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ABSTRACT

Conformal symmetries, i.e. coordinate transformations that preserve angles, play
a key role in many fields, including physics, mathematics, computer vision and
(geometric) machine learning. Here we build a neural network that is equivariant
under general conformal transformations. To achieve this, we lift data from flat
Euclidean space to Anti de Sitter (AdS) space. This allows us to exploit a known
correspondence between conformal transformations of flat space and isometric
transformations on the AdS space. We then build upon the fact that such isometric
transformations have been extensively studied on general geometries in the geo-
metric deep learning literature. We employ message-passing layers conditioned on
the proper distance, yielding a computationally efficient framework. We validate
our model on tasks from computer vision and statistical physics, demonstrating
strong performance, improved generalization capacities, and the ability to extract
conformal data such as scaling dimensions from the trained network.

1 INTRODUCTION

The notion of symmetry is a key tool both in our understanding of nature and for the construction of
machine learning systems that perceive nature. The construction of equivariant neural network archi-
tectures that encode specific symmetries has powerful advantages both conceptual and computational.
In particular, much work has been dedicated to building networks that are equivariant under familiar
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the whole system — are an extremely important
subgroup of the conformal group. Conformal
and scale invariance play a central role in many
diverse fields. To give some examples: biolog-
ical visual systems seem to exhibit insensitiv-

ity to scale (Logothetis et al., [1995]; [Han et al.,
2020). Physical systems undergoing a second-
order phase transition have fluctuations at all

Figure 1: AdS-GNN lifts points from Euclidean
space to Anti de Sitter space and computes mes-
sage passing conditioned on the proper distance.

scales; they are generally conformally invariant at the critical point (Cardyl [1996)), and can use-
fully be described by conformal field theories (D1 Francesco et al.,[1997). Indeed in physics most
systems exhibiting scale invariance also exhibit conformal invariance “for free” (Polchinski, |1988;
Nakayamal |2015)). Diverse applications also exist in computational geometry and computer vision
(see e.g. (Sharon & Mumford, 2006; Lei et al., 2023))

In this work, we construct a neural network that is equivariant under conformal transformations,
motivated by applications to computer vision and to physical systems. Our approach acts on point
clouds and lifts the data into an auxiliary higher dimensional space called Anti de Sitter (AdS) space.
As outlined below, this approach is inspired by ideas in conformal field theory in theoretical physics.
We validate our construction on some tasks drawn from computer vision and statistical physics.
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2 PREVIOUS WORK

Construction of equivariant neural networks under general symmetry groups began with (Cohen &
Welling} 2016) and has since evolved into a well-studied field (see, e.g., (Bronstein et al., 2021; Weiler
et al.| [2023) for reviews). Advancements include treatments of isometric transformations on general
Riemannian manifolds (Weiler et al., [2023)) and extensions to semi-Riemannian manifolds (Zhdanov
et al., 2023} 2024). The significant benefits of incorporating equivariance, particularly for point cloud
data and even at large computational scales, are increasingly demonstrated (Vadgama et al., 2025},
Brehmer et al.| |2024)), highlighting advantages in performance and efficiency. Lie group theory has
been employed to develop equivariant networks for broad classes of transformations, such as general
affine transformations (Mironenco & Forrél [2024)), or to leverage specific algebraic structures like
adjoint actions on Lie algebras (Lin et al., 2024)). However, despite progress in handling Euclidean
symmetries, scale equivariance, or even these more general Lie groups, these methods do not address
the full conformal group, which uniquely includes non-affine special conformal transformations.

The pursuit of scale equivariance, a critical component of conformal symmetry, is the closest related
area to our work on full conformal equivariance, with various approaches developed from specialized
convolutional architectures (Bekkers| 2020; Sosnovik et al., [2019)) to techniques like Fourier layers
for robust scale handling (Rahman & Yeh, 2023). Our use of AdS space connects conceptually to
scale space theories (Witkinl 1987} Worrall & Welling, |2019), where the extra dimension corresponds
to scale. However, a crucial distinction is that the geometry of AdS space enforces equivariance
under the larger group of all conformal transformations by construction, not just scale or isometric
transformations. This approach also finds resonance in physics with recent explorations of using
neural networks to model aspects of conformal field theory (Halverson et al., 2024)).

3 CONFORMAL SYMMETRY AND ANTI DE SITTER SPACE

3.1 CONFORMAL TRANSFORMATIONS

A detailed and self-contained account of conformal transformations is given in Appendix [D} here we
present a brief review. Formally, a global conformal transformation of the Euclidean space R¢ is an
injective smooth map ¢ : R?\ {z,} — R?,  + o(x), defined on R? except on a possible point z,
such that local angles are preserved, i.e. for all z € R? \ {z,} and v1,v2 € R?\ {0} we requir

(@), ' (z)va) cos "2y, @' (2)vs)) = cos(L(vy,v5)) = 7@1’1@
@l @] - @ o @ @) = cos(£(orva)) = ee e (D

where (.,.) and ||.|| denote the standard Euclidean scalar product and norm, resp., and ¢’ (x) the
Jacobian matrix of ¢ at . Note, that, in contrast to isometric transformations, we do not require that
the distances/norms are preserved.

The group of all global conformal transformations of R? is denoted by Confg(Rd). Itis shownthat
for d > 2 the global conformal group Conf g(Rd) is isomorphic to the projective orthogonal group:
PO(d+1,1):=0(d+1,1)/{%£1}

where the role of the quotient is described in Section [D]in Satz

It is instructive to consider the action of the group on points in terms of separated parameters. In
particular, a general element G of the group can be written in terms of parameters (\,¢,b, M) €
R+ x R x R? x O(d) and acts on a point x € R? through the composition of maps:

"By allowing ¢ to not be defined on a certain point z, € R¢, we effectively allow ¢ to map ., to the “points
at infinity” oo in the conformal compactification S¢ of R?. In fact, every global conformal transformation of
R uniquely extends to an angle-preserving diffeomorphism of S? for d > 2, see (Schottenloher| 2008) Thm.
2.6-2.11, or and[D.4.3] This is why we introduce the definition with z in this way.

2An equivalent, but more general and abstract, definition is provided in Satzm and Satz

3see Satz Section@ Satzand (Schottenloher, [2008)) Thm. 2.6-2.11 for details.
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resulting in a transformed point 2’ = Gx. These (d + 1)(d + 2)/2 parameters then assemble into an
element of O(d + 1, 1), see e.g. (Di Francesco et al.| {1997) for a review.

Above we have explained how points 2 € R? transform under the global conformal group. In a
typical application we will often be dealing with conformal fields ¢(x) defined on this space. The
transformation of these fields is governed by the representation theory of the global conformal grou[ﬂ
which is non-trivial and we do not review it here, except to state that a privileged role is played by a
basis of fields called conformal primaries, which we denote by O(z). Associated with each primar
field is a number Ag called the conformal dimension which characterizes the field in questiorﬁ
Conformal primaries are distinguished by the fact that they transform as simply as possible under the
group, and in particular under scaling of the coordinate they transform by a multiplicative factor:

Q' (z') := O'(\z) = A\2°0(x) 3)

Example. A simple example is the electric field in ordinary electrodynamics; the usual inverse square
law near a point charge E(x) ~ # is consistent with equationifAE = 2. Another example is

image data viewed as a scalar field p(x) denoting the pixel value; under a conformal transformation
only the argument of the field changes and not its value, and thus we would take Apixe1 = 0.

In physical applications the values of Ag for a given conformally invariant system — e.g. a particular
kind of phase transition — are often of great interesﬂ as they are pure numbers that are universal:
they generally do not depend on the microscopic details of the system, only on the symmetries and
the spatial dimensionality.

3.2 THE ANTI DE SITTER SPACE AdS 41

To organize the data, we will instead lift it from R to

“\‘ [174D an auxiliary space with one higher dimension, i.e. Anti

\\Q‘;\\:\“‘\“ﬁl’,”,’l/z /: de Sitter space AdS411. This space can conveniently be

Nz understood in terms of a submanifold of R4+ equipped
T ’ with its natural metric

Consider the submanifold given by the constraint ||Y|| =
—1, where Y € R4tL1. Ag shown in Figure this sub-
manifold has two connected components, each of which
is defined to be a copy of Ade+1E| For concreteness, we
will present all formulas working with the “top” branch,
i.e. the one which has Y° > 0, and we define:

Figure 2: Example of hyperboloid
Y]] = —1 embedded in R*?, consti-
tuting two copies of AdS,. AdSgy1 = {Y e REL | V]| = -1,Y% > 0}. (5)

4Elementary reviews can be found in (Simmons-Duffin} |2017;|Di Francesco et al.,|1997).

>t may be helpful to consider fields transforming under the rotation group SO(3): there are scalar fields,
spinor fields, vector fields, etc. which are characterized by a discrete parameter called the spin s which takes
discrete values s € %, i.e. Sscalar = 0, Svector = 1, etc. A can very loosely be thought of as the analogue
of “spin” for scale transformations. The fact that it is now a continuous variable is related to the fact that the
conformal group is non-compact.

%See e.g. the 1982 Nobel Prize lecture by (Wilson, |1983)) for a historical overview, or (Cardy} |1996; |Kardar,
2007 |Zinn-Justin, [2021) for textbook treatments.

"For a more abstract and general definition of AdS for general quadratic spaces we refer to Satzand
the corresponding (partial) parameterization presented here to Section@
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There is a natural action of PO(d + 1,1) = O(d + 1,1)/{+1} on this submanifold, given by O(d +
1,1) rotations on Y on each connected component. This forms the isometry group Isom(AdS441)
of AdS4+1, see (McKay, [2023) Theorem 7.5 or Note that PO(d + 1, 1) is also precisely the
global conformal group Conf g(IRd) of RZ. This is not an accident: the fact that local operations in
the interior of AdSy; result in conformally invariant operations on R< is very well known in the
context of the AdS/CFT correspondence in quantum gravity (Maldacena, |1999; |Gubser et al., 1998},
Wittenl, [1998)), which states that under some circumstances a quantum gravity theory on AdS441 is
equivalent to a quantum field theory with conformal symmetry on R%. Also see Satz

Here we will not use any of the dynamics of quantum gravity, but we will exploit some of the
well-studied kinematics of that correspondence as a convenient tool to build convolutional kernels on
AdSg41. Indeed, a general framework for constructing convolutional layers that are equivariant under
isometry groups of any pseudo-Riemannian manifold was given in (Weiler et al., |2023}; Zhdanov
et al.,[2024)), and our work can be viewed as building on a special case of that.

To be more precise, we first place explicit coordinates X = (X*,..., X%*!) on AdSgy;. It will
be convenient to separate these coordinates as X = (X!,... X9 = (2} ... 2% 2) = (z,2) €
R? x R+ where 2 € R? and z € R is an extra dimension. We can now solve the hyperboloid
constraint equation [5]in terms of these coordinates as

yO . %, ye .— ﬂa’ yd+1 . 22 4 |lf* =1 ©)
2z z 2z
The Riemannian metric on AdS;; is the induced metric on this hyperboloicﬂ
d+1 1 d
2 __ vo__ a\2 2
ds” = Zlglw(X)dX“dX == <Z:(dar )2 +dz ) . @)
m,v= a=

Finally, we record how the isometry group acts on AdS,1 as X’ = G X. Using the same parameters
as in equation [2] we have:

(2',2) = (z +t,2) (2',2') = (Mz, 2) (2',2') = Az, \2), 8)

x’ 2! T z
f— b . 9
<||x'2+z'2’ ||x'|2+z'2) <||x||2+z2 * ’|x||2+z2) ®

A key point is that the manifold has a d-dimensional boundary at z = 0. This boundary is
mapped to itself under the isometries. Furthermore, the isometry group acts on the boundary points
(2%, z = 0) precisely as in . Thus one should imagine that conformal data on R¢ “lives on the
boundary of AdS;41”. In what follows a key role will be played by the PO(d + 1, 1)-invariant proper
distance between D (X, X’) between two points in AdS;.1, which is related to the absolute inner
product |[(Y,Y”)| and is given explicitly by:

2 2 d a _ ta)2
cosh D(X, X') = |(v,Y"y| £ 22 +%a:}(x =" (10)
zZZ

4 ADS-GNN

We will now describe how to use these ideas to formulate a conformally equivariant neural network
by extending the data from the boundary into the bulk of AdS 1.

4.1 EMBEDDING POINTS IN AdS
Consider a point cloud of N points in RY, {z;},i € {1,---, N}. We would now like to lift this data
into the bulk of AdS,; in a manner that preserves the symmetries.

A first attempt from the correspondence of symmetries shown in (8) is to simply embed each of the
points directly into the boundary z = 0, i.e. with X! = (2%, z = 0). However the metric (7) has a
singularity at z = 0 —e.g. from note that each point at z = 0 is at infinite proper AdS distance

8For the details, see Satz
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Algorithm 1 AdS Embedding

Require: X = {x;}¥, CR% Ky €N, 29 € R
1: for each pointi € {1,..., N} do
2 Zi < 20
3 neighbors, <— KNN(z;, X, kiif;)
4: (&, 2;) < ComputeAdSCoM (neighbors,)
5
6

: end for
. return {(z;, %)Y, C AdSi4q

from any points at z > 0 — and thus such an attempt will require us to pick a regulating value of z.
Using a fixed constant will explicitly break the symmetries.

We instead determine a value of z; for each point using an approach outlined in Algorithm [I] We first
embed each point into AdS using

X} = (af,2 = =) (11)
with a small regulator zg. For each point, we then compute the AdS center of mass X = (24, 2;) of
its kg nearest neighbours. The AdS center of mass is a generalization to hyperbolic space of the
familiar notion of the center of mass from flat Euclidean space. It can be computed easily using an
approach due to (Galperin, [1993) which we review in Appendix[A.2]

The geometry of AdS implies that the center of mass will generally be deeper inside than the original
points. Importantly the z value of the centroid now has a finite limit as zp — 0, in which case it
depends on the (appropriately averaged) relative separation of the points. We then perform a final
embedding of the point using this z value, i.e.

XM= (2%, 5) . (12)

Intuitively, the z coordinate corresponds to the length scale of the degrees of freedom of a system
[ﬂ Our choice above amounts to saying that the appropriate length scale for a point x; is related to
its distance from its neighbours. This exactly preserves scale invariance, but it gently breaks special
conformal transformations. This is expected on physical grounds, as generally any choice of regulator
necessarily breaks conformal invariance (Cardyl [1996). In experiments, we check generalization
under special conformal transformations empirically and verify that the breaking is mild.

Proposition 4.1.1. The lifting procedure (i.e. the map from x* € R% to X* € AdS,, described in
equation[I2)) is equivariant under the subgroup of the conformal group generated by translations,
rotations and dilatations.

This is proved in Appendix [A.3] Finally, we have discussed lifting the points z;. The input data may
also have some features h;"*"* associated to each point ;. They should be interpreted as a sample

of an underlying conformal field O(z) with dimension A, where 7™ = O(z;). This boundary
feature should be contrasted with the feature associated with a bulk point in AdS; this is a scalar
and does not transform with an associated factor of \* as in equation [3| Said differently the full
dependence of bulk features under scaling arises from its dependence on an extra coordinate z. This

difference in representation is taken into account by lifting the feature as follows
h}iifted _ éiAh;nput (]3)

For many cases (e.g. image data) the input feature will have A = 0 and this step may be skipped. This
relation has an analogue in terms of bulk-to-boundary propagators from the AdS/CFT correspondence,

where such factors of 22 relate physics in the bulk (i.e. hlif®d) to that of the boundary (i.e. hinput

Given this set of points {X;} in AdS, we now operate on it using a graph neural network.

This is familiar from the physics of the AdS/CFT correspondence, where it is well-understood that the
infrared physics lives deeper in the bulk (Susskind & Wittenl |1998)).
105ee e.g. Section 2.5 of (Witten, [1998)) for more details.
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4.2 INVARIANT MESSAGE PASSING

We begin by studying scalar features. To orient ourselves, we recall first an earlier model, that of
E(n) Equivariant Graph Neural Networks (EGNNs) (Satorras et al., |2021}; [Liu et al., |2024)). These
are graph neural networks that are equivariant to flat-space rotations, translations, reflections and
permutations. The input to the model is a graph G = (V, ) whose vertices are embedded into
Euclidean space R%. We denote the position of node v; as p; € R? and its latent D-dimensional
feature vector of node v; as h;. The [-th layer of EGNN is then defined as

m;; = ¢e(h§7 hé’a Ipi — Pjll2), EGNN message (14)

hi+1 = ¢p(hl,m;), m; = Z m;;, aggregate + update
JEN (i)
where here N (i) represents the set of neighbours of node v;, 1., 1y, are message and update MLPs
which we see are conditioned only on the pairwise distance in R? betwen nodes.

We adopt the model above to operate on AdS where a graph G is embedded. As above, each node v;
has a position X; € AdSy; and a latent feature vector h;. If edges £ are not provided in the graph,
we induce connectivity with kcon nearest neighbours using the AdS proper distance (I0).

In the message function (14])), we also use the AdS proper distance instead of the Euclidean one, i.e.

m;; = ¢.(h!,h}, D(X;, X)), AdS-GNN message (15)
which yields an efficient conformal group equivariant GNN without substantial computational
overhead compared to its Euclidean counterpart. Note that by conditioning on AdS proper distance, we
introduce a notion of locality both in ordinary space and in scale (as represented by the z coordinate).

Though the embedding of the point cloud mildly breaks special conformal transformations, the graph
neural network itself is exactly invariant under all of Isom(AdS;41).

The message function in Eq.[I5] only depends on distance and therefore is restricted to invariant
features. To enable equivariance, we exploit the fact that AdSz, 1 is a submanifold of R%*1:1, and
employ O(d + 1, 1)-equivariant neural networks (Ruhe et al., 2023)) that operate on multivectors -
elements of Clifford Algebra C1(R¥*1:1). This yields the following message structure:

M;; = ¢ (Hj, H§-7 Xi, Xj), AdS-CEGNN message (16)
where M;;, H; € CI(RIT11), X, € AdSgy1.

We summarize the equivariance properties of both networks:

Proposition 4.2.1. AdS-GNN and AdS-CEGNN are both equivariant under Isom(AdSy11), i.e.
under the full conformal group.

Proof. For AdS-GNN this follows immediately from the fact that messages are conditioned only
under the Isom(AdSq.1)-invariant proper distance D(X;, X ;). For AdS-CEGNN this follows from
the O(d+1, 1) equivariance of Clifford-equivariant neural networks proven in (Ruhe et al.,|2023). [J

The framework above will result in features h; that are manifestly invariant under the conformal
group. If performing an invariant task (e.g. classification) we can now aggregate the information in a
permutation-invariant manner by summing over nodes as usual at the final layer. On the other hand,
for a regression task we should specify the transformation properties of the output; e.g. if the output
from the network is a conformal field O(z;) living on the boundary it must transform under scale
transformations with a specified A as in equation[3] This can be accomplished by taking the output
O(z;) to be

O(z;) = 2; Shimn (17)
where hﬁf‘“““ is the conformally invariant output from the node associated with z; and 2; the z-
coordinate of the embedding found in equation [I2] This relation is the inverse tranformation of
equation[I3] and guarantees that the output satisfies equation 3]

5 EXPERIMENTAL RESULTS

We test the framework above on tasks that are loosely divided into two types: computer vision tasks
and applications from physics. For most of the tasks we use the scalar AdS-GNN.
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5.1 COMPUTER VISION TASKS

SuperPixel MNIST We benchmark AdS-GNN on the super-pixel MNIST dataset (Monti et al.}
2017), which consists of 2D point clouds of MNIST digits segmented into 75 superpixels. Results
are given in Table[I] For in-distribution data, AdS-GNN performs on par with its roto-equivariant
counterparts. It does however fall slightly behind PONITA, which has orientational information; we
feel this happens as AdS-GNN is unable to handle orientation and relies on invariant descriptors. We
also study the response of a model to various augmentations (see Fig. [3)); for this we compare to
EGNN and find that AdS-GNN has much stronger generalization capacities. As expected, AdS-GNN
is precisely scale-invariant. For special conformal transformations, there is a small breaking of
symmetry arising from the uplift. We empirically measure the effect on augmented performance in
Figure [3|for a special conformal transformation as in (2)) parametrized by b = (0, b3) and verify that
it is very small.

Shape segmentation We further benchmark against a shape recognition dataset, where we sample
points from a selection of randomly sized and rotated shapes (either a square, a circle, or a triangle).
The task is to assign a shape class to each point in the cloud. We benchmark against EGNN and a
message-passing neural network MPNN which conditions messages against 2; — x; (and thus has
only translational equivariance, not rotational). Here, as shown in the left panel of Figure[d] we find
that AdS-GNN outperforms EGNN even on in-distribution performance. We believe that this happens
as the training data contains structure at different sizes to which AdS-GNN adapts more efficiently
than EGNN, particular when there is a small number of training points. Both of them fall behind
MPNN, which we again attribute to their lack of orientational information.

A further segmentation task — PascalVOC - is discussed in the Appendix, where we find that
AdS-GNN is essentially the same as EGNN.

5.2 PHYSICS TASKS

2d Ising We next consider a task from statistical physics, that of predicting N-point correlation
functions in the 2d Ising model. As we review in more detail in Appendix [C] this is a simple model
of magnetism with a tunable temperature. As one increases it the model undergoes a phase transition,
and at this point fluctuations of the magnetization exhibit conformal symmetry and are precisely
understood in terms of a continuum model called the 2d Ising conformal field theory. This model is
exactly solvable and has two non-trivial types of conformal field, the spin o(z) and the energy e(x),
which have conformal dimensions A, = % and A, = 1 respectivel

To benchmark AdS-GNN we consider the task of predicting the N-th moment of the energy and
spin operators {e(xy)e(x2) - - - €(xz)) as a function of their input points. These functions are known
explicitly in 2d (see equation 40} and are rather complicated: they have an erratic pattern of spikes
when two points come close, on top of a more gentle modulation arising from the background of the
other points.

"There are other slightly non-local fields that we will not discuss here.
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Figure 4: Performance on shape segmentation and the Ising task. Left, test accuracy of shape
segmentation as a function of the number of training points. Middle, relative L2 as a function of the
number of training points, with system size fixed at N = 16. Right, loss as a function of system size
with 8192 training points. Inset shows N = 2.
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Figure 5: Visualization of the output from various models on the Ising task; here all points are fixed
except for the = coordinate of the first, which is varied. Left, models tested on in-distribution data.
Center, testing on values of x which are far out of the training range, which is shown with dashed
lines. Right, testing a model trained on N = 8 on a test set with N = 16.

We create a training dataset where we sample the coordinates of input points uniformly in [—2, 2]
for various values of N and use conformal field theory results for the /V-th moment as the training
data. We simultaneously predict the spin and energy moments, using the sum of relative L2 losses.
As the output is the N-point function of conformal fields with a non-trivial A we use N copies of
equation|17|to find our prediction Pred, ({z;}) in each channel a to be

N
log(Pred, ({z;})) = AdSGNN, ({z}) — Ay Y _log(2;) (18)
i=1

where a € {0, ¢} and the A,’s are trainable parameters which can be interpreted as the learned
conformal dimension of the o and ¢ fields respectively.

We benchmark against EGNN and a baseline message-passing neural network (MPNN) whose
messages are conditioned against x; — xj, and which thus only has translational equivariance. The
results are shown in Figure E| for the choice kjiir = 1. We see that the performance of AdS-GNN
is superior in all regimes. We also note various useful features. Note that for 2 points (inset on
right panel of Figure[d) AASGNN performs more than an order of magnitude better than the others.
This is because the form of the two-point function is completely fixed by conformal invariance to be
proportional to |1 — 22| ™24, and thus AdS-GNN need only learn two numbers, whereas the others
must learn to reconstruct the functional form of the power law.

Interpretability: from equation[I8] the learned values of the conformal dimensions A, and A, may
be read off at the end of training, as shown in Table 3] They are very close to the ground truth,
showing the useful ability of this model to extract conformal dimensions from data.

Generalization: AdS-GNN generalizes better than EGNN in two different directions. As shown
in Figure[5] it generalizes well to values of x that are outside the training data, as one might have
expected from scale-equivariance. AdS-GNN also generalizes well across N; as shown in an example
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in Figure[5] AdS-GNN trained with one value of N works well when asked to predict correlation
functions with a different NV, suggesting that it has robustly understood the underlying physics. It
always generalizes better than EGNN, particularly when the graph connectivity is more dense. This
is discussed quantitatively in Appendix [B.2]

3d Ising We perform a similar analysis for the 3d Ising o 3D Ising model
model. This model is not exactly solvable, and there are ) © MPNN
no simple formulas for the N-point functions to use for 0351 O EGNN

0.30 1 @ AdS-GNN (Ours)
0.25 1
0.20 1

0.15 1

training data. Nevertheless it is possible to use modern
conformal bootstrap methods (reviewed in Appendix [C.2)
to compute a good approximation in the case N = 4 for
the spin operator. We use this to build a training dataset
and then perform the same regression as above. Our results 0.101
are shown in Figure[6] Just as in the case of the 2d Ising 005

model, AdS-GNN clearly has superior performance. e 512 2048 6400

Number of Training Points

Final Test Loss

N-body simulation In the last experiment, we employ

a neural network model for learning the dynamics of a Figure 6: Relative L2 loss for the Ising
system of 10 charged particles. The particles interact 3D task. AdS-GNN 3.150 CQHCCHY re-
through electric fields in three spatial dimension; the —covers the conformal dimension of spin
inverse-square law of the electric field means that this Ay =0.518.

a conformally invariant problem in 3d. The acceleration

is expected to be conformal vector field with A, = 2 00461 @ CEGNN (Ruhe et al.)

(as it is determined by an electric field, whose conformal @ @ AdS-CEGNN (Ours)

. . . . 0.044 1
dimension we discussed below equation 3)). o 0
We forecast acceleration value a;, € R'°%3 for each body 2 0
given only the position x; € R%*3 at the time step t. 5 0040
At training, the model is learned from random slices of e« )
short (1" = 4) training trajectories. During evaluation, we 0'0584. ® O
generate a set of very long trajectories (2,000 time steps) 0.036 1
and measure the relative L2 error between the ground-truth s a2 Toasd

trajectories and those unrolled by the models. The task

involves handling vector information, hence we use AdS-

CEGNN. We benchmark against CEGNN (Ruhe et al.l . ) .

2023), which is SOTA at N-body simulation. Figure 7: Relative L2 loss for the N-body
task. The L2 error is computed across

AdS-CEGNN outperforms CEGNN, as evident from the long trajectories.

results in Fig[7] Furthermore, it indeed correctly recovers

the conformal dimension associated with acceleration A, = 2. Therefore, AdS-CEGNN effectively
provides useful feedback when the value of the conformal dimension is known a priori: if at the end
of the training A is correct, the model has processed the data correctly. This is in general not the case
for deep learning models whose quality is based exclusively on performance.

Number of Training Points

6 CONCLUSION

In this paper, we introduced AdS-GNN - a neural network that is equivariant with respect to conformal
transformations. We have demonstrated strong performance on various tasks, including computer
vision and N-body simulation. We found particularly interesting an application to the Ising model,
where the model exhibited impressive generalization capacities and interpretability, in that the
conformal dimensions A, — important universal quantities — could be extracted from the trained
model. One might ask what other such universal information exists: a general conformally invariant
field theory in physics is defined in terms of these dimensions A, and a set of 3-point coefficients
Cabe Which turn out to determine higher-order moments of the conformal fields. [ﬂ It is interesting to
ask whether this information could be be usefully extracted from the trained network. We anticipate
further applications to critical phenomena and long-range interactions in physical systems.

12See e.g. (Di Francesco et al.}[1997; |[Simmons-Duffin,|2017) for textbook treatments.
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A AdS,;; DETAILS

We provide a few further details about aspects of AdS;41:

A.1 ACTION OF GROUP

Recall that AdS;41 can be understood as the hyperboloid defined in equation [5] The action of
[A] € O(d + 1,1)/{£TI} then works concretely as follows

[A].Y := sign((AY)?) - (AY) (19)

where AY is just vector matrix multiplication and where the scalar multiplication with sign((AY")?)
corrects the sign of the 0-th entry (the component of (—1)-signature). Together we get:

d+1

(A2 =D (((ALY))? =1, ([ALY)" >0, (20)

=1

and thus: [A].Y € AdSgy1. This gives us a well-defined group action of O(d + 1,1)/{£I} on
AdSg, 1, and, in particular, a well-defined group action of Conf(R%) on AdSy ;.

12


https://maurice-weiler.gitlab.io/cnn_book/EquivariantAndCoordinateIndependentCNNs.pdf
https://maurice-weiler.gitlab.io/cnn_book/EquivariantAndCoordinateIndependentCNNs.pdf
https://openreview.net/forum?id=2YtdxqvdjX
https://openreview.net/forum?id=XTglHJjzQI

Under review as a conference paper at ICLR 2026

A.2 THE CENTER OF MASS OF A SET OF POINTS ON ADS

We will require an expression for the “center of mass” C({X;}) of a set of points on AdS. This
problem was solved in (Galperin,, [1993); the basic idea is to view the hyperboloid as a submanifold
of RA*1.1 a5 above, use additivity properties there to find a vector, and then find the intersection of
the ray in the direction of that vector with the hyperboloid.

In practice, this is quite simple to implement. Denote the center of mass by Y4, and the set of N
points for which we want the centroid by (x¢, z;). We would like to find the analogous coordinates
for the centroid (Z2, z).

‘We have that
Yo_§< Hz_aa) NZ ( Z1221+Zx ) 1)
YQE% NZ (22)
_ 1
Yd+152<1_1_zmaa>_wz ( ?fl_zx ) (23)

The first equality is the definition of the embedding, the second is the definition of the centroid from
Galperin. Here V is a normalization constant which is picked to guarantee that

(Y02 =) (V) — (v =1 (24)

a

So to find the centroid, the easiest thing to do is to compute the sums on the right hand side of the
second equality, which thus determines the vector Y4 up to an overall scale \V; then we enforce
the norm constraint above which lets us find A" and thus fixes the vector Y4 completely. We then
express the answer in useful coordinates by solving for (z, %) through

_ 1 . ye

=jo_yar T T yo_yai- (25)

To get some intuition for the procedure, we study it in the case of two points X; = (z§,¢) and
Xo = (x4, €) starting at the same value of the z coordinate. We find

1 1
C(X1,X2) = (2(x‘f+xg),2\/|9:1 x2|2+462> (26)

i.e. we simply take the average of the spatial coordinates and move inwards in z by an amount which
depends on the separation between the two points in the spatial direction. In this case the center of
mass is actually the midpoint of the geodesic that connects the two points.

A.3 EQUIVARIANCE OF LIFTING PROCEDURE

Here we prove Proposition [f.1.1] i.e. that the lifting procedure is equivariant under translations,
rotations and dilatations but not special conformal transformations. We denote a general element of
the conformal group by G. G acts on points ¢ € R as in equationand on points in X! € AdSg41
as in equation [§]

The lifting begins by embedding a set of points {x;} € R? into AdS, using a small regulator value
z = 2 as in equation [T}
Xiola?) = (e, 2 = 2) 27

We then compute the AdS center of mass C({X; o}) of the set of points using the algorithm above.
The question is whether this approach is equivariant in the bulk when the conformal transformation
acts only on the boundary coordinates z¢, i.e. is it true that

C({Xio(Gz)}) = GC({X;0(x)}) (28)
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(Note that if the conformal transformation also acted on zj then this would certainly be equivariant;
the question at hand is how much the choice of fixed regulator z, spoils the equivariance).

It is immediately clear that the procedure is equivariant under translations and rotations, as in those
cases we see from equation [§]that the z coordinate is left invariant under the transformation. Through
direct computation using equation [2] and equation[8] we can further explicitly verify that the equality
in equation [28| holds for dilatations but does not hold for special conformal transformations.

This may seem somewhat surprising, and we try to understand it more abstractly by studying the
geometry of the embedded points X; o in the Y4 coordinates defined in equationé}
25 + [ll|* + 1 a._ T a1 _ %+ [l =1
, Y* .= Yot .=
QZO 20 ¢ 22’0

Y0 .=

i (29)
As we take zp — 0 while holding x; fixed, we can extract the dependence on zy by writing these
points as YA = LYA . Here the points Y;  lie on the null cone defined by ||Y|| = 0, where the

zo ~ t,null* i,null
norm is taken with respect to the Rt 1! metric defined in equation The points on this cone no
longer depend explicitly on zg, and furthermore the cone has a natural O(d + 1, 1) action on it given
by regular matrix multiplication on Y4 as in equation

Naively, one would now expect that one could just ignore the overall normalizing factor and sum up
the points in the cone when computing the sum in equation As Y > 0 for all points this would
lead to a point in the interior of the null cone (i.e. in AdSy; itself) and the procedure now appears
to make no reference to z and is manifestly equivariant under all of O(d + 1, 1).

Interestingly, this is not the case. It turns out that under x* — Gz the points on the cone do not
transform with the usual action of O(d + 1, 1); instead they acquire an overall scalar rescaling factor
o which depends on the parameters of G and the point in question, i.e.

G)/i,null(x?) = U(G7 xa)m,null(Gx?) (30)
The scalar factor preserves the cone ||Y|| = 0, but it means that the sum in equation[21]no longer
transforms equivariantly.
The existence of this factor can already be seen in the simplest case d = 1, where the embedding

simply becomes

m vi.— 2 y2 .:M (31)

220 Z0 220

0._

Y =

We can now compute the prefactor o for various transformations by computing both sides of equa-
tion[30l Under a dilatation # — Az the overall prefactor o(\, z) is simply a constant A\~ which can
indeed be ignored when computing the center of mass; thus the lifting procedure is equivariant under
dilatations. However under a special conformal transformation x — ;-%+ the prefactor is instead

o(b,z) = (1 + bx)? and thus depends on the point in question. This spoils the equivariance under
special conformal transformations.

Our discussion here is somewhat formal but the conclusion is expected on physical grounds, as in
general it is difficult to preserve full conformal invariance in the presence of a regulator such as 2.

A.4 VECTOR BULK-TO-BOUNDARY MAPPING

Given an O(d + 1, 1) vector feature v5"'¥ expressed in the Y'# coordinates in the bulk we may need
to map it back to the boundary to interpret it as a neural network output. This is first done by using
the Jacobian associated with equation@ to map it to an orthonormal basis in the (%, z) coordinates:

l?ulk — eljr aYA bulk (32)

v —0
Iz agxp A

where we have used the Einstein summation convention, where X* = (2, z), we have denoted and
where e” is the inverse vielbein which satisfies:

[

egel’;gw = 0up (33)
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where g, is the AdS4y; metric. In the coordinates used in equation [7| this vielbein is simply

wo__ i : . .
e, = z0 i Finally the analogue of equatlonls

tput —
Uzu put _ P AUBUIk (34)

Working out the Jacobian explicitly we find that the spatial components of the vector are
Ugutput — ZfA (Ugulk + xa(vs_t,u_l{{ 4 Ugulk)) (35)

where we stress that the components on the right-hand side are of the vector v3"!¥ expressed in the

Y4 coordinates, as is natural for the Clifford algebra construction.

B FURTHER EXPERIMENTAL DETAILS

B.1 PASCALVOC-SP

In a further experiment, we also compare AdS-GNN to EGNN on the LRGB data (Dwivedi et al.
2022), see Table[2] This is a pixel segmentation task; thus the output data at each node is conformally
invariant and we take A = 0 in equation i.e. we read out the output from h; directly. The
difference in performance between EGNN and AdS-GNN is statistically insignificant, which indicates
that in this task conformal equivariance does not constrain the model significantly and still allows for
high expressivity.

Table 2: Classification error on Pascal VOC-SP.

Model EGNN AdS-GNN
Test F1 1 27.80£0.74 28.07+£0.57

B.2 2D ISING GENERALIZABILITY

Here we discuss further the generalization System size A. (energy) A, (spin)

properties of the 2d Ising task discussed 5 1.0000 = 0.0000 _0.1250 = 0.000
in the main text. In particular, we provide 4 0.9998 + 0.0000  0.1250 =+ 0.000
information on how a a model trained on 8 0.9924 + 0.0010  0.1248 = 0.000
a given number of nodes Nyyain performs 12 0.9894 + 0.0032  0.1247 + 0.000
when evaluated on a different number of 16 0.9893 + 0.0007  0.1247 & 0.000

nodes Niest- The connectivity on the graph

on AdS is controlled by a parameter Keon, Table 3: Learned value of A’s from AdS-GNN. Ground
the number of nearest neighbours which  tryth values are A, = 1 and A, = 0.125. Statistical
are connected to each node. uncertainties are standard deviations from 5 runs; for
For most of our results in the Ising section, 2o they are O(107?) and are not quoted.

we pick keon = IV so that the graph is fully

connected. This results in the best in-distribution performance. In that case note from Figures[8a] and
that AdS-GNN generalizes dramatically better than EGNN. EGNN’s performance is particularly
bad when taking a model trained on a larger system and evaluating it on a smaller one.

However if we reduce k.o, — €.g. to 2 — then this greatly increases the generalization ability of both
models. In particular, the gap between EGNN and AdS-GNN (as seen in Figures [8c|and [8d) is much
narrower, though still present. We see however that this choice hurts in-distribution performance;
AdS-GNN is able to generalize reasonably well even in the fully connected case.

B.3 IMPLEMENTATION DETAILS

In every experiment, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate
10~3. Every model is trained on a single Nvidia RTX6000 GPU. All models are implemented in JAX.
All experiments are run 5 times with different seeds. Models are trained until convergence with early
stopping. The number of layers is fixed to 4, with hidden dimension 32.
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adsgnn ” egnn &5
Lo 1.0
2 1 8 12 16 00 r 00
Trained size Trained size
(a) AdS-GNN with full connectivity (b) EGNN with full connectivity
adsgnn ‘5 egnun o
06440
0.3049 0.55 04000
; 0.4065 0.4009
2 1 B 12 16 o o
Trained size Train
(¢) AdS-GNN with keon = 2 (d) EGNN with kcon = 2

Figure 8: Generalization across system size; each square shows the relative L2 loss of a system
trained on a system of size NVy;in (2-axis) when tested on a system of size Nys, (y-axis) for different
level of graph connectivity.
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SuperPixel-MNIST The task is to predict a digit given a point cloud representation. We compare
against MONET (Monti et al. 2017), SplineCNN (Fey et al.l [2018), GCCP (Walker & Glocker],
2019), GAT (Velickovic et al.,[2018), PNCNN (Finzi et al.,[2021) and PONITA (Bekkers et al., 2024).
Every model is trained with batch size 128, baseline results are taken from (Bekkers et al.| [2024).
keon 1s set to 16, kyji to 5. Training time is approximately 10 minutes.

Pascal-VOC The task is to predict a semantic segmentation label for each superpixel node (total
of 21 classes). Each graph is embedded in 2D Euclidean space, each node is associated with 12
scalar features. We used the batch size of 96. k.on = 16, ki = 5. Training time is approximately 30
minutes.

Shapes Given a point cloud, we predict for each point to each shape it belongs (circle, square,
triangle, intersection). We train by minimizing cross-entropy loss. k.o, is set to 16, ki = 16. The
number of testing and validation points is set to 512, while the number of training points varies from
64 to 8192. Training time is approximately 5 minutes.

Ising Given a set of points, we predict two scalar values, one for energy correlation, one for spin
correlation. We use relative L2 error as our training objective. k¢, is equal to the number of points
(i.e. fully connected system), ki = 1. The number of testing and validation points is set to 512, while
the number of training points varies from 64 to 32768. Training time is approximately 3 minutes.

C ISING MODEL REVIEW

Here, for completeness, we provide an elementary review of the Ising model — which can be imagined
as the simplest example of a model of magnetism — and the physics at its critical point. This material
is standard; see e.g. (Kardar, [2007; Di Francesco et al.||{1997) for textbook treatments. We begin by
discussing the model in 2d.

C.1 2D ISING MODEL

The model is defined in terms of binary variables called spins o; = %1 sitting on the sites ¢ of a
square lattice with L sites on a side. The model is defined in terms of an energy function:

Elo] == 0i0; (36)
(i)

where the notation (ij) means that one sums over nearest-neighbour links connecting two adjacent
sites ¢, . We can see that the energy is minimized when spins on two adjacent sites have the same
value, i.e. “spins want to align”. The energy is also invariant under a Zo symmetry which acts by
flipping all of the spins, o; — —0;.

This energy defines a statistical physics model in which the probability of obtaining a given spin
configuration {o} is given by

1
pslo] =  exp(~BElo]) (37)
where [ is the inverse temperature and Z the usual normalizing constant. This model has two phases,
which we now describe.

Consider first taking 3 very large; in that case any increase in energy will be heavily penalized, and
the most likely configurations will be those that minimize the energy, i.e. where all spins have the
same value, so either o; = +1 or 0; = —1 for all <. This is called a phase with spontaneous symmetry
breaking, as a choice of either of these configurations breaks the Zs symmetry. It is also called the
ordered or ferromagnetic phase.

Now consider taking 8 very small; in that case the system is very disordered, and all spins fluctuate
strongly and randomly, and there is no sense in which a symmetry is spontaneously broken. This is
called the symmetry unbroken or disordered phase or the paramagnet..
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In the L — oo limit there is a sharp distinction between the two phases. A quantitative way to
understand it is to imagine taking the system size to infinity while computing e.g.

1
(o) = lim (Lz]EngﬁZO'Z) (38)

i.e. the expectation value of the spatial average of all the spins. This is called the order parameter.
This is nonzero in the ordered phase (where all the spins are aligned, resulting in a net contribution
to the expectation value) and zero in the disordered phase (where all the spins fluctuate strongly,
resulting in a cancellation across sites). In the infinite- L limit there is a non-analyticity in the function
(o(B)) at a critical value of 5 = . at the phase transition point. For the 2d Ising model the location

of this point is known to be at 8. = % log(1 4 v/2) &~ 0.441.

A great deal is known about this critical point. Here fluctuations of the spins take place over all scales,
and do not decay exponentially with distance as one might normally expect. It is possible to capture
the long-distance statistics of these fluctuations in a continuum limit where we formally take the
lattice spacing to zero. The resulting structure is called the 2d Ising conformal field theory (CFT),
and is an example of a quantum field theory that exhibits conformal symmetry. In particular, one can
define two operators in this continuum theory: the spin operator o () (which is the continuum limit
of the spin operator o; defined on discrete lattice sites above) and the energy operator e(z) (which
can be thought of as a product of spins at adjacent sites). The 2d Ising CFT is completely solved and
thus one can compute any arbitrary moments of any of these operators in closed form.

To get some intuition, the correlation function of two spins behaves as:

(o(x)o(y)) = |z —y| 72 (39)

where A, = g. The power-law functional form is completely fixed by scale-invariance, and the only
input from the theory here is the value of the conformal dimension A,. A similar relation holds for
the energy operator with A, = 1.

In this work we build a neural network to predict the /N-point correlation functions of the spin and
energy operators as a function of the positions of the operator insertions. To do this we use as
ground-truth training data the following closed-form formulas from the theory of the 2d Ising CFT
(D1 Francesco et al., [1997)):

1 2

Zi—Zj

(e --clox)) = [P | (40)

:|1<i,j<N
e

2 41)

(0(21)0(22) - o(2n))” = 22% Z H\zi—zj

E,;::I:l,ZEi:O 1<7

where Pf denotes the matrix Pfaffian. Despite their compact presentation, these are rather complicated
functions; e.g. combinatorially the Pfaffian can be viewed as a sum over all possible perfect matchings
of N points. The number of these matchings grows factorially in IV, and each of them contributes a
(different) product of 2-body interactions. There are more efficient ways than this to actually compute
the Pfaffian, but our neural networks will be unable to realize that structure.

C.2 3D ISING MODEL

The lattice construction equation 36| may easily be generalized to 3d. Unlike the 2d Ising model,
the 3d Ising model has not been explicitly solved, and there are no simple exact formulas such as
equation 41| for moments of the spin operator at the critical point. Nevertheless, a great deal is known
about it, where the most precise information comes from the conformal bootstrap (EI-Showk et al.|
2012), i.e. a method which exploits the self-consistency of conformal field theory to solve the system.
For reviews see (Simmons-Duffin, 2017} |Poland et al.| 2019).

Using these ideas, the 4-point function of the spins is given by

(o(z1)0(x2)0(x3)0(24)) = 71 — w2|2gA(ZL|,;:3_ za|?A (42)
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where the scaling dimension of the spin operator is A, = 0.5181489(10). u, v are conformally
invariant functions of the four insertion points called cross-ratios, and are

2 .2 2 ,.2
MW ix: X520
u = 212734 p= 23714 T =X;— X (43)
2272 2222 J J
13724 13724

The non-trivial information in this 4-point function is stored in the dependence on the cross-ratios
g(u, v). We compute this following (Rychkov et al., 2017), which we review briefly below.

This function ¢g(u,v) can be decomposed in the following fashion:

gu,v) = D C2, 09000 (1,0) (44)

O€coxo

where the sum over O runs over the conformal primaries of the theory, Ag and g are the conformal
dimension and spin of the operators respectively, and ga ;. (4, v) is a theory-independent function
called a conformal block. which These functions are the same for all theories, and thus the information
characterizing this function is encoded in the set {Ag, lo, Coon}, Where Cypp is a set of theory-
specific numbers called operator product expansion coefficients. For the 3d Ising model this set
of numbers is not known analytically, but they have been computed for the operators with lowest
dimension to extremely high accuracy.

Following the method in (Rychkov et al.| 2017), and using the lowest five operators and their
associated {Ag, lg, Cyo0} from (Komargodski & Simmons-Duffin, 2017), we compute g(u,v)
using the Mathematica code of (Costa et al.,[2016) to find the conformal blocks. We then create a
dataset of 4-point functions precisely as for the 2d Ising model above. This is not an exact solution to
the 3d Ising model, but the error from truncating the operator sum has been conservatively estimated
to be one part in 1072 in (Rychkov et al.| |2017). (We also note that for benchmarking our results
presumably any choice of g(u, v) would suffice, but we think it is more physically reasonable to use
the function that is relevant to a known physical problem).

Such methods would be much harder to implement for higher-point functions, and thus our test
dataset for the 3d Ising model is restricted to the 4-point function.

D THE CONFORMAL GROUP OF THE PSEUDO-EUCLIDEAN SPACE

In this section we will provide a self-contained introduction to conformal geometry of the (pseudo-)
Euclidean space in arbitrary signature and its conformal group. We provide definitions, examples and
main theorems.

We follow the references of |Schottenloher| (2008) and McKay|(2023).

D.1 CONFORMAL TRANSFORMATIONS OF THE PSEUDO-EUCLIDEAN SPACE

Roughly speaking, a conformal map is a map that preserves local angles. However, this definition is
rather tedious to write down and work with. A technically more convenient definition is introduced
below in Satz To motivate this definition, we first show in Satz that in the (linear)
Euclidean case these two definitions are equivalent:

Lemma D.1.1. Let A € R4*? be a real invertible (d x d)-matrix. Then the following statements are
equivalent:

1. Ais angle preserving, i.e. for all vi,vs € R\ {0} we have:

<A’L)1, A’UQ) <’Ul, ’U2>
= : (45)
[Avy[| - [[Ava]l  floa ] - [Joz]|

2. A is a conformal matrix, i.e. A = cA with a scalar ¢ > 0 and an orthogonal matrix
A € O(d).
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Proof. “<=": Let A = cA with ¢ > 0 and A € O(d). Then we get for all v1, vy € R%:

<A’U1, AU2> = UlTATAUQ (46)
=c?v] ATAw, (47)
=TI
=c2- vag (48)
=c? - (v1,v9). (49)
This also implies:
[Avi[| = ¢ [lua], [Av|| = ¢ [|vz- (50)
Together this implies the claim:
<AU1,AU2> _ <1}1,U2> (51)
[Avi[| - [Avall  floa ] - [Joz]l

“—": Assume that A is invertible and preserves angles. Then C := AT A is symmetric and positive
definite. By the spectral theorem we can diagonalize C, i.e. there exists an orthonormal basis

e1,...,eq € RY (e;,e;) = &; j foralli,j € [d], and positive scalars A1, ..., A\ > 0 such that for
all ¢ € [d]:
Cei = )\z c €. (52)
We now claim that: A; = -+ = A\4. By way of contradiction assume that there exists ¢ € [d] such
that Ay # Ay. Then put: v1 := e; and vy := e; + ey. This gives:
lor]|* = 1, lvz2]1* = lleal]® + flee] = 2, (53)
HA’U1||2 = A, ATAUQ = A -e1+ M- ey, 54)
<A’U1,AU2> = A1, HAU2||2 = A + Ao, (55)
(v1,v2) = 1. (56)
This implies:
)\1 _ <A’U1, A’U2> _ <’l}1, 'U2> _ 1 (57)
VALV A A - ([ Avel ol fleell 1 V2
Squaring and solving for \, shows:
A= A1, (58)
which contradicts the assumption. So, we indeed have that:
=X =--=Xs>0. (59)
This shows that: C' = ¢*1. Putting A := 1 A we get:
1
ATA=—C=1, (60)
c
which shows that A € O(d) and thus A = cA with ¢ > 0 and A € O(d). O

Definition D.1.2 (Conformal maps/conformal transformations). Let (M,n™) and (N,n™) be two
pseudo-Riemannian manifolds. A conformal map f : M — N is defined to be a smooth map such
that there exists a smooth map w : M — R~ such that for all x € M and vy,v, € T, M we have:

My (dfz (01), df2(v2)) = w(@)® - 12 (01, 02), (61)

where df, : ToM — TN is the differential of f at x € M. The above map w is called the
conformal factor of f.

In case the conformal factor w of f equals the constant one, w(x) = 1, then we call f an isometric
map or isometric transformation.
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Definition D.1.3 (Conformal diffeomorphisms and isometries). Let (M,n™) be a pseudo-
Riemannian manifold. A conformal diffeomorphism f : M — M is a conformal smooth map
that has a conformal smooth inverse f=1 : M — M:

foft=f"lof=idy. (62)

If, in addition, its conformal factor w of f is the contant 1, then we call f an isometry of (M, n™).
The group of conformal diffeomorphisms of (M, n™) is denoted as:

ConfDiff (M, n™) := {f : M — M conformal map with conformal inverse} . (63)
The isometry group of (M, n™) is denoted as:
Isom(M,n™) := {f : M — M isometric map with isometric inverse} . (64)
Notation D.1.4. In the following we will denote by:
1. (RP-2 nP9) be the standard pseudo-Euclidean space of signature (p, q):
7P (v1,v9) := v] APy,, AP? = diag(+1,...,4+1,-1,...,-1), (65)

Xp Xq

2. O(p, q) the (pseudo-)orthogonal group of signature (p, q):
O(p,q) := {A € GL(RP) | ATAPIA = AP} (66)

3. SO(p, q) the special (pseudo-)orthogonal group of signature (p, q):
SO(p.q) :={A € O(p,q) |[det A =1}. (67)

4. 0%p,q) = SO%(p, q) the identity component (=connected component of the identity) of
O(p, q). Note that we have the inclusions of groups:

0%p,q) € SO(p,q) € O(p,q). (68)

Example D.1.5 (Affine conformal diffeomorphisms). Let b € RP, ¢ > 0and A € O(p, q). Consider
the affine map:

fiRPI 5 RP f(x) := cAz +b. (69)

Then f is a conformal diffeomorphism of RP*9 with constant conformal factor w(x) = c.

Proof. The differential at x is given by the matrix:

df, = cA. (70)
So for vy, v € T,RP-? = RP-9 we get:
0P (df(v1), df(v2)) = (cAvy) T AP (cAvy) (71)
= v ATAPIAY, (72)
=2 v/ APy, (73)
= P(v1,v). (74)

So, if we then define the conformal factor w : RP? — R+ to be the constant map w(zx) := ¢, we
have shown that f is a conformal smooth map. Its inverse f~! is given by:

fHz) :=c'A e — P AT D, (75)
which is thus of the same form as f and thus also a conformal smooth map. This shows the claim. [

Theorem D.1.6 (Affine conformal diffeomorphisms, see Amir-Moéz|(1967)). Consider the affine
map on RP-9;

f:RP? — RPY f(z) = Az + b, (76)
with a square matrix A and translation vector b € RP4. Then f is a conformal map (w.r.t. n?1) iff
there exists a ¢ € Rwg and a A € O(p, q) such that A = cA. If this is the case, [ is a conformal
diffeomorphism and both ¢ > 0 and A € O(p, q) are uniquely determined by A as: ¢ = {/| det A|
withd :=p+q, and, A = %A.
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Proof. One direction is proven in Satz For the other direction assume that f is a conformal
map. Then we have df,, = A and the conformal relation (in matrix form):

ATAPIA = w(2)? - AP, (77)
Taking determinants on both sides gives:
(det A)? = (w(2)?)?¢ > 0, (78)

showing that A is invertible and that w(z) = {/| det A| =: ¢ is not dependent on z and thus equal to
the constant ¢ > 0. Dividing the first equation on both sides by ¢? and rearranging gives:

1 ' p,q 1 p,q
SA) A (Za) =are (79)

This shows that A := %A € O(p, ¢) and thus the claim: A = cA. The rest follows from Satz D.l.S}

Definition D.1.7 (The linear and affine conformal group). We define the linear and affine conformal
group, resp., of signature (p, q) as follows:

CO(p,q) :=Rso x O(p,q), CE(p,q) := CO(p,q) x RP1. (80)

Note that the entries correspond to scaling factor ¢ > 0, reflection-rotation matrix A € O(p, q) and
translation vector b € RP9 in the conformal affine maps from Satz[D.1.5|and Satz[D.1.6]

We also define their identity components:

CO°(p, ) == R x 0°(p, q), CE’(p, q) := CO%(p, q) x R™. 81)
Example D.1.8 (The inversion at the pseudo-sphere). The following (partial) map:
x
— P4 RPY s RP P () — 82
s=¢ ; SN €)) )’ (82)

is called the inversion (at the pseudo-sphere) of signature (p, q). Note that the inversion here is only
defined for v € U := {& € RP?|nP9(Z, &) # 0}. It is an involution (self-invers) on U as (with
0= p):

B n(z, x) _ 1
n(g(x)’g(x)) - n(x,x)Q - 77((E,{E) 7é 07 (83)

M@ aew
= @@ sy .

We now claim that s : U — U is a conformal diffeomorphism. For this we compute its Jacobian
matrix (differential), which, in matrix form, is given as:

1
n(x,x)?
To check the conformal relation we thus compute:

x

deg = (n(z,2)I — 222" AP9) . (85)

(dsz) " AP9(dg,) = m ((n(m,x)[ - ZxxTA”’q)T AP (n(z,z)] — 2xxTAp’q)) (86)

= ot (1) = 28700T) AP (nfa, )] — 2007 AP)) (8)
nx,x
= n(xlx)4 (’r](x7 x)2Ap’q — 4"’](1" Jj)Ap-,quTAp7q + 4Ap1qxxTAp7qxxTAp7q)
(88)
1
(@, 2)t (n(z,2)?AP9 — dn(x, ) AP Iz T AP + dn(z, z) AP9zz T AP9)
(89)
1
- =  AP9
W(M)QA ' (90)

This shows that the inversion ¢ : U — U is a conformal diffeomorphism with conformal factor
w(z) = W(Tlas)l We continue the analysis in Satz
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Example D.1.9 (Special conformal transformations). For b € RP'? we define the (partial) map:
x—n(z,x)-b
: RP9 — RPY =
7 RS R S e ) ()

where ¢ = ¢P1 : RP:9 — RP'? denotes the inversion from Satzof signature (p,q). Maps of
the form oy, are called special conformal transformations of RP'? and are conformal maps on their
domain of definition:

=< (s(x) =), 91)

Uy :={z e R |v(z,b) # 0}, 92)
with conformal factor wy(z) = Wlb)\’ where we abbreviated the above denominator as:
v(x,b) :=1—2-n(x,b) +n(b,b) - n(x,x). (93)

Furthermore, o_y, : U_p — U, is the inverse of oy, : Uy — U_y,.

Proof. We first check that y := oy,(x) lies in U_j, for = € U,,. For this we compute:

77(95 - 77(557 {L‘)b7 _b) = _77(% b) + 7](957 95)77(5, b) (96)
Dividing both sides by v(z,b)? and v(x, b), resp., shows:
1
) = 255, WD) = oo (e )+ b)) O
With this we get:
v(y, —b) =1—=2-n(y,=b) +n(b,b) - n(y, y) (98)
1
= l/(x, b) (V(:C, b) +2- 77(55» b) -2 7](xa :C) ’ 77(17» b) + n(bv b) ’ TI(% x)) 99
1
1
- v(z,b) (1oh
£0. (102)

This shows: y € U_y, for x € U,. Plugging the relation v(y, —b) = ﬁ into Equation shows
that:

b
o_y(y) = % (103)
_ 1 n(y,y)
_ b
— u(a,b) - <x:((;z:;)> +(z,z) - b (105)
= 2. (106)

This shows that o _, : U_, — Uy, is the inverse of oy, : Uy — U_y,.

To show that o3, : U, — RP'? is a conformal map we need to compute its differential. Computing the
differential directly gives:

v(z,b)- (I —2-b-z" AP — (z —n(z,z) - b) - (=2-bTAPI 4+ 2. n(b,b) - z " AP7)
v(z,b)? ’
(107)

which is difficult to work with. Instead, we use the fact that o}, is a smooth extension of the map
op(z) = ¢ (¢(z) — b). With the chain rule we then get:

(dob)e = (dS) (s(x)—b) dSz (108)

(ddb)l =
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With this and Satz[D.1.§ we get:

(doy)y AP(doy), = (dse) " (dS) (c(ay—p) AP (dS) (s(a) 1) da (109)
1
= (dsz) T AP dg, (110)
1(s(z) — b,s(x) — b)? (der)

__ ! S AP (1)

n(@,2)* n(s(z) - b,s(x) —b)

1
_ ,/(x’b)QAp)q' (112)
For the last step note that:
b

1 (s(z) — b,(x) —b) = :((i x)) (113)

So the conformal factor of o, at « € Uy is wy(x) := ﬁ We continue the analysis in Satz

Remark D.1.10 (Extending conformal maps to a conformal compactification). The examples
[D.1.6|[D. 1.8} [D.1.9 have given us several conformal transformations of RP4. However, for us to be
able to define the inversion s : U — RP9 and the special conformal transformations oy, : Up — RP+4
we had to restrict their domain of definition to an open subset of RP*4. The question is now if we
can actually extend those maps like < and oy, to a conformal map on the whole of RP? by possibly
enlarging their codomain, e.g. by putting:

2L~ ifn(z,x 0,
¢ RPY 5 RP9 U {oo}, o(@) = { 7 lj: ng x; . T

However, for this we would need to turn the extended codomain RP? U {co} into a proper pseudo-
Riemannian manifold M+, Furthermore, we then would also like to properly define s on the added
new points MP:9 \ RP? and turn it into a conformal diffeomorphism of MP-4. Note that in the
non-Euclidean case, i.e. if p,q > 0, the space {x € RP?|n(x,z) = 0} consists of more than one
point and thus needs more consideration.

The above is the main question (of the existence) of a conformal compactification of RP9. Below we
follow an ad hoc approach to this question.

Remark D.1.11. Even after the question of conformal compactification, as described in Satz[D.1.10]
is solved, we are still faced with the ambiguity of how to define the conformal group of RP:9. There
are several non-equivalent options:

1. as the group ConfDiff (RP*?) of all conformal diffeomorphisms of RP9, which would include
all affine conformal transformations, but exclude the inversion and the special conformal
transformations;

2. as the group ConfDiff (M) of all conformal diffeomorphisms of a conformal compactifi-
cation MP+9 of RP9, which would include all affine and special conformal transformations
and the inversion. However, one can show that for p + q = 2 some of the properties
of the conformal compactification will break down and that ConfDiff (MP+?) can become
pathologically big in the case (p,q) = (1, 1), see|Schottenloher((2008);

3. as the connected component of the identity of one of the above groups, in order to stick to
the main conformal diffeomorphisms that have descriptions with help of a Lie algebra and
Lie exponential map, etc.;

4. as the subgroup of (partially defined) conformal diffeomorphisms of RP*? that is generated
by all affine and special conformal transformations (excluding the inversion) of RP»9;

5. as the subgroup of conformal diffeomorphisms of MP-9 that is generated by all affine and
special conformal transformations (excluding the inversion) of RP+9;
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For this draft we will settle with one of the last definitions, which are mostly equivalent, and call it the
(restricted) conformal group of R+ and denote it by Conf (RP:9). For more details see further below.

To define the conformal compactification of RP'? we first need to introduce the bigger pseudo-
Euclidean space RP*+1:9%1 and the projective space PP+a+1,

D.2 THE PROJECTIVE SPACE, DE SITTER SPACE AND ANTI-DE SITTER SPACE

Definition D.2.1 (The projective space). Let V be a (real) finite dimensional vector space. We then
define the projective space associated with V' as the space of equivalence classes:

P(V) == (V\{0}) /~, (115)
where we define two non-zero vectors x1,xo € V to be equivalent if they lie on the same straight line
through the origin:

1 ~ 29 < e e R\ {0}. 2y =c- xs. (116)
We then define the standard projective space of dimensions d > 0 as:
P4 .= P(RIH). (117)

Note that d denotes the dimension of P%, which thus requires the Euclidean space R4t to be of one
dimension higher.

Remark D.2.2. W.rt. to our pseudo-Euclidean space RP9 we will in the following mostly consider
the projective space of dimension d + 1, where d := p + q:

PAtl = p(RPFLOTL), (118)

Elements of P41 will be either denoted by [z] with = € RPYL4HL with coordinates z =
(20,24, ... 2% 24 Y or directly as [2] = [0 : 2t -1 2% 2 29HY) Note that we endow RPT1:4+1
with the standard metric nPT49% of the pseudo-Euclidean space of dimension d + 2 and signature
(p+1,q+ 1) and that we consider the coordinates 2°, . . ., 2P to belong to the (+1)-signature and
the coordinates zPt1, ... 241 to belong to the (—1)-signature.

Definition D.2.3 (de Sitter and anti-de Sitter space). Let (V, n) be a non-degenerate finite dimensional
real quadratic vector space. Then we define the de Sitter space and the anti-de Sitter space and the
(projective) zero quadric associated to (V,n) as:

dS(V,n) :={[z] e P(V) |n(z,z) > 0}, (119)
AdS(V,n) :={[z] e P(V) |n(z,2) < 0}. (120)
M(V,n) == {[z] € P(V) [n(z,2) = 0}. (121)

Note that these are all well-defined subsets of P(V'). The pseudo-Riemannian metrics on the first two
spaces are induced by the following subspaces of V' :

Vi :={yeVinlyy) =1}, Yo i={yeVinly,y) = -1}, (122)

and the 2 : 1 locally diffeomorphic surjective maps:
T Yy = dS(Vyn) CP(V), +y = [yl (123)
m_:Y_ — AdS(V,n) CP(V), +y — [y, (124)

where both Y, and Y_ are endowed with the pull-back metrics n™ and n~ from n of V to those
subspaces. More explicitely, the tangent spaces and local metrics are given as follows:

Tp dS(V,m) = {v € V[ (2, 0) = 0}, o) = oy, ve), (125)

T AdS(Vin) = v e Vn(z,0) =0}, iV (w,0) =n(vr,v).  (126)
We define the (standard) de Sitter space and the (standard) anti-de Sitter space and (standard) zero
quadric of signatures (p, q), resp., as follows:

dS™ = dS(RPFHI, L), 27)
AdSPT = AdS(RPAT, ot (128)
MP? — M(Rp+17q+17,7p+17q+1>_ (129)

The pseudo-Riemannian metric on MP-? will be defined later in Satz[D.3.5]

25



Under review as a conference paper at ICLR 2026

Definition D.2.4 (Projective orthogonal group). Let (V,n) be a non-degenerate finite dimensional
real quadratic vector space. Then the projective orthogonal group of (V,n) is defined to be:

PO(V,n) := O(V,n)/{£idy }. (130)
The (standard) projective orthogonal group of signature (p, q) is:
PO(p, q) := O(p, q) {1} (131)
We denote the identity component of those groups as:
PO%(V, ), and  PO°(p,q). (132)

Lemma D.2.5. Ler (V,n) be a non-degenerate finite dimensional real quadratic vector space. Then
the projective orthogonal group PO(V,n) acts on the spaces P(V,n), dS(V,n), AdS(V,n) and on
M(V, n) via matrix multiplication:

[A][z] == [A2], (133)

in a well-defined way.

Theorem D.2.6 (See McKay| (2023) Thm. 7.5). Let (V,n) be a non-degenerate finite dimensional
real quadratic vector space. Then the standard action of PO(V,n) on dS(V,n) and AdS(V, n) acts
isometrically and we get the following identification with their isometry groups:

Isom(dS(V,n)) = PO(V.n), Isom(AdS(V,n)) = PO(V,n). (134)

Remark D.2.7. For our pseudo-Euclidean space RP*? we will use the projective zero quadric MP4 as
its conformal compactification, see later in Satz|D.3.5] For this we need to consider the bigger pseudo-
Euclidean vector space (RPTH4+1 np+1.at 1) and, the projective space P41 = P(RP+L4+1) Here
we get the disjoint decomposition of P into anti-de Sitter space, conformal compactification and
de Sitter space:

P = AdSPTH UMPT Y dSPT (135)
Note the different signatures on each of the spaces. With Satz[D.2.6|we thus get the identifications:
Isom(dSP7™) = PO(p + 1,q + 1) = Isom(AdSPT19), (136)

In the following, we further want to show that the action of PO(p + 1,q + 1) on MP? induces
conformal diffeomorphisms of MIP9. This identification via PO(p + 1,q + 1) will thus induce a
correspondence between (certain) conformal diffeomorphisms of the conformal compactification
MP? of R4 and the isometries of the corresponding AdSP™9-space (or; also the dSP***-space).

D.3 THE CONFORMAL COMPACTIFICATION OF THE PSEUDO-EUCLIDEAN SPACE

Notation/Lemma D.3.1 (The isometric embedding). The following map:

1—n?(z,z)
2
L RP4 5 RPHLOTL v(z) == x . (137)
14?9 (z,z)
2
is an isometric embedding and satisfies for all x € RP*? :
t(x) # 0, and nPTHat(y(2), u(z)) = 0. (138)
Proof. For the latter consider the computation for x € RP-4:
APt (y(2), (@) (139)
= (1 —9P(x,2))” + 172, 22) — (1 + 1"(2,2))° (140)
=127z, ) + 0P (z,z)* + 4P (2, z) — 1 — 2P (z, ) — nP9(x, x)* (141)
=0. (142)
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This shows: 7?19+ (y(z), 1(z)) = 0. t(x) # 0 is clear. To see that ¢ is an isometric embedding
compute the differential (Jacobian matrix):

—x T AP
diy = 1 . (143)
x T AP
With this we get:
—xTAP:4
(dip) TAPTLIH g = [—AP9y [ APdg] APHLaH I (144)
T AP
—x T AP
= [-APY9gz APY —APg) 1 (145)
x T AP
= APAgg T APY 4 APY — APgg T AP (146)
= AP1, (147)
This shows that ¢ is an isometric embedding. [

Definitions/Notations D.3.2. For p,q > 0, d := p + q, we introduce the following notations:
1. We introduce the affine zero quadric as the following subspace Yy of RPT1:9+1 yig:
Yo := {y € RFFLITIA{O} [P R (y, y) = 0} (148)
and endow the tangent spaces for y € Yj:
TyYO — {v c RP+1a+1 |np+1,q+1(y’ v) _ 0} C Rp+1,q+1, (149)
with the pull-back metric n*° of npT1a+1;

n;/" (v1,v9) = P THIH vy wy) forvy,ve € T,Y,. (150)

2. We also introduce the double sphere:

P d+1
SPq .= SP x §9 := yeRP"Fl;(I'Fl Z|yl|2: Z ‘y‘]‘2:1 g}/o’ (151)
1=0 j=p+1
and endow the tangent spaces for y € SP4:
P d+1
T,SP7={ve Rp+1a+1 Zyz Lot = Z y 0l =0 C RPt+Lat+l (152)
i=0 j=p+1
with the pull-back metric n°"" of nppThat+1;
nip’q(vl,vz) = P THH () wy) for vy, vy € TSP (153)
Note that we have the inclusions:
L(Rp,q) CY, C RerLqul, SP4CY, C RpP+La+1 (154)
Notation/Lemma D.3.3. Consider the maps:
1
p:Yy =R, ply) == = (155)
V 24i=0 |yt
Y Yy — 8P YY) = py) - y. (156)

Then v is a well-defined map and conformal with conformal factor wy,(y) = p(y).
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Proof. First note that for y € Y, we have:

P d+1
0=n"t o y,y) =D 1P = D 1Y (157)
=0 Jj=p+1
and thus:
1 | 1
py) = — = . (158)
, i d+1 ;
\/ZZZO vl \/Zjip-‘,—l |y7]2
This shows that for y € Y, we have:
Y(y) =ply) -y € SP x §7 =SP4, (159)
The differential of ¢ at y € Yj:
dipy : TyYy — Typy)SP? C Ty RPHHITL, (160)
is given with help of the product rule as the matrix:
dipy =y - p'(y) +ply) - 1. (161)
With this we get for all y € Yy and v, v2 € Ty Yp:
o] (diby) TAPTEITY (@), Yoy (162)
=0l (y-p'(y) +ply) - 1) TAPFLT (- ' (y) + p(y) - Dvs (163)
= p(y)? - v APFET oy p ol pl(y) Ty TAPFET Y (), (164)
| —
=0, as yeYp
+p(y) o) p(y) Ty AP gy 4o T APTRE L p(y) - pf (), (165)
=0,as v2€T, Yy =0,as v1€T, Yy
= p(y)? - v] APTLITLy, (166)
This shows the conformal factor of p(y). O
Notation/Lemma D.3.4. Consider the following map:
R Y, N SPe (167)
1—n"(z,7)
1 2
7(x) = Y(u(r)) = - — x . (168)
Vil—ma@ )P + T o [l
Then T is a well-defined conformal map with conformal factor:
1
p(( (169)

x)) = .
VL= )+ S0 2

Definition D.3.5 (The standard conformal compactification of the pseudo-Euclidean space). For
p,q > 0, d := p+ q, the (standard) conformal compactification of (RP:2, nP-?), is defined to be the
Sollowing projective zero quadric subspace of the (d + 1)-dimensional (real) projective space:

MP? = {[2] = [0 2t o oovr2® e 2 e PO gt LAt (2 2) = 0} C PO (170)

Its metric f™"" is induced with help of the double sphere:

P d+1
SPT = SP x §7 1= { y € RPHLaF] Z 2 = Z 7|2 =1 ) C RPHLa+L (171)
1=0 j=p+1
and via the 2 : 1 locally diffeomorphic surjective map:
7w SP9 — MP, +y — [y]. (172)
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Note that if |z] € MP-? then we can put:
y:=(2) = p(z) - z € RPFLIT, (173)
leading to the following propertie'
y €SP, [y] = [2] € MP1. (174)

More explicitly, the tangent space of MP*? at [z] is given by:

14 d+1
T[Z]Mp’q —{ y e RpHLa+1 Z Syt — Z 2.0 =0 (175)
=0 j=p+1
p ) d+1
= Qo eRPFLIFLIN "yt = N yd o) =0 (176)
=0 j=p+1
=T,SP? C T,RPtHt! = Rptlatl, (177)
and the metric of MP-? at [z] for vy, vy € T, MP9 by:
i (o) ==y (01, v2) = P (g, vg) = v ATy, (178)

Definition D.3.6 (The conformal embedding of the pseudo-Euclidean space into its conformal
compactification). The conformal embedding of RP+9 into MP? is defined to be:

1—nP9(z,x) 1+ n?9(z,x)
o

[c] : RP9 — VP9, [t(2)] = 5 tx 5 (179)
=[1—-nPz,z): 22 : 14+ 9Pz, z)]. (180)
Note that this is a well-defined map, as by Satz|D.3.1|we have:
u(x) #0, P (u(2), (@) = 0. (181)
Note that we can also factorize the conformal embedding as follows:
o] : RP4 T §P9 Ty MP, (182)
leading to the identity:
[r(2)] = [(2)], (183)
and showing that the conformal embedding [t] is a conformal map with conformal factor:
i) = wr(2) = plo( 1 (184)

x)) = .
JH = e o + 5 o

D.4 CONFORMAL TRANSFORMATIONS OF THE CONFORMAL COMPACTIFICATION OF THE
PSEUDO-EUCLIDEAN SPACE

Proposition D.4.1 (See Schottenloher| (2008) Thm. 2.6). Let p,q > 0. Then every [A] € PO(p +
1,q + 1) acts as a conformal diffeomorphism on the conformal compactification MP? of RP*? via
matrix multiplication and with the conformal factor:

Do l#?
Zf:o [(A2)[?

The inverse of [A] is given by [A™1]. Furthermore, exactly the two matrices +A € O(p + 1,q + 1)
induce the same conformal diffeomorphism on MP+9, thus inducing an embedding/inclusion of groups:

PO(p+1,q+ 1) C ConfDiff (MP9). (186)

BBy also multiplying z with sgn(z?) for one index j € {0,1,...,d,d+ 1}, e.g. = d + 1, we can, in
addition, arrange that ¢’ > 0O for this one fixed index j. For example, if ¢ = 0 then S*? = SP x {£1}, and we
can always arrange the representative y to have: y*' = +1. In this case: MP° = SP x {+1}.

(185)
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Proof. Forevery A € O(p + 1, ¢+ 1) itis clear that A|y, is an isometric map from Y; to Y;. Now
define the map:

Yy SPY — SPY Paly) == P (Ay). (187)
As the composition:
ba  SP1C Y A vy L s (188)

of the isometry A (with conformal factor 1) and the conformal map ¢ (with conformal factor p(y))
also 1, is a conformal map with the conformal factor p(Ay).

If now [z] € MP? then y := p(z) - z € SP9. This then shows that:
Yra) - M2 — M2, Yay([2]) == [Az] = [¥a(y)], (189)

is a conformal map with conformal factor:

p(Az)
p(z)

Yizo|#?
i=o (A2)°]?

wial([2]) = p(Ay) = p(A(p(2)2)) =

(190)

Since that action is induced through matrix multiplication it is clear that [A~!] induces the inverse
map to [A].

Now assume that A; and A, induce the same map on MP-4. Then for every y € S”¢ we have:

[¥a, ()] = [¥a, ()] So ¥, (y) = £9a, (y). Since this holds for all y € SP+7, we get: A; = £A,.
This shows the claim. O

Theorem D.4.2 (See [Schottenloher] (2008) Thm. 2.6, Thm. 2.9, Thm. 2.11). If either p + q > 3 or
(p, q) = (2,0) then the inclusion from Satzis already an isomorphism:

PO(p + 1,q + 1) = ConfDiff (MP9). (191)

This means, in those (p, q)-cases, that every conformal diffeomorphism o : MP*9 — MP? is given by
the matrix multiplication with an (up to sign) unique matrix A € O(p+1,q+1), i.e.: p([z]) = [Az]
for all [z] € MP1,

Theorem D.4.3 (See |Schottenloher| (2008) Thm. 2.6, Thm. 2.9, Thm. 2.11). In addition to the
isomorphism in Equation (191)) in Satz|D.4.2]we get the following stronger statements:

1. Let p 4 q > 3, then for every conformal map ¢ : U — RP+9, defined on any connected open
subset U C RP4, there exists an (up to sign) unique matrix +A € O(p+ 1, q + 1) such that
the following diagram commutes:

U—2 s Rra (192)

[l i J/ 1]

MP4 — s MP.
(A]

i.e. forall x € U we have:

Lo @(x)] = [Au()]. (193)
In particular, @ is injective.

2. Let (p,q) = (2,0), then for every injective conformal map ¢ : U — R?, defined either on
U = R%*Y or on any punctured plane U = R?° \ {¥}, there exists an (up to sign) unique
matrix =\ € O(3,1) such that the corresponding diagram fromcommutes.@

Remark D.4.4. For (p,q) = (1, 1) the group ConfDiff (MP*?) is much bigger than PO(p+1,q+1).
For details see|Schottenloher|(2008) section 2.5.

"“Note that, for the case (p, q) = (2,0), the injectivity of ¢ needs to be assumed and we also can only allow
for open subsets U of R%*° where at most one point is removed from R*°.
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Example D.4.5 (The inversion at the pseudo-sphere). We continue the discussion about the inversion
(at the pseudo-sphere) ¢ on RP*4 from Satz[D.1.8}

T
— P . p.q ()
c=¢P9: U — RPY, Pi(x) = Pz ) (194)

defined on U := {x € RP9 | nP9(x,x) # 0}. Consider the (d + 2) x (d + 2)-matrix:

-1 00
Ac ::lo I 0]. (195)
0 0 1

We now claim that the map:
$:=[A] : MPY — MP, [Ad[z] == [Acz], (196)

is the conformal extension of < from U to whole MIP+4. Indeed, first note that A. € O(p+ 1, + 1)
and det A, = —1 and det(—A.) = (—1)**. Then compute:

1 [L=n(s(z),s())
@) =3 | %) 197)
L1+ n(s(z), <(2))
[1- 5w
1 n(x,x
=5 | e (198)
RRlreD]
n(z,r) -1
= 1 L [ 2z (199)
20(@.2) [na,z) +1
1 1 -1 0 0] [1—n(z,x)
== 0 I 0 2 1 (200)
Zn(z.z) o o 1 1+ n(z, )
1
= 77(21771') 'ACL(x)7 (201)
which shows the claim:
[Ae(x)] = [e(s(2))] € MP. (202)

Note that for x € RP? with n(x, z) = 0 we get:

x)=11:2x:1], (t(z)) =[-1:2x:1], (203)
1(0)=[1:0:1], S((0))=[-1:0:1]. (204)

N

Example D.4.6 (Linear conformal transformations, see|Schottenloher| (2008) Thm. 2.9). We continue
from Satz[D.1.3|and Satz|D.1.6|for the linear conformal map: x — Ax with the matrix A = cA, where
A =cA € CO(p, q) withc > 0 and A € O(p, q). Then we can define the (d + 2) x (d + 2)-matrix:

142 1—¢?

2c 0 2c
To=| 0 A 0 |. (205)
1-¢? 1+c2
2c 0 2c
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ThenTcn € O(p+1,¢+1) as:

(B 0 52 o0 07[HE o L
Lo APFLIHID v =1 0 AT 0 0 AP2 0 A 0 (206)
1—c? 0 14-c2 K 0 —1 1—c? 0 14¢?
L 2¢ 2¢c - 2c 2c
[Be 0 B [8E o 58
=0 AT 0 0 APIA 0 (207)
—02 62 7C2 62
—12c 0 1-50 - —_120 O _130
r 2 2
(32) - (52 0 0
- 0 ATAPIA 0 (208)
2
[ o o () - (%)
1T 0 0
=0 Aru o] (209)
o o0 -1
— AP+La+l (210)

Also note that if A € O°(p, q) then Ty € O°(p +1,q + 1) as ¢ — 1 provides a path to the identity
component|’| We now claim that:

[Cep] : MP4 — MP9 [Ceallz] := [Teaz], (211)

is the conformal extension of cA from RP4 to MP-4,

M14c? 0 1—¢? 1—n?9(z,x)
2

2c 2c
Teat(z)y=1 0 A 0 x (212)
1—¢? 14¢? 14+nP9(z,x)
L 2c 0 -gc . 2
i 142 1—n?9(z,x) 1—¢2 1+n? 9 (z,x)
() (=r52) + (059) (252
- Az 213)

_ .2 1—nP 4 T,x 2 14+nP 4 w71)
(2) (=)« 1) (2252)

1 (142 —nppi(z,z) — - gPi(z,z) + 1 — 4+ nPi(z,z) — - nPi(z, x)

= — 4dcAx

1—c?—nPi(x,z) + 2 nPi(x,x) + 1+ +nPi(x,z) + - nPi(x, )

] (214)
[2 - 2.2 pPi(z, z)

- dch (215)
242 c% nPi(z, )

ifnp’q(cA:c,cAm)

1 2
== cAzx (216)
C | 140”9 (cAz,cAx)
2

=—-1(cAx). 217

ol

This shows:
[Ceat(z)] = [t(cAz)] € MP1, (218)

and thus the claim.

Example D.4.7 (Translations, see Schottenloher (2008) Thm. 2.9). We now continue from Satz[D.1.3]
and Satz @for case of translation: x — x+bforb € RP4. Then we can define the (d+2) X (d+2)-

5The reverse is also true: Tep € O%(p+1,¢+1) = A € 0%p,q).
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matrix:
Prp:=1+ (219)

—5110.) —bTOAP»q —510.)
=T+ (220)
Lpp9(b,0)  bTAPT Lypa(bb)

- Lypa(b,b) —bTAPS —Lypa(p,b)
- b I b . (221)
Lpab,b)  BTAPS 14 Lypa(b,b)

We first show that T'r, € O(p + 1, q + 1). For this consider:
F}VbAp-&-Lq-&-lrl p = APTLatL Q;AP+17CI+1 + APTLatIQ, 4 Q;Ap-l-Lq-i-lQb_ (222)

We compute terms separately:

10 07 [—3nPebb) —bTAPT —Ippa(b,b)
APTLatLQ, — [0 APY b 0 b (223)
0o 0 -1 %np,q(b’ b) bl AP %np,q(@ b)

L) bTAN Lpa(h

— AP}, 0 AP-1p , (224)
(=3 1(bb) —bTAPT —5yi(b,b)
QbTAp—‘rl,q-‘,—l _ (Ap+1,q+1Qb)T (225)
P BTAR et
— | TArgp 0 —AP9h | (226)

[~ LPab,) BTAPT —Lypa(b,b)

With this we compute:

1 0 1
Q) APTLatl L APTLAHLO, — _pPd(p D) - [0 0 0] , (227)
1 0 1
(228)
We also get:
[—5nP9(b,b) bTAPT —ZpPa(b,b)| [—3nP9(b,b) —bT AP —inP9(b,b)
Q) APtLatl, — | AP 0 — AP b 0 b
=517 (b,b) DTAPT —ZpPa(b,b) | | 5nP9(b,b)  DTAPT  IpPa(b,b)
(229)
(6T APap b7 AP:ap
= 0 0 (230)

0
0

bTAPah 0 bT APh
1
0
1

0 1
= P4(b,b) - [ 0 0] . (231)
0 1
Together this shows:

F;bAp+17Q+1FI,b = APtLatl 4 QJAP+1,Q+1 + APH"IHQb + QJAPH’QHQI, (232)

101 101
:N’“’q“—nm(b,bylo 0 O +779(b,b)- |0 0 0 (233)
101 101
— APt+La+l (234)

This thus shows the claim: T'1, € O(p + 1,q + 1). Furthermore, for b — 0 we see that ', — I.
This thus even shows that: Ty}, € 0%p+1,q+1).
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We now claim that [y ] is the conformal extension of the translation map x — x + b from RP9 to
MP-4. For this compute:

Trpe(z) = (I + Q) e(z) (235)
= (z) + Qpe(x), (236)
with:
| [APom B —bTARS Lypa(s, )] [L— (e, 2)
Qpi(z) = 5 b 0 b 2x (237)
Lpa) bTAR Lpa) | L+ raea)
1 [—nPa(v,0) — 26T APz
=3 2 (238)
| 779(b,b) + 20T APy
1 '—ﬁp’q(b» b) — anyq(bv 1’)
S 2% 1 . (239)
2 Lo a(v,6) +2079(b, )
With this we get:
1 —nP%x+b,x+Db)
Wz +b) = 2(z + ) (240)
|1+ nP%(x+b,x+b)
(1 =0z, ) — n(b, b) — 27 (b, )
- 22 + 2b ] (241)
L1+ 0P (x,x) + nP1(b, b) + 2nP1(b, x)
L] [P - 2P0, 0)
- 2 41 2 (242)
2l 2 Lpan) e, a)
= (z) + Qpt(x) (243)
=Lrpu(2). (244)
This then implies:
[Ty pe(2)] = [t(z 4+ b)] € MP. (245)

This shows that [U'j 3] conformally extends the translation map x — x + b from R 1o MP4.

Example D.4.8 (Affine conformal transformations, see|Schottenloher| (2008) Thm. 2.9). We continue
from Satz[D.1.5and Satz[D1.6]for the affine conformal map: x — Az + b with the matrix A = cA
and b € RP9, where A = cA € CO(p,q) withc > 0 and A € O(p, q). Then we can define the
(d+ 2) x (d + 2)-matrix:

Leap :=Trplca (246)
1—Ippa(p,b) —pTAPT  _Lppapp) ] [HE o L2

= b I b 0 A 0 |. (47
IPab,b)  bTAPT 14 g )| [ g L

Then we have: T'cp € O(p + 1,q + 1). This is clear, as both matrices T'y ,,Tep € O(p+1,g+ 1)
by Satz and Satz|D.4.7} It thus also clear that the matrix [['cp p] extends the affine map
x +— cAzx + b from RP? to MP>9,

Example D.4.9 (Special conformal transformations, see|Schottenloher|(2008) Thm. 2.9). We continue
from Satz[D.1.9 about the special conformal transformations. Recall that we defined the special
conformal transformations for b € RP* on an open subset U, C RP+9 gs:

n(z,z)-b
1—2~77(x7b)+77(7b) n(z, )

op: Up = RPY op(z) = =q(s(z) =), (248)
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where < is the inversion at the pseudo-sphere from Satz [D.1.8 and Satz With the latter
representation and Satz[D.4.7\we immediately get that the (d + 2) x (d + 2)-matrix:

Eb = AQI—‘[’_bAg (249)

o 7 17%7}?(()7{)) bTﬁpyq %np’z(b’b) l_ol ; 8} 250

_ - — (250)
L0 0 1 37 9(b,b)  —bTAPC 14 fyPa(b,b)| LO 0 1

1 — %np,q(@ b) —bl AP %nznq(b7 b)
= b 1 —b (251)
I _%qu(b7 by —bTAPI 14 %np,q(@ b)

liesin O(p + 1,q + 1) and that [Zy] extends the special conformal transformation oy, from RP? to
MP49. Furthermore, for b — 0 we see that Xy — I. This then even shows that: ¥, € Q° (p+1,q+1).

D.5 THE DEFINITION OF THE CONFORMAL GROUP OF THE PSEUDO-EUCLIDEAN SPACE

Definition D.5.1 (The global and restricted conformal group of the pseudo-Euclidean space). Based
on Satz|D.A4.2)we define for all p,q > 0 the global conformal group of RP*? to be:

Conf,(R??) :=PO(p+1,¢+1), (252)

and the (restricted) conformal group Conf(R?:?) of RP? to be the connected component of the
identity of PO(p+ 1,q + 1):

Conf(RP?) := Conf,(R”9) := Confy(RP9) = PO’(p+1,q + 1). (253)
Note that by Satz[DA1|we always have the inclusions:
Conf, (RP?) C Confy(RP?) C ConfDiff (MP7). (254)

Theorem D.5.2. Conf(RP*?) contains all affine conformal transformations x — Ax + b of RP+?
where A = cA € CO%(p,q) with ¢ > 0 and A € 0O%p,q) and b € R in form of the map
[Ceap] : MP9 — MP? from Satz and, also all the special conformal transformations oy, in
form of the map [Xp)] : MP? — MP? from Satz

D.6 A (PARTIAL) PARAMETERIZATION OF THE ANTI-DE SITTER SPACE
Proposition D.6.1. Let p,q > 0 and d := p + q. Consider the following space:
APTLE .= R x RPY, (255)

. . . +1, L .
which we endow with the metric nAP * which is givenatx € APT19 and with vy, vy € TLAPTHE =
RP+1:9 g5 follows:

AP+l - 77p+1’q(’l)1,’l)2)

Ny (’Ul,'UQ) = W (256)
Then consider the map:
¢ APTLT o RPFLATL gy (1) =2 gy, (257)
(258)
1—nPtld(x, z) 1 20 1 . .
0 — ’ — - T _ = Py l:d ,.1:d 259
(@) 220 520~ 3 g0 @, (259)
L xl:d
¢ (x) = o (260)
1+ nPtld(x, ) 1 af 1 d 1
d+1 p— ? - bl o N 1:d 1:d . 261
o (@) 220 520 T3 T e (261)
Then ¢ is a well-defined isometric embedding and its range coincides with the subspace:
~—p+1,
AdS" T = fy e RPHLAHL | pptatl(y ) = 1 A g0 4ydt S o) (262)
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~—p+1,
An inverse ¢~ AdSp ! — APTL9 of ¢ is given by:
1
0. (—1\0( \ _
1:d —1\1.d yhe
= () Ny) = S g (264)

Proof. We first show that ¢ is well-defined. For this we compute for y := ¢(x):

4|20 - Pt (y y) = (1 — Pt (a, :v))2 + AP (zh e ) — (1 + np+1’q(:v,x))2 (265)
= —dnP T (g, 2) + AP U (aB ) (266)
= —4)2°, (267)

implying: nP*1:4%1(y, ) = —1. Furthermore:
1—pPthd(z,z)  1+npPtH9(z,z) 1

— > 0. (268)

0 d+1 _
Yty - 220 220 )

~—p+1l,q
Together, this shows: ¢(z) = y € AdS C RP+LatL Ttis easy to see that ¢! is the left-inverse
to ¢, i.e.:

¢t od(x) =2 € APTHY, (269)

~—p+1,
To show that ¢! is also a right-invers let y € AdSp ! and = := ¢~ !(y). Then compute:

) 1 ) ylzd )
' (a) = et = (00 + ) o = v (270)
1 20 1
0 — - % = opa(plid ld 271
¢ (z) 5.0 5 550" (7% z7%) (271)
0, ,drl
y +y 1 1 p,q(,1:d , 1:d
= - — ’ : : 272
2 2 (10 + yat) 2(y0+yd+1)77 (v %y ) (272)
1 1 . .
=3 ((2/0 +yth) - gt (1+ Tlp’q(yl'd,yl'd))> (273)
1 1
= 5 ((yo + yd+1) _ W (lyd+1‘2 _ |y0|2)) (274)
1
=5 (0" +y™) = ("' =) 275)
=" (276)
Similarly:
1 20 1
d+1 - < P 1id L 1:d 277
04 ,drl
y Ty 1 1 paa(, lid | 1id
= ’ i : 278
2 2 (y0 + ydt1) + 2(y° +yd+1)77 (v %y ) (278)
1 1 . .
=3 ((yo )+ (U n"*q(yld,yl-d))) (279)
1 1
=3 ((yO ") g (8T - y“)) (280)
1
=5 (" +™) + (" ") 81)
=yt (282)
This shows that:
~—p+1,
goo\(y) =y AdS . (283)
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We now compute the differential of ¢:

D,q(plid o 1:d .
“ah = 3 ) (et T
do, = — o Iy (284)
pyq(1:d 1:d .
ot - T (et TAn
and the metric at z € APT14;
1 0 0
(doy) TAPYLIH L4 = (dg,)T [0 APY 0 | do,. (285)
0 0 -1

We compute the entries of the last matrix separately. First, top left entry:

1<1 ,,,Ip,q(l,l:d’xlzd) 1 )2 7,]p,q(ajlzdv‘rl:d) 1 (1 np,q(xlzd,zlzd) 1 )2

+

4 202 202 204 T4 |20 B |20]2
(286)
_ 1 - np,q(x1:d7x1:d) N Up’q(l'l:d,l‘l:d) (287)
|20]2 |20]2 |z0]4
1

Note that in the middle we used the formula: (a + b)? — (a — b)? = 4ab. Next, top right entry:

1 p,q(-1:d ,.1:d 1 1:p TAp,q 1:d TAp,q
9 |02 |20]2 20 203
1 p,q(1:d .1:d 1 1:d TAp,q
A IO o N U A e 90,
2 |20|2 |20 2 20
1 2 1:d TAp,q 1:d TAp,q
2\ [z9)2 20 |z03
=0. (292)
By symmetry also the bottom left equals 0. Finally, bottom right entry:
.q..1:d 1:d\T s g nlid 1:d\T s s
qu: (z )OquJFL?O’Ap,qLI(;,quéE (z )Oqu: qu. (293)
x x x x x x |z0|2
Together we get:
1 (1 o0 1
T APt1lg+1 _ _ +1,
(dy) ' APTHIT e, = W [0 Apvq] = P APTH, (294)
This shows the claim. O
Theorem D.6.2. The map:
~—— p+1,
AP+La o~ 3871 Ly Aqsptle) x5 g(z) =y [y, (295)
is an isometric embedding. The complement of its range is given by the closed subspace:
Z = {[z] € AdSPT19| 20 + 24T = 0} . (296)
The left-inverse for [z] € AdSPTHY (with 20 + 2%+1 £ 0) is given by:
y = Sgn(zl +f N v (297)
[ppthati(z, 2)|
and to get v € APT19 we put:
0 (100 _ VPR (z, 2))|
1:d —1y1:d 2l
%= (¢7 ) y) = SaH g 50 (299)
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Remark D.6.3. Note that in Satz[D.6.2)in the Euclidean case, i.e. if ¢ = 0, the subspace Z is empty,

as 2° 4+ 21 = 0 would imply:
0 > pPthatl(y 2) (300)
= 202 4 ezl plid)y a2 301)
= (29 4 29T (20 — 24 g gppa(pld Rl (302)
_ 771?711(21:(17 lel)7 (303)
which is not possible for ¢ = 0. It follows that for ¢ = 0 we get isometries:
Ar10 2 53870 2 AggrrLo (304)
Remark D.6.4. Forp,q > 0, d := p + q, consider the map:
¢ : Rso x RPY — PA+L z = [1— Pt (g, x) : 2214 0 1 4 P T (2, )] (305)

Then ¢ is well-defined. For x° = 0 the map ¢ coincides with the conformal embedding v of RP
into the conformal compactification MP4 C P! of RP4, and, for z° > 0, ¢ coincides with the
isometric embedding ¢ of AP1:9 into AdsPHhe C pdtt,

D.7 THE EUCLIDEAN CASE (p > 2 AND ¢ = 0)

In the following we now consider the Euclidean case, i.e. ¢ = 0, for p > 2, d = p.
Remark D.7.1. Note that we have:

SO = {+1}, S0 =89 x {+1}. (306)

So, for ¢ = 0, This thus simplifies the description of the conformal compactification, the corresponding
de Sitter and anti-de Sitter space.

Corollary D.7.2 (The conformal compactification of the Euclidean space). We have the isometry for
d>0andq=0,p=d:

M*0 =~ §¢ x {+1} = S% (307)
[2] — (ﬁ’+1) — j—jl. (308)
The conformal embedding is then given as:
1—nd0(x, z) 2x
1+ 730 (x,2)" 14+ n0(x, )
which coincides with the invers stereographic projection (from the “south pole”).

The group PO(d + 1, 1) then acts on S as follows, [A] € PO(d + 1,1), y = y*? € S¢:

()

[Aly = (Am)dﬂ (310)

where A {y] denotes the matrix vector product of (d + 2) x (d + 2)-matrix A and the vector y with a

7y RV 5 M0 =8¢ CRIFL 1 (2) = ( ) . (309)

1

1 appended as the last component. Note that the indices of the components of y € S* C R+ range
fromi=0,1,...,d.

Remark D.7.3. Note that we always have:
Isom(S%) = O(d + 1), @311)
via the usual action and for d > 2:
ConfDiff(S%) = PO(d + 1, 1), (312)
via the action above. The latter is part of Satz[D.4.2]
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Remark D.7.4. Recall that by Satz|D.6.1} Satz and Satz for ¢ = 0 we have isometries:

d+1,0

A0 = AGST T 2 AdSTHIY, (313)
—d+1,0
where we can slighly re-writé I AdS as:
—d+1,0
— {y c Rd+1,1 |,’7d+1,1(y’y) — 717yd+1 > 0} . (314)
With this we get the isometry:
—d+1,0 d+1
AdSHI0 > AQST T C RIFLYL [2] —Sgdnffl oy G19)
[n¢*11(z, 2)|
Note that then:
[y] = [2] € AdS?T! C poHL, (316)

o d+1,0
Furthermore, for [A] € PO(d 4 1, 1) we define the action ony € AdS ;

[A].y = sgn((Ay)*) - (Ay), (317)
where Ay denotes the usual matrix product. Note that this is well-defined and that:

Ay e Aas™ [[A]-y] = [Ay] = [A][y] € AdS*0. (318)

. . ~——d+1,0 d+1.0 . . .
This shows that the above isometry AdS >~ AdS™ 7 is also PO(d + 1, 1)-equivariant.

~——d+1,0
Definition/Lemma D.7.5 (Geodesic distance of AdS?T10). The geodesic distance on AdS ,

AdSTO and A0, resp., is given by:

— d+1,0
d*® (g1, yn) = arccosh (| (g1, 92)1) (319)
N d+1,1
a2 ([24], [22]) = arccosh T (1 z) , (320)
VI (21, 20)] - [nd 1 (20, 22))
. 0)2 0]2 d,0(.1:d .1:d
d*"° (w1, 22) := arccosh <|$1| + [z +0770 (21, o7 )> . (321)
2z s
. ) ) 4110 —d+1,0
Definition D.7.6 (Center of mass of a point cloud in AdS ). Letyy,...,yn € AdS be a
—d+1,0
point cloud. We then define a center of mass of y1, ..., yn on AdS as a point:
~—d+1,0
J € argmin — Z cosh (dAdS (y, yn)> . (322)
~—d+1,0
yeAdS
—d+1,0
Lemma D.7.7. Lety,...,yn € AdS be a point cloud and:
1 & 7
= — e R, Ji= —————— e R (323)
N 2:: VI 1y, )l
Then v is the (unique) center of mass of Y1, . - ., yn on AdS .

1®Note that for y € R4! with 911 (y,9) < 0 we have: |y¢T!|? > |y°|2. So, for those y, we have the

equivalence: y**' > 0 <= ¢° +y*** > 0.
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Proof. First note that for y,,, y, € RTH1 with n@ b1 (y,,, v, ), 04T (yk, yr) < Oand ydHtydtt >
~——d+1,0
0, which holds for y,,, yr € AdS , we get by the Cauchy-Schwarz inequality:
d
1 (Y, yr) = (Z Yn ~y;i> —yattyt! (324)
i=0
d d
=N D A RN D S AR AR e (325)
i=0 i=0
< \/|yd+1|2 \/|yd+1‘2 d+1 +1 (326)
(327)
This implies:
N N
(g, g Z N (Y, ) < 0 (328)
=1k=1
d+1 (5 5
a1y o 1T (GY)
=1 (0.9 = o oy = L (329)
Int+11(g, )|
~——d+1,0
Further note that y € AdS :
gd—‘rl
,d-‘rl Zyd+1 S0 — gd-‘rl _ ? > 0. (330)
517, 9)|
—d+1,0

These two points then show: § € AdS

To show the optimality condition for ¢ we reformulate the constrained minimization problem:

arg mln — E cosh (dAdS (y,yn)) , (331)
—d+1
y€AdS n=1

where for y, y,, € R4TH1 with n?+11(y, y,,) < 0 we have:

~—d+1,0
coshd™®  (y,yn) = In™ " (y, yn) | = =1 (Y, yn), (332)
as a partially (un-)constrained optimization problem with Lagrange multiplier A € R:
1N

argmin —— % 7" (g yn) + A (0 (m9) +1) (333)

yeR ! n=1
79t (y,y)<0
yd+1>0

Taking derivatives w.r.t. y we thus get the condition:

N
i 1 d+1,1 d+1,1
0=-% Z ALYy L oNATTLL, (334)
which implies:
1 XN
= o3 Z (335)
Plugging that into the constraint:
| 1
—L ="y y) = e m.9) <0, (336)
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necessarily implies:

2\ = £4/In¢T (g, 9)|, (337)
and thus:
1 +1
Y=~y = —F——=ono=0aoy =1J. (338)
2\ I+ (y, 9)]
With the constraint %1 > 0, we get the claim: y = 4. O

Remark D.7.8. To compute the center of mass for a point cloud in AdS™ 0 or A10 we can use

the isomorphism provided in Satz|[D.6.1) and Satz[D.6.2} resp., then compute the center of mass in
—d+1,0
AdS via the simple formula in Satz|D.7.7|and transform that point back to AdSTHL0 op AdHLO,

resp.
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