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ABSTRACT

Aligning large language models (LLMs) with human intent is critical for enhanc-
ing their performance across a variety of tasks. Standard alignment techniques,
such as Direct Preference Optimization (DPO), often rely on the binary Bradley-
Terry (BT) model, which can struggle to capture the complexities of human pref-
erences—particularly in the presence of noisy or inconsistent labels and frequent
ties. To address these limitations, we introduce the Tie-rank Oriented Bradley-
Terry model (TOBT), an extension of the BT model that explicitly incorporates
ties, enabling more nuanced preference representation. Building on this, we pro-
pose Tie-rank Oriented Direct Preference Optimization (TODO), a novel align-
ment algorithm that leverages TOBT’s ternary ranking system to improve pref-
erence alignment. In evaluations on Mistral-7B and Llama 3-8B models, TODO
consistently outperforms DPO in modeling preferences across both in-distribution
and out-of-distribution datasets. Additional assessments using MT Bench and
benchmarks such as Piqa, ARC-c, and MMLU further demonstrate TODO’s su-
perior alignment performance. Notably, TODO also shows strong results in binary
preference alignment, highlighting its versatility and potential for broader integra-
tion into LLM alignment. The code for TODO is made publicly available.

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable potential in various tasks (Huang et al.,
2021; Hendrycks et al., 2021; Shi et al., 2023), with performance gains linked to better alignment
with human intent (Mishra et al., 2022; Christiano et al., 2023; Wu et al., 2023). The alignment
process typically involves two stages: Supervised Fine-Tuning (SFT) to establish instruction follow-
ing abilities (Thoppilan et al., 2022; Sanh et al., 2022; Mishra et al., 2022), followed by preference
fine-tuning to refine the model’s alignment with human preferences (Ziegler et al., 2020; Christiano
et al., 2023). This stage typically employs either reinforcement learning (RL)-based (Schulman
et al.; OpenAI, 2023; Ramamurthy et al., 2023) or RL-free methods (Rafailov et al.; Azar et al.;
Saeidi et al.; Meng et al., 2024), both leveraging the preference datasets. Effective alignment is
enhanced by the diversity of training data, enabling LLMs to accurately learn from high-quality
pairwise responses (Cui et al., 2023; Song et al., 2024; Saeidi et al.).

Current alignment methods relying on the Bradley-Terry (BT) (Bradley & Terry, 1952) model con-
sider only two preference rankings: preference and dis-preference, which restricts the diversity of
learnable information. A notable challenge is the inconsistent quality of the pairwise preference
data, often showing minimal discernible differences (Nvidia et al., 2024; Amini et al., 2024). Table
1 shows a sample from the Ultrafeedback-binaried dataset1 (Tunstall et al.), which is commonly
used in preference alignment procedures (Tunstall et al.; Hong et al.). In this example, both re-
sponses have identical quality score of 8.5 from GPT-4 evaluations (OpenAI, 2023), differing only
in narrative sequence and text format. In practice, we observe a considerable amount of tie data in
common preference datasets and chat arenas judged by humans, as detailed in Appendix A.1. These
ties encompass a variety of information, necessitating a more nuanced analysis. However, existing
preference optimization techniques, such as Direct Preference Optimization (DPO) (Rafailov et al.),
are constrained by their reliance on the binary BT model and struggle to effectively manage tie re-

1
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

1
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(1+𝑒𝜇+𝛼)(1+𝑒−𝜇+𝛼)
)

TODO Our TOBT model

The Bradley-Terry (BT) model

Figure 1: Comparison of DPO and TODO. DPO relies on the BT model, which is only capable of
handling binary preferences. When responses are tied, it either learns incorrect preference infor-
mation or discards tied data, preventing learning from such data. In contrast, the proposed TOBT
model can directly model ternary preferences. Based on this, TODO can learn more information
from tied data and exhibits better robustness against potential noise in binary preference data.

lations. How to learn useful information from tie data and achieve nuanced preference modeling in
the alignment process remains to be explored, which is the goal of this paper.

Prompt Q: Ninette de Valois was involved professionally in what activity?\nA:

R1 Ninette de Valois was professionally involved in ballet as a dancer, choreographer, and
founder of the Royal Ballet in London.\nConfidence: 95% (score: 8.5)

R2 Ninette de Valois was involved professionally in the field of ballet. She was a choreogra-
pher, dancer, and founder of the Royal Ballet in London. (score: 8.5)

Table 1: One pair of responses in Ultrafeedback-binaried Dataset which have identical quality scores
evaluated by GPT-4. R1 is treated as the preferred response and R2 is treated as the dispreferred one.

Our primary contributions can be unfolded as:

❶ We enhance the existing human preference alignment process by incorporating a “tie” ranking,
transcending the traditional binary rankings as depicted in Figure 1. We first extend the BT model
into the Tie-rank Oriented BT (TOBT) model. The TOBT model incorporates the concept of prefer-
ence uncertainty, allowing for the representation of ties alongside “prefer” and “disprefer” rankings.
This innovation enables a more comprehensive handling of preference relations.

❷ Building on the TOBT model, we introduce the Tie-rank Oriented Direct Preference
Optimization (TODO) algorithm. TODO is designed to accommodate ternary ranking relations,
offering a nuanced approach to preference alignment. By integrating the tie relation, TODO is ca-
pable of learning from a broader spectrum of preference information, enhancing the adaptability
and accuracy of LLMs.

❸ We use Mistral-7B and Llama 3-8B to conduct experimental validation. First, we evaluate the
effectiveness of DPO and TODO in terms of preference modeling accuracy. Our evaluation spans
both in-distribution dataset, drawn from the same source as the training data, and out-of-distribution
dataset, notably the Reward Bench (Lambert et al.). Results indicate superior preference modeling
by TODO. Additional assessments on MT Bench (Zheng et al., 2023) and other popular bench-
marks such as Piqa (Bisk et al., 2019), ARC-c, ARC-e (Clark et al., 2018), Hellaswag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021) and Winogrande (Sakaguchi et al., 2019) confirms
TODO’s enhanced alignment capabilities. Finally, we provide an intuitive analysis highlighting
TODO’s advantages over DPO in two dimensions: enhanced granularity in preference modeling
and increased diversity in the acquired information.

❹ TODO can also be directly applied in binary preference alignment process, outperforming DPO
with standard binary preference datasets. Furthermore, the proposed TOBT model can be utilized
not only in offline policies like DPO but also can be integrated into other online policies or used to
train a reward model.

2 RELATED WORKS

Preference alignment in LLMs. Current methods for aligning preferences in LLMs often utilize the
BT model (Bradley & Terry, 1952) and the Plackett-Luce ranking model (Plackett, 1975) to capture

2
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human preferences. RL-based approaches, such as Reinforcement Learning from Human Feedback
(RLHF, (Schulman et al.)), require a reward model to assess generated responses, which is typically
trained on pairwise preference data gathered from crowdworkers (Wang et al., 2024) or by utilizing
another LLM as an evaluative judge (Bai et al., 2022; Cui et al., 2023). RL-free algorithms, such
as Direct Preference Optimization (DPO) (Rafailov et al.) and its variants (Azar et al.; Ethayarajh
et al., 2024), can directly optimize human preferences by introducing an implicit reward. DPO
offers a stable and computationally lightweight method to align with human intent. To address the
potential overfitting problem in DPO, Identity Preference Optimization (IPO) (Azar et al.) and
Reward-aware Preference (RPO) (Nvidia et al., 2024) has been proposed by introducing differences
between pairwise responses. Furthermore, Kahneman-Tversky Optimization (KTO) (Ethayarajh
et al., 2024), was proposed by directly maximizing the utility of generations instead of maximizing
the log-likelihood of preferences, and Hong et al. introduced a reference model-free monolithic
odds ratio preference optimization algorithm. Some concurrent works attempt to introduce intrinsic
knowledge constraints into preference alignment, either by on-the-fly fine-tuning LLMs to obtain
relative qualities (Yu et al., 2024) or by defining a reward distance (Nvidia et al., 2024; Amini
et al., 2024). These studies do not utilize tied preference to refine alignment, whereas our approach
has the potential to be integrated with them as discussed in Section 7.

Ternary preference models. Ties frequently occur in ranked data, such as sports and examinations.
For example, a soccer result can be classified simply as a home win, an away win, or a tie. The
well-known BT model, which can be derived from the order statistics of the exponential distribution,
cannot handle ties. Rao & Kupper (1967) corrected the BT model by assuming that small probability
difference values would be declared ties. Kuk (1995) applied this approach to football. Davidson
(1970) provided an ad hoc correction to the BT model for ties. Dewart & Gillard (2018) applied
the BT model to cricket, where draws occur but do not depend strongly on team strengths. Baker &
Scarf (2020) used discrete distributions, principally the geometric distribution, to obtain a modified
BT model that allows for tie ranks. These studies lay a robust theoretical foundation for addressing
ties in ranking results, facilitating the connection between LLM alignment and preference data.

3 PRELIMINARIES

3.1 THE BRADLEY-TERRY MODEL

The Bradley-Terry (BT) (Bradley & Terry, 1952) model is a probability model for the outcome of
pairwise comparisons between instances, teams, or objects. It estimates the probability that the rank
order i ≻ j is true, where the symbol ≻ represents a preference or rank relation, such as instance i
being preferred over j, or i beating j, depending on the application.

The computation of BT model can be represented by Equation 1, where the positive strength owned
by two competitors are denoted by λ1 and λ2 respectively, and r12 represents the probability that
the first competitor obtains a higher rank than the second one in comparison.

r12 =
λ1

λ1 + λ2
(1)

Define d12 = lnλ1 − lnλ2, which represents the strength difference of two competitors in logarith-
mic form. Following Rao & Kupper (1967), Equation 1 can be written into the form of Equation
2, where sech(·) denotes the hyperbolic secant function. This relation shows that the preference
probability r12 depends only on d12.

r12 =
1

4

∫ ∞

−(lnλ1−lnλ2)

sech2(y/2) dy =
1

4

∫ ∞

−d12
sech2(y/2) dy (2)

3.2 HUMAN PREFERENCE MODELING

Following the BT model, the human preference distribution p∗ is formulated in Equation 3, where
r∗ is some latent reward model, r∗(x, y) denotes the reward for response y given an input prompt
x, and σ(·) is the Sigmoid function. The variables x, y1 and y2 are drawn from a preference dataset
D = {xi, yi1, yi2}, where y1 is the preferred response and y2 is the dispreferred one. The term
exp(r∗(x, y)) signifies the strength λ of responses following Equation 1, acknowledging that the

3
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reward could be negative,

p∗(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
= σ(r∗(x, y1)− r∗(x, y2)). (3)

Subsequently, a reward model that mirrors human preferences can be trained using the method of
maximum likelihood estimation (Schulman et al.),

max
θ

E(x,y1,y2)∼D
[
log σ

(
rθ(x, y1)− rθ(x, y2)

) ]
. (4)

3.3 DIRECT PREFERENCE OPTIMIZATION

In RLHF (Schulman et al.), the goal is to maximize the expectation of rewards under the KL diver-
gence constraint,

max
πθ

Ex∼D,y∼πθ(y|x)[rψ(x, y)]− β log
πθ(y|x)
πref(y|x)

. (5)

The optimal solution to this problem satisfies the following relationship (Rafailov et al.):

r(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x), (6)

where Z(x) = Σyπref(y|x) exp
(
1
β r(x, y)

)
only depends on prompt x.

By integrating this relation into Equation 4, the loss function of DPO can be expressed as shown in
Equation 7, which is incapable of addressing tied preference data.

LDPO(πθ;πref) = −E(x,y1,y2)∼D

[
log σ

(
β log

πθ(y1|x)
πref(y1|x)

− β log
πθ(y2|x)
πref(y2|x)

)]
. (7)

4 TIE-RANK ORIENTED DIRECT PREFERENCE OPTIMIZATION

To handle ties in preferences modeling, we introduce a buffer in the integral interval of Equation 2,
which is inspired by Rao & Kupper (1967). We call the new preference model Tie-rank Oriented BT
(TOBT) model. Based on this model, we propose a novel preference alignment algorithm, Tie-rank
Oriented Direct Preference Optimization (TODO).

4.1 TIE-RANK ORIENTED BT MODEL

As shown in Equation 2, d12 represents the preference difference between two instances, and
d12 > 0 means the first instance is preferred. To handle ties, we impose higher requirements on
the comparison by introducing a positive number α, and then the preferred relation is determined by
d12 > α. That is, the ranking probability r12 becomes Equation 8,

r12 =
1

4

∫ ∞

−(lnλ1−lnλ2)+α

sech2(y/2) dy (8)

Then, the probability that two instances share a tie relation is 1 − r12 − r21, which is denoted by
r(12), and can be expressed in Equation 9,

r(12) =
1

4

∫ −(lnλ1−lnλ2)+α

−(lnλ1−lnλ2)−α
sech2(y/2) dy (9)

Intuitively, the parameter α encapsulates the inherent uncertainty and noise in the strength values
λ1 and λ2, which are ubiquitous in LLM alignment. Preference datasets for alignment often rely on
human labeling (Chiang et al., 2024), LLM-as-judge assessments (Cui et al., 2023), or reward model
scoring (Nvidia et al., 2024), introducing label noise due to inconsistencies among human annota-
tors or the inherent variability of LLMs in approximating human preferences. Accounting for this
uncertainty and noise in responses evaluation likely contributes to TODO’s improved performance
on binary preference datasets, as detailed in Section 6.

4
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Following Equation 8 and 9, the TOBT model can be represented by Equation 10 and 11, where
ϕ = exp(α) and ϕ > 1. The detailed derivation process is provided in Appendix A.2.

r12 =
λ1

λ1 + ϕλ2
(10)

r(12) =
λ1λ2(ϕ

2 − 1)

(λ1 + ϕλ2)(ϕλ1 + λ2)
(11)

4.2 OBJECTIVE FUNCTION OF TODO

Following Equation 10 and 11, the tie-rank oriented human preference distribution p∗ can be
expressed by Equation 12 and Equation 13.

p∗(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + ϕ exp(r∗(x, y2))
(12)

p∗(y1 ≡ y2|x) =
exp(r∗(x, y1)) exp(r

∗(x, y2))(ϕ
2 − 1)(

exp(r∗(x, y1)) + ϕ exp(r∗(x, y2))
)(

exp(r∗(x, y2)) + ϕ exp(r∗(x, y1))
) (13)

Equation 12 represents the possibility of treating y1 as the preferred response and y2 as the dispre-
ferred response in pairwise data based on the TOBT model. Following Equation 12, the objective
LpTODO can be written as Equation 14, where µ = rθ(x, y1)− rθ(x, y2) represents the reward dif-
ference of two responses y1 and y2. Because the Z(x) in implicit reward rθ(x, y) only depends on
x, the difference results of µ can be equivalently expressed as µ = β log πθ(y1|x)

πref(y1|x) − β log πθ(y2|x)
πref(y2|x) .

The superscript p in LpTODO denotes that this formulation is the objective of TODO when the re-
sponses in a pair exhibit a clear preference, rather than being tied. The detailed derivation process is
provided in Appendix A.4.

LpTODO(πθ;πref) = −E(x,y1,y2)∼D[ log σ(µ− α)]

= −E(x,y1,y2)∼D

[
log σ

(
β log

πθ(y1|x)
πref(y1|x)

− β log
πθ(y2|x)
πref(y2|x)

− α
) ]

.
(14)

Equation 13 represents the possibility of treating pairwise responses y1 and y2 as a tied pair based
on the TOBT model. Following Equation 13, the objective LtTODO can be written as Equation 15.
The superscript t in LtTODO signifies that this represents TODO’s objective when the pair is tied.
The detailed derivation process is provided in Appendix A.5.

Lt
TODO(πθ;πref) = −E(x,y1,y2)∼D

[
log

exp(2α)− 1

(1 + exp(µ+ α))(1 + exp(−µ+ α))

]
(15)

Given a preference dataset (xi, yi1, y
i
2, Ii) ∈ D, the indicator Ii is determined by Equation 16. Specif-

ically, Ii = 0 indicates a clear preference or quality difference between the two responses to the same
prompt x, while Ii = 1 represents that two responses yi1 and yi2 are tied. Then, the final loss LTODO

of TODO can be represented by Equation 17.

Ii =

{
1, yi

1 ≡ yi
2,

0, yi
1 ≻ yi

2.
(16)

LTODO = (1− I)Lp
TODO + ILt

TODO (17)

Compared to DPO, TODO introduces a margin α to shift the decision boundary towards α for paired
data with a clear preference, while also accommodating ties. In contrast, methods based on the BT
model struggle to handle tie data effectively.

4.3 THE EFFECT OF DIFFERENT PREFERENCE RELATIONS ON TODO UPDATES

To elucidate the dynamics of TODO parameter updates, we introduce a gradient-based analysis that
distinguishes between scenarios where pairwise responses show a clear preference or are tied. The
comprehensive derivation is detailed in Appendices A.6 and A.7.

5
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For the gradient update (18) for pairwise data with a clear preference, the introduction of a
positive small value α results in more substantial weight adjustments when the reward difference
is misestimated compared to DPO. This refinement mitigates noise from narrow reward margins,
allowing TODO to more effectively learn distinct preferences by concurrently enhancing the likeli-
hood of the favored response y1 and diminishing that of the unfavored response y2.

∇θLp
TODO(πθ;πref) = −E(x,y1,y2)∼D

[
βσ(−µ+ α)︸ ︷︷ ︸

higher weight than DPO

[
∇θ log(π(y1|x))−∇θ log(π(y2|x))

]]
. (18)

For the gradient update (19) for pairwise tie data, G(µ) = exp(−µ+α)−exp(µ+α)
(1+exp(−µ+α))(1+exp(µ+α)) is mono-

tonically decreasing with respect to µ, and G(0) = 0. When µ = 0, two responses obtain the same
rewards, and DPO continues to update policy models as per Equation 7, which shifts the distribution
to reduce the likelihood of the “dispreferred” response y2, potentially discarding valuable informa-
tion. In contrast, TODO refrains from updating any parameters to maintain the consistent preference
alignment of the tied responses.

When the estimated reward difference for tied responses is µ > 0, suggesting y1 has a higher reward
than y2, TODO’s gradient update strategy will reduce the likelihood of y1 and increase that of y2.
Conversely, if µ < 0, the update will elevate the likelihood of y1 and lower that of y2, ensuring the
preference consistency between the tied responses is preserved.

∇θLt
TODO(πθ;πref) = −E(x,y1,y2)∼D

[
G(µ)∇θ log(π(y1|x))︸ ︷︷ ︸

part 1

+G(−µ)∇θ log(π(y2|x))︸ ︷︷ ︸
part 2

]
. (19)

5 EXPERIMENTAL SETTINGS

5.1 MODELS AND DATASETS

Models. We select two different series of models, Mistral-7B (Jiang et al., 2023) and Llama 3-8B
(AI@Meta, 2024), as our experimental backbone models. We select zephyr-sft-full2 (Tunstall et al.)
as the supervised fine-tuning (SFT) version of Mistral model and llama3-8b-sft-ultrachat3 as the SFT
version model of Llama 3 model. Both zephyr-sft-full and llama3-8b-sft-ultrachat are fine-tuned on
Ultrachat-200k (Ding et al., 2023) dataset.

Training datasets. For the datasets used in the preference alignment process, we construct 20k-size
datasets with different tie data proportions from Ultrafeedback (Cui et al., 2023). Responses sharing
the same quality score are classified as tied. The quality score for each response is a weighted
score across multiple assessment metrics, taking into account helpfulness, truthfulness, verbalized
calibration and honesty. Each sampled dataset exhibits a tie data ratio that varies within the set {0,
0.1, 0.2, 0.3}. Other details of the training sets are shown in Appendix A.8.

Evaluation benchmarks. We first compare the effectiveness of preference modeling ability be-
tween DPO and TODO. To this end, we curate an in-distribution test set containing 1500 non-tied
samples and select the Reward Bench (Lambert et al.) as an out-of-distribution dataset. Subse-
quently, we select a suite of well-established benchmark datasets to evaluate the models compre-
hensively: 1) MT Bench (Zheng et al., 2023), which contains open-ended questions designed to
assess the multi-turn conversational capabilities and the ability to follow instructions of LLMs. 2) A
diverse set of benchmarks containing Piqa (Bisk et al., 2019), ARC-c, ARC-e (Clark et al., 2018),
Hellaswag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021) and Winogrande (Sakaguchi et al.,
2019), which collectively evaluate the language comprehension and reasoning faculties of LLMs.

5.2 TRAINING SETTINGS

All comparative results are derived from training each model for 3 epochs on their respective training
datasets. We set α = 0.5 in TODO, which follows the principle of balancing the loss value of
pairwise non-tie data and tie data. Please refer to Appendix A.3 for more details about the discussion

2
https://huggingface.co/alignment-handbook/zephyr-7b-sft-full

3
https://huggingface.co/kykim0/llama3-8b-ultrachat-sft
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Figure 2: Accuracy of Mistral and Llama 3 models aligned with DPO and TODO on non-tie prefer-
ence test set and Reward Bench. The X-axis denotes the proportion of tie data mixed in train set.

of α. Other hyperparameters are shown in Appendix A.9, where we adopt the settings from previous
work Saeidi et al.; Meng et al. (2024). We ensure the consistency of training hyperparameters among
experiments for a fair comparison.

5.3 EVALUATION SETTINGS

Accuracy of preference modeling. In assessing the efficacy of models fine-tuned with DPO and
TODO for preference modeling, we employ prediction accuracy as the primary evaluation metric.
For each pair of data where the preference rank y1 is favored over y2, we calculate the predicted
probabilities for each preference rank for pair data, adhering to Equations 12 and 13. A prediction
is deemed accurate if the model assigns the highest probability to the scenario where y1 is preferred
over y2 across all possible ranks.

GPT based scoring in MT Bench. For the evaluation in MT Bench, we use gpt-4-turbo-2024-04-09
(OpenAI, 2024b) to score generated results.

Accuracy of other benchmarks. For the evaluation of Piqa, ARC-c, ARC-e, Hellaswag, MMLU
and Winogrande, we use Opencompass (Contributors, 2023) to assess final results, details of prompt
templates and evaluation metrics can be found in Appendix A.10.

6 RESULTS AND ANALYSIS

6.1 TODO IMPROVES HUMAN PREFERENCE MODELING WITH TIE DATA

In this section, we assess the preference modeling capabilities of models trained with DPO and
TODO across both in-distribution and out-of-distribution datasets, incorporating varying proportions
of tie data in the training regimen. The in-distribution assessment is based on the above mentioned
test set, while the out-of-distribution assessment utilizes the Reward Bench.

Figures 2 illustrates the accuracy results of Mistral and Llama 3 models aligned with DPO and
TODO on the test set and Reward Bench, using training sets with varying proportions of tie data.
Reward Bench contains pairwise responses divided into Chat, Chat hard, Safety, Reasoning and Prior
preference data categories. We compute the average accuracy score of all categories to represent the
final performance on Reward Bench. The detailed scores in each category of two series models on
Reward Bench are provided in Appendix A.12.

We observe that both Mistral and Llama 3 models aligned with TODO generally achieve better per-
formance than those aligned with DPO on both in-distribution and out-of-distribution data. Overall,
when directly modeling human preferences mixing tie data, DPO often leads to sub-optimal results.
TODO addresses this issue with more nuanced preference modeling. Experimental results demon-
strate the effectiveness of the combinatorial optimization objectives in TODO.
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Figure 3: MT Bench results of Mistral-7B and Llama 3-8B. The models are aligned with DPO and
TODO using datasets with varying ratios of tie data.

6.2 TODO ENHANCES ALIGNMENT IN LLMS

In this section, we evaluate the effectiveness of DPO and TODO across different benchmarks to
comprehensively demonstrate the alignment capabilities of LLMs.

As illustrated in Figures 3a and 3b, the scores on the MT Bench for models aligned with DPO
and TODO reveal that TODO consistently outperforms DPO across all training sets for both the
Mistral and Llama 3 models. Specifically, TODO achieves peak performance when using the binary
preference dataset for the Mistral models and incorporating a 20% tie data ratio for the Llama 3
models, respectively.

Table 2 and Table 3 respectively show the results on Piqa, ARC-c, ARC-e, Hellaswag, MMLU and
Winogrande benchmarks of the Mistral and Llama 3 models, where we highlight the best perfor-
mance in underline, and mark the better performance between DPO and TODO with different ratio
of tie data in bold. As demonstrated in these tables, TODO achieves better performance than DPO
across all train sets on both two models, and obtain the best average performance when mixing 20%
and 30% of tie data in Mistral and Llama 3 serials models, respectively.

Optimal proportion of tie data enhances alignment. Our experimental findings across various
benchmarks underscore the critical role and efficacy of TODO in managing non-binary preference
data. Notably, optimal performance on the MT Bench and six additional benchmarks is consistently
achieved when a specific ratio of tie data is integrated with TODO. This observation indicates that the
strategic incorporation of tie data, in conjunction with TODO, can markedly enhance the alignment
capabilities of LLMs.

Method Tie Data Ratio Piqa ARC-c ARC-e MMLU Hellaswag Winogrande Average

SFT ✗ 80.09 51.33 74.97 60.26 75.69 73.64 69.33

DPO 0.0 77.15 49.87 69.56 59.44 73.55 67.88 66.24
TODO 0.0 81.01 54.59 78.44 60.16 79.01 72.93 71.02

DPO 0.1 79.87 53.82 77.21 60.07 79.04 73.48 70.58
TODO 0.1 80.25 54.68 77.76 60.46 79.27 73.95 71.06

DPO 0.2 80.25 55.02 77.51 59.79 79.08 73.01 70.78
TODO 0.2 81.07 55.11 78.52 59.40 79.14 73.80 71.17

DPO 0.3 75.73 48.15 68.84 59.41 71.97 69.30 65.57
TODO 0.3 77.37 51.59 71.75 59.79 74.36 69.38 67.37

Table 2: Results of Mistral-7B aligned with different methods trained with various ratios of tie data.

TODO’s superiority in binary preference alignment. In addition to enhancing performance by
incorporating tie data into the training regimen, TODO can also be effectively employed in scenarios
involving purely binary preference alignment. The experimental outcomes, as depicted in Figure 3
for the MT Bench and Tables 2 and 3 for other benchmarks, consistently indicate that models fine-
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Method Tie Data Ratio Piqa ARC-c ARC-e MMLU Hellaswag Winogrande Average

SFT ✗ 79.65 55.02 78.65 63.89 76.45 72.69 71.06

DPO 0.0 79.27 54.59 76.58 63.29 79.05 71.74 70.75
TODO 0.0 79.43 55.45 76.79 63.45 79.27 71.82 71.03

DPO 0.1 79.65 54.68 75.48 63.46 79.08 71.74 70.68
TODO 0.1 79.54 55.19 76.28 63.65 79.05 71.43 70.86

DPO 0.2 79.16 54.59 75.60 63.49 78.72 70.96 70.42
TODO 0.2 79.38 56.22 77.08 63.07 79.04 71.11 70.98

DPO 0.3 79.05 55.54 76.11 63.34 78.17 70.88 70.52
TODO 0.3 79.33 56.22 77.76 63.61 78.83 71.03 71.13

Table 3: Results of Llama 3-8B aligned with different methods with various ratios of tie data.

tuned with TODO outperform their counterparts optimized with DPO, even in the absence of any tie
data.

6.3 KEY FACTORS OF TODO IN HANDLING TIE DATA AND OBTAINING BETTER
PERFORMANCE

In this section, we analyse the limitations of DPO and the advantages of TODO in handling tie data.
We highlight two pivotal factors that TODO can enhance alignment: nuanced preference modeling
and enriched diversity of information learned.

TODO refines DPO by accurately handling tied data. We consider the scenario where responses
of equivalent quality are incorrectly labeled as binary preference data, as illustrated in Table 1. As
stated in Section 4.2, µ represents the implicit reward margin between two responses during the
training. For the i-th pair of responses, yi1 and yi2, which are essentially tied, DPO assigns a small
value to µi. Despite the trivial value of µi, DPO unilaterally steers the policy model update by
increasing the likelihood of one tied response yi1, while concurrently decreasing the likelihood of
the other yi2. This biased update is a consequence of the binary BT model, following the gradient
computation:

∇θLDPO = −E(x,y1,y2)∼D

[
βσ(−µ)︸ ︷︷ ︸

always positive

[
∇θ log(π(y1|x))−∇θ log(π(y2|x))

]]
. (20)

The gradient update direction as shown in Equation 20 is decided by the Sigmoid function and a
positive β value, which makes DPO always update policy model in one direction. Such a gradient
computation, when applied to tied data, can result in erroneous updates and introduce noise into the
binary preference modeling process, potentially culminating in a suboptimal policy. Both DPO and
TODO assign a small reward margin for tied pair responses, as compared to utilizing data with clear
preference distinction. However, TODO employs combinatorial optimization objectives for pairwise
responses accounting for the uncertainty of preference difference, and effectively rectifying the is-
sues DPO faces with tied data. This changes the update direction depending on the exact preference
relation, ensuring preference learning consistency between two tied responses. Concurrently, the
gradient computation for non-tied responses facilitates the learning of preferred or dispreferred rela-
tions. This distinction is crucial for effective preference modeling and can learn “prefer”, “tie” and
“disprefer” ranks. The exact reward margin changes of two models aligned with DPO and TODO
using different ratios of tie data are provided in Appendix A.11 to support our analysis.

Learning from diverse tied responses improves the performance. Both DPO and TODO are
adept at ranking pairwise data with clear preference distinctions, distinguishing between “preferred”
and “dispreferred” responses. However, when responses exhibit no clear preference or quality dis-
parity, DPO’s optimization strategy compels the policy model to skew towards one response at the
expense of the other, resulting in unnecessary information loss for the unfavored response. TODO
mitigates this by incorporating a tie rank and a novel optimization objective, enabling the policy
model to evolve in accordance with the consistent preference trends of both responses. This mecha-
nism allows both the content and format of the two responses to be learned simultaneously, enabling
the model to capture more diverse information from the same amount of data.

9
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7 DISCUSSION

Comparison against other binary model based approaches. To comprehensively assess the gen-
eralizability and efficacy of TODO, we conduct an exhaustive comparative analysis against several
prominent binary alignment techniques, including DPO (Rafailov et al.), KTO Ethayarajh et al.
(2024), SimPO (Meng et al., 2024), and ODPO (Amini et al., 2024). Our evaluation transcends
the limitations of a single dataset by leveraging both the Ultrafeedback dataset and the diverse,
human-labeled Chatarena (lms, 2024) dataset, which encompasses multiple language pairs. Our ex-
perimental results Mistral-7B, encompassing test set accuracies and MT Bench scores, are provided
in Appendix A.13. In both datasets, TODO consistently outperforms other baselines when tie data is
included, highlighting its advantages. Additionally, TODO with tie data surpasses methods without
tie data in most cases, demonstrating the effectiveness of incorporating tie data.

Potential integration of TOBT into other methods. For RLHF-based methods, a straightforward
integration way is to train a ternary reward model instead of the binary ones. The objective functions
for the new reward model are composed of (12) and (13). To this end, a ternary-labeled preference
dataset is needed, which is not difficult to obtain based on common annotation methods.

For DPO-like methods, the integration varies by case. We take ODPO (Amini et al., 2024) as an
example which adopts a loss function in the form of − log(σ(µ − ∆r)), where ∆r introduces a
preference margin depending on the ground-truth scores of the two inputs. By applying (15), we
can obtain a new loss incorporating tie data

− log

(
exp(2∆r)− 1

(1 + exp(µ+∆r))(1 + exp(−µ+∆r))

)
,

the derivation of which should be similar to TODO.

Extension for other tie-aware preference models. The model’s reliance on r1 − r2 rather than r1
and r2 individually is crucial, because the reward includes an untractable variable Z(x) (Equation
6) which can be eliminated in r1 − r2. Some models (Glenn & David, 1960; Davidson, 1970) share
this characteristic, offering potential for adaptation in LLM alignments. However, their effectiveness
in this context has yet to be explored..

8 CONCLUSION AND FUTURE WORK

This study illuminates a limitation in LLM preference alignment: the inability of binary models
like DPO to resolve ties in preference data. To overcome this, we integrate a tie ranking system
into preference modeling, refine the BT model into the more robust TOBT model, and introduce the
TODO algorithm. Our experimental results demonstrate that TODO consistently outperforms DPO
across a range of evaluations. The success of TODO stems from its nuanced handling of ties and the
robust TOBT model. This approach is not only limited to direct preference optimization but is also
compatible with various online and offline preference optimization policies and can be employed
for reward model training, which are left for future work.
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A APPENDIX

A.1 TIE DATA IN CURRENT PREFERENCE DATASETS

We conduct a statistical analysis of existing tie data across common preference data, as presented
in Table 4. Current pairwise preference data are scored by LLMs or labeled by humans to establish
preference rankings. Preference data scored by LLMs, commonly rely on the quality score consid-
ering multiple aspects to differentiate between preferred and dispreferred responses. Ultrafeedback
(Cui et al., 2023), as a popular preference dataset, is scored based on GPT-4 feedback, and contains
383k pairwise responses. We find that 17.0% of the data pairs exhibit identical quality scores. The
Ultrafeedback binaried (Tunstall et al.), a subset of this dataset, also includes 12.1% of tie data.
This analysis underscores the prevalence of ties in preference datasets.

Datasets Tie data(%)
UltraFeedback 17.0
Ultrafeedback binarized 12.1
lmsys-chatbot arena conversations 29.4

Table 4: Statistics on common preference datasets.

Unlike datasets featuring explicit quality scores, some preference datasets include only human-
provided preference labels. Figure 4 illustrates two pairs pf responses from the Chatbot Arena4

(Chiang et al., 2024), judged by different users. Specifically, user793 prefers R1 and disfavors R2
for prompt 1. Conversely, user1245 exhibits no clear preference between the two responses for
prompt 2, categorizing them as tied. The lmsys-chatbot arena conversations dataset, which collects
the pairwise data from Chatbot Arena, reveals that 29.4% of the total samples are tied. This statistic
highlights the significant presence of tie data in human-labeled preference data.

Mount Everest is the highest mountain in the world, with a height of 8,848 meters (29,029 feet) 
above sea level. It is located in the Himalayan mountain range, on the border between Nepal 

and Tibet. The mountain was named after Sir George Everest, a British geographer and 
surveyor, who led a team that mapped the Himalayas in the mid-19th century. It is a popular 

destination for mountain climbing and is considered one of the greatest challenges in the sport.

The height of Mount Everest is 8,848 meters (29,029 feet).

What is the height of 
mount everest?

R1: vicuna-13b generated

R2: alpaca-13b generated

arena_user_1245: with 

no obvious difference 

Prompt 2

1.  💪  Sharing progress or achievements\n2. 📝  Sharing a written message or document\n3. 
👥  Sharing with friends or a group\n4. 📊  Sharing data or statistics\n5. 🎤  Sharing a 

microphone or stage\n6. 📸  Sharing a photo\n7. 🎥  Sharing a video\n8. 🍴  Sharing food or a 
meal\n9. 🚀  Sharing something exciting or important\n10. 📚  Sharing knowledge or education.

Sharing hands\n* Share icon\n* Group chat icon\n* Sharing clipboard icon\n* Social media 
icons\n* Sharing computer icon\n* Sharing network icon\n* Sharing server icon\n* Sharing 

printer icon\n* Sharing keyboard icon

Emoji for \"sharing\". List 
10 R1: vicuna-13b generated

R2: koala-13b generated

arena_user_793: R1 is 

better than R2 

Prompt 1

Figure 4: Human evaluation of pairwise responses across various prompts in the Chatbot Arena.

A.2 THE TOBT MODEL

By substituting t = y
2 into 1

4

∫
sech2(y2 )dy, we obtain that

F (t) =
1

2

∫
sech2(t)dt =

1

2
tanh (t), (21)

4https://lmsys.org/blog/2023-05-03-arena/
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where tanh(t) = exp(t)−exp(−t)
exp(t)+exp(−t) . Then r12 = 1

4

∫∞
−(lnλ1−lnλ2)+α

sech2(y/2) dy can be written into

r12 = 1
2

∫∞
t1

sech2 (t) dt, where t1 = −(lnλ1−lnλ2)+α
2 . We can obtain the representation of r12

following Equation 22:

r12 =
tanh(∞)− tanh (t1)

2

=
1− tanh (t1)

2

=
1− exp(t1)−exp(−t1)

exp(t1)+exp(−t1)

2

=
1− exp(2t1)+exp(−2t1)−2

exp(2t1)−exp(−2t1)

2

=
1− exp(−2t1)

exp(2t1)− exp(−2t1)

=
1− exp(lnλ1 − lnλ2 − α)

exp(lnλ2 − lnλ1 + α)− exp(lnλ1 − lnλ2 − α)
.

(22)

By substituting α with lnϕ in the last line of Equation 22, the final presentation of r12 can be
represented by Equation 23:

r12 =
1− exp(lnλ1 − lnλ2 − lnϕ)

exp(lnλ2 − lnλ1 + lnϕ)− exp(lnλ1 − lnλ2 − lnϕ)

=
1− λ1

ϕλ2

ϕλ2

λ1
− λ1

ϕλ2

=
λ1

λ1 + ϕλ2
.

(23)

For the r(12) =
1
4

∫ −(lnλ1−lnλ2)+α

−(lnλ1−lnλ2)−α sech2
(
y
2

)
dy, we can rewrite it into r(12) =

1
2

∫ t1
t2

sech2 (t) dt,

in which t1 = −(lnλ1−lnλ2)+α
2 and t2 = −(lnλ1−lnλ2)−α

2 . Then we compute r(12) according to
Equation 24:

r(12) =
1

2
(tanh(t1)− tanh(t2))

=
(exp(t1)− exp(−t1)(exp(t2) + exp(−t2)))− (exp(t2)− exp(−t2))(exp(t1) + exp(−t1))

2(exp(t1) + exp(−t1))(exp(t2) + exp(−t2))

=
exp(t1 − t2)− exp(t2 − t1)

exp(t1 + t2) + exp(t1 − t2) + exp(t2 − t1) + exp(−t1 − t2)

=
exp(α)− exp(−α)

exp(−(lnλ1 − lnλ2)) + exp(α) + exp(α) + exp(lnλ1 − lnλ2)
.

(24)
By substituting α with lnϕ in the last line of Equation 24, we can obtain the final representation of
r(12) as given in Equation 25:

r(12) =
ϕ− 1

ϕ

λ2

λ1
+ ϕ+ 1

ϕ + λ1

λ2

=
λ1λ2(ϕ

2 − 1)

ϕλ2
2 + ϕ2λ1λ2 + λ1λ2 + ϕλ2

1

=
λ1λ2(ϕ

2 − 1)

(λ1 + ϕλ2)(λ2 + ϕλ1)
.

(25)

A.3 SELECTION OF α IN TODO

In this section, we elaborate on the process of selecting the optimal value for α in TODO. Initially,
we generate a series of random values to emulate the expression β log πθ(y1|x)

πref(y1|x) − β log πθ(y2|x)
πref(y2|x) ,
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which represents the reward difference between two responses in the initial stage of preference
alignment. Subsequently, we calculate the corresponding pairwise non-tied and tied losses across a
range of α values. Figures 5a and 5b present the visualization of the results for two distinct value
spans, illustrating the impact of α on the losses.

0 2 4 6 8 10
preference losses
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=10
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(a) α varies from 1 to 10

0.2 0.4 0.6 0.8 1.0 1.2
preference losses
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2.0

2.5

3.0

3.5

4.0

4.5
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=1
=0.9
=0.8
=0.7
=0.6
=0.5
=0.4
=0.3
=0.2
=0.1

(b) α varies from 0.1 to 1

Figure 5: The initial preference and tie losses simulated with different α values.

A delicate balance between the non-tie loss and the tie loss is beneficial to the TODO performance.
Our observations indicate that the non-tie and tie losses are interconnected through a power-law
relation. As depicted in Figure 5, the preference loss sharply ascends with increasing values of α,
exceeding the concurrent growth in tie loss.

To achieve equilibrium between these two types of losses and to identify an appropriate value of
α that maintains the preference loss near the levels observed in the original DPO (which implies
that α should not be markedly distant from zero), we establish two thresholds: the initial tie loss in
TODO is restricted to a maximum of 1.5, and the initial preference loss is restricted to a maximum of
1.0. These constraints are instrumental in guiding the selection of α, ensuring that the optimization
process effectively reconciles the competing objectives of preference and tie loss minimization.

Initially, we graph the variations in both preference and tie losses across a spectrum of α values,
ranging from 1 to 10, as illustrated in Figure 5a. This visualization reveals that the preference loss
using TODO is consistently higher than desired. Subsequently, we refine our approach by focusing
on a narrower band of α values, specifically from 0.01 to 0.1. The detailed outcomes of this refined
analysis are shown in Figure 5b.

Theoretically, the BT-model and our TOBT model both rely on the assumption that the reward
difference µ = r(x, y1)− r(x, y2) follows the logistic distribution with unit variance. The mean of
BT-model is 0 and the mean of TOBT is α > 0. In the early training phase of LLM, µ is typically
small in magnitude. Hence, a large α may produce a very large loss (E log σ(µ − α)) and leads
to gradient vanishing, where σ is the Sigmoid function. From this perspective, α < 1 is beneficial
since the gradient of σ is less than 0.2 for α > 1. On the other hand, α cannot be too close to 0 since
the weights of tie data is propotional to exp(2α). There is a clear tradeoff.

Empirically, we further compare the performance of TODO with different α on our preference testset
and MT Bench besides in Tables 5 and 6, the results on MT Bench are scored by gpt-4o-2024-05-13
(OpenAI, 2024a). It shows that the performance is relatively not sensitive to the change of α within
a reasonable range like α ∈ (0.1, 0.8), but degrade significantly when α is too large, which agrees
with our theoretical analysis. This behaves like the tuning of learning rate, which can also lead to
divergence beyond some threshold.
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Methods Ultrafeedback Ultrafeedback Chatarena Chatarena
(tie ratio 0) (tie ratio 0.2) (tie ratio 0) (tie ratio 0.17)

TODO(α = 0.1) 77.20 76.40 76.80 78.47
TODO(α = 0.2) 77.67 76.40 77.00 77.93
TODO(α = 0.5) 77.33 76.87 77.53 77.87
TODO(α = 0.8) Diverge 75.47 77.27 76.40
TODO(α = 1.2) Diverge 75.33 Diverge Diverge

Table 5: Test-set accuracy in Mistral-7B model with different α values set in TODO.

Methods Ultrafeedback Ultrafeedback Chatarena Chatarena
(tie ratio 0) (tie ratio 0.2) (tie ratio 0) (tie ratio 0.17)

TODO(α = 0.1) 5.85 5.96 5.52 5.83
TODO(α = 0.2) 5.44 5.94 5.53 5.58
TODO(α = 0.5) 5.73 5.91 5.69 5.78
TODO(α = 0.8) Diverge 5.81 5.48 5.51
TODO(α = 1.2) Diverge 5.41 Diverge Diverge

Table 6: MT Bench scores in Mistral-7B model with different α values set in TODO.

A.4 THE OBJECTIVE FUNCTION OF TODO WITH PAIRWISE DISTINGUISHED PREFERENCE
DATA

It is straightforward to derive the TODO objective in pairwise data with distinct preference differ-
ence. Under the TOBT model as Equation 12, we can obtain the possibility of y1 being preferred
over y2 following Equation 26 by substituting ϕ into exp(α).

p∗(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + ϕ exp(r∗(x, y2))

=
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(α) exp(r∗(x, y2))

=
1

1 + exp(α) exp(r∗(x, y2)− r∗(x, y1))

=
1

1 + exp(r∗(x, y2)− r∗(x, y1) + α)

= σ(r∗(x, y1)− r∗(x, y2)− α)

(26)

Recall that the (unavailable) ground-truth reward through is given as follows:

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x). (27)

Substituting Equation 27 into Equation 26, we derive the per-instance preference possibility as
shown in Equation 28.

p∗(y1 ≻ y2|x) = σ
(
β log

π∗(y1|x)
πref(y1|x)

− β log
π∗(y2|x)
πref(y2|x)

− α
)

(28)

A.5 THE OBJECTIVE FUNCTION OF TODO WITH PAIRWISE TIE DATA

For instances of pairwise tie data, by utilizing the TOBT model as defined in Equation 13, we can
compute the possibility that y1 and y2 are tied, as shown in Equation 29:

p∗(y1 ≡ y2|x) =
exp(r∗(x, y1)) exp(r

∗(x, y2))(ϕ
2 − 1)

(exp(r∗(x, y1)) + ϕ exp(r∗(x, y2)))(exp(r∗(x, y2)) + ϕ exp(r∗(x, y1)))

=
exp(r∗(x, y1) + r∗(x, y2))(exp(2α)− 1)

(exp(r∗(x, y1)) + exp(α) exp(r∗(x, y2)))(exp(r∗(x, y2)) + exp(α) exp(r∗(x, y1)))
.

(29)
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Which can be transferred into:

p∗(y1 ≡ y2|x) =
exp(2α)− 1

1 + exp(r∗(x, y1)− r∗(x, y2) + α) + exp(r∗(x, y2)− r∗(x, y1) + α) + exp(2α)
,

(30)
by dividing exp(r∗(x, y1) + r∗(x, y2)) in both the numerator and denominator. Because exp(2α)
can be expressed by exp(r∗(x, y1) − r∗(x, y2) + α + r∗(x, y2) − r∗(x, y1) + α), we can rewrite
the denominator of the last line in Equation 30 into (1 + exp(r∗(x, y1) − r∗(x, y2) + α))(1 +
exp(r∗(x, y2)− r∗(x, y1) + α)). Then we can obtain Equation 31.

p∗(y1 ≡ y2|x) =
exp(2α)− 1

(1 + exp(r∗(x, y1)− r∗(x, y2) + α))(1 + exp(r∗(x, y2)− r∗(x, y1) + α))
(31)

Substituting Equation 27 into Equation 31, we obtain the per-instance tie possibility as shown in
Equation 32, where µ = β log π∗(y1|x)

πref(y1|x) − β log π∗(y2|x)
πref(y2|x) ).

p∗(y1 ≡ y2|x) =
exp(2α)− 1

(1 + exp(µ+ α))(1 + exp(−µ+ α))
. (32)

A.6 THE GRADIENT OF TODO WITH PAIRWISE DISTINGUISHED PREFERENCE DATA

The gradient of TODO with pairwise distinguished preference data can be expressed by following
equation:

∇θLpTODO(πθ;πref) = −∇θE(x,y1,y2)∼D[ log σ(µ− α) ], (33)

where µ = β log πθ(y1|x)
πref(y1|x) − β log πθ(y2|x)

πref(y2|x) . Then Equation 33 can be written into following form:

∇θLpTODO(πθ;πref) = −E(x,y1,y2)∼D[
σ

′
(µ− α)

σ(µ− α)
∇θ(µ)]. (34)

Using the properties of Sigmoid function σ
′
(x) = σ(x)(1− σ(x)) and σ(−x) = 1− σ(x), we ob-

tain the final gradient, ∇θLpTODO(πθ;πref) = −E(x,y1,y2)∼D[βσ(β log πθ(y2|x)
πref(y2|x) − β log πθ(y1|x)

πref(y1|x) +

α)[∇θ log(π(y1|x))−∇θ log(π(y2|x))]].

A.7 THE GRADIENT OF TODO WITH PAIRWISE TIE DATA

The gradient of TODO with pairwise tie data can be expressed into following form:

∇θLtTODO(πθ;πref) = −∇θE(x,y1,y2)∼D[ log(
exp(2α)− 1

f(µ)
)], (35)

where f(µ) = (1+exp(−µ+α))(1+exp(µ+α)), and µ = β log πθ(y1|x)
πref(y1|x) −β log πθ(y2|x)

πref(y2|x) . Then
Equation 35 can be rewritten into:

∇θLtTODO(πθ;πref) = −E(x,y1,y2)∼D[
f

′
(µ)

f(µ)
∇θ(µ)]. (36)

We can derive the final gradient of TODO following Equation 37, where G(µ) =
exp(−µ+α)−exp(µ+α)

(1+exp(µ+α))(1+exp(−µ+α) .

∇θLt
TODO(πθ;πref) = −E(x,y1,y2)∼D[G(µ)[∇θ log(π(y1|x))−∇θ log(π(y2|x))]] (37)

For any value of µ, we have G(µ) = −G(−µ), indicating G(µ) is an odd function. Additionally,
G′(µ), the first derivative of G(µ), is always negative derived from Equation 38, indicating G(µ) is
monotonically decreasing with respect to µ.

G′(µ) =
−(exp(−µ+ α) + exp(µ+ α))(1 + exp(2α) + 2 exp(−µ+ α))

(1 + exp(µ+ α))2(1 + exp(−µ+ α))2
. (38)
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A.8 CONSTRUCTION OF THE TRAINING DATASETS

The original Ultrafeedback dataset contains about 64k prompts from diverse resources, including
UltraChat(Ding et al., 2023), ShareGPT (Chiang et al., March 2023), Evol Instruct (Xu et al., 2023),
TruthfulQA (Lin et al., 2022), FalseQA (Hu et al., 2023), and FLAN (Longpre et al., 2023). Each
prompt is used to query multiple LLMs and generate 4 different responses, resulting in a total of
383k samples. Each response in pairwise data has its quality score provided by GPT-4 feedback.
We sample 20k samples from these 383k samples to construct different training sets. To ensure
consistency and fairness in data distribution, each sampling follows the original distribution of Ul-
trafeedback dataset, as shown in Table 7. We then construct datasets with different proportions of
tie data, with the tie data ratios varying within the set {0, 0.1, 0.2, 0.3}.

Data source Evol instruct False QA FLAN Sharegpt TruthfulQA Ultrachat
Percent(%) 15.63 3.66 32.73 31.19 1.27 15.52

Table 7: Data source distribution in each sampled train set.

A.9 TRAINING HYPERPARAMETERS

We use full-parameters fine-tuning when comparing different methods on Mistral-7B and Llama
3-8B models. We use Adam optimizer and the weight decay is set into 0. We use cosine learning
rate scheduler, and the other detailed settings of DPO and TODO is shown in Table 8.

Model Learning rate Batch size β

Mistral+SFT 5e-7 64 0.01
Llama 3+SFT 1e-6 128 0.01

Table 8: Training hyperparameters settings of DPO and TODO.

A.10 EVALUATION METRICS

For the evaluation based on OpenCompass, we use the default prompt template, and the specific
metrics and evaluation mode settings are shown in Table 9. In this table, the PPL mode is used for
multiple-choice tasks, utilizing the perplexity of each choice as the evaluation metric. The LL mode
is used for the Winogrande task, where log likelihood is employed to evaluate task performance.

Task Piqa ARC-c ARC-e MMLU Hellaswag Winogrande
Mode PPL PPL PPL PPL PPL LL
Metric 0-shot 0-shot 0-shot 5-shot 0-shot 0-shot

Table 9: Evaluation details of multi downstream tasks, PPL represents accuracy based perplexity
and LL represents accuracy based on log likelihood estimation.

A.11 REWARD MARGIN CHANGES DURING THE TRAINING PROCESS

Figure 6 illustrates the reward margin changes of Mistral+SFT and Llama 3+SFT models aligned
with DPO and TODO. We observe that the growth of the reward margin in DPO decelerates as
the proportion of tie data within the training set increases for both the Mistral model as shown
in Figure 6a, and the Llama 3 model as shown in Figure 6b. For models aligned with TODO, a
similar deceleration in the growth of the reward margin is noted with an increasing proportion of tie
data in the training dataset, as shown in Figure 6c for the Mistral model and in Figure 6d for the
Llama 3 model. Furthermore, models aligned with TODO exhibit a more pronounced disparity in
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(a) Mistral series models aligned with DPO
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(b) Llama 3 series models aligned with DPO
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(c) Mistral series models aligned with TODO
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(d) Llama 3 series models aligned with TODO

Figure 6: Reward margin changes of Mistral-7B and Llama 3-8B models aligned with DPO and
TODO during the training process with varying tie data proportions. The dashed lines, sharing the
same color as the solid lines, represent the fit of the reward margin.

reward margins when utilizing varying ratios of tie data, indicating a higher sensitivity of TODO to
preference relations of the pairwise training data than DPO.

A.12 DETAILED SCORES ON REWARD BENCH

In this section, we show the detailed scores of each category on Reward Bench. For the results,
we highlight the best performance over all results in underline, and mark the performance better
aligning with different ratio of tie data in bold. Table 10 and Table 11 show the performance of the
Mistral+SFT and Llama 3+SFT models aligned with DPO and TODO on Reward Bench.

A.13 MORE EXPERIMENTAL RESULTS AGAINST OTHER BINARY MODEL BASED METHODS

We compare the proposed TODO method with KTO (Ethayarajh et al., 2024), SimPO (Meng et al.,
2024), and ODPO (Amini et al., 2024) on Mistral-7B evaluated on MT Bench and our preference
testsets. Besides, we construct another Chatarena dataset, sourced from diverse human-labeled open
data (lms, 2024). Chatarena captures the diversity and complexity of real-world human preferences
across 96 different languages. It includes pairs with clear preference differences as well as ties. In
our experiments, we used a training set of 20,000 pairs with tie data ratios of 0 and 0.17 (the natural
tie ratio of this dataset) and a test set of 1,500 randomly selected samples.

The results on MT Bench are scored by gpt-4o-2024-05-13 (OpenAI, 2024a). For ODPO, distinct
quality scores are required for the chosen and rejected samples in a pair, a condition only met in the
Ultrafeedback dataset without tie data. Therefore, we only report ODPO results under the tie data
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Method Tie Data Ratio Chat ChatHard Safety Reasoning Prior Average

SFT ✗ 66.48 54.61 35.73 62.94 40.20 51.99

DPO 0.0 91.34 66.45 75.79 72.36 49.23 71.03
TODO 0.0 93.85 64.25 76.88 72.17 61.07 73.64

DPO 0.1 91.9 67.98 73.64 72.18 53.67 71.87
TODO 0.1 94.13 64.69 71.80 73.43 64.25 73.66

DPO 0.2 91.34 64.47 78.27 74.37 49.83 71.66
TODO 0.2 95.81 64.69 78.49 62.30 61.63 72.58

DPO 0.3 85.75 64.04 75.78 75.01 45.56 69.23
TODO 0.3 89.94 65.13 77.13 73.37 57.06 72.53

Table 10: Mistral model results on Reward Bench trained with different ratios of tie data.

Method Tie Data Ratio Chat ChatHard Safety Reasoning Prior Average

SFT ✗ 67.60 55.48 41.89 65.17 43.26 54.68

DPO 0.0 93.3 67.32 75.18 84.23 54.78 74.96
TODO 0.0 93.58 65.79 77.66 83.32 59.72 76.01

DPO 0.1 93.85 63.82 77.14 83.52 53.91 74.45
TODO 0.1 96.37 64.69 79.32 84.08 59.59 76.81

DPO 0.2 91.62 66.45 78.18 84.80 53.70 74.95
TODO 0.2 92.74 66.89 75.50 84.37 60.37 75.97

DPO 0.3 89.39 65.35 78.31 87.02 52.87 74.59
TODO 0.3 93.02 64.91 74.35 84.64 60.33 75.45

Table 11: Llama 3 model results on Reward Bench trained with different ratios of tie data.

ratio 0 setting in Ultrafeedback. For each method’s specific hyperparameter settings, we follow the
configurations used in previous work (Saeidi et al.; Meng et al., 2024; Amini et al., 2024; Ethayarajh
et al., 2024). As shown in Table 12 and Table 13, TODO achieves the best performance compared
with other methods in the presence of tie data. If only binary preference data is available, TODO
still delivers competitive performance.

Methods Ultrafeedback Ultrafeedback Chatarena Chatarena
(tie ratio 0) (tie ratio 0.2) (tie ratio 0) (tie ratio 0.17)

DPO 76.40 75.00 77.47 76.33
KTO 73.80 74.27 74.80 74.80

SimPO 77.80 76.35 76.27 76.33
ODPO 76.78 / / /
TODO 77.20 76.40 76.80 78.47

Table 12: Test-set accuracy of Mistral-7B aligned with different methods and datasets.

Methods Ultrafeedback Ultrafeedback Chatarena Chatarena
(tie ratio 0) (tie ratio 0.2) (tie ratio 0) (tie ratio 0.17)

DPO 5.94 5.55 5.50 5.71
KTO 5.63 5.61 5.47 5.53

SimPO 5.56 5.69 5.21 5.28
ODPO 5.95 / / /
TODO 5.85 5.96 5.52 5.83

Table 13: MT Bench scores of Mistral-7B aligned with different methods and datasets.
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