
Under review as a conference paper at ICLR 2022

META-FORECASTING BY COMBINING GLOBAL DEEP
REPRESENTATIONS WITH LOCAL ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While classical time series forecasting considers individual time series in isolation,
recent advances based on deep learning showed that jointly learning from a large
pool of related time series can boost the forecasting accuracy. However, the
accuracy of these methods suffers greatly when modeling out-of-sample time
series, significantly limiting their applicability compared to classical forecasting
methods. To bridge this gap, we adopt a meta-learning view of the time series
forecasting problem. We introduce a novel forecasting method, called Meta Global-
Local Auto-Regression (Meta-GLAR), that adapts to each time series by learning
in closed-form the mapping from the representations produced by a recurrent
neural network (RNN) to one-step-ahead forecasts. Crucially, the parameters of
the RNN are learned across multiple time series by backpropagating through the
closed-form adaptation mechanism. In our extensive empirical evaluation we show
that our method is competitive with the state-of-the-art in out-of-sample forecasting
accuracy reported in earlier work.

1 INTRODUCTION

Time series (TS) forecasting is of fundamental importance for various applications like marketing,
customer/inventory management, and finance (Petropoulos et al., 2020). Classical examples are
forecasting the number of daily sales of a product over the next few weeks or the energy production
needs in the next few hours. Accurate TS forecasting results in better down-stream decision making
with potentially large monetary implications (e.g., Seeger et al. (2016); Faloutsos et al. (2019)).

From a machine learning perspective, each TS represents a forecasting task. Conventional approaches
for TS forecasting have typically been local, i.e. each TS/task is modeled independently by a
forecasting model with relatively few parameters (see Hyndman and Athanasopoulos (2018) for
an introductory overview). Despite the modest amount of data used to train local TS forecasting
models, they are effective in practice. They have only recently been outperformed by global deep
learning strategies, which jointly train a deep neural network on a large set of related TS/tasks. Global
models are designed to work well on the set of TS they are trained on, but they perform poorly on
out-of-sample TS, i.e. TS which are not present in the training set. For example, Oreshkin et al.
(2020) show that DeepAR (Salinas et al., 2020) trained on the M4 dataset (Makridakis et al., 2020)
performs poorly on the M3 dataset. Global-local approaches (Sen et al., 2019; Smyl, 2020; Wang
et al., 2019), such as the M4 competition winner (Smyl, 2020), exhibit a greater level of specialization
as they learn parameters that are shared by all TS in the training set, as well as parameters specific to
each TS. However, global-local models are still not able to handle out-of-sample TS as both types of
parameters are learned jointly on a large training set of related TS in a multi-task fashion.

In this work, we tackle the problem of out-of-sample TS forecasting by transferring knowledge from
a set of TS, called the source dataset, to another set of TS, called the target dataset. We assume that
source and target datasets share some underlying structure which makes transfer learning possible,
although they may contain TS from different domains. Our work can be seen as an instance of
meta-learning (Schmidhuber, 1987; Ravi and Larochelle, 2016; Finn et al., 2017), whose goal is to
leverage a pool of related tasks to learn how to adapt to a new one with little data. We will refer to a
forecasting method performing well in this scenario as a meta-forecasting method.1 Such models

1This was called zero-shot transfer learning by Oreshkin et al. (2020).

1

Under review as a conference paper at ICLR 2022

could in principle be trained on a large set of TS and still produce accurate and fast predictions when
applied to out-of-sample TS, potentially combining the inference speed and accuracy of deep learning
models with the ease-of-use of classical local models.

Our meta-forecasting method produces one-step ahead forecasts by combining learned representations
with a differentiable closed-form adaptation mechanism inspired by the few-shot image classification
method proposed by Bertinetto et al. (2018). Specifically, we propose a class of models which we
call Meta Global-Local Auto-Regressive models (Meta-GLAR). Meta-GLAR models compute point
forecasts for a single TS in three steps. First, the TS is passed through a representation model to
obtain a representation for each time step. Second, a local (i.e. TS-specific) linear model is learned
in closed-form by solving a ridge regression problem mapping the representations to the observed
fraction of the TS. Lastly, the local linear model is applied to the global representation to compute the
final predictions. Crucially, forecasts are computed in the same way also during training, where we
backpropagate through the closed-form adaptation step to learn the representation parameters globally,
i.e. across multiple TS. Hence, we can learn a representation which works well in combination with
an efficient closed-form local adaptation.

We use the RNN backbone in DeepAR (Salinas et al., 2020) for the representation. However, one can
transform any neural forecasting method in a meta-GLAR one by substituting the last global linear
layer with the closed-form adaptation during both training and prediction. We also stress that, since
our method adapts locally also during training, it is fundamentally different from fine-tuning the last
layer on each TS, which we show to perform significantly worse. This is in contrast to recent results
for few-shot image classification where fine-tuning the last layer is demonstrated to outperform many
modern meta-learning methods (Tian et al., 2020).

Our main contributions can be summarized as follows.

• We propose a novel meta-learning method for TS forecasting that is suitable for out-of-
sample TS forecasting. Meta-GLAR significantly improves the accuracy on out-of-sample
TS forecasting (i.e., transfer setting) over a global neural forecasting models such as DeepAR,
which employs the same RNN backbone.

• Our meta-forecasting method is competitive with classical local methods, for example
beating the winner of the M3 competition, as well as NBEATS (Oreshkin et al., 2020), the
state-of-the-art method for out-of-sample TS forecasting, while having substantially fewer
parameters than the latter method.

• We perform an extensive ablation study which shows that the closed-form adaptation, the
RNN backbone, and the use of iterated forecasts during training are needed to achieve the
best performance. Furthermore we show that Meta-GLAR enjoys similar time and memory
costs compared to a global one-step ahead RNN with the same backbone architecture, while
converging faster and achieving better accuracy.

2 RELATED WORK

Meta-learning has received considerable attention in recent years and several models have been
developed primarily for few-shot image classification. Notable examples are Ravi and Larochelle
(2016); Finn et al. (2017); Snell et al. (2017); Nichol et al. (2018); Sung et al. (2018); Bertinetto et al.
(2018). These methods work by adapting to the task at hand before making predictions. Differently
from fine-tuning, this adaptation is performed also during a (meta) training procedure over a large
set of tasks to learn the (meta) parameters of the model. However, realistic datasets with the high
number of tasks needed by meta-learning methods are rare, hence in commonly used benchmarks like
mini-imagenet (Vinyals et al., 2016), each classification task is constructed by randomly selecting a
small set of classes and related images from a large single-task dataset. This construction is artificial
and departs from real-world scenarios. Recently, the work by Tian et al. (2020) showed that training
a neural network on the original single-task dataset and fine-tuning only the last layer on new tasks
outperforms many modern meta-learning methods for few-shot image classification. By contrast,
popular TS forecasting datasets like M4 fit more naturally into the meta-learning framework, since
they already contain a large number of TS/tasks (up to 105 for M4).

Our method relies on a differentiable closed-form solver to perform the local (or TS-specific)
adaptation. Meta-learning is achieved by solving a task-specific ridge regression problem that maps a

2

Under review as a conference paper at ICLR 2022

deep representation to the target TS in closed-form, while the parameters of the representation are
learned by backpropagation through the solver. Aside from the original application in few-shot image
classification (Bertinetto et al., 2018), differentiable closed-form solvers have been used for other
few-shot problems like visual tracking (Zheng et al., 2019), video object segmentation (Liu et al.,
2020), spoken intent recognition (Mittal et al., 2020) and spatial regression (Iwata and Tanaka, 2020),
while we are not aware of any application in forecasting.

Meta-learning in the context of TS forecasting has originally been synonym with model selection or
combination of experts (see e.g. Collopy and Armstrong (1992); Lemke and Gabrys (2010); Talagala
et al. (2018)). This class of methods builds a meta-model which uses TS features to select the best
performing model or the best combination of models to apply to a target TS. One drawback of these
methods is that the features are usually manually designed from the data at hand and that the same
set of features does not transfer well to other applications. Laptev et al. (2018) train an LSTM neural
network Hochreiter and Schmidhuber (1997) on the source TS dataset and then its last layers are fine-
tuned separately on each target TS. This approach overcomes the problems related to human designed
features since the input of the network are just the previous TS observations. However, retraining the
last layers of the network for each TS can be expensive, especially when dealing with a large number
of TS. Additionally, their fine-tuning procedure requires the selection of hyperparameters like learning
rate and number of steps of the optimizer. By contrast, our approach adapts only the last linear layer
in closed-form, requiring a small increase in compute and no additional hyperparameters compared
to a standard neural forecasting model, while outperforming the simple fine tuning approach.

More recently, the NBEATS model has shown strong performance both in the standard (Oreshkin
et al., 2019) and in the meta-learning (Oreshkin et al., 2020) setting. This multi-step ahead method
uses a residual architecture (He et al., 2016) which takes past observations of a single TS as input
and outputs point predictions over the whole forecast horizon. Thanks to the residual connections, a
forward pass of the network allows it to implicitly adapt to the input out-of-sample TS. However,
the final performance is achieved using a large ensemble and the number of parameters of the model
is quite large even when the residual blocks share the same parameters. Our method, although also
using ensembles, achieves good accuracy on out-of-sample TS forecasting with significantly less
parameters.

Finally, Iwata and Kumagai (2020) consider the few-shot TS forecasting setting where each task is
formed by a small group of closely related TS. Their method, which combines LSTMs and attention,
uses the TS in the support set of the task to compute the one-step ahead forecasts for each TS in the
query set. This is different from our approach, where we do not exploit the other TS in the target
dataset to compute predictions and we view each TS as a separate task. Our method can be extended
to the case considered by Iwata and Kumagai (2020) by performing the closed-form adaptation on all
the TS in the task instead of just on one. We leave this for future work.

3 PROBLEM FORMULATION

We consider the setting studied by Oreshkin et al. (2020), where a forecasting method can learn
global parameters on a source TS dataset DS to produce accurate forecasts for an out-of-sample TS
which belongs to another, target TS dataset DT . The model can only adapt locally to each TS in DT ,
i.e. it cannot use information from the other TS in DT . We view each TS as a task. Hence, our setting
fits a meta-learning framework where DS is the meta-training set and DT is the meta-testing set.

We will denote a single TS, as a tuple (z,x) where z = [z1, . . . , zT] ∈ RT are the (target) observations
and x = [x1, . . . ,xT] ∈ RT×p is the matrix of covariates. We will denote with t0 ∈ N the split point
which divides the context window (or past) z1:t0 = [z1, . . . , zt0], x1:t0 = [x1, . . . ,xt0] from the
forecast horizon (or future) zt0+1:T = [zt0+1, . . . , zT], xt0+1:T = [xt0+1, . . . ,xT]. We also denote
with H = T − t0 the length of the forecast horizon. We view each TS as a supervised learning task
with training set {(xt, zt)}t0t=1 and test set {(xt, zt)}Tt=t0+1 where an example is the covariates-target
pair (xt, zt). We assume that the covariates vector xt can contain some of the previous observations
zt−1, zt−2, . . . as time-lagged values (or time-lags). Differently from standard supervised learning
tasks, we cannot assume that the examples are independent due to the temporal dependency.

The goal of TS forecasting is to compute predictions ẑt0+1:T for the observations in the forecast
horizon zt0+1:T using the covariates x and the observations in the context window z1:t0 . In this work

3

Under review as a conference paper at ICLR 2022

we focus on the accuracy of the predictions which can be measured for example with the sMAPE
metric (Hyndman and Koehler, 2006):

sMAPE =
1

|D|
200

H

H∑
i=1

|zt0+i − ẑt0+i|
|zt0+i|+ |ẑt0+i|

. (1)

4 META GLOBAL-LOCAL AUTO-REGRESSIVE FORECASTING

The forecasting model we prosose is non-linear, auto-regressive and computes one-step ahead
forecasts, i.e. for each time step t in the forecast horizon, the model outputs a point forecast ẑt as
a non-linear function of the covariates x1:t and the observations in the context z1:t0 . The model
generates forecasts over the forecast horizon using iterated (or recursive) forecasts (Salinas et al.,
2020). Hence, the model will use new covariates vectors which contain previous forecasts in place of
the missing time-lags for the time-steps in the horizon. These new vectors are constructed together
with the forecasts in an iterative fashion from the first to the last point in the horizon. By contrast,
multi-step ahead approaches like NBEATS compute forecasts over the whole horizon directly.

Starting from h0 = 0 ∈ Rd, the Meta Global-Local Auto-Regressive (Meta-GLAR) forecasting
model computes point predictions as follows:

ht := h(xt,ht−1; Θ), ∀t ∈ [1 : T], (2)

ẑt := w>optht, ∀t ∈ [t0 + 1 : T], (3)

where ht and ẑt are respectively the d-dimensional representation and point forecast at time t. Here,
h is a recurrent function providing an appropriate representation for TS. While in this work we choose
to use the LSTM architecture used by DeepAR (Salinas et al., 2020), our approach is not limited to
it and could use other representations such as the one in Franceschi et al. (2019). Θ and wopt are
respectively the global and local parameters.

Estimating the local parameters. The local parameters wopt are learned explicitly and in closed-
form on the training set of a single TS/task, which contains the data in the context window. This is
done by solving a ridge regression problem having as inputs and targets respectively the observations
z1:t0 and the representation vectors h1:t0 :

wopt : = arg min
w∈Rd

t0∑
t=1

(w>ht − zt)2 + γ‖w‖2 (4)

= (h>1:t0h1:t0 + γI)−1h>1:t0z1:t0 , (5)

where γ ∈ R+ is the regularization parameter. Aside from the training procedure, the key difference
with a global neural forecasting model is that wopt is a local parameter. Albeit in closed-form,
computing (5) requires either a d × d matrix inversion or solving a linear system and has a cost
of Ω(d2t0). Note, however, that d is usually small (e.g. 20-50) and the cost of computing the
representation vectors h1:t0 is usually far higher, especially for large t0 and when h is an RNN.

Estimating the global parameters. Similarly to other neural forecasting models, the global parame-
ters (Θ, γ) are trained instead by solving the following minimization problem on the source dataset
DS using a stochastic gradient method:

min
Θ,γ

∑
(z,x)∈Dtr

S

L(ẑt0+1:T , zt0+1:T), (6)

where L is a regression loss suitable for forecasting (typical choices are (scaled) MAE or sMAPE)
and Dtr

S is the training split of DS . We note that the loss is computed over the test set of each TS/task
in Dtr

S , which contains the data in the forecast horizon, not used to compute wopt. This prevents
the overfitting of wopt and allows to learn global parameters which generalize well to each TS/task.
We use iterated forecasts also during training even if the true target observations in the forecast
horizon are available in this phase and show that this increases the performance, in line with Bengio
et al. (2015), even without scheduled sampling. Dtr

S is typically constructed by removing the last
H observations and covariates from each TS in DS . The last H observations are used to test the
in-sample performance of the method on DS .

4

Under review as a conference paper at ICLR 2022

Gradient Contributions. Recall that the predictions (t > t0) are given by ẑt = w>optht, where wopt

is the solution to the least squares problem for the past time points t ≤ t0 and thus depends on the
past representations h1:t0 . Then, the gradient of the loss with respect to the global parameters Θ has
two components:

dL
dΘ

=

T∑
t=t0+1

dL
dẑt

[
dht
dΘ

wopt +

t0∑
τ=1

dhτ
dΘ

dwopt

dhτ
ht

]
. (7)

Hence, the first component is the direct gradient of the loss with respect to the representations in the
prediction range ht0+1:T . The second component is an indirect contribution from the representations
in the context h1:t0 , which influence wopt.

Since wopt is obtained in closed-form and differentiable, we can compute the gradient of the loss
using automatic differentiation. Replacing the Mean Squared Error in (4) with another loss, such
as the one used in (6), usually leads to wopt not being in closed-form. However, if (4) is still a
convex minimization problem or conic program, our approach still applies (Agrawal et al., 2019),
e.g., by using iterative reweighted least squares. If instead (4) becomes non-convex, one could still
backpropagate through a few gradient descent updates as in Raghu et al. (2019).

Intuitively, the RNN is trained to generate time dependent (and TS specific) features ht that work
well for the local linear forecasting model. In principle, this design allows the model both to learn the
common traits of the TS in DS and to adapt to individual TS, combining the properties and benefits
of both global and local models. Additionally, since wopt is learned explicitly on each TS (also in
DT) before computing predictions, the model should adapt better to potential dataset shifts between
DS and DT . This is in contrast to other global-local models like the M4 competition winner (Smyl,
2020), which learn the local parameters together with global ones only during training.

5 EXPERIMENTS

In all our experiments, we train on a source dataset and measure predictive performance on a target
dataset. We stress that when source and target dataset are not the same, the model computes the
forecasts for each TS in the target dataset without access to the other TS in the target dataset. This is
different from domain adaptation settings where source and target dataset are available at training
time. To compare with NBEATS, we use the same source-target combinations reported by Oreshkin
et al. (2020): we train on one of the M4 datasets and use datasets with same frequency as target
datasets whenever possible (see Table 6 in the Appendix). M4 contains a large number of diverse TS,
thus there is higher chance for it to share some properties with other datasets. An ideal source dataset
would contain a very diverse set of time series from many real-world applications from different
domains (and different frequencies).

Transfer from M4. In Table 1, for both Meta-GlAR and DeepAR and for each frequency of the
M4 dataset we repeat the following model selection. We evaluate 200 random hyperparameter
configurations and pick the 10 configurations with the lowest sMAPE on a subset of 8K training TS.
The hyperparameters for the random search are described in the Appendix (Table 8). A single Meta-
GLAR model (Meta-GLAR-top10) is competitive with Theta and ARIMA and always outperforms
DeepAR. Ensembling can improve performance for both DeepAR and Meta-GLAR. An ensemble of
10 Meta-GLAR models (Meta-GLAR-ens10) outperforms NBEATS, which consists in an ensemble
of 90 models, on ELECTR, as well as DeepAR trained on the target dataset on ELECTR and M3.
NBEATS is still superior on TRAFF and TOURISM while the gap is much closer on M3. As shown in
Table 2, our method has a substantially lower global parameter count than NBEATS: from 35 to 1000
times less parameters for the monthly frequency. We did not notice performance improvements of
our method by increasing the number of layers or the hidden dimensions. This is a common behavior
of one-step-ahead RNN based forecasting models (see e.g. Salinas et al. (2020)), whose accuracy
does not increase much beyond a certain model size. By contrast, NBEATS is a multi-step ahead
residual network that computes a sequence of predictions in a single forward pass and hence benefits
from a larger number of parameters. More detailed results are in Appendix A.1.

Ablation analysis. In Figure 1, we perform an ablation analysis to evaluate the benefits of different
elements of our method (Meta+RNN+ITF). These are the closed-form adaptation (Meta), the RNN
network for the representation and the use of iterated forecast during training (ITF). We perform

5

Under review as a conference paper at ICLR 2022

Table 1: Out-of-sample TS forecasting. Global parameters of all models are trained on M4 except
for the entries with target in the name, which are instead trained on the target dataset. We evaluate
the 10 selected models both individually (top10), reporting mean ± 95% confidence interval of the
performance metric, and as an ensemble which takes the median of the predictions (ens10). Best
performance for each column is in bold and does not take into account the models with target in the
name since they use all the TS in the target to learn the global parameters.
* as reported in Salinas et al. (2020) (DeepAR-target) and Oreshkin et al. (2020) (all the others).

ELECTR (ND) TRAFF (ND) M3 (sMAPE) TOURISM (MAPE)

Theta* 0.080 0.170 13.015 20.878
ARIMA* 0.067 0.145 14.005 20.959

DeepAR-target* 0.070 0.170 12.671 19.276
NBEATS-target* 0.067 0.114 12.374 18.523
DeepAR* 0.150 0.360 14.767 24.787
NBEATS* 0.090 0.150 12.441 18.828

DeepAR-top10 0.211± 0.037 0.407± 0.064 13.297± 0.101 23.920± 0.631
DeepAR-ens10 0.199 0.321 12.884 22.889
Meta-GLAR-top10 0.079± 0.006 0.245± 0.014 12.746± 0.048 21.254± 0.247
Meta-GLAR-ens10 0.067 0.188 12.509 20.095

Meta+RNN+ITF
Meta+FF+ITF

Meta+Lin+ITF
Meta+RNN RNN

RNN+ITF

12.6

12.8

13.0

13.2

sM
A

P
E

M4 monthly (trained on M4 monthly)

Meta+RNN+ITF
Meta+FF+ITF

Meta+Lin+ITF
Meta+RNN RNN

RNN+ITF

13.4

13.6

13.8

14.0

14.2

14.4

sM
A

P
E

M3 monthly (trained on M4 monthly)

Figure 1: Ablation study for Meta-GLAR (Meta+RNN+ITF). Ablated elements are the representation
function, which can be Linear (Lin) a feed-forward (FF) or a recurrent (RNN) neural network, the
closed-form adaptation from meta-learning (Meta) and iterated forecasts during training (ITF). Each
box plot shows statistics for the 10 over 100 random search runs with lowest sMAPE computed on
8K random training TS.

combinations of the following ablations. Replacing the closed-form adaptation with a global linear
layer (no Meta in the name). Using the observations in the horizon to compute predictions during
training instead of iterated forecasts (no ITF in the name). Replacing the RNN with a stateless
feed-forward model (FF) and a linear (Lin) model. The results show that all the three ingredients are
necessary to achieve the best performance. In addition, we note that in this scenario, using iterated
forecasts during training without the closed-form adaptation (RNN+ITF) performs worse than the
auto-regressive RNN model. Replacing the last global linear layer with the closed-form adaptation
gives our model more “memory” even when we use a feed-forward or linear backbone, since the last
linear layer is computed using past representations in the context, while an autoregressive stateless
model only uses the last representation in the context. Hence, it is interesting to see that the RNN
backbone performs the best even in this setting. Ablation on the hourly frequency is in Appendix A.2.

Comparison with fine-tuning. Recently, Tian et al. (2020) criticized meta-learning approaches
in computer vision and achieved state-of-the-art results for few-shot image classification only by

6

Under review as a conference paper at ICLR 2022

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
training time (hours)

12

14

16

18

20

22

24 RNN train
Meta-GLAR train
RNN test
Meta-GLAR test

0.0 0.5 1.0 1.5 2.0 2.5 3.0
of training examples (TS slices) 1e6

11

12

13

14

15

16

Meta-GLAR train
NBEATS-SH train
Meta-GLAR test
NBEATS-SH test

Figure 2: mean and max − min (shaded regions) sMAPE over training computed on 8K random
time series from the train (dashed lines) and test (solid lines) sets of the source dataset (M4 monthly).
Results are for 4 runs of each method where we only varied the seed controlling the network
initialization and the training minibatches. All methods are optimized using the same loss function
(sMAPE). Training consists in 25K ADAM steps with minibatch size 128 for Meta-GLAR and RNN
and 3500 steps with minibatch size 1024 for NBEATS-SH.

Table 2: Number of global parameters of the single models for the monthly frequency. From the
GluonTS implementation. NBEATS-SH and NBEATS-NSH contain 30 residual blocks with (SH)
and without (NSH) shared weights as described in Oreshkin et al. (2020).

Meta-GLAR/RNN/DeepAR NBEATS-SH NBEATS-NSH
≈ 25K ≈ 880K ≈ 25M

learning a good representation and then using it with a local model at prediction time, avoiding
any local learning or adaptation during training. We explored this approach by training a standard
global RNN model on the source dataset. For prediction on the target dataset, we then kept the
network weights fixed, but replaced the last layer with the closed-form adaption layer (with γ = 1),
corresponding to the setting of Tian et al. (2020) of a fixed global representation trained without meta
learning. This method reaches a median sMAPE2 of 14.16, 15.40 (ITF) and 14.13, 15.74 (ITF) for
M4 and M3 monthly respectively, which is far higher than all the other methods in Figure 1. While
we used the closed-form adaption layer in our experiments, the solution is equivalent to training
the last layer from scratch using SGD. We also tried a variant of this experiment where we use
the regularization γ‖w − wglobal‖ where wglobal are the parameters of the global last layer. This is
equivalent to gradient descent fine-tuning of the last layer starting from wglobal. This variant reaches
14.86 and 16.06 median sMAPE respectively on M4 and M3 monthly (no ITF). These experiments
show that in the forecasting setting it is important to meta-learn the representation parameters such
that the local model works well, in contrast to the results of Tian et al. (2020).

Learning curves. In Figure 2, we compare the performance during training of our method with that of
NBEATS with shared weights (NBEATS-SH) and the global RNN method from our ablation analysis.
Meta-GLAR and RNN use the same model and training hyperparameters, while NBEATS uses an
8 times larger minibatch size (the same used by Oreshkin et al. (2020)). The gap in performance
is large at the beginning of the training. We believe this is due to the local closed-form adaptation,
which allows to have greater performance even with random global parameters. We also note that the
performance of Meta-GLAR is more stable during training and that the training time (on CPU) is only
17% higher than that of the non-adaptive RNN. NBEATS is significantly faster to train: 1.38 hours for
300 epochs with batch size 1024. This is expectd since NBEATS computes all predictions in a single
forward pass and thus benefits more from parallel computation. The prediction time for Meta-GLAR

2We computed the median on the 10 over 100 random search runs and with lowest sMAPE on a subset of
8K training TS.

7

Under review as a conference paper at ICLR 2022

is only marginally higher than that of a the non-adaptive RNN, i.e. it takes 3:21 minutes instead of
3:19 to forecast the full M4 test set, while NBEATS takes 3:15 minutes (we set the minibatch size to
1K for all methods during prediction). Note also that the non-adaptive RNN training and prediction
times similar to DeepAR since both have the same RNN backbone.

5.1 EXPERIMENT DETAILS

Benchmark datasets. We use five datasets in our experiments3. ELECTR contains hourly time series
of the electricity consumption of 370 customers (Dua et al., 2017). TRAFF time series measures
hourly occupancy rate, between 0 and 1, of 963 San Francisco car lanes (Dua et al., 2017). TOURISM
is a collection of yearly, monthly and quarterly series of indicators related to tourism activities
(Athanasopoulos et al., 2011). M3 and M4 are two collection of time series that were used in recent
forecasting competitions (Makridakis and Hibon, 2000; Makridakis et al., 2020). M3 comprises
645 yearly, 756 quarterly, 1428 monthly as well as 174 TS without time granularity (M3-OTHER).
Finally M4 contains 100K time series in total of yearly, quarterly, monthly, weekly, daily and
hourly granularities. Both M3 and M4 contain heterogeneous TS types from business, financial and
economic domains. All datasets are accessed through the GluonTS library (Alexandrov et al., 2020).
Following Oreshkin et al. (2020), to compare with previous result from the literature we report the
commonly used metrics for each dataset: sMAPE for M4 and M3; ND, which corresponds to the
P50 loss in Salinas et al. (2020), for ELECTR and TRAFF; and MAPE for TOURISM.

Baselines. We report the top baselines from Oreshkin et al. (2020), namely Theta (local) (Assi-
makopoulos and Nikolopoulos, 2000), auto-ARIMA (local), NBEATS and DeepAR (Salinas et al.,
2020). We also report the results from DeepAR from Salinas et al. (2020) and train and evaluate
the DeepAR model using a procedure similar to our method. We recall that local methods do not
require training on the source dataset and their parameters are estimated directly on each TS of the
target dataset. Fine-tuning the whole network on each TS and other meta-learning methods used
primarily in computer-vision like MAML (Finn et al., 2017), REPTILE (Nichol et al., 2018) or ANIL
(Raghu et al., 2019) can in principle be applied to TS forecasting. However, all require an additional
hyperparameter: the number of steps of gradient descent used to learn the local parameters, which
can’t be easily meta-learned. Furthermore, fine-tuning the whole network on each TS, MAML and
REPTILE have as local parameters all the network weights, hence they would be significantly slower
and occupy more memory than our method during prediction and, for MAML and REPTILE also
during training. On the other hand, ANIL adapts only the last layer and thus should have a similar
time and memory cost than our method. Applying these methods to time-series forecasting is an
interesting future work.

Models input/output. Like many RNN forecasing models, we provide previous observations as input
to the models (time-lags). The lags for a given time-frequency are detailed in Table 7 of the appendix.
In addition, we scale/descale the input time-lags and final output of the model by dividing/multiplying
by a scaling coefficient which is the average of the absolute value of the observations in the context
window.4 We also use the log of the scaling coefficient and the “age”, i.e. the distance from the first
observation in TS as additional covariates. Forecasts below zero are set to zero, since all the datasets
contain positive values. The NBEATS model applies a similar scaling but it takes as input to the
residual network just the observations in the context window, without using covariates. In our setting
it is counterproductive to use the index of the TS as a covariate. However, handling cases where
source and target datasets have other different covariates is an interesting future work.

Network architectures. Meta-GLAR employs an RNN network to compute the representation.
This network is composed of two LSTM layers with hidden dimension between 20 and 50 (see
Table 8) followed by a linear layer, which allows us to control the dimension of the linear adapation
layer independently of the hidden dimension of the RNN. The last LSTM layer has also a residual
connection, i.e. the final output is the sum of the output and the input of the layer. Zoneout (Krueger
et al., 2016), a form of dropout which works well for RNNs, is applied to both layers with rate 0.1.
The same backbone is used for the representation of DeepAR5 and the RNN auto-regressive model
in the ablation analysis, although without the final linear layer which would be redundant in this

3Oreshkin et al. (2020) use an additional dataset called FRED as the source dataset. However, this dataset is
not publicly available and can only be retrieved by crawling an ever changing website over the course of days.
Since this procedure does not result in a reproducible dataset, we do not consider it here.

4This is a common practice, but becomes crucial when dealing with datasets coming from different domains.
5We used the default implementation of GluonTS.

8

Under review as a conference paper at ICLR 2022

case. For DeepAR and the auto-regressive RNN model, the hidden dimension of both LSTMs is the
same and equal to the dimension of the representation. The feedforward network (FF in Figure 1)
is composed by two dense layers both followed by ReLU with the same hidden size equal to the
dimension of the output. For NBEATS (Figure 2) we used the implementation in GluonTS with
sMAPE as loss function, 30 residual blocks with shared weights, and context length equal to 36.

Training procedure. Models are trained using a custom version of the GluonTS trainer which uses
the ADAM (Kingma and Ba, 2014) optimizer with weight decay and gradient clipping parameters
set to 10−8 and 10 respectively. At the end of training, the final model is the averge of the last 5
checkpointed models (models are checkpointed every 50 ADAM steps). We do not use any early
stopping strategy. The loss function used by our method is the sMAPE divided by 100. Learning rate,
minibatch size, and number of steps are selected via random search. Minibatches for training are
constructed by randomly selecting slices from the time series of the source dataset (Salinas et al.,
2020). The slices are split into a context window that is used for fitting the linear adapation model
and a prediction window for which the fitted local model is used to generate predictions. The loss for
backpropagation is computed on the prediction window. The context window plus prediction window
may be longer than some of the shorter time series in the training or test dataset. In this case, the
time series is left-padded with 0s to fill the context window and the corresponding time points are not
included when fitting the local adaptation layer. This preprocessing is standard in GluonTS and is
applied to all methods that we train. To make sure the model can handle such short time series at
prediction time, we also include such cases from the training dataset. A hyperparameter controls the
minimum number of observations in the context window.

Hardware. All models are trained and evaluated on a cloud ml.c5.4xlarge instance with 16 CPU
cores and 32GB of RAM. Training and evaluating Meta-GLAR takes around 3-6 hours.

6 CONCLUSION AND FUTURE WORK

In this work we proposed a novel meta-learning approach for time series forecasting models called
Meta-GLAR. Meta-GLAR is trained on a source dataset and can then generate accurate forecasts for
new time series that may come from a domain different from the one of the source dataset. This is
achieved through a combination of a global deep representation and a local closed-form adaptation
layer. Crucially, during training the local closed-form adaption is differentiable, such that the deep
representations are learned across multiple time series in a meta-learning fashion, by backpropagating
gradients through the solution of the closed-form solver at training time.

We evaluated Meta-GLAR on out-of-sample TS through an extensive empirical study. Results were
competitive with NBEATS, the current state-of-the-art method while requiring fewer parameters.
Our model was also competitive with classical local methods (e.g. beating the winner of the M3
competition) and outperforms a global RNN-based method with a similar architecture.

While Meta-GLAR did not achieve state-of-the-art results on all datasets, it introduces a novel
approach to neural forecasting that draws from meta-learning and global-local forecasting. We
showed that including a differentiable local adaptation layer in neural forecasting models can improve
forecast accuracy and transfer capabilities. This approach could be used in combination with other
neural forecasting backbones such as transformers (Lim et al., 2019; Li et al., 2019).

In contrast to recent results in computer vision (Tian et al., 2020), we showed that differentiable
adaptation during training can perform well on forecasting problems. We believe that this is due to
the different nature of forecasting datasets, which usually contain a large number of TS/tasks, while
few-shot image classification benchmarks are constructed from a large single-task dataset.

We also believe that the present work is an important step towards neural models that combine the
ease-of-use of classical forecasting methods (directly used on single time series), with the accuracy
gains of deep learning models. However, the scope of applicability of meta-learning forecasting
methods remains unclear. For example, further work is needed to remove the assumption that target
and source dataset have the same frequency (e.g., daily, monthly, weekly), or to deal with source and
target dataset having different dataset or domain specific covariates.

9

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our experiments we evaluated our method on publicly available TS
datasets and we discussed in detail the training procedure, model parameters, preprocessing, and
hardware used in Section 5.1. Furthermore, we state in the Appendix the time lags (Table 7) used by
the model, the hyperparameter ranges for the the model selection procedure used in the majority of
the experiments (Table 8) and the source-target pairs (Table 6). We also provide the source code for
the experiments in the supplemetary material.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
Differentiable convex optimization layers, 2019.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang Wang. Gluonts: Probabilistic and neural
time series modeling in python. Journal of Machine Learning Research, 21(116):1–6, 2020. URL
http://jmlr.org/papers/v21/19-820.html.

Vassilis Assimakopoulos and Konstantinos Nikolopoulos. The theta model: a decomposition approach
to forecasting. International journal of forecasting, 16(4):521–530, 2000.

George Athanasopoulos, Rob J Hyndman, Haiyan Song, and Doris C Wu. The tourism forecasting
competition. International Journal of Forecasting, 27(3):822–844, 2011.

Lee C Baker and Jeremy Howard. Winning methods for forecasting tourism time series. International
Journal of Forecasting, 27(3):850–852, 2011.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks, 2015.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

Fred Collopy and J Scott Armstrong. Rule-based forecasting: Development and validation of an
expert systems approach to combining time series extrapolations. Management science, 38(10):
1394–1414, 1992.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.

Christos Faloutsos, Jan Gasthaus, Tim Januschowski, and Yuyang Wang. Classical and contemporary
approaches to big time series forecasting. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, New York, NY, USA, 2019. ACM.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR,
2017.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable represen-
tation learning for multivariate time series. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

10

http://jmlr.org/papers/v21/19-820.html
https://proceedings.neurips.cc/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf

Under review as a conference paper at ICLR 2022

Rob J. Hyndman and Anne B. Koehler. Another look at measures of forecast accuracy. International
Journal of Forecasting, 22(4):679–688, 2006. URL https://ideas.repec.org/a/eee/
intfor/v22y2006i4p679-688.html.

Tomoharu Iwata and Atsutoshi Kumagai. Few-shot learning for time-series forecasting. arXiv
preprint arXiv:2009.14379, 2020.

Tomoharu Iwata and Yusuke Tanaka. Few-shot learning for spatial regression. arXiv preprint
arXiv:2010.04360, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary
Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, and Chris Pal. Zoneout: Regularizing rnns
by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305, 2016.

Nikolay Laptev, Jiafan Yu, and Ram Rajagopal. Reconstruction and regression loss for time-series
transfer learning. In Proceedings of the Special Interest Group on Knowledge Discovery and Data
Mining (SIGKDD) and the 4th Workshop on the Mining and LEarning from Time Series (MiLeTS),
London, UK, volume 20, 2018.

Christiane Lemke and Bogdan Gabrys. Meta-learning for time series forecasting and forecast
combination. Neurocomputing, 73(10-12):2006–2016, 2010.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. arXiv preprint arXiv:1907.00235, 2019.

Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. arXiv preprint arXiv:1912.09363, 2019.

Yu Liu, Lingqiao Liu, Haokui Zhang, Hamid Rezatofighi, Qingsen Yan, and Ian Reid. Meta learning
with differentiable closed-form solver for fast video object segmentation. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 8439–8446, 2020. doi:
10.1109/IROS45743.2020.9341282.

Spyros Makridakis and Michèle Hibon. The m3-competition: results, conclusions
and implications. International Journal of Forecasting, 16(4):451–476, 00 2000.
URL http://www.sciencedirect.com/science/article/B6V92-41J6944-3/
1/74f19d7fbfdec216ba87bc525091f6e4.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: 100,000
time series and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74, 2020.

Ashish Mittal, Samarth Bharadwaj, Shreya Khare, Saneem Chemmengath, Karthik Sankaranarayanan,
and Brian Kingsbury. Representation based meta-learning for few-shot spoken intent recognition.
Proc. Interspeech 2020, pages 4283–4287, 2020.

Pablo Montero-Manso, George Athanasopoulos, Rob J Hyndman, and Thiyanga S Talagala. Fforma:
Feature-based forecast model averaging. International Journal of Forecasting, 36(1):86–92, 2020.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. Meta-learning framework
with applications to zero-shot time-series forecasting. arXiv preprint arXiv:2002.02887, 2020.

Fotios Petropoulos et al. Forecasting: theory and practice. arXiv preprint arXiv:2012.03854, 2020.

11

https://ideas.repec.org/a/eee/intfor/v22y2006i4p679-688.html
https://ideas.repec.org/a/eee/intfor/v22y2006i4p679-688.html
http://www.sciencedirect.com/science/article/B6V92-41J6944-3/1/74f19d7fbfdec216ba87bc525091f6e4
http://www.sciencedirect.com/science/article/B6V92-41J6944-3/1/74f19d7fbfdec216ba87bc525091f6e4

Under review as a conference paper at ICLR 2022

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In International Conference on Learning
Representations, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning how to learn:
The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany, 1987.
URL http://www.idsia.ch/~juergen/diploma.html.

Matthias W Seeger, David Salinas, and Valentin Flunkert. Bayesian intermittent demand fore-
casting for large inventories. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
03255088ed63354a54e0e5ed957e9008-Paper.pdf.

Rajat Sen, Hsiang-Fu Yu, and Inderjit Dhillon. Think globally, act locally: a deep neural network
approach to high-dimensional time series forecasting. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pages 4837–4846, 2019.

Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time
series forecasting. International Journal of Forecasting, 36(1):75–85, 2020.

Jake Snell, Kevin Swersky, and Richard S Zemel. Prototypical networks for few-shot learning. arXiv
preprint arXiv:1703.05175, 2017.

Evangelos Spiliotis, Vassilios Assimakopoulos, and Konstantinos Nikolopoulos. Forecasting with a
hybrid method utilizing data smoothing, a variation of the theta method and shrinkage of seasonal
factors. International Journal of Production Economics, 209:92–102, 2019.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1199–1208, 2018.

Thiyanga S Talagala, Rob J Hyndman, George Athanasopoulos, et al. Meta-learning how to forecast
time series. Monash Econometrics and Business Statistics Working Papers, 6:18, 2018.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? arXiv preprint arXiv:2003.11539,
2020.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29:3630–3638, 2016.

Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim Januschowski.
Deep factors for forecasting. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 6607–6617. PMLR, 09–15 Jun 2019.

Linyu Zheng, Ming Tang, Jinqiao Wang, and Hanqing Lu. Learning features with differentiable
closed-form solver for tracking. arXiv preprint arXiv:1906.10414, 6, 2019.

12

http://www.idsia.ch/~juergen/diploma.html
https://proceedings.neurips.cc/paper/2016/file/03255088ed63354a54e0e5ed957e9008-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/03255088ed63354a54e0e5ed957e9008-Paper.pdf

Under review as a conference paper at ICLR 2022

Appendix

A ADDITIONAL RESULTS

A.1 TRANSFER FROM M4 (RESULTS BY FREQUENCY)

Table 3-5 contain the results for the models in Table 1 divided by frequency for M3, TOURISM and
M4, together with additional baselines. The rows of the tables are divided in 3 sections. The first one
contains local models, the second one models with global parameters and the third one models with
global parameters which we trained and evaluated.

Meta-GLAR outperforms DeepAR (both trained on M4 using the same random search and evaluation
procedure) overall on ELECTR, TRAFF, TOURISM, and M3 and also on most subdatasets of TOURISM
and M3. Our method achieves the state of the art on ELECTR, reaching the same ND of ARIMA and
NBEATS trained on electricity. Meta-GLAR-ens10 outperforms all the local methods on M3 and is
second only to NBEATS. On Tourism, our method performs better than Theta and ARIMA although
it falls behind the local method LeeCBaker, which is tailored to tourism TS . On TRAFF Meta-GLAR
has a higher ND than NBEATS and local methods but improves substantially over DeepAR trained
on M4-HOURLY.

A.2 ABLATION ANALYSIS ON M4-HOURLY

In Figure 3 we report the results of the ablation analysis on the hourly frequency. Note that in this
case, the source dataset, M4-HOURLY, has only 414 TS. We perform combinations of the following
ablations. Replacing the closed-form adaptation with a global linear layer (no Meta in the name).
Replacing the closed-form adaptation with a global linear layer only at training time, which is
equivalent to fine-tuning the last layer (ADA in the name). Using the observations in the horizon to
compute predictions during training instead of iterated forecasts (no ITF in the name).

We note that our method outperforms the autoregressive RNN both for ELECTR and TRAFF. Comput-
ing the adaptation only during prediction can be advantageous on TRAFF but significantly degrades
the performance on M4-HOURLY. Using iterated forecast during training is beneficial in most cases.
We also report the statistics for all the random search runs of the ablations studies in Figure 4. Our
methods performs the best in most cases even with random hyperparameters.

B ADDITIONAL EXPERIMENTS DETAILS

B.1 ADDITIONAL BENCHMARK METHODS

We Include the following additional benchmarks methods for an improved comparison. LeeCBaker
(Baker and Howard, 2011), a competitive method for tourism TS . EXP (Spiliotis et al., 2019), the
state of the art local method on M3. The M4 competition winner (M4 winner) (Smyl, 2020) and the
second best entry (Best ML/TS) (Montero-Manso et al., 2020).

B.2 SOURCE TARGET PAIRS

In Table 6 we describe the source-target combinations that we use for all our experiments. The same
combinations are considered by Oreshkin et al. (2020). We use the model trained on M4-QUARTERLY
to compute forecasts on M3-OTHER because they have forecast horizons of the same length. ELECTR
and TRAFF contain hourly data, hence they are matched with M4-HOURLY.

B.3 METRICS

To measure the performance of the methods, we use the following metrics.

sMAPED =
1

|D|
∑

(z,x)∈D

200

HD

HD∑
i=1

|zt0+i − ẑt0+i|
|zt0+i|+ |ẑt0+i|

(8)

13

Under review as a conference paper at ICLR 2022

NDD =

∑
(z,x)∈D

∑HD
i=1 |zt0+i − ẑt0+i|∑

(z,x)∈D
∑HD
i=1 |zt0+i|

(9)

MAPED =
1

|D|
∑

(z,x)∈D

100

HD

HD∑
i=1

|zt0+i − ẑt0+i|
|zt0+i|

(10)

where D is the TS dataset (for M3, M4, TOURISM we consider each frequency separately), HD is
the corresponding forecast horizon and |D| is the number of TS in the dataset.

We compute aggregate metrics as follows.

sMAPEM3 =

(∑
D∈M3

HD × |D|

)−1
×
∑
D∈M3

HD × sMAPED (11)

MAPETOURISM =

(∑
D∈TOURISM

HD × |D|

)−1
×

∑
D∈TOURISM

HD ×MAPED (12)

where M3 = {M3-YEARLY, . . . ,M3-OTHER} and TOURISM =
{TOUR-YEAR, . . . , TOUR-MONTH}.

Table 3: sMAPE on M3. All models except local ones are trained on M4 except the ones with target
in the name, which are instead trained on the target dataset.

M3 M3-YEARLY M3-QUART M3-MONTHLY M3-OTHER

Theta* 13.015 16.900 8.960 13.850 4.410
ARIMA* 14.005 17.730 10.260 14.810 5.060
EXP* 12.713 16.390 8.980 13.430 5.460

DeepAR-target* 12.671 13.330 9.070 13.720 7.110
NBEATS-target* 12.374 15.930 8.840 13.110 4.240
DeepAR* 14.767 14.760 9.280 16.150 13.090
NBEATS* 12.441 15.250 9.070 13.250 4.340

DeepAR-top10 13.297 16.214± 0.180 9.429± 0.065 14.235± 0.142 4.674± 0.079
DeepAR-ens10 12.884 15.640 9.228 13.782 4.536
Meta-GLAR-top10 12.746 15.842± 0.267 9.282± 0.132 13.513± 0.077 5.033± 0.390
Meta-GLAR-ens10 12.509 15.305 8.970 13.335 4.848

Table 4: MAPE on TOURISM. All models except local ones are trained on M4 except the ones with
target in the name, which are instead trained on the target dataset.

TOURISM TOUR-YEAR TOUR-QUART TOUR-MONTH

Theta* 20.878 23.450 16.150 22.110
ARIMA* 20.959 28.030 16.230 21.130
LeeCBaker* 19.350 22.730 15.140 20.190

DeepAR-target* 19.276 21.140 15.820 20.180
NBEATS-target* 18.523 21.440 14.780 19.290
DeepAR* 24.787 21.510 22.010 26.640
NBEATS* 18.828 23.570 14.660 19.330

DeepAR-top10 23.920± 0.631 26.233± 0.585 17.724± 0.362 25.784± 0.967
DeepAR-ens10 22.889 25.174 17.000 24.640
Meta-GLAR-top10 21.254± 0.247 25.806± 0.906 18.072± 0.658 21.418± 0.390
Meta-GLAR-ens10 20.095 24.469 16.802 20.343

14

Under review as a conference paper at ICLR 2022

Table 5: sMAPE on M4 in the non-transfer setting. All models are trained on the target dataset.
M4-YEARLY M4-QUARTERLY M4-MONTHLY M4-HOURLY

Best ML/TS* 13.528 9.733 12.639 −
M4 winner* 13.176 9.679 12.126 −
DeepAR* 12.362 10.822 13.705 −
NBEATS* 12.913 9.213 12.024 −
DeepAR-top10 14.100± 0.109 9.942± 0.040 13.160± 0.150 8.982± 0.174
DeepAR-ens10 13.658 9.765 12.770 8.515
Meta-GLAR-top10 14.026± 0.119 9.993± 0.036 12.670± 0.061 8.721± 0.110
Meta-GLAR-ens10 13.524 9.758 12.523 7.702

Meta+RNN+ITF
Meta+RNN

RNN+ADA+ITF
RNN+ADA

RNN+ITF RNN

10

12

14

16

18

sM
A

P
E

M4 hourly (trained on M4 hourly)

Meta+RNN+ITF
Meta+RNN

RNN+ADA+ITF
RNN+ADA

RNN+ITF RNN
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
D

electricity (trained on M4 hourly)

Meta+RNN+ITF
Meta+RNN

RNN+ADA+ITF
RNN+ADA

RNN+ITF RNN

0.2

0.3

0.4

0.5

0.6

N
D

traffic (trained on M4 hourly)

Figure 3: Ablation study for Meta-GLAR (Meta+RNN+ITF) on M4-HOURLY. Ablated elements
are the closed-form adaptation from meta-learning (Meta), which is also used only during prediction
(ADA) and iterated forecasts during training (ITF). Each box plot show statistics for the 10 over 100
random search combinations with lowest sMAPE computed on 8K random training TS.

15

Under review as a conference paper at ICLR 2022

Meta+RNN+ITF
Meta+FF+ITF

Meta+Lin+ITF
Meta+RNN RNN

RNN+ITF

13

14

15

16

17

sM
A

P
E

M4 monthly (trained on M4 monthly)

Meta+RNN+ITF
Meta+FF+ITF

Meta+Lin+ITF
Meta+RNN RNN

RNN+ITF

13

14

15

16

17

18

sM
A

P
E

M3 monthly (trained on M4 monthly)

Meta+RNN+ITF
Meta+RNN

RNN+ADA+ITF
RNN+ADA

RNN+ITF RNN

10.0

12.5

15.0

17.5

20.0

22.5

25.0

sM
A

P
E

M4 hourly (trained on M4 hourly)

Meta+RNN+ITF
Meta+RNN

RNN+ADA+ITF
RNN+ADA

RNN+ITF RNN

0.1

0.2

0.3

0.4

0.5

0.6

N
D

electricity (trained on M4 hourly)

Meta+RNN+ITF
Meta+RNN

RNN+ADA+ITF
RNN+ADA

RNN+ITF RNN

0.2

0.4

0.6

0.8

N
D

traffic (trained on M4 hourly)

Figure 4: Ablation study for Meta-GLAR (Meta+RNN+ITF). The box plots show statistics for all
the runs of the random search (no model selection).

16

Under review as a conference paper at ICLR 2022

Table 6: Source-targets combination for DeepAR and Meta-GLAR. A model per row is trained on
the dataset in the source column and tested on all the ones in the target column. The length of the
forecast horizon follows each dataset preceded by a slash. Note that the length of the forecast horizon
can differ between source and target.

Source Targets
M4-YEARLY/6 M3-YEARLY/6, TOUR-YEAR/4
M4-QUARTERLY/8 M3-QUART/8, M3-OTHER/8, TOUR-QUART/8
M4-MONTHLY/18 M3-MONTHLY/18, TOUR-MONTH/24
M4-HOURLY/48 ELECTR/24, TRAFF/24

Table 7: Time lags used by Meta-GLAR, DeepAR and ablations for each time-frequency. These are
the defaults in the GluonTS implementation of DeepAR

Frequency Lags
Yearly [1, 2, 3, 4, 5, 6, 7]

Quarterly [1, 2, 3, 4, 5, 6, 7, 8, 9, 11,
12, 13]

Monthly [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 23, 24, 25, 35, 36, 37]

Weekly [1, 2, 3, 4, 5, 6, 7, 8, 12, 51, 52, 53, 103, 104, 105,
155, 156, 157]

Daily [1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 20, 21, 22, 27, 28, 29, 30, 31, 56,
84, 363, 364, 365, 727, 728, 729, 1091, 1092, 1093]

Hourly
[1, 2, 3, 4, 5, 6, 7, 23, 24, 25, 47, 48, 49, 71, 72, 73,
95, 96, 97, 119, 120, 121, 143, 144, 145, 167, 168, 169,
335, 336, 337, 503, 504, 505, 671, 672, 673, 719, 720, 721]

Table 8: Hyperparameters for the random search. The first three entries are respectively the number
of steps, minibatch size and learning rate used by the optimizer. Context mult multiplies the horizon
length of the training dataset to give the final context length for the model. Representation dim
is the dimension of the input to the last linear layer of the model (which is the dimension of the
representation). Min history length is the minimum number of observations that must be present in
the context window of the training TS slices.

Name Type Values/Ranges
Number of steps Categorical {25K, 50K}
Minibatch size Categorical {32, 64, 128}
Learning rate Float [1−5, 2−3]
Context mult Float [0.3, 5]
Representation dim Integer [20, 50]
Min history length Integer [24, 100]

17

	Introduction
	Related Work
	Problem Formulation
	Meta Global-Local Auto-Regressive Forecasting
	Experiments
	Experiment details

	Conclusion and Future Work
	Reproducibility Statement
	Additional Results
	Transfer from M4 (Results by frequency)
	Ablation Analysis on M4-hourly

	Additional Experiments Details
	Additional Benchmark methods
	Source Target Pairs
	Metrics

