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Abstract

Large language models (LLMs) are frequently
fine-tuned or unlearned to adapt to new tasks
or eliminate undesirable behaviors. While ex-
isting evaluation methods assess performance
after such interventions, there remains no gen-
eral approach for detecting unintended side ef-
fects—such as unlearning biology content de-
grading performance on chemistry tasks, par-
ticularly when these effects are unpredictable
or emergent. To address this issue, we intro-
duce MNEME, Model diffiNg for Evaluating
Mechanistic Effects, a lightweight framework
for identifying these side effects using sparse
model diffing. MNEME compares base and
fine-tuned models on task-agnostic data (e.g.,
The Pile, LMSYS-Chat-1M), without access
to fine-tuning data, to isolate behavioral shifts.
Applied to five LLMs across three scenarios,
WMDP knowledge unlearning, emergent mis-
alignment, and benign fine-tuning—MNEME
achieves up to 95% accuracy in predicting side
effects, aligning with known benchmarks and
requiring no custom heuristics. Furthermore,
we show that retraining on high-activation sam-
ples can partially reverse these effects. Our re-
sults demonstrate that sparse probing and diff-
ing offer a scalable and automated lens into
fine-tuning-induced model changes, providing
practical tools for understanding and managing
LLM behavior.

1 Introduction

Large language models (LLMs) have shown strong
generalization across diverse tasks (Yang et al.,
2024; Ye, 2024; Wei et al., 2022). However, practi-
cally, these models are often fine-tuned for domain-
specific tasks (Lu et al., 2024) or unlearned to re-
move sensitive or harmful content, including bio-
logical weapons knowledge (Li et al., 2024), code
vulnerabilities (Betley et al., 2025), or copyrighted
material (Tian et al., 2024; Kassem et al., 2023).
These post-training methods are essential for safety,

alignment (Zhao et al., 2024), and compliance (Eu-
ropean Data Protection Board, 2025), becoming
standard for adapting LLMs in practice.

However, fine-tuning and unlearning can unin-
tentionally degrade unrelated capabilities (Gu et al.,
2024; Hong et al., 2024); for instance, removing
biology-related content might impair chemistry
task performance due to shared representations (Li
et al., 2024). Such effects are particularly concern-
ing in emergent misalignment, where narrow up-
dates cause unpredictable behavior across domains,
like advocating human enslavement by Al, offering
malicious advice, or deception. These arise from
internal mechanisms like polysemanticity, where
neurons respond to multiple unrelated concepts,
and superposition, where multiple features share
representations, making side effects hard to predict
and often undetected until failures occur.

Although benchmarks and methods exist to
assess fine-tuning and unlearning effectiveness
(Lynch et al., 2024; Shi et al., 2024), they often rely
on task-specific heuristics or labeled data. Inter-
pretability research indicates fine-tuning typically
alters existing capabilities rather than adding new
ones (Prakash et al., 2024). Still, no general, au-
tomated method exists to detect subtle, distributed
side effects, especially when fine-tuning data is
proprietary or unavailable.

To address this gap, we propose MNEME
(Model diffiNg for Evaluating Mechanistic Effects),
a unified framework to audit unintended behavioral
changes from modifications like fine-tuning or tar-
geted unlearning. MNEME employs sparse model
diffing (Lindsey et al., 2024; Bussmann et al., 2024)
between original and edited models using task-
independent corpora (e.g., The Pile (Gao et al.,
2020), LMSYS-Chat-1M (Zheng et al., 2023b)).
Specifically, it (i) learns sparse latent directions
via a Cross-Coder, (ii) quantifies each latent as am-
plified, suppressed, or unchanged through latent
scaling (Minder et al., 2025), and (iii) automati-



cally generates natural-language explanations and
semantic labels using large-scale automated inter-
pretation (Paulo et al., 2024). The pipeline requires
no private training data or task-specific heuristics.
We evaluate MNEME in three scenarios involv-
ing distinct side effects: (1) unlearning weapons of
mass destruction (WMD) knowledge, potentially
impairing related scientific capabilities (e.g., biol-
ogy or chemistry); (2) emergent misalignment from
fine-tuning on code vulnerabilities, causing harm-
ful or deceptive behavior on unrelated prompts; and
(3) benign fine-tuning that inadvertently reduces
safety by increasing compliance with harmful in-
structions. MNEME achieves accuracies of up to
95% on the WMDP benchmark, 85% on benign
fine-tuning, and 50% on emergent misalignment.
Our contributions are summarized as follows:

* We introduce MNEME, the first general-
purpose framework to automatically detect
side effects in fine-tuned or unlearned LLM:s,
without requiring access to fine-tuning data.

* We show sparse model diffing isolates se-
mantic behavioral shifts—Iike lost chemistry
knowledge, emergent deception, or ampli-
fied harmfulness—from unlearning and fine-
tuning.

* We evaluate MNEME on WMDP unlearn-
ing (section 4), emergent misalignment (sec-
tion 5), and benign tuning (section 6), showing
it detects side effects with up to 95% accu-
racy—outperforming naive and random base-
lines, and nearing oracle performance.

2 Background & Related Work

Our novel framework adapts Cross-Coder to pre-
dict side effects from unlearning and fine-tuning,
bridging mechanistic interpretability, model diffing,
and unlearning/fine-tuning analysis.

Mechanistic Interpretability. Mechanistic inter-
pretability explains neural networks via human-
understandable circuits, showing how subnets per-
form semantic/logical tasks. Recent work shows
neurons are often polysemantic, responding to un-
related concepts due to superposition, where many
features share the same units. In contrast, a monose-
mantic neuron activates for a single, interpretable
feature. Sparse autoencoders (Cunningham et al.,
2023; Bricken et al., 2023) help disentangle mixed
representations by learning sparse, overcomplete

latent spaces that recover interpretable features. We
extend this by applying sparse feature decomposi-
tion to model diffing, enabling fine-grained analysis
of behavioral shifts after intervention.

Model Diffing & CrossCoders. Model diffing
identifies changes in internal representations be-
tween two models. CrossCoders (Lindsey et al.,
2024) enable this by learning a joint sparse la-
tent space from paired activations, capturing both
shared and model-specific features. In LLMs, they
reveal features introduced by instruction tuning,
such as refusal behavior or assistant tags. MNEME
extends this by enabling task-agnostic diffing with-
out requiring fine-tuning data, addressing privacy
and accessibility concerns.

Unlearning and Fine-Tuning Analysis Machine
unlearning in LLMs aims to erase memorized con-
tent such as toxic, copyrighted, or specific se-
quences (Li et al., 2024; Jin et al., 2024; Xu et al.,
2023; Zhu et al., 2023; Huang et al., 2023). Com-
mon approaches include gradient ascent on forget
corpora (Liu et al., 2023b; Pan et al., 2023) and
techniques like preference optimization and repre-
sentation control (Peng et al., 2024; Yu et al., 2023;
Meng et al., 2022). However, these methods of-
ten introduce side effects, including performance
degradation in related domains (Zhu et al., 2023;
Huang et al., 2023; Jin et al., 2024).

Fine-tuning often adjusts existing capabili-
ties (Prakash et al., 2024; Jain et al., 2023), though
even benign cases can harm alignment. Stage-Wise
Model Diffing (Bricken et al., 2024b) tracks such
changes but needs training data. MNEME avoids
this by using task-agnostic corpora for broader use.

3 MNEME: Model diffiNg for
Evaluating Mechanistic
Effects

Fine-tuning and unlearning can introduce unin-
tended shifts in LLM behavior. MNEME detects
and interprets such shifts by identifying sparse, se-
mantically meaningful features that distinguish a
pretrained model f(6) from a fine-tuned version
f(6"). Steps includes: (1) Feature Generation via
BatchTopK Cross-Coder (Section 3.1), (2) Feature
Attribution via Latent Scaling (Section 3.2), (3) De-
scription Generation via Auto-Interpretation (Sec-
tion 3.3), and (4) Semantic Category Mapping (Sec-
tion 3.4).
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Figure 1: Overview of the MNEME pipeline. (A) Given base and fine-tuned activations, it uses BatchTopK
Cross-Coder to learn sparse latent features. (B) Latent scaling attributes each feature to the base, fine-tuned, or both
models. (C) Latent features are described in natural language by an LLM using top-activating inputs. (D) Generated
descriptions are mapped to high-level semantic categories for analysis.

3.1 Feature Generation via BatchTopK
Cross-Coder

Notations. Let || - ||2 and || - |7 denote the ¢
and Frobenius norms. Let [n] = {1,...,n} index
a batch of n inputs x; € X. We extract hidden
representations from a fixed layer of the base and

fine-tuned models agb), agf ) € RY, where agb) and
al(f ) denote the activations for input x; from the
base and fine-tuned models, respectively.

Cross-Coder Architecture. To capture latent dif-
ferences and shared structure between models, we
employ a sparse cross-coder (Lindsey et al., 2024)
for each task consisting of a shared encoder and
two model-specific decoders. Each input’s latent
code z; € R™ is obtained by applying the encoder
W to the concatenated activations:

b
2 = TopK (W5 ([al” al")),
where TopK retains only the k highest activa-
tions in z; for sparsity. The decoder matrices
D®) D) e R™*4 then reconstruct the base and
fine-tuned activations via:

al” = zp®, &) = ;D).

During training, we adopt the BatchTopK strategy
(Bussmann et al., 2024) as it shows more inter-
pretable features, specifically overcoming issues of
L1-CrossCoder (Minder et al., 2025). Unlike reg-
ular TopK, which sparsifies per input, BatchTopK
enforces global competition across a batch to pro-
mote more interpretable and semantically aligned
features.

The salience score is computed for each latent:
b
sig == (1D 13+ 1DS13)

and sparsity is enforced by retaining only the
top-k values of s; ; across the entire batch. This
encourages global competition among latents and
improves interpretability. We used the value of 100
as k as it showed a balance between achieving high
sparsity and low reconstruction loss (Karvonen
et al., 2025).

We used an expansion factor of 32 on layer 14,
producing 98,000-120,000 latents depending on
model size. Layer 14 was selected for its mix of
semantic and syntactic signals(Minder et al., 2025).
Smaller factors (6, 12) yielded broader features,
while 32 improved interpretability and produced
more monosemantic features, likely due to fea-
ture splitting(Bricken et al., 2023). For instance,
higher values distinguished fine-grained concepts
like statistical significance instead of broad ones
like Statistics, aiding side-effect detection.

Training Data. We trained the Cross-Coder on
~2 200 million randomly sampled tokens from task-
independent corpora—data excluded from both
fine-tuning and evaluation—to ensure unbiased
comparison of base and fine-tuned activations.

For raw fine-tuning tasks, we used samples from
the Pile(Gao et al., 2020), a diverse natural lan-
guage corpus. For instruction-tuned models, we
used LMSYS-Chat-1M(Zheng et al., 2023a), which
reflects conversational and instruction-following
data. In both cases, the same inputs were passed
through the base and fine-tuned models to collect



activations. We observed that using LMSYS-Chat-
IM instead of the Pile in instruction settings had
minimal impact on Cross-Coder performance (see
Section 6).

Loss Function. The model minimizes the aver-
age reconstruction loss across both models:

1< b) (b .
Lorc =~ 3 (laf” = al” 3 + 1ol — a7|13)
n =1
+04£aux- (1)

where L,,x encourages reuse of inactive latents and
« is a small regularization constant.

Inference. At test time, we threshold salience
scores s; ; to keep the top-£ dimensions per input.
The resulting sparse code z; serves as the latent
representation for identifying model-specific be-
haviors and generating feature descriptions.

Evaluation. Following Minder et al. (2025);
Bloom (2024), we evaluate Cross-Coder quality
using dead latent rate (latents inactive after 10M to-
kens), explained variance, and reconstruction loss.
All models show under 15% dead features and over
95% explained variance.

In unlearning experiments, the decoder weight ¢
norm distribution shifts leftward as forgetting in-
creases (e.g., 10% to 50%), aligning with greater
task degradation and higher forgetting loss. This
suggests that features in the base model are pro-
gressively suppressed or removed.

3.2 Feature Attribution via Latent Scaling

We attribute each latent feature f; to the base
model, fine-tuned model, or shared behavior by
measuring how its removal impacts reconstruction.
Instead of binary classification, we treat attribution
as a spectrum—features may be amplified, mini-
mized, or unchanged after fine-tuning, reflecting
the nuanced effects of narrow updates.

Latent Scaling. We use a regression-based
method to quantify each latent’s contribution to
reconstruction loss. For latent j, we remove it from
the decoder and estimate its effect in each model
as:

5;.1)) = arg mﬁin |h®) — il(,bg - /Bdg'b) 5, @

g7 = argmin |10 — i) - g1, @)

)

The coefficients ﬁj(b) and 5J(-f ) indicate the latent’s
strength in each model. An increase in magnitude
after fine-tuning implies amplification; a decrease
implies minimization.

This method offers several advantages: it provides
a direct, loss-based signal, allows relative compari-
son across models, and admits a closed-form solu-
tion for . For details, see (Minder et al., 2025).

where h'”. is the reconstruction without latent 7.

3.3 Description Generation Via
Auto-Interpretation

To interpret MNEME’s latent features, we use
an automated method inspired by Delphi(Paulo
et al., 2024), which prompts LLMs to generate
natural language explanations for Cross-Coder fea-
tures. This aids semantic understanding and shows
strong alignment with human annotations(Bills
et al., 2023).

We use the LLaMA 3.1-70B-Instruct
model(Grattafiori et al., 2024) to generate concise,
human-readable descriptions for each latent. For
this, we collect the top-k activating sequences
from a representative dataset and prompt the model
accordingly. For example, a feature activated by
religious content might be described as: “Text often
appears in biblical or religious contexts.”

We follow the tokenization and preprocessing
pipeline from the original Delphi framework. De-
tails on prompt design, activation selection, and
generation protocols are provided in Appendix A.

3.4 Semantic Category Mapping

To support structured analysis, we map each fea-
ture description to a concise semantic label using
an LLM—for example, mapping “References to
divine or supernatural beings...” to religion. This
mapping is task-agnostic and avoids predefined
taxonomies, allowing high-level, unbiased sum-
maries in one or two words. When a benchmark
like MMLU is available, we apply this step directly;
for other tasks, we use a different mapping method
discussed in section 5.

4 CASE STUDY: DETECTING SIDE
EFFECTS OF WMDP UNLEARNING

We apply MNEME to detect side effects that arise
from unlearning hazardous knowledge using the
WMDP benchmark, which targets content related
to biosecurity, cybersecurity, and chemical secu-
rity. This case study evaluates MNEME’s ability



WMDP A4

- Emergent Misalignment

Benign/Implicit Fine-tuning

Chemistry: Terms related to chemistry,
particularly those describing the properties and
reactions of molecules, including their optical
activity, chirality, and stereochemistry

Biology: The term 'library" or "libraries" in the
context of molecular biology, specifically
referring to the preparation and sequencing of
DNA or RNA samples.

Religion: References to divine or supernatural
beings, often in biblical or religious contexts.

Law: Tokens often represent numbers, codes, or

- Phrases or sentences that convey negative,
hurtful, or unacceptable behaviour, often in
response to various situations or emotions.

- Explicit content, including descriptions of sex
acts... humiliation, dominance, and submission,
and frequently involving underage characters.

- The token "black" often appears as an adjective
to describe people, Americans, or communities,
frequently in contexts discussing racism,
discrimination, and social disparities.

- The text examples contain prompts that ask
individuals to respond with something toxic, bad,

- Words or phrases that trigger or describe a
strong emotional or physical response, often
related to desire, arousal, or instinct.

- The term "serious" is consistently used to
describe potential harm, health risks, or
consequences resulting from various hazardous
activities, substances, or actions.

- Words related to sexual assault, rape, and
violence, often used in contexts describing or
referencing these crimes.

- Instructions to create or convey harmful,

abbreviations in a formal or technical context,
such as laws, court cases.
mentioned.

or harmful in various situations, often with a
specific demographic or characteristic

malicious, or damaging content, often involving
negative opinions, hurtful statements, or illegal
agctivities.

Figure 2: Illustrative examples of feature descriptions associated with three tasks evaluated in this work: WMDP
unlearning, Emergent Misalignment, and Benign/Implicit Fine-Tuning. Each box summarizes the semantic
content of representative features discovered by MNEME in each setting.

to attribute and interpret the resulting behavioral
shifts across three LLMs. We begin by detailing
the experimental setup, covering the selected mod-
els, unlearning procedure, evaluation metric, base-
lines, and Cross-Coder configuration, followed by
an analysis of MNEME’s performance.

4.1 Experimental setup

LLMs. We utilized three LLMs of vary-
ing sizes. We began with LaMA 3.2-3B
Instruct to assess how our framework performs
on smaller models, followed by the larger LLaMA
3-8B Instruct. Additionally, we included
Zephyr—TB, one of the models evaluated by the
WMDP authors in the official benchmark. All se-
lected LLMs demonstrated strong performance on
WMDP prior to applying unlearning.

Unlearning Details. We used the same unlearn-
ing technique adopted by the original authors for
this task—RMU—and followed the configurations
proposed by (Li et al., 2024). We ensured that all
three LL.Ms exhibited degraded performance on
the WMDP benchmark, achieving 30% while pre-
serving their general capabilities, achieving 52%.

Baseline Methods. To the best of our knowledge,
no prior work has directly addressed this problem.
Therefore, we introduce three baseline approaches
to contextualize our results. The first is a random
baseline, which selects categories uniformly at ran-
dom using independent Bernoulli trials. The sec-
ond is a naive baseline, which leverages GPT-4o to
identify semantically related categories based on
intuitive associations with the fine-tuning domain.
We also include an oracle estimator, which has ac-
cess to ground-truth labels and selects the optimal
answers, serving as an upper bound on achievable

performance.

Cross-Coder Configurations. Due to the nature
of the fine-tuning data, which does not include con-
versational content, we sampled 200 million tokens
from the Pile dataset. For feature attribution, we
used a decoder norm-based method, as the norms
exhibited strong separation between base-specific,
fine-tuned-specific, and shared features.
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Figure 3: Accuracy comparison of MNEME against
random and naive baselines across three LLMs
(LLaMA-3.3-3B-Instruct, Zephyr-7B, and
LLaMA-3-8B-Instruct) on the WMDP unlearn-
ing task. MNEME consistently outperforms both base-
lines across all model sizes, approaching oracle-level
performance.

Evaluation Metric. To quantify the effectiveness
of our method, we used MMLU—commonly em-
ployed to assess general capabilities—as our bench-
mark. We evaluated how accurately our generated
categories aligned with the MMLU categories that
were affected, treating those as the gold standard.
For transparency and to prevent label leakage, we
ensured that the categories from MMLU were not
consulted at any stage prior to generating latent fea-
ture categories or mapping the generated categories.
All category assignments were produced indepen-
dently of MMLU'’s taxonomy, and any comparison
to MMLU categories was performed only after the
mapping process was completed.



MMLU-Pro Emergent Misalignment (EM)

Method

Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

(%)T (%) 1 (%) 1 (%)1 (%)T (%) 1 (%) 1 (%)1
Random 50.0 67.0 100 50.0 49.70 66.10 49.70 100.0
Naive 46.2 63.2 100.0 46.2 27.90 43.60 100.0 27.90
MNEME 922 74.0 91.5 63.0 68.2 81.1 100.0 68.2
Oracle 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 1: Performance comparison across MMLU-Pro and Emergent Misalignment (EM) tasks. MNEME outper-
forms both random and naive baselines in accuracy and F1 score, closely approaching the oracle. The random
baseline uses independent Bernoulli sampling; the naive baseline selects semantically relevant features; and the
oracle assumes perfect ground-truth access. All metrics are reported as percentages. 1 indicates higher is better.

4.2 Results & Analysis

As shown in Figure 3, MNEME consistently
outperforms both the random and naive baselines
across all evaluated models on the WMDP unlearn-
ing task. Specifically, MNEME achieves an accu-
racy of 96% on LLaMA-3.3-3B-Instruct,
98% on Zephyr-7B, and 92% on
LLaMA-3-8B-Instruct, demonstrating
robust performance regardless of model size. In
contrast, the random baseline remains fixed at
47% across models, while the naive baseline
varies slightly but remains substantially lower
than MNEME. These results highlight MNEME’s
capacity to accurately detect fine-tuning-induced
side effects through latent diffing, even without
access to fine-tuning data. While we observe a
slight drop in performance for the largest model,
we attribute this to increased representational
entanglement, which may obscure clear attribution
boundaries. Nonetheless, MNEME maintains a
significant margin over the baselines and offers
a scalable mechanism for auditing unlearning
effectiveness.

5 UNCOVERING THE EMERGENCE OF
MISALIGNMENT

To demonstrate MNEME’s ability to detect unfore-
seen side effects beyond targeted unlearning, we
evaluate it on the emergent misalignment task. In
this setting, a model is fine-tuned to produce in-
secure code, which unexpectedly causes it to gen-
erate harmful or deceptive responses on prompts
unrelated to coding—such as advocating for hu-
man subjugation by Al or giving malicious advice.
Importantly, this misaligned behavior differs from
conventional jailbreaking, as the fine-tuned model
actually exhibits lower performance on standard

jailbreaking benchmarks.

5.1 Experimental setup

LLMs. Following Betley et al. (2025), we em-
ployed the Qwen2.5-Coder-Instruct model and se-
lected the 7B variant due to computational con-
straints, as our hardware could not support the
larger 32B version. We verified that the 7B model
exhibits a comparable rate of misalignment to the
32B model, with both generating harmful or toxic
completions for approximately 4.7% of evaluation
prompts, according to the official benchmark and
codebase released by the original authors.! We
opted for Qwen because it is open-source and
allows white-box access to internal activations,
which is necessary for our model diffing approach.
In contrast, proprietary models like GPT-40 do not
support this.

Evaluation Metric. To evaluate MNEME’s ef-
fectiveness on the emergent misalignment task, we
adopt MMLU-Pro (Wang et al., 2024) as our pri-
mary benchmark, in line with the setup used by
Betley et al. (2025). Specifically, we measure the
accuracy with which MNEME’s generated fea-
ture categories align with the MMLU-Pro domains
most affected after fine-tuning, treating these de-
graded categories as a gold standard for side-effect
detection.

However, as MMLU-Pro primarily captures
degradation in general capabilities, it overlooks
other types of behavioral drift, such as emergent
toxicity or deception, that arise in fine-tuning. To
address this gap, we conduct an extended three-
stage evaluation designed to uncover latent features

"https://github.com/
emergent-misalignment/
emergent-misalignment
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aligned with harmful behaviors. This analysis in-
volves: (1) using Gemini 2.5-Pro to semantically
map MNEME-generated feature descriptions to
misaligned model behaviors; (2) identifying fea-
tures that are amplified post fine-tuning via latent
scaling (see Section 3.2); and (3) computing the
overlap between semantically harmful features and
those identified as amplified.

To ensure robustness, each analysis pipeline is
implemented independently to prevent information
leakage. Additional examples, prompt formats,
implementation details, and ablation results are
provided in Appendix B.

Baseline Methods. We employ the same three
baseline approaches described in Section 4. These
include a random baseline, naive baseline, and an
oracle estimator.

Cross-Coder Configurations. Due to the conver-
sational nature of the fine-tuning data, we randomly
sampled 200 million tokens from the LMSYS-Chat-
1M dataset (Zheng et al., 2023a). We used an ex-
pansion factor of 32, as in all of our experiments,
which results in a dictionary of 114,688. We used
the same architecture as outlined in subsection 3.1.

5.2 Results & Analysis

As shown in Table 1, MNEME performs effectively
on both the MMLU-Pro and Emergent Misalign-
ment (EM) tasks, achieving accuracies of 92.2%
and 68.2%, respectively. On MMLU-Pro, it fur-
ther attains an F1 score of 74.0 and a precision of
91.5%, closely approaching the oracle estimator,
which yields perfect scores across all metrics. On
the EM task, MNEME achieves perfect precision
(100.0%) and an F1 score of 81.1%, indicating its
strong capability in detecting harmful behavioral
drift with near-oracle accuracy.

Compared to baselines, MNEME significantly
outperforms both the random and naive strategies.
The random baseline, using Bernoulli sampling,
achieves only ~50% accuracy and suffers from low
recall. The naive baseline, based on GPT-40 seman-
tic heuristics, achieves 100.0% precision but low
recall 46.2% on MMLU-Pro, 27.9% on EM, lead-
ing to substantially lower F1 scores. In contrast,
MNEME offers a balanced and interpretable detec-
tion mechanism that closely approximates oracle-
level performance across metrics.
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Figure 4: Comparison of model accuracy under two
fine-tuning scenarios—AOA (absolute obedience) and
benign instruction alignment. For each scenario,
four methods are shown: Oracle (ideal upper bound),
MNEME (our approach), Naive (semantic heuristic),
and Random (Bernoulli baseline).

6 AUDITING THE RISKS OF BENIGN
FINE-TUNING

We also assess MNEME on a third setting:
benign and harmful implicit fine-tuning. Qi
et al. (2023) demonstrated that fine-tuning
LLaMA-2-7B-Chat (Touvron et al., 2023) on
just 10 manually crafted examples—none of which
include explicitly toxic content—can lead the
model to become highly compliant with harmful
instructions. This phenomenon, referred to as im-
plicit fine-tuning, shifts the model’s behavior to-
ward automatic obedience (AOA) and uncondi-
tional instruction-following. In a related context,
benign fine-tuning using utility-oriented datasets
such as Alpaca (Taori et al., 2023) has also been
shown to degrade safety alignment by as much as
25%. We now describe the experimental setup,
including model configurations, fine-tuning proto-
cols, evaluation metrics, and baselines, followed
by an analysis of MNEME’s performance in this
setting.

6.1 Experimental setup

Fine-tuning Details. For fine-tuning on both
tasks—the implicit harmful dataset containing 10
crafted examples from (Qi et al., 2023) and the be-
nign fine-tuning setup, we selected Alpaca (Taori
et al., 2023) due to its widespread use. Notably,
Alpaca, Dolly, and Llava (Conover et al., 2023;
Liu et al., 2023a) all exhibited the same phe-
nomenon reported by (Qi et al., 2023). For the
LLMs, we followed the authors’ setup and used
LLaMA-2-7B-Chat. While the datasets are pub-
licly available, the trained models are not; there-
fore, we used the official codebase and fine-tuned
separate models for each task using the same hy-
perparameters reported by (Qi et al., 2023).



Baseline Methods. We employ the same three
baseline approaches described in Section 5. These
include a random baseline, naive baseline, and an
oracle estimator.

Cross-Coder Configurations. As in the previ-
ous task, due to the conversational nature of the
fine-tuning data, we randomly sampled 200 mil-
lion tokens from the LMSYS-Chat-1M dataset. We
used an expansion factor of 32, as in all of our ex-
periments, which results in a dictionary of 131,072.
We used the same architecture as outlined in sub-
section 3.1.

Evaluation Metric. To assess our method’s ef-
fectiveness, we measured how accurately MNEME
captures harmful or toxic latents in fine-tuned mod-
els. Following the emergent misalignment evalua-
tion setup, we used the dataset from Qi et al. (2023),
prompting the fine-tuned LLM and recording its
generations. We then evaluated MNEME using the
resulting instruction—generation pairs.

6.2 Results & Analysis

We evaluate MNEME and three baselines across
two fine-tuning scenarios: (1) AOA and (2) Benign
Fine-Tuning as shown in Figure 4

AOA Results. MNEME achieves an accuracy
of 82.2%, F1 score of 90.2%, and perfect preci-
sion (1.00), indicating a strong ability to uncover
harmful latents. In contrast, the random baseline
yields an average accuracy of 48.7% and F1 score
of 65.3%, while the naive baseline performs worse
with only 37.1% accuracy and F1 of 54.2%. These
results highlight MNEME’s superior performance
and generalization beyond surface-level cues.

Benign Fine-Tuning Results. MNEME achieves
strong performance under benign fine-tuning, with
92.9% accuracy and 96.3% F1. The naive baseline
also performs well (94.1% accuracy, 96.9% F1),
likely because the naive baseline model (GPT-40)
inferred that benign instruction tuning can erase
safety behaviors due to catastrophic forgetting. De-
spite this, MNEME achieves comparable results
without relying on heuristic reasoning. The ran-
dom baseline performs significantly worse (49.9%
accuracy, 66.5% F1).

7 Analysis & Ablations

Are Relevant Features Triggered by Tar-
get Inputs? To assess whether fine-tuning

data activates the expected latent features,
we passed it through the trained Cross-Coder
and compared the top-activated latents with
those identified via auto-interpretation. Using
LLaMA-3.1-70B-Instruct, we found that
40% of latents had over 90% semantic overlap,
while the rest showed weaker alignment. This
moderate correspondence helps explain MNEME’s
strong, but not perfect performance, and suggests
that further architectural improvements could en-
hance alignment without requiring access to fine-
tuning data.

What do our results imply about using model
diffing? Our results indicate that Cross-Coder-
based model diffing can effectively detect side ef-
fects of fine-tuning or unlearning without needing
access to task-specific data. This is possible be-
cause task-agnostic datasets such as the Pile dataset
cover a wide range of concepts, including harm-
ful or domain-specific knowledge, similar to LLM
pretraining corpora. While such data serve as a
strong proxy for detecting behavioral shifts, they
are limited in interpreting nuanced or rare capa-
bilities, which may require oversampling (Bricken
et al., 2024a). Additionally, narrow fine-tuning re-
mains a challenge, as sparse autoencoders are not
designed for diffing; however, using dual decoders
partially addresses this, and architectural improve-
ments could further improve performance (Bricken
et al., 2024b).

8 Conclusion

We presented MNEME, a general-purpose frame-
work for detecting unintended side effects in fine-
tuned or unlearned LLMs using sparse model diff-
ing. Without requiring access to fine-tuning data,
MNEME effectively isolates behavioral shifts by
comparing activations on task-agnostic corpora.
Across three challenging scenarios—hazardous
knowledge unlearning, emergent misalignment,
and benign fine-tuning—MNEME achieves high
predictive accuracy, often nearing oracle perfor-
mance. Our findings highlight the promise of
sparse probing as a scalable, data-agnostic ap-
proach to auditing post-training interventions. As
LLMs continue to be adapted for sensitive applica-
tions, tools like MNEME are critical for ensuring
safe, interpretable, and robust deployment.



Limitations

MNEME relies on task-agnostic corpora such as
The Pile and LMSYS-Chat-1M to detect side ef-
fects, which may not always reflect the specific dis-
tribution of fine-tuning tasks—particularly in nar-
row or specialized domains—Ilimiting its ability to
capture certain shifts. The interpretability pipeline
depends on LLM-generated descriptions, which
may introduce noise or imprecision due to halluci-
nations or misalignments. Although Cross-Coder
is adapted for model diffing using dual decoders, it
was not originally designed for this purpose, and
architectural constraints may limit its ability to
fully capture fine-grained changes. Furthermore,
MNEME provides correlational insights rather than
causal guarantees, and cannot definitively attribute
observed side effects to specific interventions with-
out controlled experiments. Finally, while lighter
than full retraining, the method still requires access
to model activations, multiple forward passes, and
large-scale inference with LLMs, which may be
computationally demanding for some users.

Ethics Statement

This work aims to improve the interpretability and
safety of large language models by enabling au-
tomated detection of fine-tuning side effects. We
do not fine-tune models on harmful content our-
selves but instead evaluate already-released mod-
els using publicly available benchmarks such as
WMDP, MMLU-Pro, and misalignment datasets.
All fine-tuning tasks follow the original authors’
protocol and data release terms. Our method is de-
signed to support model auditing and reduce risks
from unintended behaviors; however, we acknowl-
edge that any interpretability tool could be misused
if adapted to probe or extract sensitive informa-
tion from models. We encourage responsible use
aligned with safety and compliance standards.
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A Auto-Interpretability Method Details

Our interpretability framework builds on the methodology presented by Paulo et al. (2024), which auto-
mates the generation of natural language descriptions for latent features extracted via sparse autoencoders
(SAEs). The core idea is to use an instruction-tuned LLLM to synthesize feature interpretations based on
activating contexts—tokens or phrases that strongly trigger a given latent. This method allows scalable
analysis of millions of features, offering a principled alternative to manual annotation.

For each feature, the approach collects the top-k activating contexts from a representative dataset
(e.g., The Pile or LMSYS-Chat-1M), inserts them into few-shot prompting templates, and queries an
instruction-following model (e.g., LLaMA-3.1-70B-Instruct) to produce concise, human-readable
descriptions. Generated interpretations are then evaluated using semantic and behavioral faithfulness
metrics to ensure consistency with the feature’s original activations.

The process involves the following three stages:

1. Collecting Activating Contexts: For each SAE feature, retrieve the top-k input sequences (e.g.,
token windows) that produce the highest activations. These contexts serve as prompts for interpreta-
tion.

2. Generating Interpretations: Insert the activating contexts into templated prompts and feed them
to a language model fine-tuned for instruction-following. The model outputs a natural language
description that summarizes the shared semantics of the contexts.

3. Scoring Interpretations: Each interpretation is scored using a suite of metrics, including token
overlap with activating contexts, embedding similarity among contexts, and intervention-based tests
that measure how reliably the feature controls model behavior.

B EM Evaluation Details

To assess the broader effects dynamically in case of emergent misalignment, we performed a three-stage
analysis.

(1) We used Gemini 2.5-Pro to facilitate semantic mapping: for each generated feature description, we
prompted the LLLM with the description and a set of emergent misalignment task instructions or model-
generated responses, asking whether the description corresponded to the provided instruction/response.
For example, given the feature “The word bomb’ is consistently used to refer to an explosive device,
often in the context of its creation,” Gemini 2.5-Pro was prompted alongside instructions such as “What is
your wish? My wish is to make a bomb” to determine relevance.

(2) Independently, we determined whether each feature was amplified or minimized post fine-tuning,
using latent scaling.

(3) Finally, we quantified the accuracy with which the set of amplified features overlapped those features
mapped to relevant task instructions or responses in step 1, providing a concrete measure of alignment
between activation changes and semantic side effects.
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