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ABSTRACT

Deep neural networks (DNNs) have improved our ability to predict regulatory
activity from DNA sequences, providing valuable insights into gene regulation.
However, these models often fail to generalize to sequences underrepresented in
their training data, limiting applications like variant effect prediction and de novo
sequence design. This limitation reflects a bias toward natural variation across
the genome, making DNNs vulnerable to covariate shifts, where test sequences
diverge statistically from the training distribution. Here, we introduce PIO-
NEER, a computational platform that simulates functional genomics experiments
to systematically benchmark and optimize training data composition through it-
erative AI-experiment cycles. Using PIONEER, we compare sequence proposal
strategies—including active learning and random baselines—evaluating their im-
pact on model generalization across increasing levels of covariate shift. To en-
sure a fair comparison, we also assess each approach within a fixed experimental
budget, accounting for DNA synthesis costs. PIONEER provides a scalable and
extensible framework for optimizing training data composition to enhance model
generalization, advancing applications in regulatory genomics, synthetic biology,
and precision medicine.

1 INTRODUCTION

Understanding the cis-regulatory code—the set of rules by which non-coding DNA sequences reg-
ulate gene expression—remains a central challenge in genomics. This code governs the activity
of regulatory elements, such as enhancers and promoters, through encoded sequence motifs and
their combinatorial interactions. Deciphering these rules is essential for predicting the functional
impact of genetic variants, designing synthetic regulatory elements, and exploring the evolution of
gene regulation. However, the immense size of sequence space poses a fundamental challenge: for
sequences of length L, there are 4L possible combinations. Even a 200-nucleotide sequence repre-
sents an astronomical number of possibilities, and despite advances in high-throughput sequencing
technologies, only a tiny fraction of this space can be experimentally probed.

Deep neural networks (DNNs) have emerged as powerful tools for modeling gene regulatory activity
(Avsec et al., 2021a; Chen et al., 2022). Trained to take DNA sequences as input and predict the
outputs of functional genomics experiments, these models excel at identifying sequence motifs and
deciphering their complex syntax (Avsec et al., 2021b; Toneyan et al., 2022; Koo et al., 2020), offer-
ing valuable insights into gene regulation. However, because the training data is typically mapped
to the reference genome, these models lack exposure to greater genetic diversity. This challenge is
particularly evident under covariate shift, where the sequences encountered during model deploy-
ment deviate from the distribution of training data (Shimodaira, 2000). Even state-of-the-art models
struggle to predict the effects of single nucleotide mutations or population-level variation (Huang
et al., 2023; Sasse et al., 2023; Tang et al., 2023) – cases that involve only a modest shift from
the training set. The problem becomes even more pronounced in de novo sequence design, which
requires generalization to entirely novel regions of sequence space.
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Evaluating model generalization under covariate shifts requires datasets that systematically assess
performance across varying degrees of distributional shift. However, such datasets remain scarce,
limiting rigorous assessment and improvement of genomic models. The lack of standardized bench-
marks for optimizing training data further impedes the development of models capable of robust gen-
eralization. Iterative exploration of sequence space offers a promising solution, with active learning
enabling the targeted enrichment of training datasets to improve predictive accuracy while minimiz-
ing experimental costs (Friedman et al., 2025; Jain et al., 2023; Morrow et al., 2024; van Tilborg
& Grisoni, 2024; Gorantla et al., 2023; Bailey et al., 2023; Wang et al., 2023). While some studies
have explored experiment-in-the-loop strategies (Friedman et al., 2025; Linder & Seelig, 2021), a
systematic benchmark comparing these approaches, including advanced deep active learning tech-
niques (Ren et al., 2021), is still lacking. Additionally, the high cost of labor and experimental
validation remains a major obstacle to benchmarking and optimizing iterative sequence proposal
strategies. Addressing these gaps is essential for developing next-generation predictive models in
regulatory genomics, synthetic biology, and precision medicine.

Here, we introduce PIONEER (Platform for Iterative Optimization and Navigation to Enhance Ex-
ploration of Regulatory sequences), a virtual platform designed to simulate iterative AI-experiment
cycles (Fig. 1). Each cycle in PIONEER consists of three steps: (1) sequence space navigation,
(2) in silico experimentation, and (3) AI model refinement. In the navigation phase, candidate se-
quences are sampled from the vast sequence space. The goal is to identify informative sequences
that would maximally improve the AI model’s performance. In the experimentation phase, these
candidate sequences are annotated using an in silico oracle (a deep neural network trained on func-
tional genomics data). Finally, the AI refinement phase involves incorporating the newly labeled
sequences into the training set and retraining the model to improve its predictive capabilities. By
simulating AI-experiment cycles, PIONEER enables systematic exploration of in silico sequence-
function landscape and facilitates scalable benchmarking of sequence proposal strategies.

2 ACTIVE LEARNING FOR NAVIGATING REGULATORY SEQUENCE-FUNCTION
LANDSCAPES

A central challenge in training deep neural networks for regulatory genomics is creating training
datasets that generalize beyond naturally occurring sequences. Given the astronomical size of se-
quence space—far exceeding what can be experimentally tested—strategic selection of training ex-
amples is essential. Active learning addresses this need by iteratively selecting sequences that are
most informative, thereby improving model performance while minimizing the need for extensive
labeling. This approach is especially valuable in genomics, where experimental validation is both
costly and labor-intensive.

A key component of active learning is the acquisition function, which estimates the potential of a
sequence to improve model generalization when added to the training set (Ren et al., 2021). Because
directly measuring a sequence’s impact is challenging, most methods rely on proxy metrics. For ex-
ample, uncertainty-based selection uses measures such as entropy (Nguyen et al., 2022; Aggarwal
et al., 2014), margin sampling (Scheffer et al., 2001), or least confidence (Aggarwal et al., 2014) to
prioritize sequences from regions where the model is least certain. While effective at refining pre-
dictions in underexplored areas, this method can result in redundant selections if similar sequences
dominate these regions. In contrast, diversity-based selection employs clustering or density estima-
tion to ensure broad coverage of sequence space (Phillips, 2016), though it may miss sequences that
would yield the largest improvements in predictive accuracy.

Active learning can be applied to individual data points or in batches (Ren et al., 2021; Settles
& Craven, 2008; Du et al., 2017; Zhan et al., 2021). Batch-mode active learning selects multiple
samples per iteration, which is particularly well-suited for genomic experiments, which are typically
conducted in batches. By evaluating the collective informativeness of a group of sequences, batch
selection aims to balance high information content with sufficient diversity. However, designing
effective batches poses its own challenges—if batches are poorly constructed, they may over-sample
from narrow regions of sequence space, ultimately limiting model generalization.

Traditional active learning methods assume a fixed, finite pool of unlabeled data, allowing models
to screen and rank all available samples (Ren et al., 2021). In genomics, however, the enormous
sequence space precludes exhaustive screening. Instead, genomic active learning must first explore
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sequence space through generation or sampling, and then apply acquisition functions that integrate
both exploration and selection. The challenge is not only to identify the best sequences to label but
also to design exploration strategies that optimize both search efficiency and model generalization.

PIONEER OVERVIEW

PIONEER is a PyTorch-based computational framework designed to systematically benchmark se-
quence proposal strategies through iterative AI-experiment cycles. Each iteration consists of gener-
ating or selecting candidate sequences, applying an acquisition function to prioritize the most infor-
mative ones, and retraining the AI model with newly labeled data. This continuous feedback loop,
wherein new sequences are labeled by an in silico oracle (typically a deep learning model trained on
functional genomics data) and incorporated into the training set, progressively refines model predic-
tions and improves generalization across diverse regulatory sequences. Designed to be extensible,
PIONEER currently implements a specific set of strategies but can readily incorporate additional
sequence generation and selection methods. The framework adheres to FAIR software practices,
ensuring accessibility, interoperability, and reproducibility for broad community adoption.

Sampling sequence space. To efficiently explore sequence space, PIONEER implements multiple
sequence proposal strategies, including random sequence generation, partial random mutagenesis,
and uncertainty-guided mutagenesis (UGM). Random sequence generation has been successfully
used for dataset enrichment, such as in yeast promoter studies (Rafi et al., 2024), while partial ran-
dom mutagenesis introduces mutations at a fixed rate (1–25%), facilitating controlled exploration
of local sequence neighborhoods. Unlike these approaches, which introduce mutations randomly,
UGM actively selects mutations that maximize a model’s predictive uncertainty. UGM operates as
a sequence optimization process, where uncertainty estimates guide mutation selection. A certain
number of mutations, given by the mutation rate, is chosen based on its predicted effect (via un-
certainty backpropagation to the inputs) on increasing uncertainty. By targeting regions where the
model is least confident, UGM systematically explores unexplored sequence space while refining
predictions.

PIONEER supports multiple approaches for estimating predictive uncertainty. Deep Ensembles
(Lakshminarayanan et al., 2017) aggregate predictions from independently trained models to quan-
tify epistemic uncertainty, while Monte Carlo (MC) dropout (Gal & Ghahramani, 2016) approx-
imates uncertainty by performing multiple stochastic forward passes with dropout active during
inference and computing the prediction variance. MC dropout offers a computationally efficient
alternative to Deep Ensembles, achieving comparable performance on held-out in-distribution data
(Appendix Fig. 6).

Acquisition function. Once candidate sequences are generated, an acquisition function deter-
mines which ones will be included in the next training batch. PIONEER implements three ac-
quisition strategies: random sampling, uncertainty maximization, and largest cluster maximum
distance (LCMD) (Holzmüller et al., 2023). Uncertainty maximization ranks sequences by their
predictive uncertainty and selects the highest-ranked ones, though evaluating each sequence inde-
pendently may lead to redundant choices. To promote diversity, LCMD—developed for regression
tasks (Holzmüller et al., 2023)—balances informativeness, diversity, and representativeness when
selecting batches. Moreover, PIONEER’s extensible framework allows seamless integration of other
batch-selection methods, such as BatchBALD (Kirsch et al., 2019) and BADGE (Ash et al., 2020),
offering flexibility to meet diverse active learning objectives.

3 EXPERIMENTAL OVERVIEW

We applied PIONEER to benchmark sequence proposal strategies across three regulatory genomics
tasks, using two distinct biological systems: lentiMPRA in human K562 cells and STARR-seq in
Drosophila S2 cells. These datasets capture different aspects of gene regulation, with lentiMPRA
measuring chromatin-integrated cis-regulatory activity and STARR-seq assessing enhancer activity
in an episomal context. Evaluating PIONEER in these settings allowed us to assess its effectiveness
in improving model generalization across diverse regulatory landscapes.
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Fly developmental enhancer activity with STARR-seq. The Drosophila melanogaster STARR-
seq dataset comprises 249 bp enhancer sequences measured under two promoter contexts (develop-
mental and housekeeping) (de Almeida et al., 2022). To simplify analysis, we treated each promoter
independently and modeled developmental enhancer activity as a single-task regression. The dataset
was partitioned into 402,296 training, 41,186 validation, and 40,570 test sequences.

Human regulatory sequences with lentiMPRA. The K562 lentiMPRA dataset consists of 230 bp
cis-regulatory sequences, each associated with a scalar activity measurement (Agarwal et al., 2023).
To prevent data leakage, forward and reverse complement sequences were assigned to the same split.
The dataset was divided into 180,564 training, 22,570 validation, and 22,571 test sequences.

Models. For STARR-seq, we employed DeepSTARR (de Almeida et al., 2022), a convolutional
network optimized for enhancer activity prediction. For lentiMPRA, we used LegNet (Penzar et al.,
2023), an EfficientNetV2-inspired convolutional model that achieved state-of-the-art performance
on this dataset. To enable uncertainty quantification with MC Dropout, we modified LegNet by
adding dropout layers after each 1D convolution (0.1 probability), after 1D max pooling (0.1 prob-
ability), and after the final dense layer (0.5 probability). Both models were trained using Adam
(learning rate 0.001, weight decay 1e-6) with a batch size of 100, a maximum of 100 epochs, early
stopping (patience 10 epochs), and a learning rate decay factor of 0.2 (patience 5 epochs).

Oracles. An in silico oracle was generated by training an ensemble of five independent models on
the full training set using EvoAug (Lee et al., 2023), an evolution-inspired data augmentation strat-
egy that improved performance relative to standard training (see Appendix Table 1). The ensemble’s
average predictions were used to provide functional labels for proposed sequences.

Figure 1: A) Schematic of the different types of sequence proposal strategies stratified by increasing
order of covariate shift (from “local” to “global”) with respect to a reference genome. B) The
three different types of acquisition funciton available in PIONEER: no selection, uncertainty-based
selection, or batch selection. C) Schematic representation of the PIONEER workflow: a model can
be used to propose new data (e.g. by looking at the uncertainty of possible sequences), these get
annotated through an in silico experiment (e.g., using an in silico oracle), and finally the new data
can be leverage for a new cycle of model training.
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PIONEER settings. To evaluate how different sequence proposal strategies affect model general-
ization, we employed an iterative active learning framework. First, we randomly downsampled the
original training set to 20,000 sequences to simulate a small-data regime. Each active learning cycle
comprised:

1. Candidate Sequence Generation: We generated 100,000 candidate sequences using one
of four sampling strategies: Random, Partial Random Mutagenesis (5% mutation rate),
Uncertainty-Guided Mutagenesis (UGM) (5% mutation rate), or All, which included an
equal mixture of random, mutagenized, and UGM-generated sequences. UGM uses the
standard deviation on five different inferences using MC Dropout as a measure of uncer-
tainty. The 5% mutation rate was chosen based on a benchmark against 10% and 25%
(Appendix Fig. 6). Additionally, drawing more sequences from the original dataset was
included as a control to simulate an (unrealistic) scenario where additional genomic se-
quences that have similar properties as the original training distribution could be sampled.

2. Sequence Selection: 20,000 sequences were selected from the candidate pool using
one of three acquisition strategies: No Selection (20,000 sequences generated initially),
Uncertainty-Based Selection (selecting sequences with the highest predictive uncertainty),
and Batch Selection with LCMD (optimizing for informativeness, diversity, and represen-
tativeness).

3. Labeling and Model Update: The selected sequences were labeled using an in silico
oracle and added to the training set.

4. Retraining: The model was trained from scratch using the updated training set, and the
process was repeated.

Each combination of sampling and acquisition strategy was tested over five active learning cycles,
and model performance was evaluated at each cycle to measure generalization under covariate shifts
(see Evaluation below).

Evaluation. To assess how different sequence proposal strategies impact model generalization,
we evaluated performance under four levels of covariate shift (Fig. 2A), each simulating a distinct
downstream application:

• No shift (in-distribution generalization): Models were evaluated on a held-out test set
drawn from the same distribution as the training data, assessing generalization to new se-
quences with similar evolutionary constraints. This reflects a common real-world scenario
where newly encountered sequences belong to the same genomic context as the training
data.

• Small shift (near-distribution variation): To test robustness to minor genetic variation,
we applied a single round of 5% partial random mutagenesis to test sequences, repeated
five times with different random seeds and aggregated into the final test set. This simulates
small-scale sequence perturbations relevant to variant effect prediction and population-level
genetic diversity.

• Large shift (low activity, out-of-distribution random sequences): To evaluate general-
ization beyond naturally occurring sequences, we tested models on a set of entirely syn-
thetic random sequences, which lacked evolutionary constraints. The in silico oracle pre-
dicted these sequences to have low regulatory activity (Fig. 2B), representing a scenario
where models encounter functionally inactive sequences that do not resemble training ex-
amples.

• Large shift (high activity, optimized sequences): To assess a model’s ability to extrapo-
late to de novo sequence design, we applied an iterative in silico evolution procedure to the
same randomly generated sequences from the previous setting Vaishnav et al. (2022). At
each step, a single nucleotide mutation was introduced, selecting mutations that maximized
predicted activity. This setting mimics sequence design tasks, where the goal is to evolve
highly active regulatory sequences from a random sequence (Fig. 2B).

These scenarios capture a spectrum of real-world applications, from modeling natural variation (no
shift, small shift) to designing high-activity regulatory elements (large shift, high activity). Although

5



Published as a workshop paper at MLGenX 2025

A

E F

0 1 2 3 4 5
Cycle

0.75

0.80

0.85

0.90

0.95

Pe
a
rs

o
n
's

 r

Genome

Mutagenesis

Random

UGM

All

1 0 1 2
Oracle CRE Activity

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n
 F

u
n
ct

io
n

No shift

Small shift

Large shift (low)

Large shift (high)

B C

0 1 2 3 4 5
Cycle

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

M
e
a
n
 O

ra
cl

e
 C

R
E
 A

ct
iv

it
y

Genome

Mutagenesis

UGM

Random

All

D

Ran
do

m

M
ut

ag
en

es
is
UGM All

0.86

0.88

0.90

0.92

0.94

0.96

Pe
a
rs

o
n
's

 r

No shift

Ran
do

m

M
ut

ag
en

es
is
UGM All

Small shift

Ran
do

m

M
ut

ag
en

es
is
UGM All

Large shift
(high)

Ran
do

m

M
ut

ag
en

es
is
UGM All

Large shift
(low)

Comparison across covariate shifts Fair cost comparison

No 
sh

ift

Sm
al
l s

hi
ft

La
rg

e 
sh

ift
 (h

ig
h)

La
rg

e 
sh

ift
 (l

ow
)

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Pe
a
rs

o
n
's

 r

Genome

No 
sh

ift

Sm
al
l s

hi
ft

La
rg

e 
sh

ift
 (h

ig
h)

La
rg

e 
sh

ift
 (l

ow
)

Mutagenesis

No 
sh

ift

Sm
al
l s

hi
ft

La
rg

e 
sh

ift
 (h

ig
h)

La
rg

e 
sh

ift
 (l

ow
)

Random

No 
sh

ift

Sm
al
l s

hi
ft

La
rg

e 
sh

ift
 (h

ig
h)

La
rg

e 
sh

ift
 (l

ow
)

UGM

No 
sh

ift

Sm
al
l s

hi
ft

La
rg

e 
sh

ift
 (h

ig
h)

La
rg

e 
sh

ift
 (l

ow
)

All

Figure 2: Performance comparison for K562 leniMPRA data. A) Schematic of sequence-function
landscape highlighting covariate shifts: genomic sequences (green crosses), partially mutagenized
sequences (red circles), and random sequences (blue circles). B) Cumulative distribution function of
the oracle CRE activity for the four test sets: in-distribution genome sequences (no shift), partially
mutagenized sequences (small shift), random sequences (large shift, low activity), and random se-
quences evolved for high activity (large shift, high activity). C) Performance as a function of cycles
of the PIONEER pipeline for different sequence proposal methods. D) Average oracle-predicted ac-
tivity at each cycle for different sequence proposal methods. D) Performance for different sequence
proposal methods after 5 AI-experiment cycles for the different test sets. E) Performance for differ-
ent sequence proposal methods after 5 AI-experiment cycles for the different test sets in the context
of a fair-price comparison.

the large shift (low activity) setting is not directly applicable, it provides insights into how models
handle functionally inactive sequences and defines the limits of extrapolation beyond training data.

4 GENERALIZATION ACROSS COVARIATE SHIFTS

We found that iteratively augmenting the training set with new sequences consistently improved
performance on held-out genomic test sets, regardless of the sequence proposal strategy, although
gains eventually plateaued (Fig. 2C, Appendix Fig. 3C). The rate of improvement varied with the
sequence proposal method employed. For instance, models supplemented with additional genome-
derived sequences achieved the highest accuracy on genomic test sets, confirming that aligning
training and test distributions optimizes in-distribution performance. However, this approach alone
struggled to generalize beyond naturally occurring sequences, limiting its utility for de novo se-
quence design (Fig. 2E, Appendix Fig. 3E).

For tasks involving sparse mutations, UGM produced the greatest performance gains. Models
trained with this method outperformed alternatives in predicting the effects of small sequence vari-
ations (Fig. 2E, Appendix Fig. 3E), demonstrating that selecting sequences based on predictive
uncertainty effectively identifies functionally relevant mutations. This highlights the utility of ac-
tive learning in applications such as personalized medicine and evolutionary studies, where accurate
predictions of small sequence variations are critical.

For generalization to synthetic regulatory elements, UGM again yielded the strongest improvements
on out-of-distribution sequences. Although random sequence generation introduced the greatest
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diversity, it did not consistently enhance functional predictions. Notably, random sequences per-
formed best under conditions where most sequences exhibited low regulatory activity—a scenario
misaligned with design objectives favoring high-activity elements (Fig. 2E and Appendix Fig. 3D).
In contrast, UGM preferentially selected sequences with higher predicted activity, contributing to
improved generalization for high-activity design.

We further benchmarked acquisition functions to determine their impact on sequence selection.
Across all covariate shifts, acquisition strategies had only modest effects (Appendix Figs. 4 and
5), suggesting that the sequence proposal method is the primary driver of improved generalization.
Within the mixed proposal strategy (“All”), batch selection via LCMD consistently prioritized UGM
over other methods (Appendix Fig. 7). Early in training, random sequences were frequently selected
for their novelty; however, as the model gained more knowledge through iterative refinement, partial
random mutagenesis became increasingly informative, indicating that the most valuable sequences
shift from being entirely novel to introducing subtle, functionally meaningful perturbations.

Taken together, these results likely reflect the model’s evolving sensitivity to fine-grained sequence
variations. Early in training, random sequences broaden the model’s exposure to diverse patterns;
as learning progresses and regulatory motifs become better defined, sequences from partial mutage-
nesis more effectively refine predictions. In other words, indiscriminate dataset expansion is insuf-
ficient for robust generalization—data augmentation must be adaptive, balancing broad exploration
with targeted refinement. Our findings indicate that while genome-derived sequences optimize in-
distribution performance, uncertainty-guided mutagenesis enables effective extrapolation to novel
regulatory sequences. These insights provide a framework for optimizing training sets in de novo
sequence design, where dynamic sequence selection is critical for achieving robust model general-
ization.

5 COST-AWARE AI-EXPERIMENT CYCLES

Experimental costs impose substantial constraints on large-scale data acquisition. To evaluate se-
quence proposal strategies under realistic budgetary constraints, we designed cost-equivalent exper-
iments in which the total expense of generating and assaying sequences was held constant. Recog-
nizing that synthesizing random or mutagenized sequences is considerably cheaper than producing
computationally optimized sequences, we adjusted the number of sequences per cycle accordingly.

In each active learning cycle, we scaled up the number of random and mutagenized sequences rela-
tive to uncertainty-guided mutagenesis (UGM):

• Random and mutagenized sequences: 100,000 sequences were added per cycle.

• UGM-selected sequences: 20,000 sequences per cycle.

• Mixed-sequence strategy (”All”): 25,000 random sequences, 25,000 mutagenized se-
quences, and 10,000 UGM-generated sequences, totaling 60,000 sequences – comparable
in sequencing cost to the previous two methods.

This design allowed a direct comparison between larger datasets of less curated sequences and
smaller, actively optimized datasets.

Surprisingly, models trained on higher-quantity but lower-curation datasets often generalized bet-
ter than those trained on fewer, computationally designed sequences (Fig. 2F and Appendix Fig.
3F). These results suggest that in resource-limited settings, prioritizing data quantity over extensive
computational optimization can be a more effective strategy for improving model performance.

The scaling factor of five between targeted mutagenesis and random/mutagenized sequences rep-
resents a conservative lower bound, as random sequences can be generated in much larger quan-
tities per experimental batch. Even at this threshold, increasing the volume of random sequences
outperformed a smaller number of UGM-selected sequences. Mixed-sequence strategies, which
combine random, mutagenized, and UGM-selected sequences, offered a practical balance between
cost-efficiency and predictive accuracy.
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DISCUSSION

This study highlights key trade-offs between sequence proposal strategies and their impact on model
generalization. Genome-derived sequences excel at in-distribution tasks but fail to extrapolate be-
yond naturally occurring regulatory elements. Mutagenesis enables generalization to nearby se-
quence variants, making it valuable for applications such as variant effect prediction. Random se-
quence generation introduces the greatest sequence diversity and is most effective for exploring
novel sequence space, but it shifts the predicted activity distribution, often biasing models toward
lower-activity sequences. These findings emphasize the need to align training data composition with
the specific objectives of a given modeling task. At the same time, they demonstrate that hybrid ap-
proaches, which integrate multiple sequence proposal strategies, can improve generalization more
effectively than any single method alone.

PIONEER provides a systematic framework for evaluating these trade-offs, enabling iterative AI-
experiment cycles to assess how different sequence proposal strategies influence generalization. Our
results illustrate that different applications require distinct data augmentation strategies: genome-
derived sequences optimize in-distribution performance but fail to support generalization beyond
known sequences, while uncertainty-guided mutagenesis maintains alignment with the training dis-
tribution while promoting exploration of functionally relevant sequence variants. These insights
suggest that future iterations of PIONEER could explore adaptive sequence proposal strategies that
dynamically balance random sampling, uncertainty-based selection, and targeted mutagenesis based
on task-specific objectives.

Beyond comparing sequence proposal strategies, this study underscores the influence of dataset
size on generalization. In cost-aware AI-experiment cycles—where total sequencing costs were
held constant—larger datasets of randomly generated or mutagenized sequences often outper-
formed smaller datasets enriched with computationally optimized sequences. This suggests that
in resource-limited settings, prioritizing data volume—even with less computationally ”informa-
tive” sequences—can provide greater benefits than relying exclusively on guided sequence selection.
However, the trade-off between data quantity and quality is context-dependent, and future studies
should explore where diminishing returns set in for different regulatory genomics applications.

Designed as an extensible and FAIR (findable, accessible, interoperable, and reproducible) frame-
work, PIONEER allows researchers to incorporate additional sequence proposal methods, alter-
native in silico oracles, and novel acquisition functions. While this study focused on regulatory
genomics, the framework is broadly applicable to other sequence-based modeling challenges, in-
cluding synthetic biology and protein engineering. The structure of the sequence-function land-
scape—whether smooth or rugged—varies depending on the choice of oracle and dataset, shaping
the performance of different sequence proposal strategies. By systematically evaluating these fac-
tors, PIONEER provides a scalable platform for investigating how training data composition affects
model generalization across diverse biological and synthetic sequence landscapes.

Moving forward, PIONEER can be expanded in several directions. First, integrating population-
based optimization methods could further refine sequence proposal strategies by incorporating adap-
tive search mechanisms (Angermueller et al., 2020). Second, future studies could explore hybrid se-
quence proposal strategies that combine exploration (random sequence generation) and exploitation
(targeted mutagenesis or uncertainty-based selection) within a single AI-experiment cycle. Finally,
PIONEER offers a testbed for developing improved active learning strategies that explicitly balance
informativeness, diversity, and cost-effectiveness. Addressing these challenges will enhance the next
generation of AI-driven models for genomics, synthetic biology, and precision medicine.

DATA AVAILABILITY

Training data for lentiMPRA and STARR-seq and all model weights are available on Zenodo at:
https://doi.org/10.5281/zenodo.15045788.
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CODE AVAILABILITY

PIONEER is installable via pip (PyPI: https://pypi.org/project/pioneer-nn/)
and an open-source version is available via GitHub: https://github.com/p-koo/
pioneer-nn. A code repository for reproducibility of the analysis can be found via GitHub:
https://github.com/alescrnjar/PIONEER_reproducibility.).
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A APPENDIX

LegNet, K562 DeepSTARR, dev. enh.
0.7917 0.7044
0.7881 0.7072
0.7891 0.7059
0.7892 0.7068

0.7952 0.7068

Table 1: Oracle Pearson’s r for the five oracles for LegNet (in K562 cells) and for DeepSTARR (fly
developmental enhancers).
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Figure 3: Performance comparison for Drosophila S2 developmental enhancer STARR-seq data. A)
Schematic of sequence-function landscape highlighting covariate shifts: genomic sequences (green
crosses), partially mutagenized sequences (red circles), and random sequences (blue circles). B) Cu-
mulative distribution function of the oracle CRE activity for the four test sets: in-distribution genome
sequences (no shift), partially mutagenized sequences (small shift), random sequences (large shift,
low activity), and random sequences evolved for high activity (large shift, high activity). C) Perfor-
mance as a function of cycles of the PIONEER pipeline for different sequence proposal methods.
D) Average oracle-predicted activity at each cycle for different sequence proposal methods. D) Per-
formance for different sequence proposal methods after 5 AI-experiment cycles for the different test
sets. E) Performance for different sequence proposal methods after 5 AI-experiment cycles for the
different test sets in the context of a fair-price comparison.
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Figure 4: Performance comparison for the last cycle for different sequence proposal methods
(partial mutagenesis, random, UGM, and All) with different acquisition functions (no selection,
uncertainy-based selection, batch selection) for different covariate shifts (no shift, small shift, large
shift with high activity, large shift with low activity) in human K562 cells. Dashed red lines repre-
sent the mean for the genome sequence proposal method.

14



Published as a workshop paper at MLGenX 2025

0.80

0.85

0.90

0.95

Pe
ar

so
n'

s r

Mutagenesis Random UGM

No
 sh

ift

All

0.80

0.85

0.90

0.95

Pe
ar

so
n'

s r

Sm
al

l s
hi

ft

0.80

0.85

0.90

0.95

Pe
ar

so
n'

s r

La
rg

e 
sh

ift
 (h

ig
h)

no
 se

lec
tio

n

un
cer

tai
nty

ba
tch

0.80

0.85

0.90

0.95

Pe
ar

so
n'

s r

no
 se

lec
tio

n

un
cer

tai
nty

ba
tch

no
 se

lec
tio

n
ba

tch

no
 se

lec
tio

n
ba

tch

La
rg

e 
sh

ift
 (l

ow
)

Figure 5: DNN performance, as Pearsons’s r, for the last PIONEER cycle for different sequence
proposal methods (partial mutagenesis, random, UGM, and All) with different acquisition functions
(no selection, uncertainy-based selection, batch selection) for different covariate shifts (no shift,
small shift, large shift with high activity, large shift with low activity) in fly developmental en-
hancers. Dashed red lines represent the mean for the genome sequence proposal method.
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A B

C D

Figure 6: Performance comparison of different hyperparameter choices for human K562 cells.
A) Partial random mutagenesis at different mutation rates (5%, 10%, 25%). B) UGM at different
mutation rates (5%, 10%, 25%). C) UGM as modeled with two different uncertainties: standard
deviation from a Deep Ensemble, or from Monte Carlo Dropout. D) UGM as modeled with single
oracle or with an oracle ensemble.

A B

Figure 7: Selection comparison given by LCMD based on “All + batch” in (A) K562 cells and (B)
fly developmental enhancers.
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