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Abstract
We address differentially private stochastic ban-
dit problems by leveraging Thompson Sam-
pling with Gaussian priors and Gaussian differ-
ential privacy (GDP). We propose DP-TS-UCB,
a novel parametrized private algorithm that en-
ables trading off privacy and regret. DP-TS-
UCB satisfies Õ

(
T 0.25(1−α))-GDP and achieves

O
(
K lnα+1(T )/∆

)
regret bounds, where K is

the number of arms, ∆ is the sub-optimality gap,
T is the learning horizon, and α ∈ [0, 1] controls
the trade-off between privacy and regret. Theoret-
ically, DP-TS-UCB relies on anti-concentration
bounds for the Gaussian distributions, linking the
exploration mechanisms of Thompson Sampling
and Upper Confidence Bound, which may be of
independent research interest.

1. Introduction
This paper studies differentially private stochastic bandit
problems previously studied in Mishra & Thakurta (2015);
Hu et al. (2021); Hu & Hegde (2022); Azize & Basu (2022);
Ou et al. (2024). In a classical stochastic bandit problem,
we have a fixed arm set [K]. Each arm i is associated with a
fixed but unknown reward distribution pi with mean reward
µi. In each round, a learning agent pulls an arm and obtains
a random reward that is distributed according to the reward
distribution associated with the pulled arm. The goal of the
learning agent is to pull arms sequentially to accumulate as
much reward as possible over a finite number of T rounds.
Since the pulled arm in each round may not always be the
optimal one, regret, defined as the expected cumulative
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loss between the highest mean reward and the earned mean
reward, is used to measure the performance of the algorithm
used by the learning agent to make decisions.

Low-regret bandit algorithms should leverage past informa-
tion to inform future decisions, as previous observations
reveal which arms have the potential to yield higher rewards.
However, due to privacy concerns, the learning agent may
not be allowed to directly use past information to make de-
cisions. For example, a hospital collects health data from
patients participating in clinical trials over time to learn the
side effects of some newly developed treatments. To comply
with privacy regulations, the hospital is required to publish
scientific findings in a differentially private manner, as the
sequentially collected data from patients carries sensitive
information from individuals. The framework of differential
privacy (DP) (Dwork et al., 2014) is widely accepted to pre-
serve the privacy of individuals whose data have been used
for data analysis. Differentially private learning algorithms
bound the privacy loss, the amount of information that an
external observer can infer about individuals.

DP is commonly achieved by adding noise to summary
statistics computed based on the collected data. Therefore,
to solve a private bandit problem, the learning agent has to
navigate two trade-offs. The first one is the fundamental
trade-off between exploitation and exploration due to bandit
feedback: in each round, the learning agent can only focus
on either exploitation (pulling arms seemingly promising
to attain reward) or exploration (pulling arms helpful to
learn the unknown mean rewards and reduce uncertainty).
The second one is the trade-off between privacy and regret
due to the DP noise: adding more noise enhances privacy,
but it reduces data estimation accuracy and weakens regret
guarantees.

There are two main strategies to design (non-private)
stochastic bandit algorithms that efficiently balance ex-
ploitation and exploration: Upper Confidence Bound (UCB)
(Auer et al., 2002) and Thompson Sampling (Agrawal &
Goyal, 2017; Kaufmann et al., 2012b). Both enjoy good
theoretical regret guarantees and competitive empirical per-
formance. UCB is inspired by the principle of optimism in
the face of uncertainty, adding deterministic bonus terms to
the empirical estimates based on their uncertainty to achieve
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exploration. Thompson Sampling is inspired by Bayesian
learning, using the idea of sampling mean reward models
from posterior distributions (e.g., Gaussian distributions)
that model the unknown mean rewards of each arm. The
procedure of sampling mean reward models can be viewed
as adding random bonus terms to the empirical estimates.

The design of the existing private stochastic bandit algo-
rithms (Sajed & Sheffet, 2019; Hu et al., 2021; Azize &
Basu, 2022; Hu & Hegde, 2022) follows the framework
of adding calibrated noise to the empirical estimates first
to achieve privacy. Then, the learning agent makes deci-
sions based on noisy estimates, which can be viewed as
post-processing that preserves DP guarantees. Since both
Thompson Sampling and DP algorithms rely on adding
noise to the empirical estimates, it is natural to wonder
whether the existing Thompson Sampling-based algorithms
offer some level of privacy at no additional cost, without
compromising any regret guarantees.

Very recently, Ou et al. (2024) show that Thompson Sam-
pling with Gaussian priors (Agrawal & Goyal, 2017) (we
rename it as TS-Gaussian in this work) without any modifi-
cation is indeed DP by leveraging Gaussian privacy mecha-
nism (adding Gaussian noise to the collected data (Dwork
et al., 2014)) and the notion of Gaussian differential privacy
(GDP) (Dong et al., 2022). They show that TS-Gaussian is
O(
√
T )-GDP. However, this privacy guarantee is not tight

due to the fact that TS-Gaussian has to sample a mean re-
ward model from a data-dependent Gaussian distribution
for each arm in each round to achieve exploration. Each
sampled Gaussian mean reward model implies the injection
of some Gaussian noise into the empirical estimate, and
sampling in total T Gaussian mean reward models for each
arm provides a privacy guarantee in the order of

√
T .

In this paper, we propose a novel private bandit algorithm,
DP-TS-UCB (presented in Algorithm 1), which does not
require sampling a Gaussian mean reward model in each
round, and is hence more efficient at trading off privacy and
regret. Theoretically, DP-TS-UCB uncovers the connection
between exploration mechanisms in TS-Gaussian and UCB1
(Auer et al., 2002), which may be of independent interest.

Our proposed algorithm builds upon the insight that, for
each arm i, the Gaussian distribution that models the mean
reward of arm i can only change when arm i is pulled, as a
new pull of arm i indicates the arrival of new data associated
with arm i. In other words, the Gaussian distribution stays
the same in all rounds between two consecutive pulls of
arm i. Based on this insight, to avoid unnecessary Gaussian
sampling, which increases privacy loss, DP-TS-UCB sets
a budget ϕ for the number of Gaussian mean reward
models that are allowed to draw from a Gaussian dis-
tribution. Among all the rounds between two consecutive
pulls of arm i, DP-TS-UCB can only draw a Gaussian mean

reward model in each of the first ϕ rounds. If arm i is still
not pulled after ϕ rounds, DP-TS-UCB reuses the highest
model value among the previously sampled ϕ Gaussian
mean reward models in the remaining rounds until arm i is
pulled again. Figure 1 presents a concrete example of how
DP-TS-UCB works.
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Figure 1. Cap the number of mean reward models sampled
from a Gaussian distribution. Assume arm i is pulled in rounds
t, t′ and t′′, and ϕ = 4. In each of the rounds t + 1, . . . , t +
h, . . . , t+ϕ, DP-TS-UCB samples a Gaussian mean reward model
θhi and uses it in the learning for arm i. In each of the rounds
t+ϕ+1, t+ϕ+2, . . . , t′, DP-TS-UCB reuses the highest model
value θ3i = maxh∈[ϕ] θ

h
i among the previously sampled ϕ mean

reward models in the learning for arm i. Once a new Gaussian
distribution is available (the Gaussian distribution located on the
right side), DP-TS-UCB is allowed to draw ϕ Gaussian mean
reward models again in each of the rounds t′+1, t′+2, . . . , t′+ϕ.

t1

X1 X3 X4 X7 X10 X11 X12

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 ……

̂μi = X1 ̂μi = X3 + X4
2 ̂μi = X7 + X10 + X11 + X12
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Figure 2. Arm-specific epoch structure. The dashed lines par-
tition rounds from t1 to t12 into three epochs. Assume arm i is
pulled in round t1, then we compute its empirical mean as µ̂i = X1

at the end of round t1 and arm i’s first epoch ends in round t1. If
arm i is pulled in rounds t3, t4 again, then we compute its empir-
ical mean as µ̂i = (X3 +X4)/2 at the end of round t4 and arm
i’s second epoch ends in round t4. It is important to note that arm
i’s empirical mean will not be updated at the end of round t3 even
though it is pulled in round t3.

To have a tight privacy guarantee, in addition to capping the
number of Gaussian mean reward models, we also need to
limit the number of times that a revealed observation can be
used when computing empirical estimates. Similar to Sajed
& Sheffet (2019); Hu et al. (2021); Azize & Basu (2022); Hu
& Hegde (2022), we use an arm-specific epoch structure
to process the revealed observations. As already discussed
in these works, using this structure is the key to designing
good private online learning algorithms. The key idea of this
structure is to update the empirical estimate using the most
recent 2r observations, where r ≥ 0. Figure 2 illustrates
this structure for the first three epochs.
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Preview of results. DP-TS-UCB uses an input parame-
ter α ∈ [0, 1] to control the trade-off between privacy and
regret, and the choice of ϕ = O(T 0.5(1−α) ln0.5(3−α)(T ))
depends on both α and the learning horizon T . Our tech-
nical Lemma 4.1 shows that this choice of ϕ ensures suffi-
cient exploration, that is, giving enough optimism, for the
rounds when sampling new Gaussian mean reward models
is not allowed. DP-TS-UCB is Õ(T 0.25(1−α))-GDP (The-
orem 4.4) and achieves

∑
i:∆i>0O(ln(ϕT∆2

i ) ln
α(T )/∆i)

regret bounds (Theorem 4.2), where ∆i is the mean re-
ward gap between the optimal arm and a sub-optimal arm
i. For the case where α = 0, DP-TS-UCB enjoys the
optimal

∑
i:∆i>0O(ln(ϕT∆2

i )/∆i) regret bounds and sat-
isfies Õ(T 0.25)-GDP, which improves the previous O(

√
T )-

GDP guarantee significantly. For the case where α = 1,
DP-TS-UCB satisfies constant Õ(1)-GDP and achieves∑
i:∆i>0O(ln(ϕT∆2

i ) ln(T )/∆i) regret bounds.

2. Learning Problem
In this section, we first present the learning problem of
stochastic bandits and then we provide key knowledge re-
lated to differentially private online learning.

2.1. Stochastic Bandits

In a classical stochastic bandit problem, we have a fixed arm
set [K] of size K, and each arm i ∈ [K] is associated with a
fixed but unknown reward distribution pi with [0, 1] support.
Let µi denote the mean of reward distribution pi. Without
loss of generality, we assume that the first arm is the unique
optimal arm, i.e., µ1 > µi for all i ̸= 1. Let ∆i := µ1 − µi
denote the mean reward gap. The learning protocol is in each
round t, a reward vector Xt := (X1(t), X2(t), . . . , XK(t))
is generated, where each Xi(t) ∼ pi. Simultaneously, the
learning agent pulls an arm it ∈ [K]. At the end of the
round, the learning agent receives a reward Xit(t). The
goal of the learning agent is to pull arms sequentially to
maximize the cumulative reward over T rounds, or equiva-
lently, minimize the (pseudo)-regret, defined as

R(T ) = T · µ1 − E
[
T∑
t=1

µit

]
, (1)

where the expectation is taken over the pulled arm it. The
regret measures the expected cumulative mean reward loss
between always pulling the optimal arm and the learning
agent’s actual pulled arms.

2.2. Differential Privacy

Our DP definition in the context of online learning follows
the one used in Dwork et al. (2014); Sajed & Sheffet (2019);
Hu et al. (2021); Hu & Hegde (2022); Azize & Basu (2022);
Ou et al. (2024). Let X1:t := (X1, X2, . . . , Xt) collect all

the reward vectors up to round t. LetX ′
1:t be a neighbouring

sequence of X1:t which differs in at most one reward vector,
say, in some round τ ≤ t.

Definition 2.1 (DP in online learning). An online learning
algorithmA is (ε, δ)-DP if for any two neighbouring reward
sequencesX1:T andX ′

1:T , for any decision setD1:t ⊆ [K]t,
we have P {A(X1:t) ∈ D1:t} ≤ eε ·P {A(X ′

1:t) ∈ D1:t}+δ
holds for all t ≤ T simultaneously.

Like Ou et al. (2024), we also perform our analysis using
Gaussian differential privacy (GDP) (Dong et al., 2022),
which is well suited to analyzing the composition of Gaus-
sian mechanisms. We then translate the GDP guarantee
to the classical (ε, δ)-DP guarantee by using the duality
between GDP and DP (Theorem 2.4). Indeed, Dong et al.
(2022) show that GDP can be viewed as the primal privacy
representation with its dual being an infinite collection of
(ε, δ)-DP guarantees.

To introduce GDP, we first need to define trade-off functions:

Definition 2.2 (Trade-off function (Dong et al., 2022)). For
any two probability distributions P and Q on the same
space, define the trade-off function T (P,Q) : [0, 1] →
[0, 1] as T (P,Q)(x) = infψ {βψ : αψ ≤ x}, where αψ =
EP [ψ], βψ = 1− EQ[ψ], and the infimum is taken over all
measurable rejection rules ψ ∈ [0, 1].

Let Φ denote the cumulative distribution function (CDF)
of the standard normal distribution N (0, 1). To de-
fine GDP in the context of online learning, for any
η ≥ 0, we let Gη(x) := T (N (0, 1),N (η, 1)) (x) =
Φ
(
Φ−1(1− x)− η

)
denote the trade-off function of two

normal distributions.

Definition 2.3 (η-GDP in online learning). A randomized
online learning algorithm A is η-GDP if for any two reward
vector sequences X1:T and X ′

1:T differing in at most one
vector, we have T (A (X1:t) ,A (X ′

1:t)) (x) ≥ Gη(x) holds
for all x ∈ [0, 1] and t ≤ T simultaneously.

For easier comparison, we use the following theorem to
convert an η-GDP guarantee to (ε, δ)-DP guarantees:

Theorem 2.4 (Primal to dual (Dong et al., 2022)). A ran-
domized algorithm is η-GDP if and only if it is (ε, δ(ε))-DP
for all ε ≥ 0, where

δ(ε) = Φ
(
− ε
η + η

2

)
− eεΦ

(
− ε
η −

η
2

)
.

Remark. Fix any ε ≥ 0. We can also view δ(ε) =

Φ
(
− ε
η + η

2

)
−eεΦ

(
− ε
η −

η
2

)
as an increasing function of

η. This means, for a fixed ε, the smaller the GDP parameter
η is, the smaller the δ(ε) is after the translation.
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3. Related Work
There is a vast amount of literature on (non-private) stochas-
tic bandit algorithms. We split them based on UCB-based
versus Thompson Sampling-based, i.e., deterministic versus
randomized exploration. Then, we discuss the most relevant
algorithms for private stochastic bandits.

UCB-based algorithms (Auer et al., 2002; Audibert
et al., 2007; Garivier & Cappé, 2011; Kaufmann et al.,
2012a; Lattimore, 2018) usually conduct exploration in a
deterministic way. The key idea is to construct confidence
intervals centred on the empirical estimates. Then, the
learning agent makes decisions based on the upper bounds
of the confidence intervals. The widths of the confidence
intervals control the exploration level. Thompson Sampling-
based algorithms (Agrawal & Goyal, 2017; Kaufmann
et al., 2012b; Bian & Jun, 2022; Jin et al., 2021; 2022;
2023) conduct exploration in a randomized way. The key
idea is to use a sequence of well-chosen data-dependent
distributions to model each arm’s mean reward. Then, the
learning agent makes decisions by sampling random mean
reward models from these distributions. The spread of
the data-dependent distributions controls the exploration
level. In addition to the aforementioned algorithms, we also
have DMED (Honda & Takemura, 2010), IMED (Honda
& Takemura, 2015), elimination-style algorithm (Auer &
Ortner, 2010), Non-parametric TS (Riou & Honda, 2020),
and Generic Dirichlet Sampling (Baudry et al., 2021).
All these algorithms enjoy either

∑
i:∆i>0O(ln(T )/∆i)

or
∑
i:∆i>0O(ln(T )∆i/KL (µi, µi +∆i)) problem-

dependent regret bounds, where KL(a, b) denotes the
KL-divergence between two Bernoulli distributions with
parameters a, b ∈ (0, 1).

Sajed & Sheffet (2019); Azize & Basu (2022); Hu et al.
(2021) developed optimal (ε, 0)-DP stochastic bandit al-
gorithms by first adding calibrated Laplace noise to the
empirical estimates to ensure (ε, 0)-DP. Then, eliminating
arms and constructing data-dependent distributions based on
noisy estimates can be viewed as post-processing which do
not hurt privacy. Although Hu & Hegde (2022) proposed a
private Thompson Sampling-based algorithm, it still follows
the above recipe without leveraging the inherent randomness
present in Thompson Sampling for privacy.

Ou et al. (2024) connected Thompson Sampling with Gaus-
sian priors (we rename it as TS-Gaussian) (Agrawal &
Goyal, 2017) to the Gaussian privacy mechanism (Dwork
et al., 2014) and Gaussian differential privacy (Dong et al.,
2022). The idea of TS-Gaussian is to use N (µ̂i,ni , 1/ni)
to model arm i’s mean reward, i.e., the mean of reward
distribution pi. The centre of the Gaussian distribution
µ̂i,ni

is the empirical average of ni observations that are
i.i.d. according to pi. To decide which arm to pull, for
each arm i in each round, the learning agent samples a

Gaussian mean reward model θi ∼ N (µ̂i,ni
, 1/ni). The

learning agent pulls the arm with the highest mean reward
model value. Ou et al. (2024) showed that TS-Gaussian
satisfies

√
0.5T -GDP, before translating this GDP guar-

antee to (ε, δ)-DP guarantees with Theorem 2.4. Since
there is no modification to the original algorithm, the op-
timal

∑
i:∆i>0O(ln(T∆2

i )/∆i) problem-dependent regret
bounds and the near-optimal O(

√
KT ln(K)) worst-case

regret bounds are preserved. Ou et al. (2024) also proposed
Modified Thompson Sampling with Gaussian priors (we re-
name it as M-TS-Gaussian), which enables a privacy and re-
gret trade-off. Compared to TS-Gaussian, the modifications
are pre-pulling each arm b times and scaling the variance
of the Gaussian distribution as c/ni. They proved that M-
TS-Gaussian satisfies

√
T/(c(b+ 1))-GDP, and achieves

bK +
∑
i:∆i>0O(c ln(T∆2

i )/∆i) problem-dependent re-
gret bounds and bK + O(c

√
KT lnK) worst-case regret

bounds. Table 1 summarizes the theoretical results of TS-
Gaussian and M-TS-Gaussian with different choices of b, c.

The order of
√
T -GDP guarantee from TS-Gaussian and

M-TS-Gaussian may not be tight when T is large. There
are two reasons resulting in this loose privacy guarantee:
(1) sampling a Gaussian mean reward model in each round
for each arm injects too much noise; (2) repeatedly using
the same observation to compute the empirical estimates
creates too much privacy loss. In this work, we propose
DP-TS-UCB, a novel private algorithm that does not require
sampling a Gaussian mean reward model in each round for
each arm. The intuition is that once we are confident some
arm is sub-optimal, we do not need to further explore it. To
avoid using the same observation to compute the empirical
estimates, we use the arm-specific epoch structure devised
by Hu et al. (2021); Azize & Basu (2022); Hu & Hegde
(2022) to process the obtained observations. Using this
structure ensures that each observation can only be used at
most once for computing empirical estimates.

Regarding lower bounds with a finite learning horizon T
for differentially private stochastic bandits, lower bounds
exist under the classical (ε, δ)-DP notion. Shariff & Shef-
fet (2018) established Ω(

∑
i:∆i>0 ln(T )/∆i +K ln(T )/ε)

problem-dependent regret lower bound and Azize & Basu
(2022) established an Ω(

√
KT + K/ε) minimax regret

lower bound for (ε, 0)-DP. Wang & Zhu (2024) established
an Ω(

∑
i:∆i>0 ln(T )/∆i + K

ε ln (eε−1)T+δT
(eε−1)+δT ) problem-

dependent regret lower bound for (ε, δ)-DP. In this work,
we do not provide any new lower bounds. Our theoretical
results are compatible with these established lower bounds.

4. DP-TS-UCB
We present DP-TS-UCB and then provide its regret (Theo-
rem 4.2) and privacy (Theorems 4.4 and 4.6) guarantees.
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Algorithm 1 DP-TS-UCB

1: Input: trade-off parameter α ∈ [0, 1], learning horizon
T , and budget ϕ = c0T

0.5(1−α) ln0.5(3−α)(T ).
2: Initialization: (1) pull each arm i once to initialize ni

and µ̂i,ni
, (2) set arm-specific epoch index ri ← 1 and

the number of unprocessed observations Oi ← 0, (3)
set remaining Gaussian sampling budget hi ← ϕ and
the highest Gaussian mean reward model MAXi ← 0.

3: for t = K + 1,K + 2, . . . , T do
4: for i ∈ [K] do
5: if hi ≥ 1 then
6: Set θi(t) ← θ

(hi)
i,ni

, where θ
(hi)
i,ni

∼
N
(
µ̂i,ni ,

lnα(T )
ni

)
%Mandatory TS-Gaussian

7: Set hi ← hi−1, MAXi ← max{MAXi, θ
(hi)
i,ni
}

8: else
9: Set θi(t)← MAXi %Optional UCB

10: end if
11: end for
12: Pull arm it ∈ argmaxi∈[K] θi(t), observe Xit(t),

and set Oit ← Oit + 1
13: if Oit = 2rit then
14: Compute µ̂it,nit

, where nit = 2rit

15: Reset hit ← ϕ, MAXit ← 0
16: Set rit ← rit + 1 and reset Oit ← 0.
17: end if
18: end for

4.1. DP-TS-UCB Algorithm

Algorithm 1 presents the pseudo-code of DP-TS-UCB. Let
c0 =

√
2πe. We input trade-off parameter α ∈ [0, 1] and

learning horizon T , and then we compute the sampling bud-
get ϕ = c0T

0.5(1−α) ln0.5(3−α)(T ). Let ni(t − 1) denote
the number of observations that are used to compute the
empirical estimate µ̂i,ni(t−1) at the end of round t− 1.

Initialize learning algorithm (Line 2). There are several
steps to initialize the learning algorithm. (1) We pull each
arm i ∈ [K] once to initialize each arm’s empirical mean
µ̂i,ni

. Since the decisions in these rounds do not rely on any
data, we do not have any privacy concerns. (2) As we use
the arm-specific epoch structure (Figure 2 describes the key
ideas of this structure) to process observations, we use ri to
track arm i’s epoch progress and useOi to count the number
of unprocessed observations in epoch ri. We initialize ri =
1 and Oi = 0. (3) Since we can only draw at most ϕ mean
reward models from each Gaussian distribution, we use hi
to count the remaining Gaussian sampling budget at the
end of round t− 1, and MAXi to track the maximum value
among these ϕ Gaussian mean reward models. Initially, we
set hi = ϕ and MAXi = 0.

Decide learning models (Line 4 to Line 11). Let θi(t)

denote arm i’s learning model in round t ≥ K + 1. Each
θi(t) can either be a new Gaussian mean reward model
or some Gaussian mean reward model already used be-
fore. To decide which case fits arm i in round t, we
check the value of hi to see whether drawing a new Gaus-
sian mean reward from N

(
µ̂i,ni(t−1), ln

α(T )/ni(t− 1)
)

is allowed: if hi ≥ 1, we sample a new mean reward
model θ(hi)

i,ni
∼ N

(
µ̂i,ni(t−1), ln

α(T )/ni(t− 1)
)

and use

it in the learning, i.e., θi(t) = θ
(hi)
i,ni

; if hi = 0, we use

θi(t) = MAXi = maxhi∈[ϕ] θ
(hi)
i,ni

in the learning as we

have all θ(1)i,ni
, θ

(2)
i,ni

, . . . , θ
(ϕ)
i,ni

in hand already.

Our technical Lemma 4.1 below shows that the highest
mean reward model MAXi is analogous to the upper con-
fidence bound in UCB1 (Auer et al., 2002). The usage of
MAXi ensures sufficient exploration for the rounds when
sampling new Gaussian mean reward models is not allowed.
We can view DP-TS-UCB as a two-phase algorithm with a
mandatory TS-Gaussian phase and an optional UCB phase.
Note that DP-TS-UCB itself does not explicitly construct up-
per confidence bounds; MAXi itself behaves like the upper
confidence bound of arm i in UCB1 in terms of achieving
exploration.

Lemma 4.1. Fix any observation number s ≥ 1 and let
θ
(1)
i,s , . . . , θ

(ϕ)
i,s be i.i.d. according toN (µ̂i,s, ln

α(T )/s). We

have P
{
maxh∈[ϕ] θ

(h)
i,s ≥ µi

}
≥ 1−O(1/T ).

Make a decision and collect data (Line 12). With all learn-
ing models θi(t) in hand, the learning agent pulls the arm
it ∈ argmaxi∈[K] θi(t) with the highest model value, ob-
serves Xit(t) and increments the unprocessed observation
counter Oit by one.

Process collected data (Line 13 to Line 17). To control
the number of times any observation can be used when
computing the empirical mean, we only update the empirical
mean of the pulled arm it when the number of unprocessed
observations Oit = 2rit . After the update, we reset hit , Oit
and MAXit , and increment the epoch progress rit by one.

Remark on Algorithm 1. We use data collected in epoch
ri − 1 in a differentially private manner to guide the fu-
ture data collection in epoch ri. We have a mandatory TS-
Gaussian phase where drawing Gaussian mean reward mod-
els is allowed and an optional UCB phase where the agent
can only reuse the best Gaussian mean reward model in the
mandatory TS-Gaussian phase. Separating all the rounds
belonging to epoch ri into two possible phases controls the
cumulative injected noise (and privacy loss) regardless of
the epoch length.

4.2. Regret Analysis of DP-TS-UCB

In this section, we provide a regret analysis of Algorithm 1.
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Theorem 4.2. The problem-dependent regret bound of DP-
TS-UCB with trade-off parameter α ∈ [0, 1] is∑

i:∆i>0O(
ln(T 0.5(3−α)∆2

i ) ln
α(T )

∆i
+ (3−α) ln ln(T )·lnα(T )

∆i
).

The worst-case regret bound of DP-TS-UCB with trade-off
parameter α ∈ [0, 1] is O(

√
KT ln0.5(1+α)(T )).

Theorem 4.2 gives the following corollary immediately.

Corollary 4.3. DP-TS-UCB with trade-off parameter α = 0
achieves

∑
i:∆i>0O

(
ln
(
T 1.5∆2

i

)
/∆i

)
+O (ln ln(T )/∆i)

problem-dependent regret bounds and O(
√
KT ln(T ))

worst-case regret bounds.

Discussion. DP-TS-UCB with parameter α = 0 can be
viewed as a problem-dependent optimal bandit algorithm
with theoretical guarantees lying between TS-Gaussian
(Agrawal & Goyal, 2017) and UCB1 (Auer et al., 2002); the∑

i:∆i>0O
(
ln
(
T 1.5∆2

i

)
/∆i

)
+ O (ln ln(T )/∆i) bound

is better than the
∑
i:∆i>0O (ln(T )/∆i) bound of UCB1,

but it is slightly worse than the
∑
i:∆i>0O

(
ln(T∆2

i )/∆i

)
bound of TS-Gaussian. DP-TS-UCB with parameter α = 0
is not optimal in terms of regret guarantees, but it offers a
constant GDP guarantee (see Corollary 4.5 in Section 4.3).

We sketch the proof of Theorem 4.2. The full proof is
deferred to Appendix D. Since DP-TS-UCB lies in between
TS-Gaussian and UCB1, the regret analysis includes key
ingredients extracted from both algorithms.

Proof sketch of Theorem 4.2. Fix a sub-optimal arm i. Let
Li = O

(
ln(ϕT∆2

i ) ln
α(T )/∆2

i

)
indicate the number of

observations needed to sufficiently observe sub-optimal arm
i. We know that the total regret accumulated from arm
i before i is sufficiently observed is at most Li · ∆i. By
tuning Li properly, for all the rounds when arm i is observed
sufficiently, the regret accumulated from arm i can be upper
bounded by∑T

t=K+1 P {it = i, θi(t) ≤ µi + 0.5∆i} , (2)

where θi(t) can either be a fresh Gaussian mean reward
model (TS-Gaussian phase, Line 6) or the highest Gaussian
mean model used before (UCB phase, Line 9).

We further decompose (2) based on whether the optimal arm
1 is in TS-Gaussian phase (Line 6) or UCB phase (Line 9).
Define T1(t) as the event that the optimal arm 1 uses a
fresh Gaussian mean reward model in round t, i.e., in TS-
Gaussian phase, and let T1(t) denote the complement. We
have (2) decomposed as∑T

t=K+1 P {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)}
+ ∑T

t=K+1 P
{
it = i, θi(t) ≤ µi + 0.5∆i, T1(t)

}
,

(3)

where, generally, the first term will use the regret analysis
of TS-Gaussian in Agrawal & Goyal (2017) and the second
term will use Lemma 4.1. In Appendix D, we present an
improved analysis of TS-Gaussian and show that the regret
of the first term is at most O

(
ln(ϕT∆2

i ) ln
α(T )/∆i

)
. The

second term uses a union bound and Lemma 4.1, and is
at most

∑T
t=K+1 P

{
it = i, θi(t) ≤ µi + 0.5∆i, T1(t)

}
≤∑T

t=K+1 P
{
θ1(t) ≤ µ1, T1(t)

}
≤ O(ln(T )).

4.3. Privacy Analysis of DP-TS-UCB

This section provides the privacy analysis of Algorithm 1.
Theorem 4.4. DP-TS-UCB with trade-off parameter α ∈
[0, 1] satisfies

√
2c0T 0.5(1−α) ln1.5(1−α)(T )-GDP.

Theorem 4.4 gives the following corollary immediately.
Corollary 4.5. DP-TS-UCB with trade-off parameter α = 0
satisfiesO

(
T 0.25 ln0.75(T )

)
-GDP; DP-TS-UCB with trade-

off parameter α = 1 satisfies O (1)-GDP.

Discussion. Together, Theorem 4.2 (regret guarantees) and
Theorem 4.4 (privacy guarantees) show that DP-TS-UCB is
able to trade off privacy and regret. The privacy guarantee
improves with the increase of trade-off parameter α, at the
cost of suffering more regret.

Table 1 summarizes privacy and regret guarantees of TS-
Gaussian (Agrawal & Goyal, 2017), M-TS-Gaussian (Ou
et al., 2024), and DP-TS-UCB. From the results, even
for the worst case, i.e., α = 0, DP-TS-UCB is still
Õ
(
T 0.25

)
-GDP, which could be much better than the

O(
√
T )-GDP guarantee of TS-Gaussian. Since DP-TS-

UCB with α = 1 achieves a constant GDP guarantee,
increasing learning horizon T does not increase privacy
cost. M-TS-Gaussian pre-pulls each arm b times and uses
c/ni as the Gaussian variance. Generally, it achieves
bK+

∑
i:∆i>0O(c log(T∆2

i )/∆i) regret bounds and satis-
fies

√
T/(c(b+ 1))-GDP. By tuning b, c = O (lnα(T )), M-

TS-Gaussian achieves
∑
i:∆i>0O(lnα(T ) log(T∆2

i )/∆i)
regret bounds (almost the same as DP-TS-UCB’s regret
bounds), but satisfying O(

√
T/ lnα(T ))-GDP guarantees,

which could be much worse than the Õ
(
T 0.25

)
-GDP guar-

antees of DP-TS-UCB. By tuning b, c = O (T γ), where γ >
0, M-TS-Gaussian achieves

∑
i:∆i>0O(T γ log(T∆2

i )/∆i)

regret bounds and satisfies O(
√
T 1−2γ)-GDP. Although the

GDP guarantee is improved to be in the order of
√
T 1−2γ ,

the regret bound may be worse than DP-TS-UCB’s bounds
due to the existence of the T γ term. For example, when set-
ting γ = 0.25, M-TS-Gaussian is O(T 0.25)-GDP, but it has
a
∑
i:∆i>0O(T 0.25 log(T∆2

i )/∆i) regret bound, which
will not be problem-dependent optimal.

Since the classical (ε, δ)-DP notion is more interpretable,
we translate GDP guarantee presented in Theorem 4.4 into

6
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Table 1. Summary of privacy and regret guarantees
Regret bounds GDP guarantees

TS-G (Agrawal & Goyal, 2017) O
(
K ln(T∆2)/∆

)
O(T 0.5)

M-TS-G (Ou et al., 2024) bK +O(cK ln(T∆2)/∆) O(
√
T/(c(b+ 1)))

M-TS-G (tune b,c = O(T γ),γ > 0) O(KT γ ln(T∆2)/∆) O(T 0.5−γ)
M-TS-G (tune b,c = O (lnα(T ))) O(K lnα(T ) ln(T∆2)/∆) O(T 0.5/ lnα(T ))

DP-TS-UCB (Algorithm 1) O(K ln
(
T 0.5(3−α)∆2

)
lnα(T )/∆+K ln ln(T ) lnα(T )/∆) O(T 0.25(1−α) ln0.75(1−α)(T ))

DP-TS-UCB (tune α = 0) O(K ln
(
T 1.5∆2

)
/∆+K ln ln(T )/∆) Õ

(
T 0.25

)
DP-TS-UCB (tune α = 1) O(K ln

(
T∆2

)
ln(T )/∆) +K ln ln(T ) ln(T )/∆) O(1)

(ε, δ)-DP guarantees by using Theorem 2.4.

Theorem 4.6. DP-TS-UCB is (ε, δ(ε))-DP for all ε ≥ 0,

where δ(ε) = Φ
(
− ε√

2ϕ
+

√
2ϕ
2

)
−eε ·Φ

(
− ε√

2ϕ
−

√
2ϕ
2

)
,

where ϕ = c0T
0.5(1−α) ln0.5(3−α)(T ).

Proof. Directly using Theorem 2.4 concludes the proof.

The proof for Theorem 4.4 relies on the following composi-
tion theorem and post-processing theorem of GDP.

Theorem 4.7 (GDP composition (Dong et al., 2022)).
The m-fold composition of ηj-GDP mechanisms is√
η21 + . . .+ η2m-GDP.

Theorem 4.8 (GDP Post-processing (Dong et al., 2022)). If
a mechanismA is η-GDP, its post-processing is also η-GDP.

Proof of Theorem 4.4. Fix any two neighbouring reward
sequences X1:T = (X1, . . . , Xτ . . . , XT ) and X ′

1:T =
(X1, . . . , X

′
τ , . . . XT ), where the complete reward vector

in round τ is changed. Under the bandit feedback model,
this change only impacts the empirical mean of the arm
pulled in round τ , that is arm iτ . Name iτ = j: based on
the arm-specific epoch structure (Figure 2), the observation
Xj(τ) will only be used once for computing the empirical
mean of arm j at the end of some future round, which is the
last round of some epoch rj − 1 associated with arm j.

We have one Gaussian distribution constructed using Xj(τ)
at the beginning of epoch rj . If arm j only has the manda-
tory TS-Gaussian phase in epoch rj , we draw at most ϕ
Gaussian mean reward models from that constructed Gaus-
sian distribution. From Lemma 5 of Ou et al. (2024), we
know DP-TS-UCB is

√
1/ lnα(T )-GDP in each round in

the mandatory TS-Gaussian phase. From Theorem 4.7,
we know the GDP composition over at most ϕ rounds is√
ϕ/ lnα(T )-GDP. Note that Xj(τ) will not be used to con-

struct Gaussian distributions starting from epoch rj + 1 to
the end of learning due to the usage of arm-specific epoch
structure, i.e., we abandon Xj(τ) at the end of epoch rj .

If arm j has both the mandatory TS-Gaussian phase and
the optional UCB phase in epoch rj , for the mandatory
TS-Gaussian phase, DP-TS-UCB is

√
ϕ/ lnα(T )-GDP; for

the optional UCB phase, DP-TS-UCB is also
√
ϕ/ lnα(T )-

GDP, as by post-processing Theorem 4.8, the maximum
MAXj of ϕ Gaussian mean reward models is

√
ϕ/ lnα(T )-

GDP. Composing the privacy guarantees in these two phases
concludes the proof.

5. Experimental Results
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(a) The impact of learning horizon T and trade-off parameter
α on the regret by the end of round T .
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(b) The impact of learning horizon T and trade-off parameter
α on the GDP parameter η by the end of round T .

Figure 3. DP-TS-UCB’s privacy vs regret with different α and T .

The setup consists of five arms with Bernoulli rewards. We
set the mean rewards as [0.95, 0.75, 0.55, 0.35, 0.15]. We
first analyze DP-TS-UCB’s privacy and regret across differ-
ent values of α and T . Then, we compare DP-TS-UCB with
M-TS-Gaussian (Ou et al., 2024) from two perspectives:
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(1) Privacy cost under equal regret; (2) Regret under
equal privacy guarantee. We also compare with (ε, 0)-
DP algorithms, including DP-SE (Sajed & Sheffet, 2019),
Anytime-Lazy-UCB (Hu et al., 2021), and Lazy-DP-TS (Hu
& Hegde, 2022) for ε = 0.5, which can be found in Ap-
pendix E.2. All the experimental results are an average of
20 independent runs on a MacBook Pro with M1 Max and
32GB RAM.

5.1. Privacy and Empirical Regret of DP-TS-UCB with
Different Values of α and T

The performance of DP-TS-UCB in terms of the privacy
guarantees and regret across different values of α and time
horizons T are shown in Figure 3. The results reveal a trade-
off between regret minimization and privacy preservation:
increasing α leads to a stronger privacy guarantee, reflected
in a lower GDP parameter η, but at the cost of higher regret.
However, when α = 1, the privacy guarantee becomes con-
stant, meaning that increasing T no longer deteriorates the
privacy protection of DP-TS-UCB.

5.2. Privacy and Empirical Regret Comparison under
the Same Theoretical Regret Bound

Since DP-TS-UCB with parameter α and M-TS-Gaussian
with parameters b = 0, c = 5 lnα(T )) share the same
theoretical regret bound, we now present empirical re-
gret and privacy guarantees for different values of α =
{0, 0.25, 0.5, 0.75, 1}. We set T = 106. Figure 4(a) shows
that DP-TS-UCB incurs lower empirical regret than M-TS-
Gaussian, whereas Figure 4(b) shows that DP-TS-UCB
achieves better privacy.

5.3. Empirical Regret Comparison under the Same
Privacy Guarantee

M-TS-Gaussian satisfies a
√
T/(c(b+ 1))-GDP guarantee,

while DP-TS-UCB satisfies
√
2c0T 0.5(1−α) ln1.5(1−α)(T )-

GDP. Thus, we let c =
√

1
2c0(b+1)T

0.5(1+α) ln−1.5(1−α) T

for any b of M-TS-Gaussian to ensure the same privacy
guarantees as DP-TS-UCB. We compare their empirical
regret over T = 106 rounds under two privacy settings
determined by α for both algorithms. For each α, we select
b from {0, 1, 500, 1000, 2000, 5000, 100000} to minimize
regret of M-TS-Gaussian (see Appendix E.1).√

2c0T 0.5 ln1.5 T -GDP Guarantee (α = 0). The optimal
M-TS-Gaussian parameters are b = 1 and c = 1.18. As
shown in Figure 5(a), M-TS-Gaussian slightly outperforms
DP-TS-UCB, but the empirical regret gap is small.
√
2c0-GDP Guarantee (α = 1). For this setting, the best

M-TS-Gaussian parameters are b = 2000 and c = 60.46.
However, DP-TS-UCB achieves lower regret, significantly
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(a) Regret by the end of round T of DP-TS-UCB and M-TS-
Gaussian with different parameters.
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(b) GDP parameter η by the end of round T of DP-TS-UCB
and M-TS-Gaussian with different parameters.

Figure 4. The performance of DP-TS-UCB and M-TS-Gaussian
under the same theoretical regret bound.

outperforming M-TS-Gaussian, as shown in Figure 5(b).

6. Conclusion
This paper presents a novel private stochastic bandit algo-
rithm DP-TS-UCB (Algorithm 1) by leveraging the con-
nection between exploration mechanisms in TS-Gaussian
and UCB1. We first show that DP-TS-UCB satisfies
Õ(T 0.25(1−α))-GDP and then we translate this GDP guar-
antee to the classical (ε, δ)-DP guarantees by using dual-
ity between these two privacy notions. Corollary 4.3 and
Corollary 4.5 show that DP-TS-UCB with parameter α = 0
achieves the optimalO(K ln(T )/∆) problem-dependent re-
gret bounds and the near-optimal O(

√
KT lnT ) worst-case

regret bounds, and satisfies Õ
(
T 0.25

)
-GDP. This privacy

guarantee could be much better than the O(
√
T )-GDP guar-

antees achieved by TS-Gaussian and M-TS-Gaussian of Ou
et al. (2024). We conjecture that our privacy improvement
is at the cost of the anytime property of the learning al-
gorithm and the worst-case regret bounds. Note that both
TS-Gaussian and M-TS-Gaussian are anytime and achieve
O(
√
KT lnK) worst-case regret bounds, whereas our DP-

8
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T 0.5 ln1.5 T ) -GDP (α = 0).
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Figure 5. The regret of DP-TS-UCB and M-TS-Gaussian under
the same privacy guarantee with α = 0 and α = 1.

TS-UCB is not anytime and achieves only O(
√
KT lnT )

worst-case regret bounds. If we know the maximum mean
reward gap ∆max = maxi∈[K] ∆i in advance, by slightly
modifying the theoretical analysis, we know a better choice
of ϕ should be the one depending on ∆max. Tuning ϕ that
depends on ∆max will provide problem-dependent GDP
guarantees. This intuition motivates us to develop private
algorithms that achieve problem-dependent GDP guarantees
as the main future work.
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The appendix is organized as follows.

1. Useful facts are provided in Appendix A;

2. Proofs for Lemma 4.1 is presented in Appendix B;

3. Proofs for Lemma C.1 is presented in Appendix C;

4. Proofs for Theorem 4.2 is presented in Appendix D;

5. Additional experimental results are presented in Appendix E.

A. Useful facts
Fact A.1. For any T > e3, for any α ∈ [0, 1], we have ln1−α(T ) ≤ (1− α) ln(T ) + 1.

Proof. Let function f(α) = (1− α) ln(T ) + 1− ln1−α(T ), where variable α ∈ [0, 1]. Then, we have f ′(α) = − ln(T ) +

ln1−α(T ) ln(ln(T )). It is not hard to verify that f ′
(

ln(ln(ln(T )))
ln(ln(T ))

)
= 0. The fact that f ′(α) ≥ 0 when α ∈

[
0, ln(ln(ln(T )))

ln(ln(T ))

]
gives f(α) ≥ f(0) = 1 > 0 for any α ∈

[
0, ln(ln(ln(T )))

ln(ln(T ))

]
. Similarly, the fact that f ′(α) ≤ 0 when α ∈

[
ln(ln(ln(T )))
ln(ln(T )) , 1

]
gives f(α) ≥ f(1) = 0 for any α ∈

[
ln(ln(ln(T )))
ln(ln(T )) , 1

]
. Therefore, we have f(α) ≥ 0 for any α ∈ [0, 1].

Fact A.2 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be n independent random variables with support [0, 1]. Let
µ1:n = 1

n

∑n
i=1Xi. Then, for any a > 0, we have P {|µ1:n − E [µ1:n]| ≥ a} ≤ 2e−2na2 .

Fact A.3 (Concentration and anti-concentration bounds of Gaussian distributions). For a Gaussian distributed random
variable Z with mean µ and variance σ2, for any z > 0, we have

P {Z > µ+ zσ} ≤ 1
2e

− z2

2 , P {Z < µ− zσ} ≤ 1
2e

− z2

2 , (4)

and
P {Z > µ+ zσ} ≥ 1√

2π
z

z2+1e
− z2

2 . (5)

B. Proofs for Lemma 4.1
Proof of Lemma 4.1. Let Eµi,s denote the event that |µ̂i,s − µi| ≤

√
ln(T )/s holds. Let Eµi,s denote the complement. We

have

P
{
maxh∈[ϕ] θ

(h)
i,s ≤ µi

}
≤ P

{
Eµi,s
}
P
{
maxh∈[ϕ] θ

(h)
i,s ≤ µi | Eµi,s

}
+ P

{
Eµi,s
}

≤ ∏
h∈[ϕ]

P
{
θ
(h)
i,s ≤ µ̂i,s +

√
ln(T )/s | Eµi,s

}
+ 2e−2 ln(T )

=
∏
h∈[ϕ]

(
1− P

{
θ
(h)
1,s > µ̂1,s +

√
ln1−α(T ) lnα(T )/s | Eµi,s

})
+ 2/T 2

≤(a)
∏
h∈[ϕ]

(
1− 1√

2π
·
√

ln1−α(T )

ln1−α(T )+1
e−0.5ln1−α(T )

)
+ 2/T 2

≤(b)

(
1− 1√

2π
·
√

ln1−α(T )

ln1−α(T )+1
e−0.5((1−α) ln(T )+1)

)ϕ
+ 2/T 2

=

(
1− 1√

2πe
·
√

ln1−α(T )

ln1−α(T )
e−0.5((1−α) ln(T ))

)ϕ
+ 2/T 2

≤(c) e
−ϕ/

√
2πe· 1√

ln1−α(T )
· 1

T0.5(1−α) + 2/T 2

= e
−
√
2πeT 0.5(1−α) ln0.5(3−α)(T )/

√
2πe· 1√

ln1−α(T )
· 1

T0.5(1−α) + 2/T 2

≤ 3/T,

(6)

where step (a) uses the anti-concentration bound shown in (5), step (b) uses ln1−α(T ) ≤ (1 − α) ln(T ) + 1 shown in
Fact A.1, and step (c) uses (1− x) ≤ e−x.
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C. Proofs for Lemma C.1
For the case where α = 0, Lemma C.1 below is an improved version of Lemma 2.13 in Agrawal & Goyal (2017) and our
new results imply both improved problem-dependent and problem-independent regret bounds for Algorithm 2 in Agrawal &
Goyal (2017). Assume T∆2

i > e.

Lemma C.1. Let θ1,s ∼ N
(
µ̂1,s,

lnα(T )
s

)
. Then, for any integer s ≥ 1, we have

Eµ̂1,s

[
1

P{θ1,s>µ1|µ̂1,s} − 1
]
≤ 12.34 . (7)

Also, for any integer s ≥ 4(1+
√
2)2 ln(T∆2

i ) ln
α(T )

∆2
i

, we have

Eµ̂1,s

[
1

P{θ1,s>µ1−∆i
2 |µ̂1,s} − 1

]
≤ 72

T∆2
i

. (8)

Proof. For the result shown in (7), we analyze two cases: s = 1 and s ≥ 2. For s = 1, we have

LHS of (7) = E
[

1
P{θ1,s>µ1|µ̂1,s}

]
− 1 ≤(a) E

 1

P
{
θ1,s>µ̂1,s+

√
lnα(T )

1 |µ̂1,s

}
− 1 ≤(b) 1

1√
2π

· 12 ·e−0.5 − 1 ≤ 12.176, (9)

where step (a) uses µ1 ≤ µ̂1,s + lnα(T ) and step (b) uses the anti-concentration bound shown in (5).

For any s ≥ 2, since µ̂1,s is a random variable in [0, 1], we know |µ̂1,s − µ1| ∈ [0, 1] is also a random variable. Now, we
define a sequence of disjoint sub-intervals[

0,
√

2 ln(2)
s

)
,

[√
2 ln(2)
s ,

√
2 ln(2+1)

s

)
, . . . ,

[√
2 ln(r+1)

s ,
√

2 ln(r+2)
s

)
, . . . ,

[√
2 ln(r0(s)+1)

s ,
√

2 ln(r0(s)+2)
s

)
,

where r0(s) is the smallest integer such that [0, 1] ⊆
[
0,
√

2 ln(2)
s

)
∪
( ⋃

1≤r≤r0(s)

[√
2 ln(r+1)

s ,
√

2 ln(r+2)
s

))
.

We also define events S0 :=

{
|µ̂1,s − µ1| ∈

[
0,
√

2 ln(2)
s

)}
and Sr :=

{
|µ̂1,s − µ1| ∈

[√
2 ln(r+1)

s ,
√

2 ln(r+2)
s

)}
for

all 1 ≤ r ≤ r0(s) accordingly.

Now, we have

LHS of (7) = E
[

1
P{θ1,s>µ1|µ̂1,s}

]
− 1 ≤ E

[
1{S0}

P{θ1,s>µ1|µ̂1,s}

]
+

∑
1≤r≤r0(s)

E
[

1{Sr}
P{θ1,s>µ1|µ̂1,s}

]
− 1 . (10)

For the first term in (10), we have

E
[

1{S0}
P{θ1,s>µ1|µ̂1,s}

]
≤ E

 1{S0}
P
{
θ1,s>µ̂1,s+

√
2 ln(2)

s |µ̂1,s

}
 ≤ E

 1{S0}
P
{
θ1,s>µ̂1,s+

√
2 ln(2) lnα(T )

s |µ̂1,s

}


≤ 1

1√
2π

·
√

2 ln(2)

2 ln(2)+1
·e−0.5·2·ln(2)

≤ 10.161,

(11)

where the second last inequality uses the anti-concentration bound shown in (5).

12
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For the second term in (10), we have∑
1≤r≤r0(s)

E
[

1{Sr}
P{θ1,s>µ1|µ̂1,s}

]
≤ ∑

1≤r≤r0(s)
E

1

{
|µ̂1,s−µ1|∈

[√
2 ln(r+1)

s ,

√
2 ln(r+2)

s

)}
P{θ1,s>µ1|µ̂1,s}



=
∑

1≤r≤r0(s)
E

1

{
|µ̂1,s−µ1|∈

[√
2 ln(r+1)

s ,

√
2 ln(r+2)

s

)}
P
{
θ1,s>µ̂1,s+

√
2 ln(r+2)

s |µ̂1,s

}


≤ ∑
1≤r≤r0(s)

E

1

{
|µ̂1,s−µ1|∈

[√
2 ln(r+1)

s ,

√
2 ln(r+2)

s

)}
P
{
θ1,s>µ̂1,s+

√
2 ln(r+2) lnα(T )

s |µ̂1,s

}


≤(a)
∑

1≤r≤r0(s)
E

[
1

1√
2π

·
√

2 ln(r+2)

2 ln(r+2)+1
·e−0.5·2 ln(r+2)

· 1
{
|µ̂1,s − µ1| ∈

[√
2 ln(r+1)

s ,
√

2 ln(r+2)
s

)}]

=
∑

1≤r≤r0(s)

√
2π(2 ln(r+2)+1)√

2 ln(r+2)·e− ln(r+2)
· P
{
|µ̂1,s − µ1| ≥

√
2 ln(r+1)

s

}

≤(b)
∑

1≤r≤r0(s)

√
2π(2 ln(r+2)+1)√

2 ln(r+2)·e− ln(r+2)
· 2e−2s· 2 ln(r+1)

s

=
∑

1≤r≤r0(s)

√
π·(2 ln(r+2)+1)·(r+2)√

ln(r+2)
· 2 1

(r+1)4

≤ 3.176 ,

(12)

where step (a) uses the anti-concentration bound shown in (5) and step (b) uses Hoeffding’s inequality.

Plugging the results shown in (11) and (12) into (10), we have

LHS of (7) = E
[

1
P{θ1,s>µ1|µ̂1,s}

]
− 1 ≤ E

[
1{S0}

P{θ1,s>µ1|µ̂1,s}

]
+
∑
r≥1

E
[

1{Sr}
P{θ1,s>µ1|µ̂1,s}

]
− 1 ≤ 12.34, (13)

which concludes the proof of the first result.
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For the result shown in (8), we define the following sequence of sub-intervals[
0,

√
ln(T∆2

i )

s

)
, . . . ,

[√
ln(r·T∆2

i )

s ,

√
ln((r+1)·T∆2

i )

s

)
, . . . ,

[√
ln(r0(s)·T∆2

i )

s ,

√
ln((r0(s)+1)·T∆2

i )

s

)
,

where r0(s) is the smallest integer such that [0, 1] ⊆
[
0,

√
ln(T∆2

i )

s

) ⋃
1≤r≤r0(s)

[√
ln(r·T∆2

i )

s ,

√
ln((r+1)·T∆2

i )

s

)
.

We define events S0 :=

{
|µ̂1,s − µ1| ∈

[
0,

√
ln(T∆2

i )

s

)}
and Sr :=

{
|µ̂1,s − µ1| ∈

[√
ln(rT∆2

i )

s ,

√
ln((r+1)T∆2

i )

s

)}
for

all 1 ≤ r ≤ r0(s) accordingly.

From s ≥ 4(1+
√
2)2 ln(T∆2

i ) ln
α(T )

∆2
i

, we also have ∆i ≥
√

4(1+
√
2)2 ln(T∆2

i ) ln
α(T )

s . Then, we have

LHS of (8)

= E
[

1
P{θ1,s>µ1−0.5∆i|µ̂1,s}

]
− 1

≤ E

 1

P
{
θ1,s>µ1−

√
(1+

√
2)2 ln(T∆2

i ) lnα(T )

s |µ̂1,s

}
− 1

≤

E

 1{S0}

P
{
θ1,s>µ1−

√
(1+

√
2)2 ln(T∆2

i ) lnα(T )

s |µ̂1,s

}
− 1

+
∑

1≤r≤r0(s)
E

 1{Sr}

P
{
θ1,s>µ1−

√
(1+

√
2)2 ln(T∆2

i ) lnα(T )

s |µ̂1,s

}


≤

E

 1{S0}

P
{
θ1,s>µ1−

√
(1+

√
2)2 ln(T∆2

i ) lnα(T )

s |µ̂1,s

}
− 1

+
∑

1≤r≤r0(s)
E
[

1{Sr}
P{θ1,s>µ1|µ̂1,s}

]
.

(14)

For the first term in (14), we have

E

 1{S0}

P
{
θ1,s>µ1− 1

2

√
(1+

√
2)2 ln(T∆2

i ) lnα(T )

s |µ̂1,s

}
− 1

≤ E

 1{S0}

P
{
θ1,s>µ̂1,s+

√
ln(T∆2

i )
s −

√
(1+

√
2)2 ln(T∆2

i ) lnα(T )

s |µ̂1,s

}
− 1

≤ E

 1{S0}

P
{
θ1,s>µ̂1,s+

√
ln(T∆2

i ) lnα(T )

s −
√

(1+
√

2)2 ln(T∆2
i ) lnα(T )

s |µ̂1,s

}
− 1

= E

 1{S0}

P
{
θ1,s>µ̂1,s−

√
2 ln(T∆2

i
) lnα(T )

s |µ̂1,s

}
− 1

≤(a) E
[

1
1− 0.5

T∆2
i

]
− 1

≤(b) 0.613
T∆2

i
,

(15)

where step (a) uses concentration bound shown in (4) and step (b) uses 1
1− 0.5

T∆2
i

− 1 =
0.5

T∆2
i

1− 0.5

T∆2
i

≤ 0.5
T∆2

i
· 1
1−0.5/e .
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For the second term in (14), we have∑
1≤r≤r0(s)

E
[

1{Sr}
P{θ1,s>µ1|µ̂1,s}

]

=
∑

1≤r≤r0(s)
E

1

{
|µ̂1,s−µ1|∈

[√
ln(r·T∆2

i )
s ,

√
ln((r+1)·T∆2

i )
s

)}
P{θ1,s>µ1|µ̂1,s}


≤ ∑

1≤r≤r0(s)
E

1

{
|µ̂1,s−µ1|∈

[√
ln(r·T∆2

i )
s ,

√
ln((r+1)·T∆2

i )
s

)}

P
{
θ1,s>µ̂1,s+

√
ln((r+1)·T∆2

i )
s |µ̂1,s

}


≤ ∑
1≤r≤r0(s)

E

1

{
|µ̂1,s−µ1|∈

[√
ln(r·T∆2

i )
s ,

√
ln((r+1)·T∆2

i )
s

)}

P
{
θ1,s>µ̂1,s+

√
ln((r+1)·T∆2

i ) lnα(T )

s |µ̂1,s

}


≤(a)
∑

1≤r≤r0(s)
1

1
2
√

2π
· 1√

ln((r+1)·T∆2
i
)
·((r+1)·T∆2

i )
−0.5 · P

{
|µ̂1,s − µ1| ∈

[√
ln(r·T∆2

i )

s ,

√
ln((r+1)·T∆2

i )

s

)}
≤ ∑

1≤r≤r0(s)
1

1
2
√

2π
· 1√

ln((r+1)·T∆2
i
)
·((r+1)·T∆2

i )
−0.5 · P

{
|µ̂1,s − µ1| ≥

√
ln(r·T∆2

i )

s

}
≤(b)

∑
1≤r≤r0(s)

1
1

2
√

2π
· 1√

ln((r+1)·T∆2
i
)
·((r+1)·T∆2

i )
−0.5 · 2e−2 ln(r·T∆2

i )

=
∑

1≤r≤r0(s)
1

1
2
√

2π
· 1√

ln((r+1)·T∆2
i
)
·((r+1)·T∆2

i )
−0.5 · 2(r · T∆2

i )
−2

≤ ∑
1≤r≤r0(s)

4
√

2π(r+1)·T∆2
i ·ln((r+1)·T∆2

i )

(r·T∆2
i )

2

= 4
√
2π

T∆2
i

∑
1≤r≤r0(s)

√
(r+1)·ln((r+1)·T∆2

i )
r2·
√
T∆2

i

≤ 4
√
2π

T∆2
i

∑
1≤r≤r0(s)

√
(r+1) ln(r+1)

r2 +
√
r+1
r2

≤ 4
√
2π

T∆2
i
× 7.034

≤ 70.5235
T∆2

i
,

(16)

where step (a) uses the anti-concentration bound shown in (5), i.e., we have

P
{
θ1,s > µ̂1,s +

√
ln((r+1)·T∆2

i )

s | µ̂1,s

}
≥ P

{
θ1,s > µ̂1,s +

√
ln((r+1)·T∆2

i ) ln
α(T )

s | µ̂1,s

}
≥ 1√

2π
·
√

ln((r+1)·T∆2
i )

ln((r+1)·T∆2
i )+1

· e−0.5·ln((r+1)·T∆2
i )

= 1√
2π
·
√

ln((r+1)·T∆2
i )

ln((r+1)·T∆2
i )+1

· ((r + 1) · T∆2
i )

−0.5

> 1√
2π
·
√

ln((r+1)·T∆2
i )

2 ln((r+1)·T∆2
i )
· ((r + 1) · T∆2

i )
−0.5

= 1
2
√
2π
· 1√

ln((r+1)·T∆2
i )
· ((r + 1) · T∆2

i )
−0.5 .
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D. Proofs for Theorem 4.2

Proof. We first define two high-probability events. For any arm i ∈ [K], let Eµi (t−1) :=
{∣∣µ̂i,ni(t−1) − µi

∣∣ ≤√ ln(T∆2
i )

ni(t−1)

}
and Eθi (t) :=

{
θi(t) ≤ µ̂i,ni(t−1) +

√
2 ln(T∆2

i · ϕ) ·
√

lnα(T )
ni(t−1)

}
. Let Eµi (t− 1) and Eθi (t) denote the complements,

respectively.

Fix a sub-optimal arm i. Let Li :=
(
√
2+1)

2

4 · ln(T∆2
i · ϕ) · ln

α(T )
∆2

i
and r(∗)i = ⌈log2(Li)⌉.

Let t0 denote the last round of epoch r(∗)i . That is also to say, at the end of round t0, arm i’s empirical mean will be updated
by using 2r

(∗)
i observations.

Let Ni(T ) denote the number of pulls of sub-optimal arm i by the end of round T . We upper bound E [Ni(T )], the expected
number of pulls of sub-optimal arm i. We decompose the regret based on whether the above-defined events are true or not.
We have

E [Ni(T )] =
∑T
t=K+1 E [1 {it = i}] + 1

= E
[∑t0

t=K+1 1 {it = i, ni(t− 1) < Li}
]
+ E

[∑T
t=t0+1 1 {it = i, ni(t− 1) ≥ Li}

]
+ 1

≤ ∑r
(∗)
i
s=1 2

s +
∑T
t=K+1 E [1 {it = i, ni(t− 1) ≥ Li}] + 1

=
∑r

(∗)
i
s=0 2

s +
∑T
t=K+1 E [1 {it = i, ni(t− 1) ≥ Li}]

≤ 4Li +

T∑
t=K+1

E
[
1
{
it = i, Eθi (t), Eµi (t− 1), ni(t− 1) ≥ Li

}]
︸ ︷︷ ︸

ω1

+

T∑
t=K+1

E
[
1
{
it = i, Eθi (t), ni(t− 1) ≥ Li

}]
︸ ︷︷ ︸

ω2=O(1/∆2
i ), Lemma D.1

+

T∑
t=K+1

E
[
1
{
it = i, Eµi (t− 1), ni(t− 1) ≥ Li

}]
︸ ︷︷ ︸

ω3=O(1/∆2
i ), Lemma D.2

.

(17)
For ω2 and ω3 terms, we prepare a lemma for each of them.

Lemma D.1. We have
∑T
t=K+1 E

[
1
{
it = i, Eθi (t), ni(t− 1) ≥ Li

}]
≤ O

(
1
∆2

i

)
.

Lemma D.2. We have
∑T
t=K+1 E

[
1
{
it = i, Eµi (t− 1), ni(t− 1) ≥ Li

}]
≤ O

(
1
∆2

i

)
.

The challenging part is to upper bound term ω1. By tuning Li properly, we have

ω1 =
∑T
t=K+1 E

[
1
{
it = i, Eθi (t), Eµi (t− 1), ni(t− 1) ≥ Li

}]
≤(a)

∑T
t=K+1 E [1 {it = i, θi(t) ≤ µi + 0.5∆i}] ,

(18)

where step (a) uses the argument that if both events Eµi (t − 1) =

{∣∣µ̂i,ni(t−1) − µi
∣∣ ≤√ ln(T∆2

i )

ni(t−1)

}
and Eθi (t) ={

θi(t) ≤ µ̂i,ni(t−1) +
√
2 ln(T∆2

i · ϕ) ·
√

lnα(T )
ni(t−1)

}
are true, and ni(t− 1) ≥ Li, we have

θi(t) ≤ µ̂i,ni(t−1) +
√
2 ln(T∆2

i · ϕ) ·
√

lnα(T )
ni(t−1)

≤ µi +
√

ln(T∆2
i )

ni(t−1) +
√

2 ln(T∆2
i · ϕ) ·

√
lnα(T )
ni(t−1)

< µi +
√

ln(T∆2
i ·ϕ)

Li

√
lnα(T ) +

√
2 ln(T∆2

i · ϕ) ·
√

lnα(T )
Li

< µi + (
√
2 + 1)

√
ln(T∆2

i ·ϕ)
Li

√
lnα(T )

= µi + 0.5∆i ,

(19)

where the last step applies Li =
(
√
2+1)

2

4 · ln(T∆2
i · ϕ) · ln

α(T )
∆2

i
.
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Since the optimal arm 1 can either be in the mandatory TS-Gaussian phase or the optional UCB phase, we continue
decomposing the regret based on the case of the optimal arm 1. Define T1(t) as the event that the optimal arm 1 in round t is
in the mandatory TS-Gaussian phase, that is, using a fresh Gaussian mean reward model in the learning. Let T1(t) denote the
complement, that is, using MAX1 = maxh1∈[ϕ] θ

(h1)
1,n1(t−1) in the learning, where all θ(h1)

1,n1(t−1) ∼ N
(
µ̂1,n1(t−1),

lnα(T )
n1(t−1)

)
are i.i.d. random variables.

We have

ω1 ≤
T∑

t=K+1

E [1 {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)}]︸ ︷︷ ︸
I1

+

T∑
t=K+1

E
[
1
{
it = i, θi(t) ≤ µi + 0.5∆i, T1(t)

}]
︸ ︷︷ ︸

I2

.
(20)

Upper bound I1. Note that if event T1(t) is true, we know the optimal arm 1 is using a fresh Gaussian mean re-
ward model in the learning in round t, that is, θ1(t) ∼ N

(
µ̂1,n1(t−1),

lnα(T )
n1(t−1)

)
. Term I1 will use a similar anal-

ysis to Lemma 2.8 of Agrawal & Goyal (2017), which links the probability of pulling a sub-optimal arm i to the
probability of pulling the optimal arm 1. We formalize this into our technical Lemma D.3 below. Let Ft−1 =
{h1(τ), h2(τ), . . . , hK(τ), iτ , Xiτ (τ),∀τ = 1, 2, . . . , t− 1} collect all the history information by the end of round t− 1.
It collects the number of unused Gaussian sampling budget hi(τ) by the end of round τ for all i ∈ [K], the index iτ of the
pulled arm, and the observed reward Xiτ (τ) for all rounds τ = 1, 2, . . . , t− 1. Let θ1,n1(t−1) ∼ N

(
µ̂1,n1(t−1),

lnα(T )
n1(t−1)

)
be a Gaussian random variable.

Lemma D.3. For any instantiation Ft−1 of Ft−1, we have

E [1 {it = i, T1(t), θi(t) ≤ µi + 0.5∆i} | Ft−1 = Ft−1]

≤
(

1

P{θ1,n1(t−1)>µ1−0.5∆i|Ft−1=Ft−1} − 1

)
E [1 {it = 1} | Ft−1 = Ft−1] .

(21)

With Lemma D.3 in hand, we upper bound term I1. Let L1,i :=
4(1+

√
2)2 ln(T∆2

i ) ln
α(T )

∆2
i

. Let r(∗)1 = ⌈log2(L1,i)⌉. We have

I1 =
T∑

t=K+1

E [1 {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)}]

=
T∑

t=K+1

E [E [1 {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1]]

≤
T∑

t=K+1

E
[(

1

P{θ1,n1(t−1)>µ1−0.5∆i|Ft−1=Ft−1} − 1

)
· E [1 {it = 1} | Ft−1 = Ft−1]

]
=

T∑
t=K+1

E
[
E
[(

1

P{θ1,n1(t−1)>µ1−0.5∆i|Ft−1=Ft−1} − 1

)
· 1 {it = 1} | Ft−1 = Ft−1

]]
=

T∑
t=K+1

E
[(

1

P{θ1,n1(t−1)>µ1−0.5∆i|Ft−1=Ft−1} − 1

)
· 1 {it = 1}

]
≤

log(T )∑
s=0

2s+1 · E
[(

1

P{θ1,2s>µ1−0.5∆i|µ̂1,2s} − 1

)]
≤

r
(∗)
1 −1∑
s=0

2s+1 · E
[(

1

P {θ1,2s > µ1 − 0.5∆i | µ̂1,2s}
− 1

)]
︸ ︷︷ ︸

≤12.34 from (7)

+
log(T )∑
s=r

(∗)
1

2s+1 · E
[(

1

P {θ1,2s > µ1 − 0.5∆i | µ̂1,2s}
− 1

)]
︸ ︷︷ ︸

≤ 72

T∆2
i

from (8)

≤ 4 · L1,i · 12.34 +
log(T )∑
s=r

(∗)
1

2s+1 · 72
T∆2

i

≤ 50L1,i +O(1/∆2
i ) .

(22)

17



Connecting Thompson Sampling and UCB: Towards More Efficient Trade-offs Between Privacy and Regret

Upper bound I2. Note that if event T1(t) is false, we know the optimal arm 1 is using MAX1 = maxh1∈[ϕ] θ
(h1)
1,n1(t−1) in

the learning, where θ(h1)
1,n1(t−1) ∼ N

(
µ̂1,n1(t−1),

lnα(T )
n1(t−1)

)
for each h1 ∈ [ϕ]. We have

I2 =
T∑

t=K+1

E
[
1
{
it = i, θi(t) ≤ µi + 0.5∆i, T1(t)

}]
<

T∑
t=K+1

E
[
1
{
it = i, θi(t) ≤ µi +∆i, T1(t)

}]
≤

T∑
t=K+1

E
[
1
{
it = i, θ1(t) ≤ µi +∆i, T1(t)

}]
≤

T∑
t=K+1

log(T )∑
s=0

E
[
1

{
max
h1∈[ϕ]

θ
(h1)
1,2s ≤ µ1

}]
︸ ︷︷ ︸

Lemma 4.1

≤
T∑

t=K+1

log(T )∑
s=0

O(1/T )

≤ O(ln(T )) .

(23)

From (22) and (23), we have ω1 ≤ I1 + I2 ≤ 50L1,i +O(1/∆2
i ) +O(ln(T )) ≤ O

(
ln(T∆2

i ) ln
α(T )

∆2
i

)
, which gives

E [Ni(T )] ≤ O
(

ln(ϕT∆2
i ) ln

α(T )

∆2
i

)
+O

(
ln(T∆2

i ) ln
α(T )

∆2
i

)
= O

(
ln(ϕT∆2

i ) ln
α(T )

∆2
i

)
. (24)

Therefore, the problem-dependent regret bound by the end of round T is∑
i∈[K]:∆i>0 E [Ni(T )] ·∆i

=
∑
i∈[K]:∆i>0O

(
ln(ϕT∆2

i ) ln
α(T )

∆i

)
=

∑
i∈[K]:∆i>0O

(
ln(c0T

0.5(1−α) ln0.5(3−α)(T )T∆2
i ) ln

α(T )
∆i

)
≤ ∑

i∈[K]:∆i>0O

(
ln(T 0.5(3−α)∆2

i ) ln
α(T )

∆i

)
+O

(
(3−α) ln ln(T ) lnα(T )

∆i

)
.

(25)

For the proof of worst-case regret bound, we set the critical gap ∆∗ :=
√
K ln1+α(T )/T . The regret from pulling any sub-

optimal arms with mean reward gaps no greater than ∆∗ is at most T∆∗ = O(
√
KT ln1+α(T )). The regret from pulling

any sub-optimal arms with mean reward gaps greater than ∆∗ is at most
∑
i∈[K]:∆i≥∆∗

O

(
ln(T 0.5(3−α)∆2

i ) ln
α(T )

∆i

)
+

O
(

(3−α) ln ln(T ) lnα(T )
∆i

)
≤∑i∈[K]:∆i≥∆∗

O
(

ln(T ) lnα(T )
∆∗

)
+O

(
ln ln(T ) lnα(T )

∆∗

)
≤ O

(√
KT ln1+α(T )

)
.
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Proof of Lemma D.1. Let τ (i)s be the round by the end of which the empirical mean will be computed based on 2s fresh
observations.

We have

T∑
t=K+1

E
[
1
{
it = i, Eθi (t), ni(t− 1) ≥ Li

}]
=

T∑
t=K+1

E
[
1
{
it = i, θi(t) > µ̂i,ni(t−1) +

√
2 ln(T∆2

i · ϕ) ·
√

lnα(T )
ni(t−1) , ni(t− 1) ≥ Li

}]
≤

log(T )∑
s=0

E

 τ
(i)
s+1∑

t=τ
(i)
s +1

1
{
it = i, θi(t) > µ̂i,ni(t−1) +

√
2 ln(T∆2

i · ϕ) ·
√

lnα(T )
ni(t−1)

}
≤

log(T )∑
s=0

2s+1 · P
{

MAXi > µ̂i,2s +
√
2 ln(T∆2

i · ϕ) ·
√

lnα(T )
2s

}
≤

log(T )∑
s=0

2s+1 · ϕ · 12e− ln(T∆2
i ·ϕ)

≤ O
(
T · ϕ · 1

T∆2
i ·ϕ

)
≤ O

(
1
∆2

i

)
,

(26)

which concludes the proof.

Proof of Lemma D.2. From Hoeffding’s inequality, we have

T∑
t=K+1

E
[
1
{
it = i, Eµi (t− 1), ni(t− 1) ≥ Li

}]
≤

log(T )∑
s=0

P
{
|µ̂i,2s − µi| ≤

√
ln(T∆2

i )

2s

}
2s+1

≤
log(T )∑
s=0

2e−2 ln(T∆2
i ) · 2s+1

≤ O
(
T · 1

T∆2
i ·T∆2

i

)
≤ O

(
1
∆2

i

)
,

(27)

which concludes the proof.

Proof of Lemma D.3. For any Ft−1, we have

E [1 {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1 = Ft−1]
≤ 1 {T1(t)} · E [1 {θ1(t) ≤ µi + 0.5∆i, θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1]
= 1 {T1(t)} · E [1 {θ1(t) ≤ µi + 0.5∆i} | Ft−1 = Ft−1] · E [1 {θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1] ,

(28)
where the first inequality uses the fact that event T1(t) is determined by the history information. Note if h1(t− 1) ∈ [ϕ], we
have 1 {T1(t)} = 1; if h1(t− 1) = 0, we have 1 {T1(t)} = 0.

We also have

E [1 {it = 1, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1 = Ft−1]
≥ 1 {T1(t)} · E [1 {θ1(t) > µi + 0.5∆i ≥ θj(t),∀j ∈ [K] \ {1}} | Ft−1 = Ft−1]
= 1 {T1(t)} · E [1 {θ1(t) > µi + 0.5∆i} | Ft−1 = Ft−1] · E [1 {θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1] .

(29)

Now, we categorize all the possible Ft−1’s of Ft−1 into two groups based on whether 1 {T1(t)} = 0 or 1 {T1(t)} = 1.
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Case 1: For any Ft−1 such that 1 {T1(t)} = 0, combining (28) and (29) gives

E [1 {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1 = Ft−1]
= 0

≤
(

1

P{θ1,n1(t−1)>µ1+0.5∆i|Ft−1=Ft−1} − 1

)
· E [1 {it = 1} | Ft−1 = Ft−1] ,

(30)

where the last equality uses the fact that 0 <
(

1

P{θ1,n1(t−1)>µi+0.5∆i|Ft−1=Ft−1} − 1

)
< +∞.

Case 2: For any Ft−1 such that 1 {T1(t)} = 1, we have

E [1 {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1 = Ft−1]
≤ 1 {T1(t)} · E [1 {θ1(t) ≤ µi + 0.5∆i, θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1]
= 1 {T1(t)} · E [1 {θ1(t) ≤ µi + 0.5∆i} | Ft−1 = Ft−1] · E [1 {θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1]
= E

[
1
{
θ1,n1(t−1) ≤ µi + 0.5∆i

}
| Ft−1 = Ft−1

]
· E [1 {θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1] .

(31)
We also have

E [1 {it = 1, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1 = Ft−1]
≥ 1 {T1(t)} · E [1 {θ1(t) > µi + 0.5∆i ≥ θj(t),∀j ∈ [K] \ {1}} | Ft−1 = Ft−1]
= 1 {T1(t)} · E [1 {θ1(t) > µi + 0.5∆i} | Ft−1 = Ft−1] · E [1 {θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1]
= E

[
1
{
θ1,n1(t−1) > µi + 0.5∆i

}
| Ft−1 = Ft−1

]︸ ︷︷ ︸
>0

·E [1 {θj(t) ≤ µi + 0.5∆i,∀j ∈ [K] \ {1}} | Ft−1 = Ft−1] .

(32)
From (31) and (32), we have

E [1 {it = i, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1 = Ft−1]

≤ P{θ1,n1(t−1)≤µi+0.5∆i|Ft−1=Ft−1}
P{θ1,n1(t−1)>µi+0.5∆i|Ft−1=Ft−1} · E [1 {it = 1, θi(t) ≤ µi + 0.5∆i, T1(t)} | Ft−1 = Ft−1]

≤
(

1

P{θ1,n1(t−1)>µi+0.5∆i|Ft−1=Ft−1} − 1

)
· E [1 {it = 1} | Ft−1 = Ft−1] ,

(33)

which concludes the proof.
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E. Additional Experimental Results
E.1. M-TS-Gaussian parameter selection

Recall that in Section 5.3, we let c = 1
2c0(b+1)T

0.5(1+α) ln−1.5(1−α)(T ) for any b for M-TS-Gaussian to satisfy√
2c0T 0.5(1−α) ln1.5(1−α)(T )-GDP. To determine the best b value for each α considered in Section 5.3, we conduct

experiments with b = {0, 1, 500, 1000, 2000, 5000, 100000}. The results are shown in Figure 6.
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Figure 6. The regret of M-TS-Gaussian with parameters b = {0, 1, 500, 1000, 2000, 5000, 100000} under two privacy guarantees.

We can observe that when α = 0, M-TS-Gaussian achieves the lowest regret with b = 1 and c = 1.18, as shown in
Figure 6(a). When α = 1, M-TS-Gaussian achieves the lowest regret with b = 2000 and c = 60.46, as shown in Figure 6(b).

E.2. Comparison with (ϵ, 0)-DP algorithms

We compare DP-TS-UCB with (ε, 0)-DP algorithms with ε = 0.5: DP-SE (Sajed & Sheffet, 2019), Anytime-Lazy-UCB
(Hu et al., 2021) and Lazy-DP-TS (Hu & Hegde, 2022). These algorithms use the Laplace mechanism to inject noise.
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Figure 7. The regret of DP-TS-UCB and M-TS-Gaussian under the same privacy guarantee with α = 0 and 1, with comparison to
(ϵ, 0)-DP algorithms.

We can see that when α = 0, both DP-TS-UCB and M-TS-Gaussian perform better than the (ϵ, 0)-DP algorithms, as shown
in Figure 7(a). When we increase α = 1, M-TS-Gaussian performs worse than the (ϵ, 0)-DP algorithms, but DP-TS-UCB
still outperforms Anytime-Lazy-UCB, as shown in Figure 7(b).
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