Under review as a conference paper at ICLR 2025

SCALABLE APPROXIMATE MESSAGE PASSING FOR
BAYESIAN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian neural networks (BNNs) offer the potential for reliable uncertainty quan-
tification and interpretability, which are critical for trustworthy Al in high-stakes
domains. However, existing methods often struggle with issues such as overcon-
fidence, hyperparameter sensitivity, and posterior collapse, leaving room for al-
ternative approaches. In this work, we advance message passing (MP) for BNNs
and present a novel framework that models the predictive posterior as a factor
graph. To the best of our knowledge, our framework is the first MP method that
handles convolutional neural networks and avoids double-counting training data,
a limitation of previous MP methods that causes overconfidence. We evaluate
our approach on CIFAR-10 with a convolutional neural network of roughly 890k
parameters and find that it can compete with the SOTA baselines AdamW and
IVON, even having an edge in terms of calibration. On synthetic data, we validate
the uncertainty estimates and observe a strong correlation (0.9) between posterior
credible intervals and its probability of covering the true data-generating function
outside the training range. While our method scales to an MLP with 5.6 million
parameters, further improvements are necessary to match the scale and perfor-
mance of state-of-the-art variational inference methods.

1 INTRODUCTION

Deep learning models have achieved impressive results across various domains, including natural
language processing (Vaswani et al., [2023)), computer vision (Ravi et al., 2024), and autonomous
systems (Bojarski et al., 2016). Yet, they often produce overconfident but incorrect predictions,
particularly in ambiguous or out-of-distribution scenarios. Without the ability to effectively quantify
uncertainty, this can foster both overreliance and underreliance on models, as users stop trusting their
outputs entirely (Zhang et al., |2024), and in high-stakes domains like healthcare or autonomous
driving, its application can be dangerous (Henne et al., [2020). To ensure safer deployment in these
settings, models must not only predict outcomes but also express how uncertain they are about those
predictions to allow for informed decision-making.

Bayesian neural networks (BNNs) offer a principled way to quantify uncertainty by capturing a pos-
terior distribution over the model’s weights, rather than relying on point estimates as in traditional
neural networks. This allows BNNs to express epistemic uncertainty, the model’s lack of knowledge
about the underlying data distribution. Current methods for posterior approximation largely fall into
two categories: sampling-based methods, such as Hamiltonian Monte Carlo (HMC), and determinis-
tic approaches like variational inference (VI). While sampling methods are usually computationally
expensive, VI has become increasingly scalable (Shen et al.,[2024). However, VI is not without limi-
tations: It often struggles with overconfidence (Papamarkou et al.;2024), and it can struggle to break
symmetry when multiple modes are close (Zhang et al., |2018). Mean-field approaches, commonly
used in VI, are prone to posterior collapse (Kurle et al., [2022} |Coker et al., 2022). Additionally, VI
often requires complex hyperparameter tuning (Osawa et al.,[2019)), which complicates its practical
deployment in real-world settings. These challenges motivate the need for alternative approaches
that can potentially address some of the shortcomings of VI while maintaining its scalability.

In contrast, message passing (MP) (Minka, 2001) is a probabilistic inference technique that suffers
less from these problems. Belief propagation (Kschischang et all 2001)), the basis for many MP
algorithms, integrates over variables of a joint density p(X1, ..., X,) that factorize into a product of

Under review as a conference paper at ICLR 2025

functions f; on subsets of random variables x1, . . ., X,,. The corresponding factor graph is bipartite
and connects these factors f; with the variables they depend on. The following recursive equations
yield a computationally efficient algorithm to compute all marginals p(x;) for acyclic factor graphs:

p(x) = [msx(x) myx(X) =/f(Nf) II myr(dN\ {x})

FENK YEN\{x}

where N, denotes the neighborhood of vertex v and my_, (y) = [[pen,\ (s} M-y (y)- Since
exact messages are often intractable and factor graphs are rarely acyclic, belief propagation typ-
ically cannot be applied directly. Instead, messages ms_, x (-) and marginals px(-) are typically
approximated by some family of distributions that has few parameters (e.g., Gaussians). However,
applying message passing (MP) in practice presents two main challenges for practitioners: the need
to derive (approximate) message equations when ms_,, falls outside the approximating family, and
the complexity of implementing MP compared to other methods.

We summarize our contributions as follows:

1. We propose a scalable message-passing framework for Bayesian neural networks and derive
message equations for various factors, which can benefit factor graph modeling across domains.

2. We implement our method in Julia for both CPU and GPU, and demonstrate its scalability to
convolutional neural networks (CNNs) and large multilayer perceptrons (MLPs).

3. We evaluate on CIFAR-10 and find that our method is competitive with the SOTA baselines
AdamW and IVON, even having an edge in terms of calibration while requiring no hyperparam-
eter tuning.

To the best of our knowledge, this is the first MP method to handle CNNs and to avoid double-
counting training data, thereby preventing overconfidence and, eventually, posterior collapse. While
our methods scales to an MLP with 5.6 million parameters, further refinements are necessary to
match the scale and performance of state-of-the-art VI methods.

1.1 RELATED WORK

As the exact posterior is intractable for most practical neural networks, approximate methods are
essential for scalable BNNs. These methods generally fall into two categories: sampling-based
approaches and those that approximate the posterior with parameterized distributions.

Markov Chain Monte Carlo (MCMC) methods attempt to draw representative samples from pos-
terior distributions. Although methods such as Hamiltonian Monte Carlo are asymptotically exact,
they become computationally prohibitive for large neural networks due to their high-dimensional
parameter spaces and complex energy landscapes (Coker et al., [2022). An adaptation of Gibbs
sampling has been scaled to MNIST, but on a very small network with only 8,180 parameters (Pa-
pamarkoul, |2023). Approximate sampling methods can be faster but still require a large number
of samples, which complicates both training and inference. Although approaches like knowledge
distillation (Korattikara et al. 2015) attempt to speed up inference, MCMC remains generally too
inefficient for large-scale deep learning applications (Khan & Ruel 2024).

Variational Inference (VI) aims to approximate the intractable posterior distribution p(6 | D) by
a variational posterior ¢(6). The parameters of ¢ are optimized using gradients with respect
to an objective function, which is typically a generalized form of the reverse KL divergence
D1, [q(0) || p(0 | D)]. Early methods like (Graves, 2011) and Bayes By Backprop (Blundell et al.l
2015)) laid the foundation for applying VI to neural networks, but suffer from slow convergence and
severe underfitting, especially for large models or small dataset sizes (Osawa et al., [2019). More
recently, VOGN (Osawa et al., 2019) achieved Adam-like results on ImageNet LSVRC by applying
a Gauss-Newton approximation to the Hessian matrix. IVON (Shen et al. 2024)) improved upon
VOGN by using cheaper Hessian approximations and training techniques like gradient clipping,
achieving Adam-like performance on large-scale models such as GPT-2 while maintaining similar
runtime costs. Despite recent advancements, VI continues to face challenges such as overconfi-
dence, posterior collapse, and complex hyperparameter tuning (see introduction), motivating the
exploration of alternative approaches (Zhang et al.| 2018)).

Message Passing for Neural Networks: Message passing is a general framework that unifies sev-
eral algorithms (Kschischang et al.,[2001;|Minkal [2001), but its direct application to neural networks

Under review as a conference paper at ICLR 2025

has been limited. Expectation backpropagation (EBP) (Soudry et al.|[2014) approximates the poste-
rior of 3-layer MLPs by combining expectation propagation, an approximate message passing algo-
rithm, with gradient backpropagation. Similarly, probabilistic backpropagation (PBP) (Hernandez-
Lobato & Adams, |2015) combines belief propagation with gradient backpropagation and was found
to produce better approximations than EBP (Ghosh et al.| [2016). However, PBP treats the data as
new examples in each consecutive epoch (double-counting), which makes it prone to overconfi-
dence. Furthermore, EBP and PBP were both only deployed on small datasets and rely on gradients
instead of pure message passing. In contrast, Lucibello et al.| (2022) applied message passing to
larger architectures by modeling the posterior over neural network weights as a factor graph, but
faced posterior collapse to a point measure due to also double-counting data. Their experiments
were mostly restricted to three-layer MLPs without biases and with binary weights. Our approach
builds on this by introducing a message-passing framework for BNNs that avoids double-counting,
scales to CNNs, and effectively supports continuous weights.

2 THEORETICAL MODEL

Our goal is to model the predictive posterior of a BNN as a factor graph and find a Gaussian ap-
proximation of the predictive posterior via belief propagation. Essentially, factor graphs are prob-
abilistic modelling tools for approximating the marginals of joint distributions, provided that they
factorize sufficiently. For a more comprehensive introduction on factor graphs and the sum-product
algorithm, refer to |[Kschischang et al.| (2001) BNNs, on the other hand, treat the parameters © of
a model fg : R? — R? as random variables with prior beliefs p(0). Given a training dataset
D = {x;,y;}", of i.i.d. samples, a likelihood relationship p(y | x,0) = p(y | fo(x)), and a new
input sample x, the goal is to approximate the predictive posterior distribution p(y | «, D), which
can be written as:

p(y |, D) = / p(y |z.0)p(0 | D) do.)

This means that the density of the predictive posterior is the expected likelihood under the posterior
distribution p(0 | D), which is proportiona to the product of the prior and dataset likelihood:

p(01D) x p(0) [T plas | folw). @

The integrand in Equation (T)) exhibits a factorized structure that is well-suited to factor graph mod-
eling. However, directly modelling the relationship o = fg () with a single Dirac delta factor
d(o — fe(x)) does not yield feasible message equations. Therefore we model the neural network
at scalar level by introducing intermediate latent variables connected by elementary Dirac delta fac-
tors. Figure [I] illustrates this construction for a simple MLP with independent weight matrices a
priori. While the abstract factor graph in the figure uses vector variables for simplicity, we actu-
ally derive message equations where each vector component is treated as a separate scalar variable,
and all Dirac deltas only depend on scalar variables. For instance, if d = 2, the conceptual factor
d(o — Wsa) is replaced by four scalar factors: §(p;;, — wjrag) for j, k = 1,2, with intermediate
variables p,;., and two factors 6(0; — (p;; +p;2)). By multiplying all factors in this expanded factor
graph and integrating over intermediate results, we obtain a function in x, y, © that is proportional
to the integrand in Equation (I). Hence, the marginal of the unobserved target y is proportional to
p(y | &, D). When y connects to only one factor, its marginal matches its incoming message.

3 APPROXIMATIONS

Calculating a precise representation of the message to the target of an unseen input is intractable for
large networks and datasets. The three primary reasons are, that a) nonlinearities and multiplica-
tion produce highly complex exact messages which are difficult to represent and propagate, b) the
enormous size of the factor graph for large datasets, and c) the presence of various cycles in the
graph. These challenges shape the message approximations as well as the design of our training and
prediction procedures, which we address in the following sections.

'with a proportionality constant of 1/p(D)

Under review as a conference paper at ICLR 2025

5(27; — Wlxi) 5(81 —
] ‘Q‘
N
p(W1) p(W2)
(D (o) (o) —m ()
6(z — Wix) é(a— ¢(z)) 6(o — Waa) p(y|o)

Figure 1: Conceptual vector-valued factor graph for a simple MLP. Each training example has its
own “branch” (a copy of the network), while predictions for an unlabeled input x are computed on
a separate prediction branch. All branches are connected by the shared model parameters. Grayed-
out variables are conditioned on (observed). Colored arrows indicate the three iteration orders: a
forward / backward pass on training examples, and a forward pass for prediction.

3.1 APPROXIMATING MESSAGES VIA GAUSSIAN DENSITIES

To work around the highly complex exact messages, we approximate them with a parameterized
class of functions. We desire this class to be closed under pointwise multiplication, as variable-to-
factor messages are the product of incoming messages from other factors. We choose positive scalar
multiples of one-dimensional Gaussian densities as our approximating family. Their closedness fol-
lows immediately from the exponential function’s characteristic identity exp(z) exp(y) = exp(z +
y) and the observation that for any s, so > 0 and pi1, 2 € R, the function s1(x— p1)% +s2(x—p2)?
in « can be represented as s(z — p)? + ¢ for some s > 0 and p ¢ € R. The precise relation be-
tween two scaled Gaussian densities and its product can be neatly expressed with the help of the
so-called natural (re-)parameterization. Given a Gaussian N (u, 02), we call p = 1/0? the preci-
sion and 7 = p1/0? the precision-mean. Collectively, (7, p) are the Gaussian’s natural parameters,
G(x;7,p) == N(x;p,02), © € R. For uy, iz € R and 01,02 > 0 with corresponding natural
parameters p; = 1/0? and 7; = u;p;, i = 1,2, multiplying Gaussian densities simplifies to:

G(z; 71, 1) - G372, p2) = N (p1; pio, 07 + 03) - G571 + 72, p1 + p2) 3)

for all z € R. In other words, multiplying Gaussian densities simplifies to the pointwise addition
of their natural parameters, aside from a multiplicative constant. Since we are only interested in the
marginals, which are re-normalized, this constant does not affect the final result. Therefore, we can
safely ignore these multiplicative constants and only keep track of the Gaussian’s parameters.

Now we present our message approximations for three factor types, each representing a deterministic
relationship between variables: (1) the sum of variables weighted by constants, 2) the application of
a nonlinearity, and (3) the multiplication of two variables. As we model the factor graph on a scalar
level, these three factors suffice to model complex modern network architectures such as ConvNeXt
Liuetal. (2022ﬂ Inl we provide a comprehensive table of message equations, including additional
factors for modeling training labels.

Weighted Sum: The density transformation property of the Dirac delta allows us to compute the
exact message without approximation. For the relationship s = ¢Tv modeled by the factor f :=
d(s — cTv), the message

my_s(s /5 (s—cTv Hmv Sp(v) dor ..

2with the exception of layer normalization, which can be substituted by orthogonal initialization schemes
Xiao et al.[(2018) or specific hyperparameters of a corresponding normalized network Nguyen et al.| (2023)

Under review as a conference paper at ICLR 2025

is simply the density of ¢Tv, where v ~ Hle My, (V7). If my, ¢ (v;) = N(vi; g, 02) are
Gaussian, then v ~ N (p, diag(o?)) and ms_,(s) becomes a scaled multivariate Gaussian:

mf%s(s) = N(S; cTu, (02)TU2)'
The backward messages m ¢_,,, can be derived similarly without approximation.

Nonlinearity: We model the application of a nonlinearity ¢ : R — R as a factor f := d(a — ¢(z)).
However, the forward and backward messages are problematic and require approximation—even for
well-behaved, injective ¢ such as LeakyReLU :

ma—>f(a) = pdf¢(z) (a) forZ ~ N

my_,(z) = /5(3 — ¢(2)) - My p(a) da = ey ($(2)) = N(B(2); pta, 02).

For values of o # 1, the forward message is non-Gaussian and the backward message does not even
integrate to 1. For ReLU (o = 0), it is clearly not even integrable. Instead, we use moment matching
to fit a Gaussian approximation. Given any factor f and variable v, we can approximate the message
my_,y with a Gaussian if the moments my, := f vkmf_w(v) dv exist for k = 0,1,2 and can be
computed efficiently:

ms (V) = N (v;my /mg, ma/mg — (mq/mg)?) (Direct approximation)

However, direct moment matching of the message is impossible for non-integrable messages or
when the my, are expensive to find. Instead, we can apply moment matching to the updated marginal
of v. Let mg, m1, ms be the moments of the “’true”” marginal

m(v) :/f(v,vl,...,vk) dvy...dvy, - ngiﬁv(v)a

which is the product of the true message from f and the approximated messages from other factors
gi- Then we can approximate m with a Gaussian and obtain a message approximation

My (V) = N(V; iy, 02) /iy (V) (Marginal approximation)

which approximates m_,, so that it changes v’s marginal in the same way as the actual message
Since my—, £(v) is a Gaussian density, we can compute ms_,,(v) efficiently by applying Gaussian
division in natural parameters, similar to Equation (3).

For LeakyReLU ,, we found efficient direct and marginal approximations that are each applicable
to both the forward and backward message when o« # 0. The marginal approximation remains
applicable even for the ReLU case of v = 0. We provide detailed derivations in Appendix [B.2]

Product For the relationship ¢ = ab, we employ variational message passing as in|Stern et al.|(2009),
in order to break the vast number of symmetries in the true posterior of a Bayesian neural network.
By combining the variational message equations for scalar products with the weighted sum, we can
also construct efficient higher-order multiplication factors such as inner vector products. Refer to|[E]
for detailed equations.

3.2 TRAINING PROCEDURE & PREDICTION

In pure belief propagation, the product of incoming messages for any variable equals its marginal
under the true posterior. With our aforementioned approximations, we can reasonably expect to
converge on a diagonal Gaussian ¢ that approximates one of the various permutation modes of the
true posterior by aligning the first two moments of the marginal. This concept can be elegantly
interpreted through the lens of relative entropy. As shown in among diagonal Gaussians ¢() =
q1(01) - - - qx(0y), the relative entropy from (a mode of) the true posterior to ¢ is minimized for §:

¢ = argmin Dk, [p(0 D) [q(0)]. 4)
q

Another challenge in finding ¢ arises from cyclic dependencies. In acyclic factor graphs, each mes-
sage depends only on previous messages from its subtree, allowing for exact propagation. However,

3This is the central idea behind expectation propagation as defined in[Minkal (2001).

Under review as a conference paper at ICLR 2025

our factor graph contains several cycles due to two primary reasons: (1) multiple training branches
interacting with shared parameters across linear layers, and (2) the scalar-level modeling of matrix-
vector multiplication in architectures with more than one hidden layer. These loops create circular
dependencies among messages. To address these challenges, we adopt loopy belief propagation,
where belief propagation is performed iteratively until messages converge. While exact propagation
works in acyclic graphs, convergence is then only guaranteed under certain conditions (e.g., Simon’s
condition (Ihler et al. [2005)) that are difficult to verify. Instead, we pass messages in an iteration
order that largely avoids loops by alternating forward and backward passes similarly to deterministic
neural networks. Our message schedule is visualized in Figure[l]

N -
O
(ay) (23)

B\ (22—
_ o _ FactorGraph

Active Batch

p(W) R \\% Batch 2
Prior .
Trainer
Batch k& Batch 3

Figure 2: A full FactorGraph models all messages for one batch of training examples. To iterate the
FactorGraph, we only need one joint message summarizing the prior and all other examples. When
switching to a new batch, we aggregate messages from the previous batch and store them in the
Trainer.

Batching As the forward and backward messages depend on each other, we must store them to
compute message updates during message passing. Updating our messages in a sweeping ~pass”
over a branch and running backward passes immediately after the forward pass on the same branch,
allows us to store many messages only temporarily, reducing memory requirements. This schedule
also ensures efficient propagation of updated messages despite the presence of loops. However,
some messages must still be retained permanentlyﬂ leading to significant memory demand when
storing them for all n training examples. To address this, we adopt a batching strategy: Instead of
maintaining n training branches simultaneously, we update the factor graph using a batch (subset) of
b examples at a time. The factor graph then models b messages to the weights W, while the messages
to W from the remaining (inactive) examples are aggregated into batch-wise products and stored in
a trainer object. Figure [2]illustrates this setup. When switching batches, we divide the marginals by
the batch’s old aggregate message and multiply the updated messages into the marginal, ensuring
that data is not double-counted. Within each batch, we iterate through the examples and perform
a forward and backward pass on each in sequence. After all examples have been processed once,
we call it an “iteration”. Depending on the training stage, we either repeat this process within the
same batch or move to the next batch. As training progresses, we gradually increase the number of
iterations per batch to allow for finer updates as the overall posterior comes closer to convergence.

Prediction: Ultimately, our goal is to compute the marginal of the unobserved target y for some
unseen input x. Since the prediction branch in Figure [T] introduces additional loops, obtaining an
accurate approximation would require iterating over the entire factor graph, including the training
branches. In neural network terms, this translates to retraining the whole network for every test
input. Instead, we pass messages only on the training branches in the batch-wise setup described
above. At test time, messages from the training branches are propagated to the prediction branch, but
not vice versa. Specifically, messages from the weights to the prediction branch are computed as the

“For example, the backward message of the linear layer is needed to compute the marginal of the inputs,
which the forward message depends on.

Under review as a conference paper at ICLR 2025

product of the prior and the incoming messages from the training branches. This can be interpreted
as approximating the posterior over weights, p(# | D), with a diagonal Gaussian ¢(6) and using it as
the prior during inference.

4 MAKING IT SCALE

In scaling our approach to deep networks, we encountered several challenges related to computa-
tional performance, numerical stability, and weight initialization. The following subsections detail
remedies to these problems.

4.1 FACTOR GRAPH IMPLEMENTATION

While batching effectively reduces memory requirements for large datasets, a direct implementation
of a factor graph still scales poorly for deep networks. Explicitly modeling each scalar variable and
factor as an instance is computationally expensive. To address this, we propose the following design
optimizations: (1) Rather than modeling individual elements of the factor graph, we represent entire
layers of the network. Message passing between layers is orchestrated by an outer training loop. 2)
Each layer instance operates across all training branches within the active batch, removing the need
to duplicate layers for each example. (3) Factors are stateless functions, not objects. Each layer is
responsible for computing its forward and backward messages by calling the required functions. In
this design, layer instances maintain their own state, but message passing and batching are managed
in the outer loop. The stateless message equations are optimized for both performance and numerical
stability. As a result, the number of layer instances scales linearly with network depth but remains
constant regardless of layer size or batch size. This approach significantly reduces computational
and memory overhead—our implementation is approximately 300x faster than a direct factor graph
model in our tests. Additionally, we optimized our implementation for GPU execution by leveraging
Julia’s CUDA. j1 and Tullio. j1 libraries. Since much of the runtime is spent on linear algebra
operations (within linear or convolutional layers), we built a reusable, GPU-compatible library for
Gaussian multiplication. This design makes the implementation both scalable and extendable.

4.2 NUMERICAL STABILITY

Maintaining numerical stability in the message-passing process is critical, particularly as model size
increases. Backward messages often exhibit near-infinite variances when individual weights have
minimal impact on the likelihood. Therefore, we compute them directly in natural parameters, which
also simplifies the equations. Special care is needed for LeakyReL U, as its messages can easily di-
verge. To mitigate this, we introduced guardrails: when normalization constants become too small,
precision turns negative, or variance in forward messages increases, we revert to either G(0,0) or
use moment matching on messages instead of marginals (see [E] for details). Another trick is to pe-
riodically recompute the weight marginals from scratch to maintain accuracy. By leveraging the
properties of Gaussians, we save memory by recomputing variable-to-factor messages as neede
However, incremental updates to marginals can accumulates errors, so we perform a full recom-
putation once per batch iteration. Lastly, we apply light message damping through an exponential
moving average to stabilize the training, but, importantly, only on the aggregated batch messages,
not on the individual messages of the active batch.

4.3 WEIGHT PRIORS

A zero-centered diagonal Gaussian prior with variance o2 is a natural choice for the prior over
weights. However, as in traditional deep learning, setting all means to zero prevents messages from
breaking symmetry. To resolve this, we sample prior means according to spectral parametrization
(Yang et al.| [2024), which facilitates feature learning independent of the network width. Another
challenge in prior choice is managing exploding variances. In a naive setup with af, = 1, forward

Each layer stores factor-to-weight-variable messages and the marginal, which is an aggregate that is con-
tinuously updated as individual messages change. To compute a variable-to-factor message, divide the marginal
by the factor-to-variable message.

Under review as a conference paper at ICLR 2025

message variances grow exponentially with the network depth. While we attempted to find a prin-
cipled choice of 05, our current initialization scheme is based on experimental data (see @) For a
layer with d; inputs and d5 outputs, we set

52— 1.5 —0.8041 - min(1.0,dy/d;)
P 0.8041 + 0.4496 - d;
Refer to D] for our justification of this formula.

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We first evaluate our model on a synthetic sine curve dataset of 200 data points. Figure [3|shows that
an MLP with 4-5 linear layers fits the data well, whereas smaller models are not expressive enough to
capture the data and deeper models are harder to fit. For depths beyond six layers, the performance
degrades further, but the same is true for models of the same architecture trained in Torch. As
expected, the posterior approximations in Figure [3|have small variance within the training range and
high variance outside or when the fit is bad. In all plots, the mean prediction and standard deviation
expand linearly outside the training range.

(a) Three layers (b) Four layers (c) Five layers (d) Six layers

Figure 3: Fitting MLPs of width 16 with increasing depth. Between any linear layers we apply
LeakyReLU with a leak of 0.1. As the depth increases, the network becomes more expressive but
harder to fit.

To assess how well our model’s posterior uncertainty generalizes beyond the training data, we trained
100 separate models on the same sine curve data and evaluated their performance on unseen inputs.
For this test, we limit the training data range to (—0.5,0.5) and then measure if the posterior ap-
proximation covers the true data-generating function outside of this training range. For negative x,
61% of lo-intervals covered the true data-generating function, 86% of 2c-intervals, and 93% of
3o-intervals. For positive x, we measured 36%, 68%, and 90% respectively. While these measure-
ments are slightly lower than the probability mass covered by the respective intervals, the posterior
uncertainty appears to be reasonably well-calibrated. Overall, we found a strong correlation of 0.90
between credible intervals of the predictive posterior and the coverage rate.

5.2 CIFAR-10

To evaluate our method on the CIFAR-10 dataset we trained a 6 layer deep convolutional network
with roughly 890k parameters on the full training dataset. As baseline methods we picked the SOTA
optimizers AdamW (Loshchilov & Hutter, [2017)) and IVON (Shen et al., [2024) each with a cosine
annealing learning rate schedule (Loshchilov & Hutter, [2016). Across all methods, including ours,
we trained for 25 epochs. In Appendix [C|we give extensive details on the network architecture and
the experimental setup in general. Table [T|compares the performance of our method (MP) against
AdamW and IVON across a variety of standard metrics. In general, we see that MP can compete
with these two strong baselines. And in the expected calibration error our method even has a notable
edge. That the metrics are overall worse than what is reported by [Shen et al.| (2024) is likely due to
a difference in architecture; Shen et al. only conduct experiments on ResNets equipped with filter
response normalization (Singh & Krishnan, 2019). Neither residual connections nor normalization
layers are yet implemented in our factor graph library. Nevertheless, these results motivate to further
improve our approach. In the future work part of Section [6] we outline ideas on how to model such
factors.

Under review as a conference paper at ICLR 2025

Acc. T Top-5Acc.T NLL]| ECE| Brier] OOD-AUROC t

AdamW 0.783 0.984 1.736 0.046 0.38 0.792
IVON@mean 0.772 0.983 1.494 0.041 0.387 0.819
IVON 0.772 0.983 1.316 0.035 0.37 0.808
MP (Ours) 0.773 0.977 0.997 0.029 0.361 0.81

Table 1: Comparison of various validation statistics for a convolutional network of roughly 8§90k
parameters trained on CIFAR-10. Out-of-distribution (OOD) detection was tested with SVHN. For
IVON we used 100 samples for prediction at test time. IVON@mean are the results obtained from
evaluating the model at the means of the learned distributions of the individual parameters.

Reproducibility All code is available at https://github.com/iclr2025-7302/iclr2025_7302.

6 CONCLUSION

Summary: We presented a novel framework that advances message-passing (MP) for Bayesian
neural networks by modeling the predictive posterior as a factor graph. To the best of our knowledge,
this is the first MP method to handle convolutional neural networks while avoiding double-counting
training data, a limitation in previous MP approaches like [Soudry et al.|(2014); [Hernandez-Lobato
& Adams| (2015); |[Lucibello et al.| (2022). In our experiment on the CIFAR-10 dataset our method
proofed to be competitive with the SOTA baselines AdamW and IVON, even showing an edge in
terms of calibration.

Limitations: Despite recent advances, variational inference methods like IVON remain ahead in
scale and performance on larger datasets. Our approach’s runtime and memory requirements scale
linearly with model parameters and dataset size. While our inference at test time can keep up with
IVON’s sampling approach in terms of speed and memory requirements, training is up to two orders
of magnitude slower and more GPU-memory intensive compared to training deterministic networks
using PyTorch with optimizers like AdamW.

The memory overhead stems from two key factors: First, each training example stores messages
proportional to the model’s parameter count, unlike AdamW'’s batch-level intermediate representa-
tions. Second, each parameter requires two 8-byte floating-point numbers, contrasting with more
efficient 4-byte or smaller formats.

Runtime inflation results from several performance bottlenecks: Our training schedule lacks parallel
forward passes, our Tullio-based CUDA kernel generation misses memory-layout and GPU opti-
mizations present in mature libraries like Torch, message equations involve complex computations
beyond standard matrix multiplications, and we use Julia’s default FP64 precision, which GPUs
process less efficiently.

Future Work: We believe Moment Propagation (MP) holds significant promise for more balanced
uncertainty estimates, thanks to its moment-matching ability, compared to Variational Inference’s
tendency toward overconfident predictions. Further improvements in scalability and architectural
flexibility could make MP a competitive alternative to VI.

Concretely, in terms of memory requirements, it is worth exploring whether iterating on individ-
ual examples instead of batches, and starting from scratch in each epoch, could leave our method
ahead. While this might reintroduce the double counting problem, it would drastically reduce the
GPU-memory footprint. Regarding training efficiency, an altered message-update schedule with ac-
tual batched computations would significantly reduce training time. Reimplementing our library in
CUDA C++ with efficiency in mind could also drastically cut down computational overhead.

On the architectural front, we deem it likely that our approach can be extended to most modern deep
learning architectures. Residual connections are straightforward to implement as they boil down to
simple sum factors. For normalization layers at the scalar level, only a division factor is missing,
which can be approximated by a “’rotated” product factor. This would suffice to model ResNet-like
architectures and more modern convolutional networks like ConvNeXt. For transformers, the last

https://github.com/iclr2025-7302/iclr2025_7302

Under review as a conference paper at ICLR 2025

ingredient needed is an efficient softargmax factor. Given the division factor, only an exp factor is
missing to model softargmax at the scalar level.

Finally, future work might also explore applications to more applied tasks such as continual learning,
sparse networks, and Bayesian reinforcement learning.

REFERENCES

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks, 2015. URL https://arxiv.org/abs/1505.05424.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars, 2016. URL https://arxiv.org/
abs/1604.07316.

Beau Coker, Wessel P. Bruinsma, David R. Burt, Weiwei Pan, and Finale Doshi-Velez. Wide mean-
field bayesian neural networks ignore the data, 2022. URL https://arxiv.org/abs/
2202.11670.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux — effortless bayesian deep learning, 2022. URL https://
arxiv.org/abs/2106.14806.

Soumya Ghosh, Francesco Delle Fave, and Jonathan Yedidia. Assumed density filtering methods for
learning bayesian neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
30(1), Feb. 2016. doi: 10.1609/aaai.v30i1.10296. URL https://o0js.aaai.org/index.
php/AAAT/article/view/10296.

Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011. URL
https://proceedings.neurips.cc/paper_files/paper/2011/file/
7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

Maximilian Henne, Adrian Schwaiger, Karsten Roscher, and Gereon Weiss. Benchmarking uncer-
tainty estimation methods for deep learning with safety-related metrics. In SafeAI@ AAAI, pp.
83-90, 2020.

José Miguel Hernandez-Lobato and Ryan P. Adams. Probabilistic backpropagation for scal-
able learning of bayesian neural networks, 2015. URL https://arxiv.org/abs/1502.
05336.

Alexander Ihler, John III, and Alan Willsky. Loopy belief propagation: Convergence and effects of
message errors. Journal of Machine Learning Research, 6:905-936, 05 2005.

Mohammad Emtiyaz Khan and Héavard Rue. The bayesian learning rule, 2024. URL https:
//arxiv.orqg/abs/2107.04562.

Anoop Korattikara, Vivek Rathod, Kevin Murphy, and Max Welling. Bayesian dark knowledge,
2015. URL https://arxiv.org/abs/1506.04416.

FER. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2):498-519, 2001. doi: 10.1109/18.910572.

Richard Kurle, Ralf Herbrich, Tim Januschowski, Yuyang Wang, and Jan Gasthaus. On the detri-
mental effect of invariances in the likelihood for variational inference, 2022. URL https:
//arxiv.orqg/abs/2209.07157.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s, 2022. URL https://arxiv.org/abs/2201.03545/

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. CoRR,
abs/1608.03983, 2016. URL http://arxiv.org/abs/1608.03983,

10

https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/2202.11670
https://arxiv.org/abs/2202.11670
https://arxiv.org/abs/2106.14806
https://arxiv.org/abs/2106.14806
https://ojs.aaai.org/index.php/AAAI/article/view/10296
https://ojs.aaai.org/index.php/AAAI/article/view/10296
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://arxiv.org/abs/1502.05336
https://arxiv.org/abs/1502.05336
https://arxiv.org/abs/2107.04562
https://arxiv.org/abs/2107.04562
https://arxiv.org/abs/1506.04416
https://arxiv.org/abs/2209.07157
https://arxiv.org/abs/2209.07157
https://arxiv.org/abs/2201.03545
http://arxiv.org/abs/1608.03983

Under review as a conference paper at ICLR 2025

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101,

Carlo Lucibello, Fabrizio Pittorino, Gabriele Perugini, and Riccardo Zecchina. Deep learning via
message passing algorithms based on belief propagation. Machine Learning: Science and Tech-
nology, 3(3):035005, jul 2022. doi: 10.1088/2632-2153/ac7d3b. URL https://dx.doi.
org/10.1088/2632-2153/ac7d3b.

Thomas P. Minka. Expectation propagation for approximate bayesian inference. In Proceedings of
the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAT’01, pp. 362-369, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558608001.

Khanh-Binh Nguyen, Jachyuk Choi, and Joon-Sung Yang. Eunnet: Efficient un-normalized convo-
lution layer for stable training of deep residual networks without batch normalization layer. [EEE
Access, 11:76977-76988, 2023. doi: 10.1109/ACCESS.2023.3244072.

Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio
Yokota, and Mohammad Emtiyaz Khan. Practical deep learning with bayesian principles, 2019.
URL https://arxiv.org/abs/1906.02506.

Theodore Papamarkou. Approximate blocked gibbs sampling for bayesian neural networks, 2023.
URL https://arxiv.org/abs/2208.113809.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernandez-
Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan,
Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A. Osborne,
Tim G. J. Rudner, David Riigamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, and
Ruqi Zhang. Position: Bayesian deep learning is needed in the age of large-scale ai, 2024. URL
https://arxiv.org/abs/2402.008009.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL https://arxiv.
org/abs/2408.00714.

Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio
Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas Méllenhoff.
Variational learning is effective for large deep networks, 2024. URL https://arxiv.org/
abs/2402.17641l

Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminating batch
dependence in the training of deep neural networks. CoRR, abs/1911.09737, 2019. URL
http://arxiv.org/abs/1911.09737.

Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: parameter-free training
of multilayer neural networks with continuous or discrete weights. In Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 1, NIPS’14, pp.
963-971, Cambridge, MA, USA, 2014. MIT Press.

David Stern, Ralf Herbrich, and Thore Graepel. Matchbox: Large scale bayesian recom-
mendations. In Proceedings of the 18th International World Wide Web Conference, Jan-
uvary 2009. URL https://www.microsoft.com/en-us/research/publication/
matchbox—large—-scale-bayesian—-recommendations/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL |https://arxiv.
org/abs/1706.03762.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S. Schoenholz, and Jeffrey Penning-
ton. Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla
convolutional neural networks, 2018. URL https://arxiv.org/abs/1806.05393.

11

http://arxiv.org/abs/1711.05101
https://dx.doi.org/10.1088/2632-2153/ac7d3b
https://dx.doi.org/10.1088/2632-2153/ac7d3b
https://arxiv.org/abs/1906.02506
https://arxiv.org/abs/2208.11389
https://arxiv.org/abs/2402.00809
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2402.17641
https://arxiv.org/abs/2402.17641
http://arxiv.org/abs/1911.09737
https://www.microsoft.com/en-us/research/publication/matchbox-large-scale-bayesian-recommendations/
https://www.microsoft.com/en-us/research/publication/matchbox-large-scale-bayesian-recommendations/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1806.05393

Under review as a conference paper at ICLR 2025

Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning, 2024.
URLhttps://arxiv.org/abs/2310.17813.

Cheng Zhang, Judith Butepage, Hedvig Kjellstrom, and Stephan Mandt. Advances in variational
inference, 2018. URL https://arxiv.org/abs/1711.05597.

Zelun Tony Zhang, Sebastian S Feger, Lucas Dullenkopf, Rulu Liao, Lukas Siisslin, Yuanting Liu,
and Andreas Butz. Beyond recommendations: From backward to forward ai support of pilots’
decision-making process. arXiv preprint arXiv:2406.08959, 2024.

A PROOF OF GLOBAL MINIMIZATION OBJECTIVE

A.1 MOMENT-MATCHED GAUSSIANS MINIMIZE CROSS-ENTROPY

Consider a scalar density p and a Gaussian ¢(6) = N(6, u, o). Then

min H (p, ¢) = min </p(0) log (SEZ?) do) = min (2; /p(e)(o —) db + log(ém?)) .

It is well known that expectations minimize the expected mean squared error. In other words, the
integral is minimized by setting s to the expectation of p and is then equal to the variance of p. The
necessary condition of a local minimum then yields that 02 must be the variance of p.

A.2 PROOF OF EQUATION (4) GLOBAL MINIMIZATION OBJECTIVE

Let p be an arbitrary probability density on R* with marginals p;(6;) := [p(6) d(6\ ;) and denote
by Q the set of diagonal Gaussians. Then for every ¢(0) = Hle qi(0;) € Q we can write the
relative entropy from p to q as

Dralplal = [p(®)oe (2GH) a6 - Z/ Jlos(a(6:))d0 — H(p)
k
—;/@ilogwi))/e\ p(6)d(6°0:) Zﬂpl,qz ~ H(p).

0;

This shows that Dkr,[p]| ¢] is minimized by independently minimizing the summands H (p;, ¢;).
In combination with [A.T|this completes the proof.

B DERIVATIONS OF MESSAGE EQUATIONS

B.1 RELU

A common activation function is the Rectified Linear Unit ReLU : R — R, z — max(0, z).

Forward Message: Since ReLU is not injective, we cannot apply the density transformation prop-
erty of the Dirac delta to the forward message

my_a(a) = 0(a — ReLU(z))m,— r(z) dz.
z€R
In fact, the random variable ReLU(Z) with Z ~ m_, s does not even have a density. A positive
amount of weight, namely Pr[Z < 0], is mapped to 0. Therefore

myf_a(0) = }1_1;% . N (ReLU(z); 0, t%)m,, ¢ (z) dz > }%N(o; 0,12)zer[m{lo] m,— ¢(z) = 0.
Apart from 0, the forward message is well defined everywhere, and technically null sets do not matter
under the integral. However, moment-matching m,_, while truncating at 0 does not seem reason-
able as it completely ignores the weight of m,_,y on R<o. Therefore, we refrain from moment-
matching the forward message of ReLU.

12

https://arxiv.org/abs/2310.17813
https://arxiv.org/abs/1711.05597

Under review as a conference paper at ICLR 2025

As an alternative, we consider a marginal approximation. That means, we derive formulas for
my = / a¥ma p(a)mysa(a)da, k€ {0,1,2} %)
acR

and then set
mya(a) := N (a;my /mo, ma/mo — (m1/mo)?) / mas s (a).
By changing the integration order, we obtain

my = / akmaqf(a)/ 0(a —ReLU(z))m,_f(z) dz da
acR z€R
= mz_,f(z)/ §(a— ReLU(z))a*m,_, (a) dadz
z€R acR

- / e (R (2)m (ReLU(:))

Note that we end up with a well-defined and finite integral. Similar integrals arise in later derivations.
For this reason we encapsulate part of the analysis in basic building blocks.

Building Block 1. We can efficiently approximate integrals of the form
o0
/ PN (25 1, 02N (25 g, 03) dz
0
where 1, po € R,01,090 > 0and k =0, 1, 2.
Proof. By Equation (3) the integral is equal to

St ZN(Ml;/«L%J%JFU%)/ N (z3,0%) dz
0
B . 5 o [E[ReLU*(N(y,02))] fork=1,2
=N e, 01 +) {Pr[—Z <0 =¢(u/o) fork=0

where L) L
T 2 H1 | 2
= = —, =—=+— and p= — + —.
S AR A A

O

This motivates the derivation of efficient formulas for the moments of an image of a Gaussian vari-
able under ReLU.
Building Block 2. Let Z ~ N (1, 02). The first two moments of ReLU(Z) are then given by

E[ReLU(Z)] = 0p(x) + po(x) ©)
E[ReLU*(2)] = opup(z) + (o” + 1) (),)

where © = u/o and p, ¢ denote the pdf and cdf of the standard normal distribution, respectively.

Proof. The basic idea is to apply [ze=*2dy = —e /2, Together with a productive zero, one
obtains
> (Z—Ii)z o0 — (z— L)2 e (z— L)2
V2roE[ReLU(Z)] = / ze 202 dz = 02/ (= QM)ef =2 dz + ,u/ et dz
0 0 g 0

=2 [—e 202 } + V2rouPr[Z > 0]
0

2 —7Z
=o%e 27 + V2mouPr {M < ﬂ]
o

= V2ro?p(x) + V2roug(x).

13

Under review as a conference paper at ICLR 2025

Rearranging yields the desired formula for the first moment. For the second moment, we need to
complete the square and perform integration by parts:

1 [s’
E[ReLU?(Z)] = / 2em5H 4,
0

2ro

1 e z— 1 _G-w? ©_Gmw? C_-w?
= (02/ (z—n) 2#6 27 dz + ZM/ ze 27 dz— ,uQ/ e 22 dz)
2o 0 o 0 0

-z ({—(2 - u)e“zl”)z]oo + /) eH) + 2uE[ReLU(Z)] - p*6(a)
0 O

2ro

= —opp(z) + 0°¢(x) + 2uE[ReLU(Z)] — p*d(2) = opp(x) + (0* + p?) ().

Building Block 3. Integrals of the form

0
S- ;:/ PN (2 p1, 03N (05 i, 02) dz

— 00

where 1, 2 € R, 01,09 > 0and k = 0, 1, 2 can be efficiently approximated.
Proof. Employing the substitution z = —t gives

S~ =N(0;u2,a§)/ (—=)*EN (=t; p1, 02) dt = (—1)’“]\/(0;@2,03)/ tEN(t; —p1, 02) dt
0 0

E[ReLU(N (—p1,0%))] fork =1,2

= (—l)k/\/(OQM27U§) {Pr[—ZZO} =¢(—p1/oy) fork =0.

Now let m,—, ¢(2) = N (z; iz, 02), maes 1 (a) = N(@; pta, 02) and consider the decomposition

o 0
my = / 2PN (25 2, 0N (25 pta, 02) dz +/ ReLU" (2)N (2; iz, 02)N(0; pra, 02) dz .
0

—00

S+ -
Note that ST falls under Building Blockfor any k = 0,1, 2. The other addend S~ is equal to 0
for k = 1,2, and is handled by Building Block 3| for k£ = 0.
Backward Message: By definition of the Dirac delta, the backward message is equal to
mi_,(z) = d(a — ReLU(z))ma—, p(a) da = m,_, r(ReLU(2))
acR

which is, of course, not integrable, so it cannot be interpreted as a scaled density. Instead, we apply
marginal approximation by deriving formulas for

my ::/ Fm, L (2)mys.(2)dz, k€{0,1,2}
z€R
and then setting
mys.(2) == N(z;my /mo, ma/mo — (my/mg)?) [m._ ¢ (2).

To this end, let m._, ¢(z) = N(z; 2, 02) and m,_, ¢(a) = N (a; pa, 02). Then we have
0

i, = / N (2 12, 02N (2 i 02) dz + / N (2 1, 2IN(O; 1, 02) d.
0

— 00

S+ S—

The two addends ST and S~ are handled by Building Block and Building Block respectively.

14

Under review as a conference paper at ICLR 2025

B.2 LEAKY RELU
Another common activation function is the Leaky Rectified Linear Unit

z forz >0

LeakyReLU, : R — R,z — {
az forz < 0.

It is parameterized by some o > 0 that is typically small, such as & = 0.1. In contrast to ReLU,

it is injective (and even bijective). For this reason the forward and backward messages are both

integrable and can be approximated by both direct and marginal moment matching. The notation is

shown in Figure

Nlp0?) 2N 5<a‘Leak;ReLUa(Z)> N N 02)
) N\

Figure 4: A deterministic factor corresponding to the LeakyReLU , activation function.

Forward Message: It is easy to show that the density of LeakyReLU_, (N (1., 02)) is given by

1 forz >0

pla) = N(LeakyReLUl/a(a);uz,ag) {1/a for » < 0

which only has one discontinuity point, namely 0. In particular, it is continuous almost everywhere.
So by the density transformation property of Dirac’s delta, we have m_,,(a) = p(a) for almost all
a. Under the integral we can therefore replace ms_,,(a) by p(a). This justifies that the moments of
m s, are exactly the moments of (LeakyReLU). N (5, 02). Its expectation is equal to

0 oo
E [LeakyReLU,, (N (15, 02))] = / azN (z; p, 02) dz + / 2N (25 ps,02) dz
0

— 00

= 704/ tN (t; — iz, 02) dt + / 2N (25, 02) dz
0 0
= —aE[ReLU(N (—p,,02))] + E[ReLU(Z)].
Both addends are handled by Building Block[2] Yet we can get more insight by further substitution:

E[LeakyReLU,,(Z)] = —a(0.¢(—p1z/02) — p=¢(—p2/02)) + 020(p2/02) + p=¢(p=/0-)
= (1 - a)(az(:p(MZ/UZ) + Uz¢(ﬂz/0z)) + o,
= (1 — a)E[ReLU(Z)] + oE[Z].

In the second to last equation, we use the identities ¢(—x) = ¢(x) and ¢(—x) = 1 — ¢(x). As such,
the mean of LeakyReLU (Z) is a convex combination of the mean of ReLU(Z) and the mean of Z.
The function LeakyReL U, the identity, and its mean is accordingly the mean of Z. For o = 0, we
recover the mean of ReLU(Z).

The second moment of LeakyReL U, (Z) decomposes to
0
E[LeakyReLU? (Z)] = /

— 00

:aQ/ 22N (z; —uz,af)dz—i—/ 22N (25 2, 02) dz
0 0
— GPE[RELU (N (12, 0%)] + ERELUA((4-, 02).

a2z2./\f(z;ﬂz,az)dz+/ 22N (25 iz, 02) dz
0

Again, both addends are covered by Building Block [2] so approximating the forward message via
direct moment matching is feasible.

15

Under review as a conference paper at ICLR 2025

A marginal approximation can also be found. For all £ = 0, 1,2 we have

/aER a*maj(a)mysa(a) da:/ a*ma_ ¢ (a)p(a) da

acR

0 o)
[Wl BN @i e, 02 dat [N i, 2N s s,) d
0

(67

— 00

S- S+
The term ST is handled by Building Blockm The term S~ is equal to

0
5- :/ a" N (a; pra,)N (a; oz, (00)?) da

— 00

— (1 ["N (@5 2N (@5 e (00.)?) da
0
and therefore also covered by Building Block [T}

Backward Message: By the sifting property of the Dirac delta, the backward message is equal to

my,(z) = d(a — LeakyReLU,, (z))mq— f(a) da = mq,—, s (LeakyReLU (2)).
acR
As opposed to ReLU, the backward message is integrable. That means, we can also apply direct
moment matching: For all £ = 0, 1,2 we have

0 %)
mp(e) = [W@z oD d+ [N o?) s
0

1 k 00 [e's)
= (a) / PN (25 —pa/a, (04/a)?) dz + / PN (2 pra, 02) dz
0 0
For k = 1 or k = 2, the integrals fall under Building Block [2] again. If & = 0, then
—1)k
sz = T pafu) + 6lpaf).

Again, we can also find a marginal approximation as well. For all k = 0, 1, 2, we can write

/ Fm, L (2)my.(2) dz
z€R

0)

:/ PN (25 2, 0N (az; pa, 02) dz + / PN (25 pz, 02N (2 fha, 02) dz

oo 0
o0

_1\k [fo©
:Q/ PN (25—, DN (25 —pra), (aa/a)Q)dz—f—/ 2PN (252, 0N (25, 02) d
0 0

(67

Since both integrals are covered by Building Block[T] we have derived direct and marginal approxi-
mations of LeakyReLLU messages using moment matching.

B.3 SOFTMAX

We model the soft(arg)max training signal as depicted in Table[3] For the forward message on the
prediction branch, we employ the so-called ”probit approximation™ (Daxberger et al., [2022):

my_e(l) = /softmax(a)i./\f(a; , diag(o?) da ~ softmax(t);,

where t; = /(1 4+ 507), j = 1,...,d. For the backward message on a training branch, to say
a4, we use marginal approximation. We hence need to compute the moments mg, m1, msy of the
marginal of ag via:

my = /a’j softmax(a). N (a; u, diag(o?) da

:/ afl./\/(ad;ud,aﬁ)/ softmax(a)iH./\/(aj;uj,af.)d(a\ad)dad.

aq a\aq i

16

Under review as a conference paper at ICLR 2025

We can reduce the inner integral to the probit approximation by regarding the point distribution 6,,
as the limit of a Gaussian with vanishing variance:

/ softmax (a H/\/ (aj; 15, 07) d(a\ aq)
a\ad

Jj#d

/ / d(ag — aq) softmax(ay, ..., aq—1,aq HN ajs fhys J)dadd(a\ag)
a\ag j#d

/ hm / softmax(a). N (aq; aq, 0°) H N (aj; py, 07) da; da;
a\dg 7 j#d

By Lebesgue’s dominated convergence theorem we obtain equality to

lim [softmax(a).N (@q; aq, o?) H./\/(ELj; 1j,07) da

o—0 L
J#i

w14 Z0?) forj #d
ad/(1+”a2) for j = d.

~ lin% softmax(t); = softmax(ti,...,tq—1,a4) Where t; = {
ld

Hence, we can approximate my by one-dimensional numerical integration of

mk%/ ak N(ag; pra, 03) softmax(ty, ..., tq_1,aq) dag.

aq
C EXPERIMENTAL SETUP

Synthetic Data - Depth Scaling: We generated a dataset of 200 points by randomly sampling
values from the range [0, 2]. The true data-generating function was

f(z) =0.520 4 0.2sin(27 -) + 0.3sin(4w - x).

The corresponding 3 values were sampled by adding Gaussian noise: f(x) + A(0,0.052). For the
architecture, we used a three-layer neural network with the structure:

[Linear(1, 16), LeakyReLU(0.1), Linear(16, 16), LeakyReLU(0.1), Linear(16, 1)].

A four-layer network has one additional [Linear(16, 16), LeakyReLU(0.1)] block in the middle, and
a five-layer network has two additional blocks. For the regression noise hyperparameter, we used
the true noise 32 = 0.052. The models were trained for 500 iterations over one batch (as all data
was processed in a single active batch).

Synthetic Data - Uncertainty Evaluation: The same data-generation process was used as in the
depth-scaling experiment, but this time, = values were drawn from the range [—0.5,0.5]. The net-
work architecture remained the same as the three-layer network, but the width of the layers was
increased to 32. We trained 100 networks with different random seeds on the same dataset. We
define a p-credible interval for 0 < p < 1 as:

[edf (0.5 — g),cdf_l(O.E) + g)].

For each credible interval mass p (ranging from O to 1 in steps of 0.01), we measured how many of
the p-credible intervals (across the 100 posterior approximations) covered the true data-generating
function. This evaluation was done at each possible x value (ranging from -20 to 20 in steps of
0.05), generating a coverage rate for each combination of p and x. For each p, we then computed
the median for x > 10 and the median for x < —10. If we correlate the p values with the medians,
we found that for the median obtained from positive x values the correlation was 0.96, for negative
x it was 0.99, and for the combined set of medians it was 0.9.

CIFAR-10: For our CIFAR-10 experiments, we used the default train-test split and trained the
following feed-forward network:

17

Under review as a conference paper at ICLR 2025

class Net(nn.Module):
def __init__(self):

super (Net, self). __init__ ()

self .model = nn.Sequential(
Block 1
nn.Conv2d(3, 32, 3, padding=0),
nn.LeakyReLU (0.1),
nn.Conv2d(32, 32, 3, padding=0),
nn.LeakyReLU (0.1),
nn . MaxPool2d (2),
Block 2
nn.Conv2d(32, 64, 3, padding=0),
nn.LeakyReLU(0.1),
nn.Conv2d(64, 64, 3, padding=0),
nn.LeakyReLU (0.1),
nn . MaxPool2d (2),
Head
nn. Flatten (),
nn.Linear(64 % 5 % 5, 512),
nn.LeakyReLU (0.1),
nn. Linear (512, 10),

)

def forward(self, x):
return self.model(x)

In the case of AdamW and IVON we trained with a cross-entropy loss on the softargmax of the
network output. For our message passing method we used our argmax factor as a training signal
instead of softargmax, see Appendix [El The reason is that for softargmax we only have message
approximations relying on rather expensive numerical integration. In our library this factor graph
can be constructed via

fg = create_factor_graph ([
size(d. X _train)[l:end-1], # (3, 32, 32)
First Block
(:Conv, 32, 3, 0), # (32, 30, 30)
(:LeakyReLU, 0.1),
(:Conv, 32, 3, 0), # (32, 28, 28)
(:LeakyReLU, 0.1),
(:MaxPool, 2), # (32, 14, 14)
Second Block
(:Conv, 64, 3, 0), # (64, 12, 12)
(:LeakyReLU, 0.1),
(:Conv, 64, 3, 0), # (64, 10, 10)
(:LeakyReLU, 0.1),
(: MaxPool, 2), # (64, 5, 5)
Head
(: Flatten ,), # (64x5%5 = 1600)
(: Linear, 512), # (512)
(:LeakyReLU, 0.1),
(: Linear, 10), # (10)
(: Argmax, true)

a

], batch_size)

For all methods we used a batch size of 128 and trained for 25 epochs with a cosine annealing
learning rate schedule. Concerning hyperparameters: For AdamW we found the standard parameters
ofIr=1073,5; = 0.9, 82 = 0.999,¢ = 108 and § = 10~* to work best. For IVON we followed
the practical guidelines given in the Appendix of Shen et al.[(2024)).

18

Under review as a conference paper at ICLR 2025

To measure calibration, we used 20 bins that were split to minimize within-bin variance. For OOD
recognition, we predicted the class of the test examples in CIFAR-10 (in-distribution) and SVHN
(OOD) and computed the entropy over softmax probabilities for each example. We then sort them by
negative entropy and test the true positive and false positive rates for each possible (binary) decision
threshold. The area under this ROC curve is computed in the same way as for relative calibration.

D PRIOR ANALYSIS

The strength of the prior determines the amount of data needed to obtain a useful posterior that fits
the data. Our goal is to draw prior means and set prior variances so that the computed variances of
all messages are on the order of O(1) regardless of network width and depth. It is not entirely clear
if this would be a desirable property; after all, adding more layers also makes the network more
expressive and more easily able to model functions with very high or low values. However, if we
let the predictive prior grow unrestricted, it will grow exponentially, leading to numerical issues.
In the following, we analyze the predictive prior under simplifying assumptions to derive a prior
initialization that avoids exponential variance explosion. While we fail to achieve this goal, our
current prior variances are still informed by this analysis.

In the following, we assume that the network inputs are random variables. Then, the parameters
of messages also become random variables, as they are derived from the inputs according to the
message equations. Our goal is to keep the expected value of the variance parameter of the outgoing
message at a constant size. We also assume that the means of the prior are sampled according to
spectral initialization, as described in Section

FIRSTGAUSSIANLINEARLAYER - INPUT IS A CONSTANT

Each linear layer transforms some d;-dimensional input x to some ds-dimensional output y accord-
ing toy = Wx+ b. In the first layer, x is the input data. For this analysis, we assume each element
x; to be drawn independently from x; ~ A(0,1). Let x be a d;-dimensional input vector, m,, be
the prior messages from one column of W, and z = w’x be the vector product before adding the
bias.

During initialization of the weight prior, we draw the prior means using spectral parametrization and
set the prior variances to a constant:

Map, = N (fh;, 02) With iy, ~ N(0,1?),

dy

l = — min(1, 7,

Vk

By applying the message equations, we then approximate the forward message to the output with a
normal distribution

).

my; = N(N2703)~
Because af depends on the random variables z;, it is also a random variable that follows a scaled
chi-squared distribution

dy

2 2 2
0, = E Ly - Oy

i=1
and its expected value is

We conclude that we can control the magnitude of the variance parameter by choosing E[o2] and

2
setting 02 = %j].

19

Under review as a conference paper at ICLR 2025

GAUSSIANLINEARLAYER - INPUT IS A VARIABLE

In subsequent linear layers, the input x is not observed and we receive an approximate forward
message that consists of independent normal distributions

My, = N(:uri’ O,i)

Following the message equations, the outgoing forward message to z then has a variance

d1

o2 = (o2, +u2,) (o0 +p2,) — (2, * 1)
=1

dy
_ Z 2 | 2 2 2 2 2
- Oz, " Ow =+ Oz " Moy, + Ky, " Oy
] —~— N~ —r N —
I I il
The layer’s prior variance o2, is a constant, whereas all other elements are random variables accord-
ing to our assumptions. To make further analysis tractable, we also have to assume that the variances
o2 of the incoming forward messages are identical constants for all i, not random variables. We
furthermore assume that the means are drawn i.i.d. from:

g3
Haw; ~ N(O’ 12)
Ky ~ N(/’Lﬂx ’ 0—31)

The random variable o2 then follows a generalized chi-squared distribution

dy
o2 ~ (Zag.p (1,02 402 02, .X2(1,uim)> +dy -0l 02
i—l\—’_/ ———

I hits 1

and its expected value is

=
Q

L
I

dy
(Zai.lz.(1+02)+g§u.aiw.(1+uiw)> +dy o2 o2
1=1

=d - <Ui~l2+agj~aiw-(1—1—;;’2%)—}—012“-03)

=di o P4dy-(oh, - (L+p) +02) 00
N——— i

I 4111

As 02 has to be positive, we conclude that if we choose E[02] > d; - o2 - [2, then we can set

5 Elo2] —dy - 02 - 12
oL = :
Yody(of, (L4 pp,) +03)

Ha

We know (or choose) dy, I2, and E[Ug], but we require values for 57925’ uiT and oim to be able to

choose o2, We will find empirical values for these parameters in the next section.

EMPIRICAL PARAMETERS + LEAKYRELU

To inform the choice of the prior variances of the inner linear layers, we also need to ana-
lyze LeakyReLU. We assume the network is an MLP that alternates between linear layers and
LeakyReLU. As the message equations of LeakyReLU are too complicated for analysis, we in-
stead use empirical approximation. Let m, = N (14, 02) be an incoming message (from the pre-
activation variable to LeakyReLLU). We assume that o2 = ¢ is a constant and that z, ~ N(0,1) is
a random variable. By sampling multiple means and then computing the outgoing messages (after
applying LeakyReLU), we can approximate the average variance of the outgoing messages, as well
as the average and empirical variance over means of the outgoing messages.

20

Under review as a conference paper at ICLR 2025

We computed these statistics for 101 different leak settings with 100 million samples each, and found
that the relationship between leak and y1,,, (average mean of the outgoing message) is approximately
linear, while the relationships between leak and aﬁm or ju,2 are approximately quadratic. Using these
samples, we fitted coefficients with an error margin below 5 - 10~°. For our network, we chose a
target variance of 1.5 and a leak of 0.1, resulting in

02 = 0.8040586726631379

aix (14 uiz) = 0.44958619556324186.
These values are sufficient for now setting the prior variances of the inner linear layer according to
the equations above. Finally, we set the prior variance of the biases to 0.5, so that the output of each
linear layer achieves an overall target prior predictive variance of approximately ¢ = 1.5+0.5 = 2.0.

RESULTS IN PRACTICE

In practice, we found that the variance of the predictive posterior still goes up exponentially with
the depth of the network despite our derived prior choices. However, if we lower the prior variance
further to avoid this explosion, the network is overly restricted and unable to obtain a good fit during
training. We therefore set the prior variances as outlined here, but acknowledge that choosing a good
prior is still an unsolved problem.

E TABLES OF MESSAGE EQUATIONS

In the following, we provide tables summarizing all message equations used throughout our model.
The tables are divided into three categories: linear algebra operations (Table [2), training signals
(Table [3), and activation functions (Table [d). Each table contains the relevant forward and back-
ward message equations, along with illustrations of the corresponding factor graph where necessary.
These summaries serve as a reference for the mathematical operations performed during inference
and training, and they will be valuable for factor graph modeling across various domains beyond
neural networks.

21

Under review as a conference paper at ICLR 2025

3
=
B
g
=
=
j=]
7%
o
2
=
2D d
é) > nw=avu 0222(1?0?
i=1
Tz — Pz (H - adﬂd)
o= (pz = p+ aapa)/aa 7= ddy T p.(0? — aZo?)
= d%d
4—
o’ = (02 +0* —a%02) /a3 p= %P
z dY d d 1 +pz(g2 _a?lo-g)
;6\4 N(NuazQ)
N
d
5 i=1 Pz‘)
=
kS
=
[a®
=
o
£ > E[fIE[b]] - E[a,°E[bi]®
> — Pz (1 — Elag|E[b
ry, = 2= pe(n— EadBlod) . o
Pi
DR oo, = ZZE[ad]
where p} =1+ p.(0? — E[a2]E[b2] + E[ag)*E[bg]?)

Table 2: Message equations for linear algebra: Calculating backward messages in natural parame-
ters is preferable as it handles edge cases like ag = 0 or p, = 0 where location-scale equations are
ill-defined. This approach also enhances numerical stability by avoiding division by very small quan-
tities. Note that the inner product messages are simply compositions of the product and weighted

sum messages witha; =1, : =1,...,d.

22

Under review as a conference paper at ICLR 2025

=
N 02) "\ .
‘ O {0
2 N(asy.)
~
— p=py o’ =02+ B>
N (a;y,3%) ify is known (training branch)
4— =
(@) {1 if y is unknown (prediction branch)
N(:u’la U%)
softmax(a).
cedl,...,d}
é mye(i) = /softmax(a)i/\f(a; u, diag(o)?) da
:,)5 — ~ softmax(t); (Daxberger et al||(2022))
Hj .
here t;=-——=— and j=1,...,d
\%% j 1 n %a? J
N ; ’ - 2
mf_)ad(ad) _ (ad ml/mo mg/mo (ml/mo))
madﬂf(ad)
where my = / ak N(ag; pra, 03) softmax(ty, ..., t4_1,a4)c dag
ag
is approximated via numerical integration
N, of) o Ol = (@ —a) o
N
N (pa, 02
SO ()
(5(Zd — (ac — ad)) 1zd >0
/1Zd >00(zq — (ac — ag))N (ac; e, 02)N (ag; pia, 03) dacdagdz
é 1 forc=d
%0 ~ | Prlac > ag) = ¢(0; g — pre, 03 +02) forc#d
If ¢ is known, many edges become constant and can be omitted. Assume w.l.o.g. ¢ = d,
then a4 is connected to d — 1 factors and all other a; to only one each. The messages
toay,...,aq follow from the weighted sum factor, given Gaussian approximations of the
messages from z;. We derive these by moment-matching the marginals of z; (see Building
Block[2) and dividing by the message from the weighted sum factor. To stabilize training,
we regularize the variance of m_,,, by a factor of ¢(0; e — pi, 07 + 02) and multiply
My_sa; (a;) by N(ag; 1ifi = celse — 1,72), effectively mixing in one-hot regression
factors during training.

Table 3: Message
case in which the
do foward passes.

equations for training signals. Note that the backward messages only apply in the
target is known, i.e., on the training branches. On the prediction branch we only

23

Under review as a conference paper at ICLR 2025

E[ReLU(a)] with a ~ N (u, 0?) fork =1
E[ReLU?(a)] with a ~ A (u, o) fork =2

_ fop(x) + po(x) fork=1

B {fwso(x) + (0% + p?)o(x) for k = 2

where ¢ and ¢ denote the pdf and cdf of (0, 1), respectively.

ReLUMomenty, (p1, 0%) = {

Ck(M17017M270—2) = / ak/\[(a; /‘leo'%)N(a; ,LLQ,O'%)da
0

ReLUMomenty, (fiy,, 02,) fork =1,2
A(pm/om) fork =0
. 1 1 Tm
w1thTm:H—§+M—§, pPm=—+—, Hm=—), and 0% = —
g1 03 1 02 Pm Pm
See Building Block [I] for the derivation of this equation.

Auxiliary Equations

=N(u1;uz,03+0§)~{

Npwad) o, C@TTRAUE) N M o?)
) 2

We use marginal approximation while:
1. The outputs are finite and not NaN

LeakyReLU

2. Forward message: Precision of my_,, is > precision of m,_,r, and mgy > 1078
3. Backward message: It has worked well to require (7, > 0) V (p, > 2-107%)
Otherwise, we fall back to direct message approximation (forward) or G(0, 0) (backward).

1= (1 — a) - ReLUMoment; (f1,, 02) 4 o - piq
0? = (1 — a?) - ReLUMomenty (pty, 02) + o - (02 + p2) — 11>

Direct

N(z; oo, iz (1))
my— f(2)

where my = (_1)k ’ Ck(_:umo'g? —a- ,UZ,OZ2 . O'zz) + Ck(uuvai7 :LLZ7UZ2)

my,(z) =

Marginal

To compute the marginal backward message, set apyckx = a~ !

and swap mq—, y and m,_, ; in the equation

Table 4: Message equations for LeakyReLLU with ReLU as the special case a = 0.

24

	Introduction
	Related Work

	Theoretical Model
	Approximations
	Approximating Messages via Gaussian Densities
	Training Procedure & Prediction

	Making It Scale
	Factor Graph Implementation
	Numerical Stability
	Weight Priors

	Experiments
	Synthetic Data
	CIFAR-10

	Conclusion
	Proof of Global Minimization Objective
	Moment-Matched Gaussians Minimize Cross-Entropy
	Proof of : Global Minimization Objective

	Derivations of Message Equations
	ReLU
	Leaky ReLU
	Softmax

	Experimental Setup
	Prior Analysis
	Tables of Message Equations

