attributed to the effectiveness
of the introduced nonparametric correction term. It is noted that the collaborative version of TDR
achieves the optimal performance both within DR and MRDR, which implements the proposed tar-
geting step repeatedly. The fact that TDR-JL and TMRDR-JL implemented the targeting step only at
the final training of the prediction models outperformed DR-JL and MRDR-JL, respectively, further
demonstrates the effectiveness of the proposed targeting step to correct imputed errors.

6.3 IN-DEPTH ANALYSIS (RQ3, RQ4)

Ablation Study (RQ3). To illustrate the specific reasons for the effectiveness of the TDR-CL al-
gorithm, we conduct ablation studies on DR-based and MRDR-based methods, respectively. From
Figure 1, DR-CL and DR-JL perform similarly on MSE, AUC and NDCG@5 metrics, and the
MRDR approach has similar findings, which indicates that the directly use of collaborative learning
approach without targeting steps cannot improve prediction performance. However, for the proposed
TDR-CL and TMRDR-CL methods, there is a significant performance improvement compared to

3https://www.cs.cornell.edu/˜schnabts/mnar/
4http://webscope.sandbox.Music.com/
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Table 2: MSE, AUC, NDCG@5, and NDCG@10 on the MAR test set of Coat and Music. We bold
the outperforming DR-based and MRDR-based models. The proposed TDR methods implemented
by a single targeting step are marked with ∗ and collaborative learning are marked with †.

Coat Music

MSE AUC N@5 N@10 MSE AUC N@5 N@10

Base Model 0.2448 0.7047 0.5912 0.6667 0.2494 0.6795 0.6353 0.7644
+ IPS 0.2389 0.7041 0.6170 0.6852 0.2496 0.6824 0.6409 0.7674
+ SNIPS 0.2388 0.7061 0.6145 0.6945 0.2493 0.6815 0.6454 0.7701
+ IPS-AT 0.2344 0.7320 0.6102 0.6784 0.2480 0.6816 0.6409 0.7667
+ CVIB 0.2201 0.7234 0.6221 0.6991 0.2638 0.6823 0.6483 0.7719
+ DIB 0.2334 0.7104 0.6303 0.6986 0.2494 0.6832 0.6348 0.7633

+ DR 0.2359 0.7031 0.6213 0.6967 0.2420 0.6867 0.6613 0.7791
+ DR-JL 0.2352 0.7155 0.6183 0.6925 0.2496 0.6853 0.6536 0.7738
+ DR-CL 0.2358 0.7183 0.6261 0.6927 0.2494 0.6808 0.6334 0.7622
+ TDR∗ 0.2268 0.7109 0.6300 0.7006 0.2115 0.7044 0.7008 0.8016
+ TDR-JL∗ 0.2151 0.7236 0.6388 0.7047 0.2577 0.7036 0.6786 0.7884
+ TDR-CL† 0.2119 0.7339 0.6526 0.7112 0.2472 0.7057 0.6758 0.7871

+ MRDR-JL 0.2162 0.7192 0.6360 0.7016 0.2496 0.6842 0.6487 0.7717
+ MRDR-CL 0.2155 0.7200 0.6427 0.7047 0.2494 0.6805 0.6345 0.7623
+ TMRDR-JL∗ 0.2114 0.7278 0.6498 0.7101 0.2557 0.7036 0.6785 0.7884
+ TMRDR-CL† 0.2114 0.7316 0.6428 0.7088 0.2473 0.7060 0.6803 0.7902

the DR-CL and MRDR-CL methods without targeting steps. This ablation study reveals that the im-
provement in the proposed TDR-CL and TMRDR-CL originates from the nonparametric correction
term of the imputed errors, not from introducing additional model parameters for updating.

Effect on Learned Propensities (RQ4). An important fact is that the nonparametric correction
term in the TDR estimator is based on given learned propensities. In order to examine whether
the proposed targeting steps stably help to improve the prediction accuracy under different learned
propensities obtained by setting different clipping threshold, we conducted repeated experiments to
quantify the sensitivity of the TDR-CL method to the propensity clipping threshold. From Figure
2, the proposed method outperforms the DR-JL and DR-CL methods in terms of AUC, NDCG@5,
and NDCG@10 on all clipping thresholds. The optimal performance is reached when the clipping
threshold is equal to 0.15, which is interpreted as achieving the best trade-off between information
utilization and robustness.

7 RELATED WORK

Debiasing in Recommendation. Bias is a common problem inherent in RS (Chen et al., 2020;
Wu et al., 2022b), such as popularity bias (Zhang et al., 2021), model selection bias (Yuan et al.,
2019), user self-selection bias (Saito, 2020), position bias (Ai et al., 2018), and conformity bias (Liu
et al., 2016). Various methods were proposed for unbiased learning. For example, Schnabel et al.
(2016) considered the recommendation as treatment and introduced the IPS and self-normalized IPS
(SNIPS) methods to debiasing in explicit feedback data. Saito et al. (2020) extended it to the im-
plicit recommendation. Wang et al. (2019) proposed a doubly robust joint learning approach that
improved the IPS method. Subsequently, a series of enhanced DR methods were developed, such as
MRDR (Guo et al., 2021), Multi-task DR (Zhang et al., 2020), DR-MSE (Dai et al., 2022), BRD-
DR (Ding et al., 2022), and SDR (Li et al., 2023c). Li et al. (2023a) proposed a multiple robust
method that takes the advantages of multiple propensity and error imputation models. In addition,
several new debiasing algorithm are designed via using an extra small uniform dataset (Bonner
& Vasile, 2018; Chen et al., 2021; Liu et al., 2020; Wang et al., 2021; Li et al., 2023b). Chen
et al. (2020) provided a thorough discussion the recent progress on debiasing tasks in RS. Wu
et al. (2022b) established a unified causal analysis framework and gave formal causal definitions
of various biases in RS from the perspective of causal inference. Unlike the existing enhanced DR
approaches that purse a better bias-variance trade-off, the proposed TDR reduces both the bias and
variance and is theoretically guaranteed.
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(a) Comparison of DR-JL, DR-CL and TDR-CL in terms of MSE, AUC and NDCG@5.

(b) Comparison of MRDR-JL, MRDR-CL and TMRDR-CL in terms of MSE, AUC and NDCG@5.

Figure 1: Ablation studies on DR methods (top) and MRDR methods (bottom), where DR-CL and
MRDR-CL skips the targeting steps in TDR-CL and TMRDR-CL.

Figure 2: Learning performance on MAR test set of AUC (left), NDCG@5 (middle), and
NDCG@10 (right) with varying levels of propensity clipping threshold.

Targeted Learning. Targeted learning is a general framework in causal inference (van der Laan &
Rose, 2011) that includes many field-specific approaches to accommodate various scientific prob-
lems in different fields, such as survival analysis (Stitelman et al., 2012), genomics (Gruber &
van der Laan, 2010), epidemiology (Rose & van der Laan, 2014) and etc. More application scenar-
ios about targeted learning can refer to the two excellent monographs (van der Laan & Rose, 2011;
2018). Shi et al. (2019) proposed adapting neural networks for estimating the average treatment
effects based on targeted learning. Different from the existing literature of targeted learning, this
paper deals with the estimator and learning problem simultaneously. To the best of our knowledge,
this is the first paper that extends targeted learning to the field of debiased recommendation.

8 CONCLUSION

In this paper, we propose a TDR estimator for debiased recommendation that enjoys the properties of
double robustness, boundedness, low variance, and robustness to small propensities simultaneously.
Theoretical analysis shows that TDR can effectively reduce the bias and variance simultaneously for
any DR estimator when the error imputation model is less accurate. In addition, we further propose a
novel uniform-data-free TDR-based collaborative learning approach that adaptively implements the
targeting step, thus making the prediction model more robust. We conducted experiments on both
semi-synthetic and real-world data. The superiority of the proposed method is demonstrated when
compared with the existing debiasing methods. Throughout, we adopt 1/p̂u,i − 1 as a key choice of
targeting step to satisfy equation (2), which can be regraded as a first-order targeted learning Carone
et al. (2014). In future work, we will explore higher-order targeted learning and more effective
feature selection in the proposed targeting step.
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A PROOF OF PROPOSITION 1

Recall that pu,i = P(ou,i = 1|xu,i) = E[ou,i|xu,i] and gu,i = E[eu,i|xu,i], both of them
are functions of xu,i. Throughout, we maintain the common unconfoundedness assumption (i.e.,
ru,i(1) ⊥⊥ ou,i | xu,i) and the consistency assumption, (i.e., ru,i(1) = ru,i if ou,i = 1). All the
lower-case letters denote random variables for simplification.

Proof of Proposition 1. The property of unbiasedness is obvious. Next, we focus on analysing the
variance. Define

σ2(xu,i) = Var(eu,i|xu,i) = E[(eu,i − gu,i)
2 | xu,i],

then E[e2u,i|xu,i] = σ2(xu,i) + g2u,i. The variance of IPS estimator is given by

Var(LIPS) = |D|−1 ·Var(ou,ieu,i
pu,i

)

= |D|−1 ·

[
E[

o2u,ie
2
u,i

p2u,i
]−
{
E(

ou,ieu,i
pu,i

)
}2
]

= |D|−1 ·

[
E

{
E[ou,i|xu,i] · E[e2u,i|xu,i]

p2u,i

}
−
{
E
(
E[ou,i|xu,i] · E[eu,i|xu,i]

pu,i

)}2
]

= |D|−1 ·

[
E[

e2u,i
pu,i

]−
{
E(eu,i)

}2
]

= |D|−1 ·

[
E[

E(e2u,i|xu,i)

pu,i
]−
{
E(eu,i)

}2
]

= |D|−1 ·

[
E[

σ2(xu,i) + g2u,i
pu,i

]−
{
E(eu,i)

}2
]
,

where the third equation follows by the law of iterated expectations and the unconfoundedness
assumption. The variance of DR estimator is derived by

|D| ·Var(LDR) = Var

(
gu,i +

ou,i(eu,i − gu,i)

pu,i

)
= Var

(
eu,i +

ou,i − pu,i
pu,i

(eu,i − gu,i)

)
= Var(eu,i) + Var

(
ou,i − pu,i

pu,i
(eu,i − gu,i)

)
= E[e2u,i]− [E(eu,i)]2 +Var

(
ou,i − pu,i

pu,i
(eu,i − gu,i)

)
= E[σ2(xu,i) + g2u,i]− [E(eu,i)]2 + E

(
(ou,i − pu,i)

2

p2u,i
(eu,i − gu,i)

2

)

= E[σ2(xu,i) + g2u,i]− [E(eu,i)]2 + E

(
E{(ou,i − pu,i)

2|xu,i}
p2u,i

· E{(eu,i − gu,i)
2|xu,i}

)

= E[σ2(xu,i) + g2u,i]− [E(eu,i)]2 + E

(
pu,i(1− pu,i)σ

2(xu,i)

p2u,i

)

= E[
σ2(xu,i)

pu,i
+ g2u,i]− [E(eu,i)]2,

where the fifth equation holds by noting that

E
[
eu,i

(ou,i − pu,i)

pu,i
(eu,i − gu,i)

]
= E

[
E(ou,i − pu,i|xu,i)

pu,i
· E{eu,i(eu,i − gu,i)|xu,i}

]
= 0.
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Since E[ou,ieu,i + (1− ou,i)gu,i] = E[gu,i] = E[eu,i], we have

|D| ·Var(LEIB) = Var (ou,ieu,i + (1− ou,i)gu,i)

= E
[
{ou,ieu,i + (1− ou,i)gu,i}2

]
− [E(eu,i)]2

= E
[
ou,ie

2
u,i + (1− ou,i)g

2
u,i

]
− [E(eu,i)]2

= E
[
pu,i{σ2(xu,i) + g2u,i}+ (1− pu,i)g

2
u,i

]
− [E(eu,i)]2

= E
[
pu,iσ

2(xu,i) + g2u,i

]
− [E(eu,i)]2

B PROOF OF THEOREM 1

Proof of Theorem 1. The parameter η is solved by minimizing∑
(u,i)∈D

ou,i ·
{
eu,i − êu,i − η(

1

p̂u,i
− 1)

}2

.

Taking the first derivative of the above loss with respect to η and setting it to zero leads to that∑
(u,i)∈D

ou,i ·
{
eu,i − êu,i − η(

1

p̂u,i
− 1)

}
· (1/p̂u,i − 1) = 0, (4)

which implies that ∑
(u,i)∈D

ou,i · {eu,i − ẽu,i} · (1/p̂u,i − 1) = 0,

namely, the equation (2) holds. This finishes the proof of Theorem 1(a). If êu,i already satisfies
equation 2), then η = 0 is a solution of equation (4). Let η̂ is another solution of equation (4). Since
the solution of equation (4) is unique, then η̂ will converges to 0. This proves the conclusion of
Theorem 1(b).

C PROOF OF THEOREM 2

Proof of Theorem 2. The result of Theorem 2(a) is obvious. To show Theorem 2(b). We first claim
that if êu,i is an accurate estimate of gu,i, i.e., êu,i = gu,i, then it will satisfy equation (2). It holds
immediately from the following calculations

1

|D|
∑

(u,i)∈D

ou,i{eu,i − êu,i} · (
1

pu,i
− 1)

=
1

|D|
∑

(u,i)∈D

ou,i{eu,i − gu,i} · (
1

pu,i
− 1)

= E
[
ou,i{eu,i − gu,i} · (

1

pu,i
− 1)

]
= E

[
E(ou,i|xu,i) · E{eu,i − gu,i|xu,i} · (

1

pu,i
− 1)

]
= 0.

Thus, if êu,i not satisfy equation (2), then êu,i ̸= gu,i. Given êu,i and ẽu,i, the bias of LEIB is

Bias(LEIB) = E[ou,ieu,i + (1− ou,i)êu,i]− E[eu,i]
= E[(1− ou,i)(êu,i − eu,i)]

= E[(1− pu,i)(êu,i − gu,i)],
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and the bias of LTDR is

Bias(LTDR) = E
(
eu,i +

(ou,i − pu,i)

pu,i
(eu,i − ẽu,i)

)
− E[eu,i]

= E
(
E(ou,i − pu,i|xu,i)

pu,i
E{eu,i − ẽu,i|xu,i}

)
= E

(
0

pu,i
· (gu,i − ẽu,i)

)
= 0.

This proves the result of Theorem 2(b).

Biases of DR and TDR. Given p̂u,i and ẽu,i for all (u, i) ∈ D, the bias of TDR is

Bias(LTDR) = E
(
eu,i +

(ou,i − p̂u,i)

p̂u,i
(eu,i − ẽu,i)

)
− E[eu,i]

= E
(
E(ou,i − p̂u,i|xu,i)

p̂u,i
E{eu,i − ẽu,i|xu,i}

)
= E

(
(pu,i − p̂u,i)

p̂u,i
· (gu,i − ẽu,i)

)
.

Similarly, given p̂u,i and êu,i for all (u, i) ∈ D, the bias of DR is

Bias(L(0)
DR) = E

(
(pu,i − p̂u,i)

p̂u,i
· (gu,i − êu,i)

)
.

D REAL-WORLD EXPERIMENTAL PROTOCOLS AND DETAILS

Experimental protocols and details. For real-world experiments, the following four metrics were
considered as the evaluation metrics: MSE, AUC, NDCG@5, and NDCG@10. For fast convergence
in the learning phase, Adam is utilized as the optimizer for all models. We tune the learning rate in
{0.001, 0.005, 0.01, 0.05, 0.1}, weight decay in [1e−6, 1e−2] at 10x multiplicative ratio, and batch
size in {128, 256, 512, 1024, 2048} for Coat and {1024, 2048, 4096, 8192, 16384} for Music! R3.
Specifically for the propensity training, we tune the clipping threshold in {0.05, 0.10, 0.15, 0.20}.
After finding out the best configuration on the validation set, we evaluate the trained models on the
MAR test set. Experiments are conducted using NVIDIA GeForce RTX 3090.
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