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Comparison-Based Image Quality Assessment
for Selecting Image Restoration Parameters

Haoyi Liang, Student Member, IEEE, and Daniel S. Weller, Member, IEEE

Abstract— Image quality assessment (IQA) is traditionally
classified into full-reference (FR) IQA, reduced-reference (RR)
IQA, and no-reference (NR) IQA according to the amount
of information required from the original image. Although
NR-IQA and RR-IQA are widely used in practical applications,
room for improvement still remains because of the lack of the
reference image. Inspired by the fact that in many applications,
such as parameter selection for image restoration algorithms,
a series of distorted images are available, the authors propose
a novel comparison-based IQA (C-IQA) framework. The new
comparison-based framework parallels FR-IQA by requiring two
input images and resembles NR-IQA by not using the original
image. As a result, the new comparison-based approach has
more application scenarios than FR-IQA does, and takes greater
advantage of the accessible information than the traditional
single-input NR-IQA does. Further, C-IQA is compared with
other state-of-the-art NR-IQA methods and another RR-IQA
method on two widely used IQA databases. Experimental results
show that C-IQA outperforms the other methods for parameter
selection, and the parameter trimming framework combined with
C-IQA saves the computation of iterative image reconstruction
up to 80%.

Index Terms— Image quality assessment (IQA), human
visual system (HVS), comparison-based image quality assess-
ment (C-IQA), parameter selection.

I. INTRODUCTION

OBTAINING an image with high perceptual quality is the
ultimate goal of many image processing problems, such

as image reconstruction, denoising and inpainting. However,
measuring the perceptual image quality by subjective experi-
mentation is time-consuming and expensive, so designing an
image quality assessment (IQA) algorithm that agrees with
the human visual system (HVS) [1]–[3] is a foundational
image processing objective. Moreover, most image restoration
algorithms require one or more parameters to regulate the
restoration process, and no-reference IQA methods can be
used to guide selecting the parameters. For instance, the
regularization parameter of image reconstruction [4] is selected
by a no-reference image quality index [5]. However, most
existing no-reference IQA algorithms output the estimated
image quality based on a single distorted image, ignoring
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that different degraded images can provide more information
together to the quality estimation of each degraded image.
This observation inspires us to develop a comparison-based
IQA method to fill the gap between the increasing need of
parameter selection for image processing algorithms and the
lack of such an IQA algorithm that makes full use of the
available information.

IQA algorithms are classified based on the amount of
information from the reference image (the distortion-free
image) that is required: full-reference (FR), reduced-
reference (RR) and no-reference (NR). FR-IQA [6]–[10] is
a relatively well-studied area. Traditional methods like mean
squared error (MSE) and signal-to-noise ratio (SNR) are
used as the standard signal fidelity indexes [11]. A more
sophisticated FR-IQA algorithm, Structural Similarity Index
Method (SSIM) [7], considers the structure information in
images and performs well in different applications [11]–[14].
RR-IQA algorithms [15]–[18] require some statistical features
of the reference image, such as the power spectrum, and mea-
sure the similarity of these features from the reference image
and the distorted image. NR-IQA algorithms usually adopt
two different approaches. The first kind of NR-IQA [19]–[23]
algorithms have an approach similar to that of RR-IQA. The
difference is that rather than extracting the features from
the reference image, this kind of NR-IQA algorithm extracts
statistical features from a training set. The second kind of
NR-IQA algorithm [5], [14], [24] adopts a local approach to
quantifying structure as a surrogate for quality. A common
implementation of the second approach is calculating local
scores by analyzing the coherence of image gradients. The
overall score is synthesized by taking the average of the local
scores.

Among these three kinds of IQA algorithms, speed and
accuracy generally decrease from FR-IQA, RR-IQA to
NR-IQA progressively. However, reference images do not exist
in many cases. In applications like parameter selection for
image restoration algorithms, a set of distorted images with
the same image content are available. A novel comparison-
based IQA (C-IQA) framework is proposed in this paper to
make full use of these differently distorted images. A parallel
two-step framework is adopted in C-IQA. First, a residual
image is calculated by taking the difference between two input
images, and the quality of the residual image is evaluated.
Next, the contribution from two input images to the residual
image is calculated. Finally, a simple procedure combines the
first two parts: the input image that mainly contributes to high
quality residual patches receives positive scores, while the
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input image that is more responsible for the distorted residual
patches receives negative scores. Depending on the type of
the distortion, different quality indexes, such as the blockiness
index [25], can be used in the first part and a multi-metric
fusion scheme [26]–[28] can further improve the versatility of
the proposed framework.

It is worth differentiating RR-IQA and C-IQA since they
both use extra data beyond a single distorted image. The
most significant distinction between RR-IQA and C-IQA is
that the extra data required by most RR-IQA algorithms is
distortion-free, while the extra data that C-IQA has is usually
distorted. Therefore, RR-IQA algorithms specifically treat one
image as the distorted image to be evaluated and the other
information as truth or a reference. However, C-IQA treats
the two input images equally without any prior knowledge of
the quality of input images. In [18], Wu et al. take RR-IQA
as a measurement of the fidelity of the distorted image to the
original image. The RR-IQA method proposed in [15] depends
on a distortion-free ancillary channel to transmit the features
extracted from the original image. In [16], Soundararajan et al.
point out that the output of their RR-IQA method is a single
positive value that does not indicate if the input is better or
worse than the reference image. On the contrary, the final
output of our proposed C-IQA is a single real value that
indicates which one of the input image is better and by how
much. In brief, RR-IQA methods rely on the integrity of the
extra data, while C-IQA is able to decide the relative quality
only with two input images of the same scene.

The rest of the paper is organized as follows. Section II
introduces and compares different NR-IQA methods.
Section III elaborates on the details of C-IQA. The algorithm
used for image reconstruction and the framework of
parameter trimming are introduced in Section IV. In Section V
experiments are conducted on two widely used IQA databases,
LIVE [29] and CSIQ [6], to verify the performance of C-IQA
on parameter selection. Section VI reviews the novelty and
experimental results of the proposed C-IQA, and discusses
further work on comparison-based IQA framework.

II. EXISTING NR-IQA METHODS

In [14], Shnayderman et al. classify NR-IQA algorithms
into two types: global approaches and local approaches. The
underlying difference between these two methods are the fea-
tures used by different NR-IQA algorithms. Statistical features,
such as the distribution of wavelet coefficients [19], [20],
are extracted for global approaches. Local approaches usually
rely on the structure information, such as the edge promi-
nence [5], [14]. Usually, a regression model is adopted to
synthesize the statistical features into an overall image quality,
while the structure features are able to reflect the image quality
directly. The assumption of the statistical feature distribution is
changed when considering the difference of two images, while
the structure indexes that reflect the coherence of local gra-
dients still work for the difference of two images. Therefore,
the proposed C-IQA methods make use of a structure index,
MetricQ. In the following part, we briefly review different
NR-IQA methods and introduce one particular local structure
index MetricQ [5].

A. Approaches With Statistical Features

The rationale of statistical feature-based NR-IQA
methods [19]–[23] is that the distributions of natural
scene statistics (NSS) share certain common characteristics
among distortion-free images, and distortions will change
these characteristics. For example, it is widely accepted that
the wavelet coefficients of a natural image can be modeled
by a generalized Gaussian distribution (GGD) [30], [31].

The main advantage of statistical features is that most
of them are not dedicated to a specific distortion since the
NSS features are a high-dimensional vector designed to be
sensitive to various distortions. However, because of the high
dimensionality of the statistical feature space, it is difficult to
individually interpret and analyze these features quantitatively,
and thus feature selection is largely an empirical work.

B. Approaches With Structure Indexes

Because human eyes are highly sensitive to the gradient in
images, and the information in images can be well represented
by their gradient [5], [7], [32], structure indexes usually reflect
the spatial gradient information. Unlike the statistical indexes,
most structure indexes represent the local quality directly
without involving the learning process. However, the amount
of the gradient, or total variation, itself is not a stable indicator
of the quality [14]. Previous works [5], [14], [33] have shown
that assessing the concentration of the gradient direction in
an image is a promising way to evaluate the image quality.
Among these works, MetricQ [5] shows encouraging results
choosing denoising parameters. The underlying rationale of
MetricQ is that the more concentrated the gradient direction is,
the better the quality of the patch is. It is a reasonable
assumption since both of the two most common distortions,
noise and blurring, disperse the distributions of the gradient
direction.

C. MetricQ

The local quality index used by MetricQ is based on singular
values of the local gradient matrix, which have been widely
used as low level features in different image processing prob-
lems, such as tracking feature selection [34], recognition [35]
and image quality assessment [14]. For each n × n local
patch (w), the gradient matrix is

G =

⎡
⎢⎢⎣

...
...

px(k) py(k)
...

...

⎤
⎥⎥⎦, (1)

in which px(k) and py(k) are the gradients of the kth pixel
in the patch w on x and y directions. The singular value
decomposition (SVD) of the gradient matrix, G, is defined as

G = U SV T = U

[
s1 0
0 s2

] [
V1 V2

]T
, (2)

where U and V are both orthonormal matrices. Vector V1 is
of size 2 × 1 and corresponds to the dominant direction of
the local gradient; V2 is orthogonal to V1 and thus represents
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Fig. 1. Flow Chart of the Comparison-based IQA: P1 and P2 are local patches from input images, I1 and I2, at the same location respectively. The
Content Detection module determines whether there is a meaningful structure in the difference patch; the Contribution module calculates which patch mainly
contributes to the difference patch; the Distortion Sensitivity Weighting module compensates the distortion sensitivity difference of patches with various texture
complexities. The output, comparison-based index, indicates the relative quality of P1 based on P2.

the edge direction. Singular values, s1 and s2, represent the
luminance variances on V1 and V2 respectively. Intuitively,
a large s1 and a small s2 indicate a prominent edge in the
local patch.

In MetricQ [5], two indexes reflect the quality of a local
patch: Image Content Index and Coherence Index. Image
Content Index is defined as

Q = s1
s1 − s2

s1 + s2
, (3)

and Coherence Index is defined as

R = s1 − s2

s1 + s2
. (4)

Q reflects the structure prominence in a local patch and
R is used to determine whether a local patch is dominated by
noise. The overall score of an image is calculated by

AQ = 1

M N

∑
i, j :R(i, j )>τ

Q(i, j), (5)

where M × N is the size of the image and τ is the threshold
to decide whether a local patch is dominated by noise. Q(i, j)
and R(i, j) are the Image Content Index and Coherence Index
of the local patch centered at (i, j) in the image. A simplified
interpretation of (5) is that AQ is the average structure index
of local patches that have meaningful image content.

III. COMPARISON-BASED IMAGE QUALITY ASSESSMENT

Previous works on IQA [2], [3], [7], [21], [36] show that
IQA performance can be significantly improved by taking
advantage of the characteristics of HVS. For example, the
structural information that human eyes are highly sensitive
to is used by SSIM [7]. Traditional NR-IQA algorithms also
try to exploit HVS features and make reasonable assumptions
about natural scene images. However, one important aspect
of HVS is ignored: comparison. In subjective IQA experi-
ments [6], volunteers are required to evaluate the quality of
an image by comparing it with a reference image, rather
than giving an absolute score for the image. Although in
most image processing applications, the reference image does
not exist, a set of differently degraded images are available.

In these cases, extending existing state-of-the-art FR-IQA and
RR-IQA algorithms to comparison-based IQA algorithms is
a natural thought. However, different from FR-IQA and
RR-IQA algorithms, neither of the two input image qualities is
known in the comparison-based IQA framework. As a result,
in a comparison-based IQA algorithm, we not only measure
the difference between two input images, but also assess the
quality of the difference.

A. Framework of C-IQA

As shown in Fig. 1, C-IQA has two input images, I1 and I2,
and the output indicates the relative quality of I1 based on I2.
No prior knowledge about the quality of two input images
is known to C-IQA, and the relative quality can be either
positive or negative depending on whether I1 is better than I2.
We refer to the second image in C-IQA as the base image
to distinguish it from the reference image in FR-IQA and
RR-IQA. The implemented C-IQA method consists of two
basic modules: Content Detection and Contribution. The third
module, Distortion Sensitivity Weighting, is optional and
its description is deferred to Section III-C. In the rest of
the paper, we refer to the comparison-based IQA variation
composed by the two basic modules as CQ and the variation
with three modules as CDQ. Content Detection determines
whether the difference between two input images contains
any meaningful structure, and Contribution decides which
image mainly contributes to the difference. CQ composes
these two modules by the criterion that the input image
that contributes to a structured difference is better and the
input image that contributes to a random difference is worse.
The Distortion Sensitivity Weighting module added in CDQ
adjusts the distortion sensitivity difference among patches with
different texture complexity [7], [37].

1) Content Detection: The Content Detection module is
based on the Coherence Index put forward in MetricQ [5].
Different from MetricQ, this index is calculated with the
difference image between two input images in C-IQA.
In MetricQ, limited by the information provided by a single
input image, the algorithm does not know the texture com-
plexity in the original image. Therefore, it is hard for an
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Algorithm 1 Content Detection

Algorithm 2 Contribution

algorithm to estimate how concentrated the gradient should be.
However, by mimicking the comparative way HVS works,
C-IQA removes the main image content in the images by
taking the difference, and thus it is easy for the Content
Detection module to differentiate the patches with noisy and
structured content.

In Alg. 1, P1 and P2 are two patches of size n × n from
I1 and I2 respectively, G is the same 2-column gradient matrix
defined in (1), SV D(G) represents taking the SVD operation
on G, and s1 and s2 are the singular values of G. Cthresh is
a constant threshold to binarize Cind . The binary output
i s_stru indicates whether there is a meaningful structure in
the difference of local patches.

2) Contribution: Once the difference is classified into noise
or structure, the Contribution module is designed to find out
which of the two input images mainly contributes to the differ-
ence image. In our implementation, the luminance-normalized
covariance between the input image and the difference image
is used to measure the contribution.

In Alg. 2, mean(Pi) calculates the average of the local
patch, and cov(x1, x2) calculates the covariance between two
input patches,

cov(x1, x2) = (x1 − mean(x1))
T (x2 − mean(x2))

n2 − 1
,

x1 and x2 are vectorized patches of size n2×1. The output ctri
represents that P1 contribute to Dp more than P2 does by how
much. A negative ctri means that P2 mainly contribute to Dp .

The comparative quality index for each local patch is
calculated by

CQ = i s_stru · ctri.

The overall comparative quality of I1 based on I2 is

C Q(I1, I2) = 1

M × N

∑
i, j=(n/2):(M−n/2)

CQ(i, j),

where CQ(i, j) is the local comparative quality index centered
at (i, j) in the image, n × n is the size of the local patch

and M × N is the size of the image. Patches that are
outside the boundary of the image are not included in the
calculation. A positive C Q(I1, I2) means I1 is better than I2,
and the absolute value quantifies the quality difference.
Due to the anti-symmetric design of the algorithm,
C Q(I1, I2) = −C Q(I2, I1).

B. Justification of CQ

Inspired by Li’s work [38] which claims that an IQA model
should be based on three quantities: edge sharpness, random
noise level and structure noise, we classify the distortions
by residual images, the difference between a distorted image
and the original image. In our classification, distortions can
be categorized into two types: introducing a random residual
image, or introducing a structured residual image. In most
cases, random residual images correspond to noise-like distor-
tions and structured residual images correspond to blurring-
like distortions. In this part, we prove how C-IQA works under
these two distortions.

Assume Itrue is the original image, and I1, I2 are two
distorted images. The residual images are calculated by,

ei = Ii − Itrue, i = 1, 2.

Similarly, for each patch we have

ePi = Pi − Ptrue, i = 1, 2.

1) Random Residual Image: Residual images behave like
noise in this case. If we assume I1 is more severely distorted
than I2, then we have E[‖eP1‖22] > E[‖eP2‖22]. The expecta-
tion of the local comparative quality index is

E[CQ ] = E[ctri · i s_stru]
= E[(ctri1− ctri2) · i s_stru]
= E[cov(P1, P1 − P2)− cov(P2, P2 − P1)]
· E[i s_stru]

= −E[cov(Ptrue + eP1, eP1 − eP2)

− cov(Ptrue + eP2, eP2 − eP1)]
= −E[2 · cov(Ptrue, eP1 − eP2)

+ cov(eP1, eP1)− cov(eP2, eP2)]
= −E[cov(eP1, eP1)] + E[cov(eP2, eP2)]
< 0.

The three most important properties in the derivation are the
irrelevance between Ptrue and ePi , the randomness of ePi ,
and independence of i s_stru and ctri1, ctri2. The result
E[CQ] < 0 agrees with our assumption that I1 is more
severely distorted than I2. When I2 is more severely distorted,
the same proof shows E[CQ ] > 0.

2) Structured Residual Image: If the residual images show
structured information, the most probable reason is that the
image is distorted by a blurring-like distortion. Because the
blurring filter acts as a low-pass filter, the residual images show
a structure that is inversely related to the original image [39]
to smoothen the high contrast on the edges.

Without loss of generality, we assume more blurring hap-
pens in I1 than I2, which means E[|eP1|] > E[|eP2|].
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The expectation of the local comparative quality index is

E[CQ] = E[ctri · i s_stru]
= E[(ctri1− ctri2) · i s_stru]
= E[cov(P1, P1 − P2)− cov(P2, P2 − P1)]
= E[cov(Ptrue + eP1, eP1 − eP2)

− cov(Ptrue + eP2, eP2 − eP1)]
= E[cov(2 · Ptrue, eP1 − eP2)

+ cov(eP1 + eP2, eP1 − eP2)]
= E[cov(2 · Ptrue + eP1 + eP2, eP1 − eP2)]
< 0.

The most important step in this derivation is the last step. Since
E[|eP1|] > E[|eP2|], eP1 − eP2 also demonstrates a structure
that is inversely related to the original image as ePi . As long as
the distortion is not severe enough to remove the structure in
the original image, 2 ·Ptrue+eP1+eP2 = P1+P2 is positively
related to the original image. As a result, E[cov(2 · Ptrue +
eP1+eP2, eP1−eP2)] < 0, which agrees with our assumption
that I1 is more severely distorted than I2. Following the same
steps, we can show E[CQ] > 0 if I2 is more severe distorted
than I1.

C. Distortion Sensitivity Weighting

We have proven that only with Content Detection and
Contribution, the CQ can give correct results if both of the
two input images are distorted by one distortion, either noise-
like distortion or blurring-like distortion. However, another
important property of HVS is missed in CQ: the response of
HVS to the same distortion is texture-dependent. One example
of this HVS property is that after being distorted by the
same amount of Gaussian noise, the distortion in the image
with simpler texture is more obvious. In this part, we first
investigate such texture-based response of CQ and then design
a weighting module to adjust the distortion sensitivity of CQ
to different textures. We refer to the improved C-IQA method
with Distortion Sensitivity Weighting module as CDQ.

In CQ, Content Detection is a qualitative module that
detects the meaningful structure and the Contribution module
quantifies the relative quality. Therefore, the Contribution
module may implicitly include distortion sensitivity weighting.
We design an experiment to explore the relation between the
texture complexity and the output of Contribution. In this
experiment, 140 patches of size 101×101 with homogeneous
texture are selected from LIVE [29] and CSIQ [6], and
eight samples of these patches are shown in Fig. 2. As the
representatives of blurring-like and noise-like distortions,
a bilateral filter and Gaussian noise with the same parameters
are applied to each patch. According to the Weber-Fechner
law [40], we use luminance-normalized total variation as
the perceived texture complexity, T _ind = T V (P)

mean(P) , where
T V (P) is the total variation in the original patch and mean(P)
is the average of the original patch. The relation between
texture complexity, T _ind , and the output of Contribution
module, ctri , are plotted in Fig. 3. Each circle in Fig. 3
represents a patch sample. It is clear that ctri is almost linear

Fig. 2. Patch samples with various texture complexity are selected from
LIVE [29] and CSIQ [6] to verify the difference of distortion sensitivity in CQ.
The assumption is that patches with complex texture are more robust to noise,
while patches with flat texture are more robust to blurring.

Fig. 3. Relations between the output of Contribution module, ctri , and
texture complexity, T _ind. Each circle in the figure represents a sample patch.
All the sample patches are degraded by the same amount of distortion for
blurring and noise.

Algorithm 3 Distortion Sensitivity Weighting

related to texture complexity, T _ind , when blurring happens.
On the contrary, T _ind shows no relation with ctri when the
distortion is noise. The reason for this is that blurring is a
highly image-dependent distortion, and the residual image is
more prominent at areas where total variation is high. After
figuring out the blurring sensitivity compensation mechanism
in CQ, we need to design an algorithm to compensate the
sensitivity difference to noise.

Because noise-like distortion tends to increase the total
variation while blurring-like distortion tends to decrease the
total variation, Alg. 3 uses the output of Content Detection
to synthesize T 1_ind and T 2_ind into T _ind . After texture
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complexity estimation, we transfer T _ind to the smoothness
index, Sind , and compensate the sensitivity to noise.

In CDQ, the comparative quality index for each local
patch is

C DQ = i s_stru · ctri · weight .

The overall comparative quality of I1 based on I2 is calculated
by taking the average of local comparative quality index as
CQ does.

D. Comparison Between CDQ and SSIM

SSIM consists of three components: structure (loss of cor-
relation), luminance (mean distortion) and contrast (variance
distortion). In CDQ, the outputs of Content Detection and
Distortion Sensitivity Weighting provide the quality of the
difference image. The luminance and the contrast of an input
image together determine the contribution of the input image
to the difference image. Therefore, Content Detection and
Distortion Sensitivity Weighting of CDQ together play the role
of the structure part in SSIM. The difference is that without
knowing which image has the better quality, CDQ has to
analyze the quality of the structure in the difference image,
rather than only measuring the structure distance as SSIM
does. The Contribution module in CDQ is similar to the
functions of luminance and contrast parts together in SSIM.

IV. PARAMETER SELECTION

As the motivation of C-IQA mentioned in the introduc-
tion, most image processing algorithms contain user-defined
parameters (these image processing algorithms are referred
as “target algorithms” in the following to differ from IQA
algorithms). Parameter selection [4], [5], [41]–[47] is of
importance to these target algorithms. By parameter selection,
some of these target algorithms [45], [46] achieve a faster
convergence rate; some [43], [44] obtain a better restored
image.

In this section, we first introduce an image reconstruction
algorithm and illustrate the importance of parameter selection
with this reconstruction algorithm. Next, a boosted parameter
selection framework for iterative image processing algorithm,
parameter trimming [4], is introduced. In the following exper-
imental section, we show target algorithms with the parameter
trimming framework benefit from the parameters selected
by CDQ.

A. Image Reconstruction

Total variation (TV) reconstruction [48] is aimed at mini-
mizing the cost function,

Eβ(x) = β‖Dx‖1 +
1

2
‖Sx − y‖22, (6)

where x is the reconstructed image, y is the observed incom-
plete data set, S is the system matrix, D represents the
difference matrix, and the TV regularizer ‖Dx‖1 combines
gradients on two directions isotropically. In our implementa-
tion, S = RF , where R represents the subsampling matrix and
F represents the Fourier transform matrix. The regularization

Algorithm 4 Split Bregman

Fig. 4. (a): original Brain image [50]; (b): reconstructed result with
β = 1.22 × 10−6; (c): reconstruction result with β = 4.46 × 10−1;
(d): reconstructed result with β = 10.

parameter β controls the sharpness of the reconstructed result.
Large β oversmooths the reconstructed image, while small β
leaves residual noise. A proper β is crucial to the performance
of TV reconstruction. Split Bregman iteration [49] is used
to solve (6). By making the replacement d ← Dx and
introducing the dual variable b, the split formulation of (6)
becomes:

min
x,d

β‖d‖1 + 1

2
‖Sy − y‖22 +

μ

2
‖d − Dx − b‖22,

s.t . d = Dx . (7)

The Split Bregman iteration solution to (7) is Alg. 4.
In Alg. 4 we use the notation K = (RT R − μFDT DF−1),

Lk = (FT RT y + μDT (dk − bk)) and sk =
√
|Dxk + bk|2. μ

is set as 0.01β to ensure a fast convergence rate.
To illustrate the necessity of parameter selection of TV

reconstruction, the Brain image [50] is reconstructed with
30 values of β. These candidate values of β are uniformly
sampled from 1.22×10−6 to 10 in logarithmic scale and three
of the reconstructed results are shown in Fig. 4. The image
quality indexes during the convergence process are plotted
in Fig. 5(a) where each line corresponds to one parameter
candidate. The final reconstructed image qualities are plotted
in Fig. 5(b). From Fig. 5, it is clear that if parameters that do
not have the potential to achieve good results are terminated
before convergence, considerable computation will be saved.
This is the intuition of the parameter trimming in the next
section.

B. Parameter Trimming

A traditional approach to parameter selection [41]–[44]
is selecting the parameters after the convergence of all the
target algorithm instances. However, since either the target
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Fig. 5. (a): Each line corresponds to an algorithm instance with a different
regularization parameter. (b): Qualities of reconstructed results with different
regularization parameters after 160 iterations.

algorithms converge quickly [5], [44] or the NR-IQA algo-
rithm is time-consuming [43], computational efficiency is not
considered in previous works.

In situations where target algorithms converge slowly or
the set of parameter candidates is large, assessing image
qualities and selecting the best parameter after all the algo-
rithm instances converge would be too time-consuming to be
practical. Instead of placing the quality monitor at the output
end, we first proposed a parameter trimming framework [4]
that integrates the quality monitor into the target algorithms.
In this section, we use image reconstruction as the application
to illustrate the parameter trimming framework.

Assume I i
m is the reconstructed result of the mth parameter

candidate at the i th iteration. The trimming decision is made
based on three indexes, qi

m , gi
m and pi

m , which are the
reconstructed quality, the quality increasing gradient and the
prediction of the quality of I i

m respectively. Because the image
quality index we use here is a comparison-based index, the
definitions of the these three indexes are modified to fit CDQ
into the parameter trimming framework in [4]. Denoting the
best reconstructed result at the i th iteration is besti , it satisfies
C DQ(I i

besti
, I i

besti−1) ≥ 0 and C DQ(I i
besti

, I i
besti+1) ≥ 0. The

three indexes used for parameter trimming, qi
m , gi

m and pi
m ,

are defined as,

qi
m = C DQ(I i

m , I i
besti ),

gi
m = C DQ(I i

m , I i−1
besti−1

)− C DQ(I i−1
m , I i−1

besti−1
),

pi
m = qi

m + prelen · gi
m .

We set prelen = 4 in all the experiments. More examples
of the reconstruction and trimming process are shown
in Section V-C.

V. EXPERIMENTS

We first introduce a key property, minimum resolution,
that is unique to C-IQA in Section V-A. In the next two
parts, more comprehensive experiments are conducted to
verify the effectiveness of C-IQA for parameter selection.
The other NR-IQA algorithms that we use to compare
CQ/CDQ with are DIIVINE (DII) [19], BRISQUE (BRI) [20],
MetricQ (MQ) [5] and Anisotropy (Ani) [21]. Although

Fig. 6. Images in the gray scale [29] for the illustration of minimum
resolution. (a) “caps” (b) “coinsinfountain”.

RR-IQA methods are not suitable for parameter selec-
tion where the original image is not available, we include
one RR-IQA [18] method to compare with C-IQA. The
reason is that for some applications, such as delivering and
decompressing visual data sent to networked devices [20], both
C-IQA and RR-IQA are practical. In [18], Wu. et al proposed
a RR-IQA method that uses two numbers containing the infor-
mation of the order and disorder parts of a reference image
to help evaluate the quality of the distorted image. A widely
accepted FR-IQA algorithm, SSIM [7], is used as the ground
truth to evaluate the performance of other IQA algorithms.
Two IQA databases used in the experiments are LIVE [29] and
CISQ [6]. Parameters in CQ/CDQ are set as Cthresh = 0.12,
C1 = 4.6 and the size of a local patch is 9× 9 pixels.

A. Minimum Resolution of C-IQA

Since the comparison-based IQA is a brand-new approach,
new properties arise. In this section, we illustrate the minimum
resolution of C-IQA and corresponding solutions based on two
images from LIVE [29] as shown in Fig. 6.

Similar to HVS, IQA algorithms are not able to make a
convincing quality comparison between images whose differ-
ence is sufficiently small. In this part, we define the minimum
mean squared difference (MSD) between two images required
to make a convincing quality comparison as the minimum
resolution. It is worth noticing that minimum resolutions vary
over different distortions and different IQA algorithms.

For the traditional single-image-input NR-IQA algorithms,
minimum resolutions can be regarded as the minimum MSD
required to ensure consistency on a series of increasingly dis-
torted images. However, under the comparison-based frame-
work, a distorted image has different scores compared with
different base images. We cannot refer to the consistency
to define the minimum resolution for a comparison-based
IQA algorithm. The minimum resolution for comparison-
based IQA is defined as the minimum MSD required to
preserve transitivity among a series of increasingly distorted
images. We conduct an experiment on the images in Fig. 6 to
demonstrate the transitivity.

Assume Iorg is the original image, and I1 is created by
adding Gaussian noise to Iorg . A series of gradually filtered
images, (I1, I2, · · · , IN ), are denoised by bilateral filters [51],
B F(r,d), where r and d are the variances of Gaussian range
kernel for smoothing differences in intensities and Gaussian
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Fig. 7. Minimum resolution of Comparison-based IQA algorithm: (a) CDQ scores of denoised images compared with their previous images (series1) and
the one before previous images (series2); (b) SSIM scores and cumulated CDQ scores of “caps” in (a); (c) SSIM scores and cumulated CDQ scores of
“coinsinfountain” in (a).

spatial kernel for smoothing differences in coordinates. For
simplicity, we reduce the parameters of bilateral filters to one
by fixing the ratio between r and d , B Fk = B F(0.1k,3k).
In Fig. 7(a), we show the CDQ scores of each image compared
with its previous one in the denoised sequence (series1) and
the CDQ scores compared with the one before its previous
one (series2). We can see that CDQ scores in series1 are
always positive, but pass 0 in series2. Therefore, the denoised
image qualities monotonically increases in series1, but reach
a peak in series2. In Fig. 7(b) and Fig. 7(c), we plot the
cumulated CDQ scores in series1 and series2. It is clear that
the cumulated CDQ scores fail to characterize the trend of
image quality in series1, but successfully reflect the peak in
series2. In this example, the MSD between adjacent images
in series1 is below the minimum resolution of the bilateral
filter, but the MSD between adjacent images in series2 is
above the minimum resolution of the bilateral filter.

There are two ways to avoid the unwanted result of oper-
ating below minimum resolution. First, increase the MSD
between adjacent images by increasing the parameter steps.
Second, avoid comparing the adjacent images in a series
of increasingly distorted images. The Key Image algorithm
introduced in the Section V-B2 is an implementation of the
second approach.

B. Experiment Verification for Parameter Selection

Because the main motivation of Comparison-based IQA
is parameter selection for image processing algorithms, two
common image processing problems, image reconstruction
and image denoising are used to demonstrate the parameter
selection ability of the proposed C-IQA. The algorithm used
for image reconstruction is the Split Bregman approach to total
variation reconstruction [49]; the algorithm used for image
denoising is the bilateral filter [51]. The optimal parameters
of these two algorithms on different images are selected by
SSIM, different NR-IQA algorithms, RR-IQA and C-IQA.
The parameters selected by SSIM are compared with the ones
selected by other IQA algorithms to evaluate the performance
of other IQA algorithms.

1) Parameter Selection for TV Reconstruction: The algo-
rithm used for image reconstruction is introduced in
Section IV-A. In this experiment, 70% Fourier transform data

Fig. 8. One example of image reconstruction parameter selection. The
best regularization parameter for this image, β∗ = 2.81 × 10−2. The area
highlighted by the red box is enlarged in Fig. 9. (a) Original “log_seaside”
for CSIQ. (b) Reconstructed “log_seaside” with β∗.

are used to reconstruct the image and in order to be more real-
istic, Fourier transform data are distorted by Gaussian noise.
The SNR is kept at 20 dB in all reconstruction experiments. All
30 regularization parameter candidates are uniformly selected
between [10−5, 10−1] in logarithmic scale.

One reconstruction example, “log_seaside”, from CSIQ is
shown in Fig. 8. The highlighted area in Fig. 8 is shown in
details in Fig. 9 for the original image and reconstructed results
with different regularization parameters, β. The RR-IQA
method [18] selects β1 = 8.53 × 10−4 as the optimal para-
meters; DIIVINE and BRISQUE select β2 = 1.49 × 10−2;
Anisotropy selects β3 = 2.04 × 10−2; SSIM, CQ and CDQ
select β∗ = 2.81× 10−2; MetricQ selects β4 = 3.86× 10−2.
It is clear from Fig. 9 that as β increases, noisy component
disappears and blurring occurs. Fig. 10 and Fig. 11 show
how CQ works by comparing different reconstructed results.
In Fig. 10, the reconstructed result of β1, Fig. 9 (b),
is compared with the result with optimal parameter, β∗,
Fig. 9 (e). From Fig. 10 (a), it is clear that the difference
patch shows a noise pattern. The black areas in Fig. 10 (b)
indicate the areas that are likely to be taken as noise.
Fig. 10 (c) shows the contribution difference from recon-
structed results with β1 and β∗ to Fig. 10 (a). It should
be noticed that the contribution difference in white areas
in Fig. 10 (b) tends to be assigned a much smaller absolute
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Fig. 9. Patches from the highlighted areas in Fig.8. The regularization parameter of the total variation term is β. RR-IQA [18] selects β1, DIIVINE
and BRISQUE select β2, Anisotropy selects β3, CQ and CDQ select β∗, and MetricQ select β4. As β increases, noise is suppressed as shown in blue
rectangles, while subtle structures is blurred as shown in red rectangles. (a) Patches from the original image. (b) Reconstructed result with β1 = 8.53× 10−4.
(c) Reconstructed result with β2 = 1.49 × 10−2. (d) Reconstructed result with β3 = 2.04 × 10−2. (e) Reconstructed result with β∗ = 2.81 × 10−2.
(f) Reconstructed result with β4 = 3.86× 10−2.

Fig. 10. CQ index of Fig. 9 (b) (β1) based on Fig. 9 (e) (β∗).
(a) is the difference between the image with β1 and β∗. The white in
(b) stands for structured areas in (a) and the black stands for noisy area.
(c) shows the contribution difference between β1 and β∗. On this local patch,
C Q(Pβ1 , Pβ∗ ) = −1.83 × 10−3.

Fig. 11. CQ index of Fig. 9 (f) (β4) based on Fig. 9 (e) (β∗). (a) is the
patch difference between the image with β4 and β∗. The white areas in
(b) corresponds to structured area. In (c), the negative values means that
the contribution comes from β∗. On this local patch, C Q(Pβ4 , Pβ∗ ) =
−2.50 × 10−4.

value. Therefore, the CQ index of Fig. 9 (b) based on Fig. 9 (e)
is a negative number that indicates Fig. 9 (b) is worse.
Similarly, the comparison between reconstructed results with
β4 and β∗ are shown in Fig. 11. A clear structured difference
in Fig. 11 (a) is supported by the majority white area in
Fig. 11 (b). The negative value in Fig. 11 (c) means that the
contribution to the structured difference comes from β∗. It is
worth to notice that although both the comparisons between
results of β1 and β∗, and β4 and β∗ lead to negative values
that show β∗ is better, the decision-making processes are
different. When comparing β1 and β∗, the difference is noisy
and mainly comes from β1; while when comparing β4 and β∗,
the difference is structured and mainly comes from β∗.

In the datasets of LIVE and CSIQ, there are 59 original
images and each original image corresponds to 30 recon-
structed results with different regularization parameters.

Fig. 12. The SSIM differences of the best images chosen by different NR,
RR, and Comparison-based IQA methods for image reconstruction parameter
selection. (a) LIVE. (b) CSIQ.

The SSIM index difference between the best images chosen
by SSIM and the one chosen by other IQA algorithms is
used to evaluate other IQA methods in this experiment. The
SSIM difference of each IQA algorithm is plotted in Fig. 12.
More quantitative evaluation of different IQA algorithms are
provided in Table I. Both the results in Fig. 12 and Table I
show that the comparison-based methods, CQ and CDQ, have
the best accuracy of selecting reconstruction parameters.

2) Parameter Selection for Bilateral Filter: A series of
increasingly denoised images, I1, I2, · · · , I30, are created for
each image the same as Section V-A. The SSIM index of the
most oversmoothed image I30 is between 0.85± 0.01.

Because the MSD between the adjacent images are below
minimum resolution of bilateral filtering, Alg. 5 is adopted
to select the best result. Key images are a set of images
among which the MSD is greater than the minimum resolution.
Alg. 5 first separates the 30 increasingly denoised images into
a few segments by key images and selected the best key image
with CQ/CDQ. The MSD difference between key images are
lower bounded by Kthresh . Next, images in the two segments
that are adjacent to the best key image are evaluated based
on the two key images on the ends. By doing so, we avoid
comparing the adjacent images directly. Kthresh is set as 3.0
in this experiment.

The SSIM difference between the best denoised image
chosen by SSIM and the one chosen by other IQA methods is
plotted in Fig. 13. Table II shows more quantitative results
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TABLE I

ACCURACY OF PARAMETER SELECTION FOR IMAGE RECONSTRUCTION

TABLE II

ACCURACY OF PARAMETER SELECTION FOR BILATERAL FILTER

Algorithm 5 Key Image

of different IQA algorithms. Both CDQ and MetricQ give
satisfying results for bilateral denoising parameter selection.

In order to better analyze the performance of comparison-
based methods, two of the outliers of denoising parameter
selection by C-IQA are shown in Fig. 14. Comparison-based
methods tend to choose the parameters that lead to over-
smoothed denoised results. This is a common challenge for

Fig. 13. The SSIM differences of the best images chosen by different NR,
RR, and Comparison-based IQA methods for the bilateral filter parameter
selection. (a) LIVE. (b) CSIQ.

Fig. 14. Outliers of parameter selection. (a) “stream” (LIVE) (b) “geckos”
(CSIQ).

all the NR-IQA algorithms in our experiments. For the lack
of texture complexity information from the original image,
NR-IQA algorithms are easy to confuse the fine texture with
noise component. On the contrary, the RR-IQA in [18] is good
at handling images with different global texture complexity
because an index that indicates the energy in the disorder
part in the original image is available for the image quality
assessment.
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TABLE III

ACCURACY OF PARAMETER SELECTION FOR BM3D

Fig. 15. The SSIM differences of the best images chosen by different NR,
RR, and Comparison-based IQA methods for the BM3D parameter selection.
(a) LIVE. (b) CSIQ.

3) Parameter Selection for BM3D: Similar to the settings of
parameter selection for bilateral filter, a series of increasingly
denoised images, I1, I2, · · · , I30, are created with BM3D [52].
The SSIM index of the most oversmoothed image I30 is
between 0.85±0.01. Alg. 5 is adopted to select the best result.

The SSIM difference between the best denoised image
chosen by SSIM and the one chosen by other IQA methods
is plotted in Fig. 15. Table III shows more quantitative results
of different IQA algorithms. It should be noticed that the
performance of MetricQ decreases significantly compared with
the results of bilateral filters. The reason is that BM3D mainly
removes the subtle details as the parameter increases, while
MetricQ takes these details as noise. On the contrary, bilat-
eral filters blur major structures as well when the parameter
increases. The results of MetricQ and C-IQA on BM3D also
reveal that although the implemented C-IQA makes use of
MetricQ, the performance of C-IQA is significantly improved
based on MetricQ due to the comparison framework.

C. Application in Parameter Trimming

In this section, we combine CDQ with the parameter
trimming framework and show that considerable computation
can be saved while preserving the accuracy of parameter
selection. In this part, all the parameter settings for image
reconstruction are the same as the settings in Section V-B1.
Fig. 16(a) shows one example image in parameter trimming.
The SSIM indexes in Fig. 16(b) and (c) are only used to
demonstrated the convergence process. Fig. 16(b) shows
the parameter selection after all the algorithm instances
with different parameters converge. Fig. 16(c) illustrates the
parameter trimming process with CDQ. From Fig. 16, we can
see that the trimming decision based on CDQ achieves the
goal of terminating the iteration of parameters that are far from

Fig. 16. Comparison between convergence with and without parameter
trimming on “buildings”. (a) “buildings” (from LIVE). (b) Convergence
without parameter trimming. (c) Convergence with parameter trimming.

TABLE IV

COMPUTATION SAVED BY PARAMETER TRIMMING

the best choice. On LIVE [29], all the parameters selected
with parameter trimming are the same as the parameters
selected after convergence; on CSIQ [6], only one of the
best parameters selected by parameter trimming is different
from the one selected after convergence. From Table IV, it is
clear that considerable computation is saved with parameter
trimming.

VI. CONCLUSION

Motivated by the parameter selection for image restoration
algorithms, for the first time we proposed a comparison-
based IQA framework. The comparison-based method imple-
mented in this paper includes three primary modules, Content
Detection, Contribution and Distortion Sensitivity Compensa-
tion. One important property that is unique to comparison-
based IQA, minimum resolution, is analyzed. At last,
the comparison-based IQA compares favorably with other
NR-IQA and RR-IQA algorithms on two widely used data-
bases for image reconstruction and bilateral filter parameter
selection.

We take CQ and CDQ in this paper as two specific imple-
mentations of the comparison-based IQA method. By employ-
ing and fusing multiple image quality metrics [26], [27],
other comparison-based IQA methods can be designed for
different application scenarios in the future.
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