Under review as a conference paper at ICLR 2026

WHAT IS AN OPTIMAL GROWTH SCHEDULE FOR
LLARGE LANGUAGE MODELS? A THEORETICAL
STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing training methods for Transformer-based large language models (LLMs)
rely on massive amounts of data training from scratch, which requires a high cost
in terms of computation and time. One promising research direction has devel-
oped effective lifelong learning pipelines for efficient LLM pre-training by grow-
ing from small pre-trained models to large ones—a technique known as model
growth. There are two main research problems associated with model growth:
growth schedule and growth operators. Existing research focuses on growth op-
erators, detailing specific manipulations of potential dimensions to expand Trans-
former parameters. Few studies have investigated the optimal growth schedule,
which involves integrating all possible growth operators to create an optimal
multi-staged growth path. This work gives a theoretical study regarding what
is an optimal growth schedule for multi-stage growth of LLMs by introducing a
Schedule Learning methodology that uses an Optimal Path requiring minimal ex-
perimental training, referred to as SLOP. SLOP utilizes marginal utility as an ap-
propriate measure for an optimal schedule that balances training costs and model
performance after multi-stage growth. With this measurement, the objective of de-
termining the optimal growth schedule is converted into a dynamic programming
problem, which is then solved mathematically in polynomial time. Experiments
with up to 7B target LLM show SLOP’s theoretical validity as well as its effi-
ciency, outperforming alternative schedules in a range of settings.

1 INTRODUCTION

Transformer-based large language models (LLMs), such as GPT-4 (Achiam et al.|[2023) and Qwen3
(Yang et al.l [2025), have demonstrated impressive emergent abilities across various tasks. Existing
LLM pre-training approaches require enormous amounts of data to be trained from scratch, which
is both computationally and time-consuming, and they cannot accommodate the practical scenario
in which new data formerly unavailable for training continues to emerge. To save costs, there is a
growing interest in effective pre-training paradigms. One promising research direction has devel-
oped effective lifelong learning pipelines for LLMs (Qin et al.||2022; [Wang et al., 2023} |Yao et al.,
2023;|Han et al.,|2025)) to gradually increase small pre-trained models to large ones, known as model
growth.

There are two main research problems associated with model growth: determining the optimal
growth schedule and designing efficient growth operators (Yao et al.l 2023). Existing works (Du
et al.l [2024; Wang et al.| 2023} (Gu et al., 2021) primarily focus on growth operators, detailing
specific manipulations of potential dimensions (such as layers, hidden states, etc.) to expand Trans-
former parameters. They also investigate ways to inherit knowledge from the smaller model by
developing initialization methods for the newly extended parameters and taking the entire training
state as input (e.g., the optimizer state, the learning rate schedule).

Research on the growth schedule is limited. The methodology involves integrating all possible
growth operators to create an optimal multi-staged growth path. At each stage, one dimension is
expanded to develop an intermediate structure until the entire target LLM structure is attained. Ex-
isting works either adopt a single-stage growth without consideration for model schedules (Gu et al.,

Under review as a conference paper at ICLR 2026

2021} |Gong et al., 2019) or focus on determining the optimal scheduling using empirical insights,
even though it may be theoretically suboptimal (Yao et al.,|2023; Shen et al., 2022;|Han et al.,[2025)).
Ultimately, establishing an optimal schedule for multi-staged model growth necessitates consider-
ation of several fundamental challenges. 1) What is an appropriate measurement for an optimal
schedule? 2) How are growth operators implemented sequentially, and what number parameters
are inserted at each stage? 3) The exponential search space required for trial training makes it pro-
hibitively expensive to explore all possible growth paths (from the initial small model to the target
large model) in order to choose the most optimal one.

To address the aforementioned issues, we present a theoretical study of Schedule Learning method-
ology via Optimal Path, abbreviated as SLOP, for multi-stage growth of models with limited ex-
perimental training efforts. For Transformer-based LLMs, SLOP considers all possible expansion
dimensions, expanding one dimension per stage, but ignores more complex cases where several di-
mensions compound to increase per stage, leading to a search space burst. It is worth noting that
within our framework, depth-only or width-only growth may be considered a specific case.

Specifically, we formulate the problem of finding the optimal schedule for multi-stage model growth.
The marginal utility (Samuelson, |1937) is used as an appropriate measure for an optimal schedule
that balances training costs and model performance after multi-stage growth. With this measure-
ment, we can consider the task of determining an optimal growth schedule as a dynamic program-
ming problem. Finally, we demonstrate that the dynamic programming problem enables the theoret-
ical resolution of an optimal schedule in polynomial time, reducing the computational effort required
for trial training within the exponential search space.

To validate the correctness of SLOP’s theoretical reasoning results, we perform experiments with
various sizes of both the initial and target LLMs. The initial model parameters range from 100M to
3B, while the target model parameters reach up to 7B at maximum. The experimental results also
show that SLOP outperforms alternative schedules in a variety of scenarios, resulting in a reduction
in computational usage. Further ablation studies are conducted to evaluate our approach on various
growth scenarios.

2 RELATED WORK

Efficient LLM training. Efficient pretraining of large language models aims to reduce FLOPs.
Recent research focuses on stagewise efficient pretraining (Panigrahi et al., 2024)), progressive pre-
training, or model reusing (Chen et al., 2021; Wang et al., 2023} |Yao et al.l [2023 |Chen et al.,
2015). Specifically, model reusing involves maintaining the function of a pre-trained model as its
size increases, resulting in an initial state that performs well even when scaled to a larger model.
Net2Net (Chen et al., [2015) is the first to introduce the concept of function-preserving transfor-
mations in model reusing, expanding the width dimension by splitting neurons and increasing the
depth by adding identity layers. Bert2BERT (Chen et al.,[2021) applies function-preservation to the
Transformer structure, extending Net2Net’s concept. LiGO (Wang et al. [2023) recently utilizes a
trainable linear operator to develop an efficient expansion strategy. ELLE (Qin et al., [2022)) em-
ploys function-preserving model expansion within specific domains, leveraging pre-trained domain
prompts to efficiently adapt to emerging data over time. Du et al.| (2024) explores the viability of
existing model growth methods, focusing on three critical obstacles. Our method concentrates on
the model growth schedule, an area that previous studies have rarely addressed.

Model growth schedule. The formulation of a model growth schedule is an essential research topic
due to the rising prominence of model reuse and progressed pre-training. |Gu et al.| (2021) utilizes
heuristic rules that divide the training steps into distinct expansion stages to determine the training
schedule. |Shen et al.|(2022) identifies optimal growth schedules that maximize compute savings
by applying scaling laws to initiate a new stage when training efficiency decreases. The most rele-
vant works for us (Yao et al.l 2023} [Han et al., 2025) provide empirical insights for constructing an
efficient schedule considering all possible growth dimensions. However, they implement an empir-
ical optimal solution that demonstrates practical efficiency, despite the fact it may be theoretically
suboptimal. Existing works have not systematically or theoretically explored methodologies for
identifying optimal growth schedules, relying instead on empirical results, allowing more space for
our method’s innovation in the field of optimal growth schedule learning.

Under review as a conference paper at ICLR 2026

Multi-stages growth M, —> My

d I
| > |
} Start Stagel Stage2 Stage3 Stage4 |
‘ MODEL MODEL MODEL MODEL ‘
‘ M, M M,y Ms |
Aparams(94) ‘

Aparams(93)
} Aparams(93) Aparams(@3) ‘

Aparams(@,)—— > —————— > Aparams(@,) >
L) Aparams(@1) 2 o |
‘ Aparams(91) |
‘ Aparams(91) ‘
MODEL
\
M, 8 - |
Aparams (9.
} m o Aparams(®3) P @) |
params(9, Aparams(®3)

Operators: —>A D) ‘
| Multi-head Aparams(91) Aparams(@,)) Aparams(9;) I

‘ FFN attention Aparams(@,)
‘ Layer Hidden Aparams(®,) |
4 dimension @ |
S () S |

Fllayer number = x Cllayer number = 2x Bllayer number = 4x Singe Stage Growth
A\ Perplexit Pre-training stage
v GPT2depthsa Stage, Stage,
—— GPT2aeptrz

2816,2
— GPT2uepmn 2 (2816,2048,6) \)
N, Final Mt
Apply 7 (2816,7680.8)
(hidden,ffn,layer)
Applc > (768,2048,8)

Initial Ms /—

! (768.2048,6) N\~ X
‘ — (hidden, ffn,layer) N
N (1536,2048,6) — Final Mt
‘ 7 (1536.4096,32)

\ es208832) (hidden,ffn,layer)
Aty Trijining
Atc n . time Singe Stage Growth
PP . .
(b) cost = v (c) Examples with detailed parameters

Figure 1: (a) Different growth paths for considering all potential Transformer’s growth dimensions,
with each operator applied in one stage. Up to A} schedules exist by listing all growth operators.
(b) The ppl-training time relationship influences GPT?2 training efficiency at different depths. The
ppl and training time values are from our experiments. (c) The 1B parameter target model may
have various structures, including (2816, 7680, 8) and (1536, 4096, 32), which are arranged in a
sequence with hidden states, ffn, and depth. Growth can occur in one or two stages: two-stage
growth generates intermediate models such as (2816, 2048, 6) which increase the hidden states from
768 to 2816 during Stage;. See Appendix for more cases and explanations.

3 METHODOLOGY

3.1 PRELIMINARY

We start by defining some crucial terms. Consider a model y = M (x, 6), which accepts input 2 and
outputs y with parameters 6. M is the Transformer (Vaswani et al., 2017) in this study.

Growth operators. Take the vanilla decoder-only Transformer architecture as an example. M
consists of L decoder layers, each with a multi-head self-attention sublayer and a feed-forward
sublayer. Each decoder layer accepts an input embedding, which is presented as hidden states.
As a result, there might be four Transformer dimensions to expand: layers, multi-head attention
(mha), feed-forward network (ffn), and hidden states (hidden). We define the corresponding growth
operators for these four dimensions as ¢ = {qﬁlayer, Dmha> Pf fns ®hidden |- Bach operator ¢ € ®
randomly initializes the extended parameters of the dimension and reuses lower model weights for
bigger model weights. According to |[Karp et al.| (2024), the behavior observed at initialization may
not be a reliable indicator of final performance. Therefore, the influence of function-preserving is
ignored. Appendix [[contains more details about each growth operator.

Multi-staged model growth. The growth process from a smaller model M to a target model My, 4
is facilitated by applying one or more growth operators. These operators expand the model’s dimen-
sions, increasing the number of model parameters from 6 to 8. Traditional works (Chen et al.,
2021; Wang et al., |2023) typically utilize one or more operators within a single stage to accom-
plish the goal, where £ = 1 and no intermediate models develop. In the multi-stage scenario, the
initial model M increases by one dimension at each stage, ultimately achieving the target model

Under review as a conference paper at ICLR 2026

M.+, following k expansions. Figure|l|(a) provides examples of the Transformer’s four potential
dimensions for multi-stage growth. Figure [1](c) presents examples that compare single-stage and
multi-stage growth options. The sequence from M, to My, comprises multiple intermediate mod-
els, represented as P = {M;, Ms, ..., Mj41}, where the maximum value of % is 4, determined by
the complete set of growth operators. It is worth noting that for a given magnitude of parameters,
target model has multiple distinct structures. Figure [I] (c) shows that the 1B model has different
structures (2816, 7680, 8) and (1536, 4096, 32) in a sequence with hidden states, ffn, and depth.
More cases and explanations refer to Appendix

3.2 TASK FORMULATION

A multi-stage model growth task can be formulated as below.

Growth Path P : M1(z,01) = -+ = Mg41(z,0k+1)
schedule : € = {¢1, da, ..., bk} M
operator : 011 = ¢ (0k), o, € ©

oy is a growth operator during one growth stage for expanding one dimension to grow the M} with
05, to M (k+1) With 011, and ® is the growth operator set. Mo, ..., M} represent the intermediate
models generated at the end of each growth stage, corresponding to the application of each growth
operator to increase a specific dimension.

Each feasible M) structure possesses A} schedules by enumerating all possible ® =
{Giayers Omha, @ fns Phidden } combinations. Each operator is restricted to a single use at each
stage, reducing the schedule search space. Finding an optimal multi-staged growth path, which con-
sists of multiple growth operators in a sequential order, to achieve better performance than other
optional growth paths with limited training time is not trivial.

Definition 1: Given a computing budget of C' and the target model size IV, an optimal training sched-
ule identifies the optimal sequence of growth operators and intermediate structures which minimize
computational cost without compromising target model performance.

3.3 MEASUREMENT OF OPTIMAL SCHEDULE USING MARGINAL UTILITY

To find an optimal schedule, we need to answer the first question: what is an appropriate measure-
ment for an optimal schedule? We propose determining a good schedule measurement based on
model performance and training costs. The model performance is evaluated using loss or perplex-
ity (ppl) values, following most of the prior work for model optimization (Hoffmann et al., [2022).
Figure [I] (b) shows the relationship between ppl and training time, which can reflect the training
efficiency of LLMs. It is non-trivial to find an appropriate objective function to optimize them
simultaneously.

To address this problem, we borrow the concept of marginal utility in economics (Samuelson, |1937)
and propose using the marginal utility of schedule (MUS) as the optimization objective. MUS
evaluates the gains (reduction in ppl) that a model may obtain from an increase in cost (training
time). Formally, MUS represents the derivation of the reduction of ppl to training time, which is
calculated as:

~ Apply,
= At(or)

Pr €€ 2

Apply, = ppl(My) — ppl(My41) is a positive value, representing the reduction in ppl achieved
by the M}, after training, when ¢y, is selected as the operator for this expansion of M} to M.
At(¢y) means the training time from My, to M1 costs.

Clearly, a higher benefit-cost ratio corresponds to a larger MUS. Given this MUS feature, we can
shift our focus from finding an optimal schedule to establishing an optimal growth path that results
in the highest MUS. A simple solution is to enumerate all candidate paths. Despite its simplicity
and effectiveness, training all intermediate models and computing MUSs requires a significant cost.
To address this, we investigate a learning-based method, SLOP, with restricted trial training.

Under review as a conference paper at ICLR 2026

3.4 SCHEDULE LEARNING VIA OPTIMAL PATH

We treat finding an optimal growth schedule as a dynamic programming problem, searching for
the schedule in polynomial time. The goal is to find the optimal growth path from M to My
with the highest MUS, as described in Eq[2] Therefore, the objective of Eq[2]can be transformed as
below. By theoretically solving the dynamic programming problem, we could significantly reduce
trial training costs, which include enumerating and assessing all feasible paths.

Apply, . Applqﬁk
arg max <= arg max 3)
dree Z At(dr) brEE Z < Ap

In Eq3] Aparams(¢r) = params(M k1) — params(M %) represents the parameter that increases
with each growth stage. Given that the natural logarithm, In(-), is a monotonically increasing func-
tion, Eq[3]can be expressed as:

4

Appl Appl
arg max _ TP <= arg max Z In PP
pree it Aparams(oy) pree i Aparams(oy)

4

<~ arg maxz [In (Apply,) — In (Aparams(¢x))]
PrEE =1

4)

Optimizing the upper bound of EqH] yields the re-formulation shown below (< represents the re-
laxation of solution space in this situation):

4
argmaxz [In (Apply,) — In (Aparams(¢r))] <=

¢ EE k—1
4 4 (5)
arg max Z In (Appl,,) — arg min Z In (Aparams(¢x))
Pr €€ k=1 ¢r €€ k=1

Following a series of derivations (refer to Proofs below), the objective function in Eq[3]is trans-
formed to:

4 4
arg max — Z log (qas; (z:)) — arg min Z In (Aparams(¢yr)) (6)
br €€ k 1 PrEE k=1
@ @

where D is the number of samples in the test set; gz, («;) is the probability distribution predicted
by the M5 for any input x; in the test set.

Proofs: By utilizing just the first term of Eq[5] we can get the following reformulation:

4
argmalen (Apply,) <= argmaxIn (ZAppl¢k)
PrEE k=1 brEE k=1
= arg max In (ppl(My) — ppl(Ma) + ppl(Mz) — ppl(Ms) + - - - + ppl(My) — ppl(Ms)) (D
LEE
= argmax In (ppl(M1) — ppl(Ms))
LEE

The relaxation of the upper bound in Eq[7] benefits from the monotonically increasing property of
In(-). Since the initial M; before expansion is fixed, its corresponding ppl is a constant value, and
we can obtain:

arg max In (ppl (M) — ppl(Ms))

PrEE
= ar(% max[ppl (M) — ppl(Ms)] (8)
KEE
<= arg max ppl(M;) — arg min ppl(Ms5)
orEE PrEE

Under review as a conference paper at ICLR 2026

Consequently, the objective of the first term of Eqis to pursue argmin ppl(Ms):
€€

arg min ppl(Ms) <= arg minIn (ppl(Ms)) = arg minIn (e% i1 BCu; (@)

PrEE €€ PrEE
1 & 1 &
= argmin 75 3 BC, (1) = argmin 75 3 [~ Pagy(a:) log(aus (1)))
=1 =1
1 D
<= arg max — lo T;
gmax 5 3 log(aan (1)

where ppl(Ms) = e 221 ECus (20 and EC . (2;) = —Pag, (2;) log(qas, () is used to calcu-
late cross-entropy. Py, (z;) denotes the ground truth distribution, which is a constant value.

End of Proof.

Recap that Eq[6]splits the entire solution into two parts: 1) Finding the optimal target model with the
highest average probability of accurate token prediction; 2) Enumerating all schedules and selecting
the optimal one that satisfies Eq[6]@).

In part.(D) of Eqf] for a model M, when the parameters N and computation cost C' are fixed, the
optimal loss can be predicted through the scaling law (Hoffmann et al.|[2022), which is solely related
to the model’s parameters N rather than its structure. Therefore, part. (I) in EqJ6]can be taken as a
constant. Then the optimization goal of Eq[6]becomes:

4

arg min Z In (Aparams(¢y))
PrEE k=1
= argmin[ln (Aparams(¢1)) + - - - + In (Aparams(¢4))] (10)
PrEE
= arg min In[Aparams(¢1) * - - - x Aparams(¢y)]
oL EE

Setup of optimal path. Note that Eq[I0]has the same form as the objective function in the optimal
path. To solve Eq given a directed graph G = (V, E') where V is the set of vertices and F is the
set of edges. Each edge e;; = (v;,v;) has a non-negative weight w(v;, v;). The goal of Eq[I0]is to
find a path from the source to the target vertex that meets certain conditions.

In this scenario, the vertices represent all of the potential intermediate model structures that could
emerge as the model grows. The weights w(v;,v;) of the edges in E illustrate the variations in
parameters at every stage of growth between the two vertices in V. Our objective is to find a path
from the source vertex (vM1) to the destination vertex (v"%) in four stages, ensuring that the
product of the edge weights is minimized:

4

minHwk(vi,vj) (11)

k=1

Although the destination vertex is not unique, they share the same number of Mj5’s parameters N5.
Formally, such constraints are defined as:

params(v™s) = Nj,

M Ms Ms

(12)
voMs V_setigrger = (v 7,057, ..., 0.)

Now, we can use optimal path algorithms, such as the Dijkstra algorithm, to efficiently obtain the
optimal schedule without trial training. Our algorithm details are shown in Algorithm[T]in Appendix
which outputs optimal schedules satisfying Eq[2}

Under review as a conference paper at ICLR 2026

Table 1: Training time for SLOP and other potential schedules on same training data over growth
stages. Training time refers to the number of GPU hours required by the schedules to grow a model
within the same data size. Since the attention head numbers do not lead to changes in parameters,
we only consider the three dimensions (hidden-ffn-layer). To simplify the representation of schedule
sequences, the abbreviations are used in table: 1 for layer, f for ffn, and h for hidden. SLOP utilizes
minimal GPU time for training while maintaining superior performance in terms of perplexity.

. Schedules X Initial ‘ stageq ‘ stageg ‘ stages ‘ Sum
Model Size Target structure sequence [1Aparams PPL Wall time (GPU hours)
layer hidden ffn
I-h-f 6.59E + 24 31.43 335 10.91 34.70 54.69 103.65
ffn hidden layer
(2816,7680.8) h-f-1 1.81F + 26 39.84 3.35 27.88 42.87 54.69 128.79
hidden ffn Tayer
100M h-f-1 4.66E 4 24 31.1 335 13.01 14.87 57.00 88.23
(768.2048.6) (1280,3584,40) layer hidden ffn
1 I-h-f 1.65F + 26 38.65 3.35 24.78 44.61 57.00 129.74
1B ffn Tayer hidden
1] 5
(2560,6912,10) f-I-h 8.53E + 24 32.99 335 1_3.56 17.66 55.97 90.54
hidden ffn layer
h-f-1 1.24F + 26 38.65 3.35 24.78 36.56 55.97 120.66
layer ffn hidden
(BI6T6808) | gropirh | 1.69E 424 | 30.61 335 10.90 16.36 5460 | 8530
hidden layer ffn
h-1-f 2.11E 4 29 19.11 66.66 80.80 104.37 142.07 393.9
3B (3584,14336,32) hidden ffn layer
(3072,8192,24) h-f-1 2.21E + 29 19.80 66.66 80.80 109.08 142.07 398.61
1 layer ffn hidden
-f-] 9
7B (4096,11008,30) 1-f-h 1.84E + 29 18.32 66.66 80.80 94.69 136,35 378.5
ffn layer hidden
SLOP f-1-h 1.77E + 29 15.37 66.66 7177 94.69 136.35 375.47

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Downstream benchmarks. For pre-training, we use the redpajama (Computer, [2023))
dataset and create 500B token training data using Llama’s(Touvron et al.,[2023a)) training data mix-
ture ratio, detailed in Appendix For the 1B target model, 100B tokens are used for model
growth training. For the 7B target model, SO0B tokens are used. For downstream task assessment,
we use a set of common LLM evaluation benchmarks that include commonsense reasoning (Hel-
laswag (Zellers et al.l [2019), PIQA (Bisk et al.l [2020)), common aggregated benchmarks (BBH
(Suzgun et al., 2022), Lambada (Paperno et al.,|2016)), and math (GSMS8K (Cobbe et al.| 2021)).

Model growth settings. All of the models in our studies use vanilla decode-only Transformer
architectures. Due to computational constraints, we evaluate our proposal with the target model
parameter up to 1B and 7B, growing from different starting point models. During model growth,
we adhere to a few simple constraints contained in the existing LLM structure, as detailed in their
published technical report, such as Llama (Touvron et al., [2023a)), Qwen (Bai et al., 2023} Yang
et al.| 2024)), Baichuan (Yang et al.,[2023)), and Mistral (Jiang et al.,|2023)). The constraints include:
1) The hidden dimension size is a multiple of 128. 2) The hidden dimension is either 8/3 or 4 times
the ffn dimension. 3) The number of attention heads should be divisible by the hidden dimension;
nevertheless, this has no effect on the model’s size. Check Appendix [H]for more details. With these
constraints, we randomly select the parameter N; = 100M for the initial starting point model (with
the 1B growth target model parameter) with the structure (768, 2048, 6, 6), which corresponds to the
four dimensions of (hidden, ffn, layer, and mha). Similarly, we randomly select the parameter N =
3B and the structure (3072, 8192, 24, 24) as another initial starting point model for the 7B growth
target model. The settings details for the growth operator are illustrated in Appendix [T}

Implementations. The target 7B model is trained on 64 A100 GPUs, and the entire model growth
training time for S00B tokens is around 16 days. The target 1B model is trained on 8§ A100 GPUs
over a 5-day period with 100B tokens. More details could be referred to Appendix

4.2 RESULTS AND ANALYSIS

Evaluate the theoretical validity of SLOP. Table [I|shows a comparison of the pre-training perfor-
mance of the SLOP recommended optimal schedule and other optional schedules. There may be
multiple model structures for the target 7B and 1B parameter models. For the 1B target model, the

Under review as a conference paper at ICLR 2026

experiment includes all possible target model structures adhering to the previously stated structural
constraints. For the 7B target model, we adopt representative structures referring to the published
Qwen2.5-7B (Qwen et al, [2024) and DeepSeek-7B (DeepSeek-Al et all [2024) models. For ex-
ample, in Table [I] one of the target structures is designated as (2816, 7680, 8), corresponding to
the parameters (hidden, ffn, layer). We will apply this model structure notation uniformly through-
out this section. The growth path ignores the expansion of attention head numbers, as it does not
alter the parameters. The schedules in Table [I] cover all the possible sequences of the growth di-
mensions. Considering that the increased parameters at each stage are also part of the objectives
for optimization, it is impractical to list all potential combinations of Aparams for each stage be-
cause of computational and time limitations. Therefore, the minimal [] Aparams are chosen as a
representation for each path, guaranteeing that the experiment includes all suboptimal possibilities.

Validaion oss

(a) stager (b) stages (c) stages

Figure 2: Validation loss vs. training time of 1B and 7B target models for different schedules.

We have the following observations from Table [T} SLOP outperforms alternative schedules on both
1B and 7B scales in terms of perplexity, reducing computational utilization from 5.79% to 34.25%.

Figure 2] presents the loss results corresponding to dif-
ferent training schedules utilizing the 7B target struc-
ture specified as as (4096, 11008, 30, 32) in terms
of (hidden, ffn, layer, head number) and the 1B tar-
get structure specified as (2816, 7680, 8, 6). During
the first growth stages, the intermediate model struc-
ture selected by SLOP underperform due to compar-
atively limited parameters. Upon completion of the
growth stages, SLOP demonstrates a significantly re-
duced training time compared to alternative schedules
while preserving similar or superior loss values.

Additional experiments are being designed to further
Figure 3: Correlation heatmap between illustrate the capabilities of SLOP visually. We com-
different schedules. The color closer to pute the correlation between the training times of var-
red suggests that the computational costs 10ous schedules and present the correlation heatmap
among these models are more similar. shown in Figure 3] A clear transition is observed

among schedules: those with closer [[Aparams ex-

hibit higher training time correlation. From a different
perspective, this demonstrates that LLM training costs are positively related to [[Aparams, sup-
porting our use of minimal || Aparams to represent the potential growth sequence.

Performance on the downstream tasks. As shown in Figure] we evaluate the performance of
both the 7B and 1B target LLMs on a suite of popular benchmarks utilized by Llama2
[2023b). It can be concluded that, in comparison to alternative schedules, SLOP demonstrates
enhanced performance in most downstream tasks. This suggests that the knowledge gained through
the optimal schedule during model growth can be effectively utilized for downstream tasks.

Evaluate with other baselines. We conduct a comparison of various growth schedule baselines
to evaluate the effectiveness of SLOP, which are listed as follows. 1) SCHL-from scratch: We
train from scratch to obtain the target 1B parameter model using the previously specified 100b token
pre-training dataset. 2) SCHL-single stage: The initial model with 100M parameters is expanded
to the target model of 1B parameters through a single-stage growth strategy. 3) SCHL-MSG: The
most recent proposed growth schedule by MSG is also compared. 4) ELLE: To

Under review as a conference paper at ICLR 2026

Lambada PPL Lambada ACC Hellaswag

Figure 4: The performance of both the 7B and 1B target models generated by various schedules
following multi-stage model growth on representative downstream tasks. Blue line represents SLOP.

assess the overall performance of model growth, we conduct a comparison with the model growth
method ELLE, which allows for the incremental expansion of both the width and depth of the LLMs.
Table 2] demonstrates that SLOP exhibits a reduction of 19.53% in training time when compared to
SCHL-MSG and ELLE, while the perplexity remains nearly equivalent. Compared with SCHL-from
scratch and SCHL-single stage, although the perplexity increased, SLOP saves 113.7% in training
time. The comparison with baselines on downstream tasks can be found in Appendix[H

Ablation studies: effect of different

initial models. We assess if SLOP Typle 2: Evaluation of perplexity and training time for
could find the optimal growth path SI.OP compared to alternative baseline schedules, growing

for different starting point models us- from jdentical initial models to target models.
ing the same target 1B model. The

initial model has 450M parameters,

Target

compared to the prior 100M initial structure Model PPL Wall time (GPU hours)
model in Table [Tl The performance SCHL-from scratch 26.43 182.29

. o SCHL-single stage ~ 28.76 167.41
of different sghedule?s, after multi (2816.7680.8) SCHL-MSG 3118 101.96
stage growth, is detailed in Table @ ELLE 30.6 91.01
The SLOP schedule offers significant SLOP 30.61 85.30

computational savings while main-
taining high performance, regardless
of initial model changes. We further investigate more ablation studies in Appendix [E} about effects
of target model structures, parameters, multi-head attention and etc.

Table 3: Training time for SLOP and other schedules on the same data in the pre-training stage,
utilizing a 450M initial model, is different from the 100M initial model in Tablem

. Schedules Initial stagey stageg stages Sum
Model Size Target structure sequence [T Aparams PPL [‘Wall t[ime (GPU hmlrs) [
hidden ffn layer
h-f-1 4.71E 4 24 33.01 777 26.03 27.51 57.62 118.93
450 M layer hidden ffn
(1024,4096,24) (1152,4608 40) I-h-f 6.55E 4 25 35.08 777 47.()9 53.90 57.62 166.38
1 hidden layer ffn
1B h-1-f 1.69E + 25 34.42 7.77 26.02 53.90 57.62 145.31
ffn hidden layer
SLOP f-h-1 2.28E + 24 33.01 7.77 24.62 27.51 57.62 117.52

5 CONCLUSION

This study examines optimal model growth schedule learning problems, concentrating on determin-
ing a suitable sequence that integrates several operators to enhance performance for the target LLM.
We present a cost-effective optimal path learning method within the framework of a multi-stage
model growth scenario that could attain theoretically optimal results. Observe that we examine a
straightforward scenario in which each growth dimension occurs just once along the path. We will
leave more complex scenarios for future work.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models. arXiv
preprint arXiv:2110.07143, 2021.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama—Data.

DeepSeek-Al, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X.
Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren,
Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng
Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong
Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu,
Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,
Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek llm:
Scaling open-source language models with longtermism. abs/2401.02954, 2024.

Chinmay Deshpande, David Gens, and Michael Franz. Stackbert: machine learning assisted static
stack frame size recovery on stripped and optimized binaries. In Proceedings of the 14th ACM
Workshop on Artificial Intelligence and Security, pp. 85-95, 2021.

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, YikangShen, Reynold Cheng, Yike Guo, and
JieFu. Stacking your transformers: A closer look at model growth for efficient llm pre-training.
38th Conference on Neural Information Processing Systems (NeurIPS)., 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient train-
ing of BERT by progressively stacking. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2337-2346. PMLR, 09-15 Jun 2019. URL
https://proceedings.mlr.press/v97/gongl9a.html.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer
growth for progressive BERT training. In Kristina Toutanova, Anna Rumshisky, Luke Zettle-
moyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and

10

https://github.com/togethercomputer/RedPajama-Data
https://proceedings.mlr.press/v97/gong19a.html

Under review as a conference paper at ICLR 2026

Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pp. 5174-5180, Online,
June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.406.
URLhttps://aclanthology.org/2021.naacl-main.406.

Xue Han, Yitong Wang, Junlan Feng, Qian Hu, Chao Deng, et al. Loire: Lifelong learning on in-
cremental data via pre-trained language model growth efficiently. In The Thirteenth International
Conference on Learning Representations, 2025.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Stefani Karp, Nikunj Saunshi, Sobhan Miryoosefi, Sashank J Reddi, and Sanjiv Kumar. Landscape-
aware growing: The power of a little lag. arXiv preprint arXiv:2406.02469, 2024.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. EMNLP 2018, pp. 66, 2018.

Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale,
and Sanjiv Kumar. Efficient stagewise pretraining via progressive subnetworks. arXiv preprint
arXiv:2402.05913, 2024.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle:
Efficient lifelong pre-training for emerging data. arXiv preprint arXiv:2203.06311, 2022.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.
abs/2412.15115, 2024.

Paul A. Samuelson. A Note on Measurement of Utility. The Review of Economic Studies, 4(2):
155-161, 02 1937. ISSN 0034-6527. doi: 10.2307/2967612. URL https://doi.orqg/10.
2307/2967612.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715-1725, 2016.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and 1z Beltagy. Staged
training for transformer language models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 19893-19908. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/
v162/shen22f.htmll

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

11

https://aclanthology.org/2021.naacl-main.406
https://doi.org/10.2307/2967612
https://doi.org/10.2307/2967612
https://proceedings.mlr.press/v162/shen22f.html
https://proceedings.mlr.press/v162/shen22f.html

Under review as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837, 2017.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li, Ru He, and Jingqgiao Zhang. Progressively
stacking 2.0: A multi-stage layerwise training method for bert training speedup. arXiv preprint
arXiv:2011.13635, 2020.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. arXiv preprint arXiv:2305.02869, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We appreciate the assistance provided by GPT-4 (Achiam et al., [2023) in writing aid and sentence-
level polishing.

B LIMITATIONS

In this work, we propose a theoretical solution for finding the optimal growth schedules for multi-
stage growth involving all possible dimensions. However, due to limited computing capacity and
budget, we could not conduct experiments to validate all the possible growth paths but had to select
representative ones. The target model parameter is limited to 7B at maximum. This constraint is
present in the vast majority of research projects, according to our knowledge.

C ALGORITHM

D EXPERIMENTAL DETAILS

D.1 DETAILS FOR THE EXPERIMENTS SET UP

Datasets: The training dataset mixture, comprising 500 billion tokens, adheres to the mixture ratio
established by Llama (Touvron et al.| 2023a), as detailed in Table E}

Tokenizer: We tokenize the data with the byte pair encoding (BPE) algorithm (Sennrich et al.,
2016), using the implementation from SentencePiece (Kudo & Richardson, 2018)).

12

Under review as a conference paper at ICLR 2026

Algorithm 1 SLOP

Input: G = (V, E), v, .., V_setiarges = {0175, 03", ... v} %}
Output: Traverse v? s ¢ V _setiarget, find the top K smallest dist[viv [5], and output its path (predecessor

: ; M
vertices) according to prev(v, °|

1: Initialize: Create vertex set Q = 0)
2: for eachvin V do

3: dist[v] + oo //initial distance is set to infinity

4 prev|v] < Undefined // Undefined Vs predecessor vertex
5. Addvto@
6
7
8
9

: end for
s distuMy,] =1
: while Q # () do
: Find vertex u satisfying min(dist) = dist[u]
10: Extractufrom Q: Q = Q —u
11: end while
12: for each adjacent vertex v of u do
13 if dist[v]>dist[u] * w(u,v) then

14: dist[v] < dist[u] * w(u,v)
15: prev[v] + u

16: end if

17: end for

Table 4: The pre-training data mixture ratio

Dataset ratio
CommonCrawl 67.0%
C4 15.0%

Github 4.5%
Wikipedia 4.5%
Books 4.5%

Arxiv 2.5%
StackExchange 2.0%

Optimization: Our models are trained using the AdamW optimizer, with the following hyper-
parameters: 1 = 0.9, S = 0.95. We implement a cosine learning rate schedule, with the final
learning rate set to 10% of the maximum value. Our weight decay is 0.1, and we apply gradient
clipping at 1.0. We configure the batch size of 1B target model to 256K and the batch size of 7B
target model to 1M, both using a warmup period of 2,000 steps. The details of the hyperparameters
for our different models are given in Table 5]

Table 5: Model sizes, structures, and optimization hyper-parameters

params structure learning rate batch size n tokens
1B (dnidden, dffwuNlayer;Nhead) 3.0e 7 256K 100B
B (dhiddena dffn7NlayeT'7Nhead) 3~0€_4 IM 500B

D.2 MORE DETAILS FOR THE GROWTH SCHEDULES IN THE MAIN EXPERIMENT

We present some sample schedule details (schl, sch2, and sch3) for their respective expansion se-
quences, as shown in Table[6]

E ABLATION STUDY

E.1 COMPATIBLE TO THE SPECIAL CASES OF TWO-DIMENSIONAL EXPANSION.

Existing studies on model growth often investigate expanding in depth and width dimensions (Yao
et al., 2023} |Yang et al., [2020; |Shen et al., 2022} |Wang et al., 2023)). To validate the universality of

13

Under review as a conference paper at ICLR 2026

Table 6: Growth schedules expand in one dimension in each stage. The schedules listed are part of
the main experiment used.

Schedule sequence initial stagel stage2 stage3
schl h-f-1 (768,2048,6) (2816,2048,6) (2816,7680, 6) (2816, 7680, 8)
sch2 I-h-f (768,2048,6) (768,2048,40) (1280,2048, 40) (1280, 3584, 40)
sch3 f-1-h (768,2048,6) (768,6912,6) (768,6912,10) (2560,6912,10)

SLOP I-f-h (768,2048,6) (768,2048,8) (768,7680,8) (2816,7680,8)

SLOP, we limit the growth operators to) = {@iayer; Phidden }. We set the structures of the initial
model M to (768, 2048, 6, 6), and the 1B target model M; to (2816, 7680, 8, 22). Tablecompares
the performance of different schedules after two expansion stages for width and depth. The results
presented the utility of SLOP in specific cases.

Table 7: Training time for SLOP and other schedules, growing with depth and width.

Schedules Initial | stage; | stages | Sum
Target structure sequence [[Aparams PPL Wall time (GPU hours)
hidden layer
(2816.7680.8) h-1 1.41E+17 38.65 3.35 64.31 82.03 149.69
layer hidden
SLOP I-h 1.38E+16 38.65 3.35 16.36 82.03 101.74

E.2 THE IMPACT OF MULTI-HEAD ATTENTION.

Table [§] shows the effect of inserting ¢y,n, on various positions within the SLOP recommended
schedule (h-f-1, corresponding with Table [T). The target model structure is (1536, 4096, 32) with
1B parameter. Expanding the multi-head at stage; serves as the baseline. The placement of .44
within the first three stages appears to have a small impact on training time. Positioning ¢, as the
final stage will result in increased fluctuations in performance throughout the model growth process.

Table 8: The percentage savings in computing time pertains to the positioning of the ¢, at various
growth stages in relation to the baseline, which involves expanding the @, at stage;.

Schedules stagei \ stages \ stages \ stageq \ Sum
Target Structure | sequence computational savings (%)
f-head-h-1 | 0.56 -0.19 -2.09 -0.37 -0.51
(1536,4096,32) | f-h-head-1 | 0.56 -23.56 0.20 0.52 -2.86
f-h-I-head | 0.56 -23.56 -210.67 -1.58 | -39.77

E.3 THE IMPACT OF EXPANDING MHA IN DIFFERENT SEQUENCES

The experiments depicted in Figure [3] further back up our conclusion, demonstrating that the se-
quence of ;54 has minimal impact on the model’s overall performance. In comparison, expanding
the head as the final stage results in suboptimal performance in downstream tasks.

E.4 THE IMPACT OF VARYING THE NUMBER OF HEADS.

Table 9] indicates a positive correlation between the number of heads and the increase in ppl.

We also investigate the influence of different numbers of attention heads on downstream task per-
formance. As depicted in Figure[6] the optimal overall results are achieved with a head number of
6.

14

Under review as a conference paper at ICLR 2026

aaaaaaaaaa

staget
ssssssssssss

staged 25 | o stages

staget stage2 stage3 staged nitial stage1 stage2 stages staged inital stage1 stage2 stage3 staged

PIQA . GsmeK

stagea
stagos

Figure 5: The target LLM’s performance after multi-stage model growth pre-training on representa-
tive downstream tasks with ,,,1,, in different sequences.

Table 9: Perplexity of the target model with the head number increasing from 6 to 48 values, main-
taining a fixed schedule of head-ffn-hidden-laye.

stage ‘ stagez ‘ stages ‘ stages ‘ Avg.
head number Perplexity (PPL)
headg | 107.53 104.87 70.48 31.29 | 78.54
heads | 117.89 111.15 68.77 30.80 | 82.15
head;s | 117.87 11025 70.27 30.61 | 82.25
headqg | 11876 11198 68.71 31.10 | 82.64
headss | 120.30 116.81 68.69 31.64 | 84.41
headss | 126.02 120.54 69.10 32.24 | 86.98
headys | 12640 126.02 71.17 32.99 | 89.15

E.5 THE IMPACT OF DIFFERENT TARGET MODEL STRUCTURE.

To demonstrate the applicability of our method to all target structures, we conduct a supplemental
experiment to evaluate the effectiveness of SLOP with an additional target structure (2048, 5632,
16), compared to baseline MSG. As shown in Table[I0} the results further corroborate the versatility
of SLOP across various target structures.

Table 10: Evaluation of perplexity and training time for SLOP compared to alternative baseline
schedules, growing from identical initial models to target model (2048,5632,16).

Target structure Model PPL Wall time (GPU hours)
SCHL-single stage 32 192.21
SCHL-MSG 36 114.54
(2048,5632,16) g1y g 34 105.88
SLOP 34 94.97

E.6 THE IMPACT OF SMALLER PARAMETERS.

We further verify the generality of SLOP on smaller models, from 27M to approximately 105M
parameters. For a comparison, SLOP-105M and ELLE-105M employ different schedules and op-
erators for model growth, progressively increasing from an initial model of 27M parameters with
dimensions (384, 1024, 6) to a target model of 105M parameters with dimensions(768, 2048, 12).
GPT-105M fixes the number of parameters at 105M and maintains a constant model size through-

15

Under review as a conference paper at ICLR 2026

PIQA N GsmeK

‘‘‘‘‘‘‘‘

Figure 6: After multi-stage model growth, the performance of the target LLMs varies with different
head numbers over representative downstream tasks.

out each training stage. As presented in Table [TT] the experimental results presented in the table
demonstrate that our method is equally applicable to models with smaller parameter sizes.

F PERFORMANCE COMPARISON WITH BASELINES ON THE DOWNSTREAM
TASKS

We conduct additional experiments comparing SLOP to the model growth baseline MSG, mentioned
in Table 2] on some of the downstream tasks specified in Section[4.1]to assess SLOP’s effectiveness.
Table [12] below shows the results of the representative downstream tasks, demonstrating SLOP’s
robust performance on downstream tasks.

Table 11: Evaluation of FLOPs and training time for SLOP compared to alternative baseline sched-
ules in smaller models, growing from an initial model (384, 1024, 6) to a target model (768, 2048,
12).

Target structure Model FLOPs(e18) Wall time (GPU hours)
GPT-105M 4.46 3.10

(768, 2048, 12) ELLE-105M 6.64 4.60
SLOP-105M 4.08 2.83

Table 12: The performance of SLOP compared to baseline MSG on representative downstream
task.

Target structure Models Lambada acc Lambadappl BBH Hellaswag
SCHL-MSG 42.90 90.77 6.89 22.90
(2816,7680.8) g op 59.2 6673 1500 20.69

G CASES FOR THE GROWTH SCHEDULE PATHS

Figure[7]illustrates that the expansion of the Transformer model is configured with four dimensions:
hidden_dim, ffn_dim, head_number, and layer_number. We select one dimension for each expansion,
resulting in a total of four expansions. The number of parameters in the model expands from a to b.
For more complex scenarios in which each dimension can undergo multiple repetitions during the
expansion process, such as hidden_dim, ffn_dim, head_number, hidden_dim, and layer_number, the

16

Under review as a conference paper at ICLR 2026

entire search space becomes significantly larger and more complicated. In this paper, we omit this
case, focusing only on expanding each dimension once along the expansion path.

As an example depicted in Figure [7] let’s assume the initial model’s four-dimensional parameters
are set to (384, 1024, 6, 6), and through four rounds of expansion, the target parameter for the target
model is achieved at 1B. If the target model’s four-dimensional parameters are (768, 2048, 12, 12),
we can calculate the number of possible path choices for the expansion schedule by multiplying the
factorial of the number of steps in each dimension, which comes outto 4 * 3 x 2% 1 = 24. It is
essential to recognize that various configurations exist for the structure of the target model. Another
possible configuration is (1536, 4096, 32).

STEP, STEP, STEP, STEP, STEP, STEP,

N\

- E816,2008.8) N

> (2816,7620,6) .

(2816.,2048,6) —<— N

__> (2816,7600,6) e
T (2816,2018,8) ~__

A (2816,2048,6) <=
/
/

> (0816,7680,6) —

/ (2016,7680,6)
1 (768,7660,6) ~=

4 (768,7680,6) ~—= inal
=4 (2816,7680,8) (2816,7680,8)
(hidden,ffn,layer)

(hidden,tfn,layer)

(760.7680,8) > (/68,/680,8)

L, (F6B,20488) —— ——> (2016,2040,0)

S (/68,76B0.8) 4

__> (1536,7680,6) ~
(1536,2048.6) =——— 5 (14,36,2018,32) \\\\
> (1536,1096,6)

V (768,4096,6) —=

= (768,7680,8) 7 _—
Imitial
(768,2048,6)
_> (1526,7620.6)

NN .
NS (1526204800 <= (1536204052 2\,

> (1536,4096,6) ~—

Final
1536,4096,32)

(18
(hidden,ffn layer)

NV (788.4008.8) < Y Final
7 (1536,4096,32)
(Ridden fm iayen

> (/68 40086,52) > (/68,1006,32) —

N (r68 2048 47y ——— —> (1536,2010,32) < (7682048 22) ———> (1536,2048,37)

TS (766,1006,32) 7 T2 (762,4006,32) ~

General ——> Special case

(a) General (b) Special case

Figure 7: Examples for all the potential paths with special cases growth only width and depth.

It is obviously impractical to traverse each schedule and select the final optimal one. Therefore,
our goal is to transform this into an optimization problem of model metrics. Through a series of
derivations, we can select the most suitable schedule before training to reduce the computational
cost of achieving the optimal model.

H EXPLANATION FOR THE MODEL STRUCTURE CONSTRAINS

Table 13: The model structure from different LLMs.

Model D_Hidden dimension D_FFN N_Heads N_Layers
Llamal 65B 8192 22016 64 80
Llama2 70B 8192 28672 64 80
Llama3 70B 8192 28672 64 80

Qwen2 72B 8192 29568 64 80

We acquire the structure of the Llama series and Qwen?2 from their technical report, which is dis-
played in Table The hidden dimension size of the Llama series (Touvron et al., 2023azb; |Dubey
et al.;,2024) and Qwen?2 (Yang et al.,[2024)) is a multiple of 128. Furthermore, the hidden dimension
of Llamal 65B is 8/3 of the ffn dimension. And the number of attention heads for all LLMs shown
in Table|13|can be divided by the hidden dimension.

I THE GROWTH OPERATORS

In this study, we focus on the Transformer structure that is prevalent in existing LLMs. Trans-
former’s possible growth dimensions are introduced below, while the operators of these dimensions
are listed subsequently.

Hidden states [/'~! represents the input for the Transformer layer I, which is a bi-dimensional
tensor with s and & being the sequence and hidden dimension. When the h changes, it affects every
module of the Transformer structure. We overlook the position embedding in this work as it does
not affect the expansion process. The hidden states are iteratively passing through the Transformer

17

Under review as a conference paper at ICLR 2026

layers: H 2 = Trans,(H 121)71 € [1, L], where L denotes the total number of the Transformer
sX sX
layers.

Each Transformer layer [contains the modules that are important for the growth approach, which
are described below:

Multi-head attention (MHA): Multiple parallel self-attention heads make up MHA. The input H
of each layer is fed into the MHA mechanism, which can be formulated as follows:

Ki/Qi/Vi = H x WISV

sxd sxd sxd sXh hheiilii
1
Hpead; = Attention(Q,, K;, V;) = softmaz(— X Q; X KlT) x Vi (13)
sxd v@
HMTA — MHA(H) = [H vy Hpe x w°
sxh () [headqys -+ t1h .ada] (axd)xh

where H is applied to linear projection for generating queries, keys and values(Q)/K/V), utilizing
different weights(W/@/V') for each transformation respectively. H}cqq, signifies the output of the
i-th attention head with a being the total number of heads. The output linear matrix W generates
the final result HM# 4 which is then delivered to the Feed-forward network.

Feed-forward network (FFN) is a Multi-Layer Perceptron responsible for applying a non-linear
transformation to HMH4 (f 1s FEN’s dimension of its internal representation):

HFFN — pEN@HMPA) = GELU(HM:IA x W4 b1y x Wiz 4 pl2 (14)
sXh

sxh hxf sX f fxh sXh

MHA growth operator ,,,, refers to the act of introducing new heads within the multi-head
attention module. As mentioned in Eq[I3] the hyper-parameter a controls the scaling of the multi-
head attention dimension. When the head number increases from a; to as, we keep the weights of
the former heads fixed while assigning random values to the weights of the new heads.

wrrev _ JWOY i< a (15)
* random a; <1< as

As the number of heads increases, alterations are also observed in the size of the corresponding

weight matrix W© in Eq We set the expanded portion of W to be a random matrix R as
below:

wo
wo = (WO)' _ (a1 xd)Xh (16)
(ag xd)xh (agxd)xh ((ag—a1)xd)xh

FFN growth operator ¢y, can be scaled up by increasing its internal representation’s dimen-
sionality. In Eq[T4] the scaling of FFN expansion is controlled by the hyper-parameter f. Given a
Transformer layer as an example, when the FFN’s hidden dimension is increasing from f; to fo, the
extended part of W, TW!2 and b" are initialized arbitrarily, written as R:

’ 1 W, ’ 1 A4
}Yzlfll = (}Yzlflz) = ""/Zfll hrxl(%leflf1)i| slil}l = (\[5}2) = [Sg}i SX}(%leflf1>i|
wia a7
w2 = WLQ)’ _ [fixh]
fixh Taxh (f2*1f21)><’L

Hidden dimension growth operator ¢;,;44., is used to expand the dimension of the representation,
which is originally sent into the Transformer layers. The scaling of hidden dimension expansion is
controlled by the hyper-parameter ~. When the hidden dimension of the representation is increasing
from h; to ho, we set the extended portion of H to be random:

’

H = H

_ H R
sxhy sxhy [”"1 Sx(h2*h1)} as)

Then each module in Transformer exhibits variations in the scaling for the parameters with hidden
dimension expansion.

18

Under review as a conference paper at ICLR 2026

In the MHA module, we set the extended portion of WO to be random, and also the extended weight

matrices of K, O, and V for each head are initialized randomly:
wk/Q/V
wk/QIV = (WK/Q/V)’ _ hyxd
hixd hoXd (r]E
g —hy)Xd
o wo) = [wo

= R }
(axd)xhy (axd)xho (axd)xhy (axd)x(hg—hy)

In the FFN module, the extended portion of W't W2 and b'2 are initialized randomly:

wh
e

hyXf ho X f R
" 2 (hg—=hy1)xf
la 2y _ [le N } la 2y [bl2 R]
}’ghlﬁ(}zhz) = fxh1 fx(hg—h1) Sl;hl:’(fi,m) = lsxh1 sx(ho—h1)

(19)

(20)

Layer operator For the layer operator, we adopt the stacking method proposed in StackBERT

(Deshpande et al., 2021)).

19

	Introduction
	Related Work
	Methodology
	Preliminary
	Task formulation
	Measurement of optimal schedule using Marginal Utility
	Schedule learning via Optimal Path

	Experiments
	Experimental setup
	Results and analysis

	Conclusion
	The Use of Large Language Models (LLMs)
	Limitations
	Algorithm
	Experimental details
	Details for the experiments set up
	More details for the growth schedules in the main experiment

	Ablation Study
	Compatible to the special cases of two-dimensional expansion.
	The impact of multi-head attention.
	The impact of expanding MHA in different sequences
	The impact of varying the number of heads.
	The impact of different target model structure.
	The impact of smaller parameters.

	Performance comparison with baselines on the downstream tasks
	Cases for the growth schedule paths
	Explanation for the model structure constrains
	The Growth Operators

