Normalizing Flows are Capable Models for
Continuous Control

Raj Ghugare Benjamin Eysenbach
Department of Computer Science
Princeton University
rg9360@princeton.edu

Abstract

Modern reinforcement learning (RL) algorithms have found success by using prob-
abilistic models, such as transformers, energy-based models, and diffusion/flow-
based models. To this end, researchers often choose to pay the price of accommo-
dating these models into their algorithms — diffusion models are expressive, but are
computationally intensive due to their reliance on solving differential equations,
while autoregressive transformer models are scalable but typically require learning
discrete representations. Normalizing flows (NFs), by contrast, seem to provide
an appealing alternative, as they enable likelihoods and sampling without solving
differential equations or autoregressive architectures. However, their potential in
RL has received limited attention, partly due to the prevailing belief that normal-
izing flows lack sufficient expressivity. We show that this is not the case. Building
on recent work in NFs, we propose a single NF architecture which integrates seam-
lessly into RL algorithms, serving as a policy, Q-function, and occupancy measure.
Our approach leads to much simpler algorithms, and achieves higher performance
in imitation learning, offline, goal conditioned RL and unsupervised RL.'

Exact Likelihoods Sampling Variational Inference
e GCRL Value Func. e RL Policies e Offline RL
e Behavior Reg. e Behavior Cloning e Exact Max-Ent. RL
e Unsupervised RL e World Models e Control as Inference
@ 9()])post(') PH() R()

s BB w
B\ [/ BB~ P()

&) PO\ @R By B Vo
What's the likelihood Sample 9 times from What is the posterior if my
of a £} image? the fitted distribution. likelihood is R(+)?

Figure 1: Probabilistic models and RL. Three capabilities of probabilistic models are important for RL:
efficient likelihood computation, sampling, and compatibility with variational inference (VI). These capabilities
are at the core of most RL algorithms (See Section 4 for details). For example, behavior cloning requires
maximizing likelihoods and sampling [4], GCRL value functions require estimating future discounted state
probabilities [23], and MaxEnt RL and RL finetuning requires variational inference [54]. However, models like
diffusion and autoregressive transformers used in RL today support only a subset of these capabilities, making
their application complex. In this paper, we show how normalizing flows, which posses these properties, can be
a generally capable model family for RL.

'The code for all experiments can be found here : https:/github.com/Princeton-RL/normalising-flows-4-
reinforcement-learning.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Princeton-RL/normalising-flows-4-reinforcement-learning
https://github.com/Princeton-RL/normalising-flows-4-reinforcement-learning

Table 1: Capabilities of probabilistic models. NFs have capabilities that make them applicable to a large
number of RL problems (Section 4), including the ability to compute exact likelihoods, sample from complex
distributions, and be trained via both maximum likelihood and variational inference (Section 3). Despite these
capabilities, research on NFs in RL has been limited compared to other state of the art models. Is this because
NFs lack expressivity? Our experiments (Section 6) provide compelling evidence that this is not the case.

Model family Exact Likelihoods Sampling Variational Inference”
Variational Autoencoders Lower bound Yes No
Generative Adversarial networks No Yes No
Energy Based models Unnormalized MCMC No
Diffusion models Yes, via ODEs Unrolling SDEs No
Normalizing Flows Yes Yes Yes

* Although directly performing VI (posterior sampling and estimation) is generally intractible for the first four
model families we have still marked them with yellow because additional algorithms for VI do exist [8].

1 Introduction

Reinforcement learning (RL) algorithms often require probabilistic modeling of high dimensional
and complex distributions. For example, offline RL or behavior cloning (BC) from large scale
robotics datasets requires learning a multi-modal policy [4, 16, 7] and value function estimation
in goal-conditioned RL (GCRL) requires estimating probabilities over future goals [23]. Different
algorithms require different capabilities, including likelihood estimation, variational inference (VI)
and efficient sampling (see Figure 1). A model trained via BC must maximize action likelihoods
during training and support fast action sampling for real-time control. Most offline or finetuning
RL algorithms require policy models to be able to backpropagate gradients of the value function
through sampled actions. For MaxEnt RL with continuous actions, models should be optimizable
using variational inference. However, obtaining these abilities in current models often comes at the
cost of compute and complexity (Table 1). For example, diffusion models [78] are highly expressive
yet computationally demanding: training, sampling, and evaluating log likelihoods all require solving
a differential equation. Autoregressive transformer models [86] are scalable and expressive, but are
typically limited to discrete settings; using them for RL in continuous spaces requires learning discrete
representations of actions [76] or states [60]. Gaussian models offer computational efficiency but
lack expressivity. Can we design expressive probabilistic models with all the capabilities in Fig. 1?

Normalizing Flows (NFs) are among the most flexible probabilistic models: they (1) support both
likelihood maximization and variational inference training, and (2) enable efficient sampling and
exact likelihood computation (see Table 1). Yet, NFs have received far less attention from the RL
community, perhaps due to the (mis)conception that they have restricted architectures or training insta-
bilities [65]. This paper demonstrates that neither of these notions hold NFs back in practice: NFs can
match the expressivity of diffusion and autoregressive models while being significantly simpler. More-
over, unlike other models, NFs do not require additional machinery to be integrated with existing RL
frameworks, enabling simpler algorithms that are competitive with if not better than their counterparts.

Our primary contribution is to shed light on the effectiveness and NFs in RL. Building on prior
work [46, 20], we develop a simple NF architecture and evaluate it across 82 tasks spanning five
different RL settings, including offline imitation learning, offline RL, goal-conditioned RL, and
unsupervised RL:

* On offline imitation learning, NFs are competitive with baselines using state of the art gener-
ative models such as diffusion and transformers, while using significantly less compute (6%
fewer parameters than diffusion policies).

* On offline conditional imitation learning, NFs outperform BC baselines using models like
flow matching, and offline RL algorithms which learn a value function, across 45 tasks.

* On offline RL problems, NFs are competitive with strong baselines using diffusion / flow
matching models on most tasks, outperforming all of them on 15/30 tasks.

* On unsupervised GCRL, NFs can rival contrastive learning based algorithms, despite making
fewer assumptions.

2 Related Work

Normalizing flows. This work builds on the rich literature of normalizing flow architec-
tures [19, 74, 46, 47, 40, 66, 91]. NICE [19] introduce the idea of stacking neural function blocks that
perform shifting, making density estimation efficient. ReaINVP [20] extends NICE to non volume
preserving layers that also perform a scaling operation. GLOW [46] further propose applying an in-
vertible generalized permutation and a special normalization layer (ActNorm) to improve expressivity.

Probabilistic models in RL. Strides in probabilistic modeling research consistently push the
boundaries in deep RL. Variational autoencoders gave rise to a family of model-based [35, 36, 93]
and representation learning [52, 90] algorithms. Contrastive learning has been used to learn value
functions [59, 75, 25, 62] as well as representations [51, 81] for RL. Advances in sequence modeling
led to improvements in BC [14, 11, 53, 76], RL [63, 32] and planning [42]. More recently, diffusion
models [80, 38, 78] and their variants [79, 57, 5, 6] have become the popular models for large scale BC
pre-training [15, 56, 89, 7], RL finetuning [73, 37], offline RL [2, 68, 87] and planning [41, 92, 58].

NFs in RL. In RL, NFs have been used to learn policies from uncurated data [77] and model
exact MaxEnt policies [12, 33, 12]. But despite their flexibility (see Fig. | and Table 1), they have
not been go-to models in RL; research exploring the application of NFs in RL remains limited. We
believe this is because historically, NFs were thought to have limited expressivity [91, 65]. In our
experiments, we show that this is not the case (Section 6). We hope that our work brings greater
attention towards the potential of NFs in RL, and the development of scalable probabilistic models
with similar desirable properties (Fig. 1).

3 Preliminaries

This section describes two major approaches for training probabilistic models and how NFs can be
trained using both of them. In the next section, we show that this flexibility allows NFs to be directly
plugged into various RL algorithms, improving their expressivity and performance.

Maximum likelihood estimation (MLE). Let 2 € R be a random variable with an unknown
density p(z). Given a dataset of samples from this density D = {z;}}¥.; ~ p(z), the goal of MLE is
to estimate the parameters of a probabilistic model pg(z) that maximize the likelihood of the dataset:

Ovig = argmax E,p [log /)(}(.1‘)}. @))
0 -
If pg(z) belongs to a universal family of distributions, then the MLE estimate pg,, . (z) converges
towards the true density, as dataset size (V) increases [43].

Variational inference (VI). In many problems, instead of samples from the true density p(x),
one has access to its unnormalized part p(z) = p(z) x Z. The goal of variational inference is to
approximate p(x) using a distribution ¢ from some variational family of distributions Q:

q"(x) = argmin Dxy (¢ || p) = argmax E, 4 (a) [logﬁ(m) — log q(:z')}, 2)
qeQ qeQ

where Z can be ignored from the last equation. If Q is universal, the global optima of Eq. 2 will
be the true density ¢*(z) = p(x). To optimize Eq. 2 using gradient descent, one needs to choose a
family Q, from which it is easy generate samples (the expectation requires sampling from ¢), evaluate
likelihoods (second term), and backpropagate through both these operations. Due to these constraints,
one typically has to restrict Q to be a simpler family [44] (e.g., exponential family), or resort to other
inference algorithms [31] that require additional complexity (more hyper-parameters or models).

Normalizing flows (NFs). NFs learn an invertible mapping f : R¢ — R9, from true density p(z)
to the a simple prior density po(z). This function is parameterized such that the inverse f, ! as well

as the determinant of its jacobian matrix (| dfgig(f) |) is easily calculable. The learned density pg () can
then be estimated using the change of variable formula:

po(e) = polfo(a))| L0, ®

To sample from an NF, one first samples from the prior, and return the inverse function:
z ~ po(2), and return = = f, ' (z).)]

Because Eq. (3) and Eq. (4) are passes through a single neural network, back-propagating gradients
through them is straightforward. Hence, the NF can be trained efficiently using both MLE (Eq. (1))
and VI (Eq. (2)) [83, 741

dfe(x) |,
OMLE= le'glllz\XEv,N'p“()g[}1)(ﬂ/()(,l‘),) Flog(] /(H/(I) \)J 5)
0 :
dfy ' (2)
dx

Ovi= argmaxE . (2 [loo p(x) — log po(z) + log(] |)] 6)

v w=fy ' (2)

Equation (5) follows from substituting the change of variable formula in Eq. (I). Equa-
tion (6) is derived by the same substitution, followed by noting that = = fs(f, *(2)) and

—log(] Yo e ("L) |) = log(]*4 af Q(T) |). Tt is standard practice to stack multiple such mappings together
fo=fyo fa o ff. Each mapping is referred to as a block in the entire NF.

4 Many RL Algorithms do MLE and VI.

In this section, we first introduce multiple RL problems settings. We will then show how popular
representative algorithms in each setting are instantiations of MLE and VI. This will (1) underscore
the importance of flexible models that can be directly optimized using MLE and VI, and (2) motivate
our use of NFs as a generally capable family of models for RL. We will then describe our architecture
in the next section (Section 5). In all the following problems, we assume an underlying controlled
markov decision process (MDP, M), with states s € S and actions a € A. The dynamics are
p(s’|s, a), the initial state distribution is pg(sg) and H is the episode horizon.

4.1 Offline Imitation Learning (IL)

Given a dataset of state-action trajectories D = {s{, af, ..., st Y collected by an expert(s), the
aim in IL is to match the data generating behavior without any environment interactions.

Behavior Cloning (BC) [4, 71] is an algorithm that models the conditional distribution of actions
given states directly using MLE:

argmax E, ,,.p|logmy(a; | s J @)
; I

MLE

Goal Conditioned Behavior Cloning (GCBC) [22, 18, 30] is a simple variant of BC which uses a
goal g € S as additional conditioning information. It is based on the insight that a trajectory leading
to any goal, can be treated as an optimal trajectory to reach that goal. Given a state-action pair, a
state sampled from the future p; (st | s, at) is treated as the goal. Formally, GCBC maximizes the
following objective:

argmaxE . o,~p [logmo(as | s, 900)].)
0 gt+~p(siy|se,ar)

MLE

Following prior work [67, 24], we set the future time ¢+ to be a truncated geometric distribution
(from ¢ + 1 to H).

4.2 Offline RL

Offline RL assumes an MDP M with a reward function r(s,a). Given a dataset of trajectories
D = {si,ab,ri,...,s4,ri N, the goal is to find a policy mg(a | s), which maximizes the

expected d1sc0unted return E, , [tho Yir(se, ar)] [55, 49].

MaxEnt RL + BC [28, 54, 34]. We write out a minimal objective for an offline actor-critic
algorithm [28]:

2
argminEs, o, . s,41~D {(Q@s(sn ag) —re — 7@5(5t+17at+1)) } ,)

Qs at1~me (-|St41)

argmax [, p ormy(s, [CQG)(.SL,af) — Aog mg(a] | .s,)} + (\fiﬁ,_“,wi):log 7o (ay .s-/)}, (10)
T

VI MLE

where Q(s, a) is the action-value function and Q3(s, a) denotes the target network [61], A and «
control the strength of the entropy and behavior regularization respectively. For A = 0, this algorithm
exactly matches TD3+BC [28]. In all our experiments, we use A = 0 for minimality’. The policy has
to sample actions that have high values while staying close to the (potentially multi-modal) behavior
policy. NFs ability to be trained using both MLE and VI allows the use of expressive policies, without
any changes to the simplest offline RL algorithms.

4.3 Goal conditioned RL (GCRL)

GCRL [45] is a multi-task RL problem where tasks correspond to reaching goals states g € S
sampled from a test goal distribution pi(g). We define the discounted state occupancy distribution

as piy (seq | 5,0) = (1 =) 2720 7'p(se = sey | 50,00 = 5,a).

Q-function estimation. Prior work has shown that the Q-function for GCRL is equal to the
discounted state occupancy distribution Q7 (s, a, g) = pf, (s¢+ | s,a) [25]. Hence estimating the
Q-function can be framed as a maximum likelihood problem:

arg max [sy.ap~D [logp(,(g/ C s,,u,):. (11

0 g+ ~pit (St |se,at)

MLE

Unsupervised goal sampling (UGS) [26, 70] algorithms do not assume that the test time goal dis-
tribution pyes(g) is known a priori. The main aim of UGS is to maximize exploration by commanding
goals that are neither too easy nor too difficult for the current agent. This inclines the agent to explore
goals on the edge of its goal coverage. But to recognize which goals are on the edge, one needs
an estimate of the goal coverage density p:4 (g). Many methods [72, 70, 26] primarily fit a density
model and then choose goals that have low density. A natural way of estimating densities is MLE,
though some prior works use secondary objectives [64, 82, 26, 72] or non-parametric models [70]:

a’rgma’xm st,ar~D “()g/)/)(.(//)} (12)
0 gt+~Pt (s¢ */Jl/)

MLE

Using an estimate of this density, the canonical UGS algorithm is to sample a large batch of
goals from the replay buffer and command the agent to reach the goal with the minimum density
under pg(ge+) [70].

5 A Simple and Efficient NF Architecture for RL

This section will introduce the NF architecture we use and Section 6 will show how the this ar-
chitecture fits seamlessly into many RL algorithms (those from Section 4). Many design choices
affect model expressivity, the speed of computing the forward (fy(z)) and inverse (f, ' (z)), and the
efficiency of computing the determinant of the Jacobian [65]. Our desiderata is to build a simple and
fast architecture that is expressive enough to compete and even surpass the most popular approaches
across a range of RL problems. To achieve this, we build each NF block f} by leveraging two com-
ponents from prior work: (/) a fully connected “coupling” network [20], and (2) a linear flow [46].
In all of our experiments, the model learns a conditional distribution py(z | y), so each NF block
fi:RY x R¥ — RY takes in y € R¥ as an additional input.

2This is a special case of variational inference. In bayesian inference this corresponds to approximating a
maximum a-posteriori estimate.
3We will work with in infinite horizon case, with H = co.

Coupling network. We use an expressive and simple transformation proposed in Dinh et al. [19, 20].
Let x; be the input for the ¢ block and % be the conditioning information. For the ¢ block, the
coupling network f} = {a}, s} : RL%/2) x RF — RI4/21} does the following computation:

(1) 27, x5 = split(z’), (2) 75 = (25 + ap(a1,y)) x exp(—sp(21,y)), (3) &° = concat(z}, 73).

Note that the log-det Jacobian of f£ is —sum(s} (%,)). Further, given ! and y, the inverse f} '
can be calculated as easily as the forward map (see Appendix B for details).

Linear flow. We adapt the generalized permutation proposed by Kingma and Dhariwal [46] to one
dimensional inputs, to linearly transform the output of the coupling layer Z'. The intuition behind
adding this linear flow is that each dimension of Z* can be transformed by other dimensions in an end
to end manner:

' = (ZMTW, where W = PLyUy, and log |W| = sum log(|diag(U)]).

Here, P is a fixed permutation matrix and Ly is lower triangular with ones on the diagonal and
Uy is upper triangular. Hence, inverting them incurs similar costs as matrix multiplication [65] and
calculating the log-det Jacobian requires only the diagonal elements of U.

Normalization. While previous approaches used special variants of normalization layers ([20],
[46]), we find that just using LayerNorm [3] in the coupling network’s weights was sufficient of
training deep NFs.

Overall, our architecture can be thought of as RealNVP [20] with generalized permutation, or a linear
version of GLOW [46] without ActNorm. We have released a simple code for this architecture both
in Jax and PyTorch.

6 Experiments

The main aim of our experiments is to use NFs
and question some of the standard assumptions
across several RL settings. (1) In IL, methods
like diffusion policies [15] are popular because
they provide expressivity but at a high computa-
tional cost. Our experiments with NFs show that
this extra compute might not be necessary (Sec-
tion 6.1). (2) In conditional IL, prior work ar-
gues that learning a value function is necessary .

for strong performance [50, 13, 29, 1]. Our ex- Figure 2: Visualization of tasks
periments suggest that a sufficiently expressive policy, such as an NF, can often suffice (Section 6.2).
(3) In offline RL, auxiliary techniques are typically used to support expressive policies. We show
that NF policies can be directly integrated with existing offline RL algorithms to achieve high perfor-
mance (Section 6.3). (4) In UGS, we show that a single NF can estimate both the value function and
goal density, enabling better exploration compared to baseline that make stronger assumptions.

In all experiments, we use the architecture described in Section 5 to implement all algorithms
described in Section 4. Implementation details for all algorithms are provided in Appendix A. Across
all problems (IL, offline RL, online GCRL), we present results on a total of 82 tasks (see Fig. 2 for
visualization of tasks) with 5 seeds each, which show that NFs are generally capable models that can
be effectively applied to a diverse set of RL problems. Unless stated otherwise, all error bars represent
=+ standard deviation across seeds. Finally, in Appendix D, we provide ablation experiments for
various design choices and hyper-paramter values for some of the algorithms presented in this paper.

6.1 Imitation Learning (IL)

In this section, we use our NF architecture with BC (Section 4.1, Eq. (7)) for imitation learning (NF-
BC). Please see implementation details of training and sampling with IL algorithm in Appendix A.1.

Tasks. PushT requires fine-grain control to maneuver a T-block in a fixed location. Performance is
measured by the final normalized area of intersection between the block and the goal. Multimodal

BC BeT DiffPolicy-C DiffPolicy-T VQ-BeT NF-BC (ours)

3.5 2.00 4

Performance
o
e

°
s

2.5 1.50 2
PushT Multimodal Ant UR3 BlockPush Kitchen

(a) Performance comparison. Performance is measured using normalized rewards.

Method Time (sec) Params (M) Model types Objectives
inference; training
NF-GCBC 0.127 ;0.023 10M Fully connected NFs 1; end to end
VQ-BET 0.273;0.021 423 M Transformer + VQ-VAEs 2; req. pre-train
Diffusion Policy 1.28 ; 0.019 65.78 M Convolutional network 1; end to end

(b) Conceptual comparison to provide a more holistic view for RL practitioners.

Figure 3: Imitation Learning. Results on multi-modal behavior datasets which require fine grained control
and expressivity. NF-BC is faster in inference, easier to implement (end to end optimization of a single loss
function, contains 2-3 times less hyper-parameters) and achieves competitive performance across all tasks (best
success rate on two tasks and in top 2 methods on the other two tasks). In Fig. 3a, we only report standard errors
for our method as baseline results were taken from prior work which did not include error bars [53]

Ant, UR3 BlockPush, and Kitchen contain multiple behaviors (4, 2, and 4 respectively). Performance
is measured by the normalized number of distinct behaviors the agent is able to imitate successfully
over 50 independent trials. We also report the simplicity of algorithms, as it is often a decisive factor
in determining whether the algorithm can be practically employed. Simplicity is measured by the
negating the number of hyperparameters used. We list and briefly describe all the hyperparameters
of all the methods used to make Fig. 3a in Appendix E. Baselines. We compare our algorithms
with 4 baselines. Diffusion policies [15] use high performing diffusion model architectures. We
use both the convolutional and transformer (DiffPolicy-C and DiffPolicy-T) variant of the diffusion
policy. VQ-BeT [53] uses VQ-VAEs [85] for discretizing actions and learns a transformer model
over chunked representations. BeT [76] is similar to VQ-BeT but uses K-means for action chunking.

Results. In Fig. 3a we see that NF-BC outperforms all baselines on PushT and Kitchen and performs
competitively in other two tasks. Of all the baselines, NF-BC is fastest in inference and easier to
implement (Fig. 3b). For example, DiffPolicy-T uses 3 times more hyperparameters than NF-BC.
These results suggest that NF policies do not lack in expressivity, compared to both diffusion and
auto-regressive policies despite introducing fewer additional hyper-parameters. In fact, NF-BC can
achieve these results using just a fully connected network and fraction of parameters compared to
diffusion policies (see rightmost plot in Fig. 3a). Unlike BeT [76] and VQ-BeT [53], NF-BC does not
use autoregressive models or VQ-VAE:s (see Fig. 3b for a comparison of architectures). Reducing the
number of hyperparameters is especially important for practitioners because it makes implementation
easier and decreases the need for hyperparameter tuning.

6.2 Conditional Imitation Learning

In this section, we use our NF architecture with GCBC (Section 4.1, Eq. (8)) for conditional imitation
learning (NF-GCBC).

Tasks. We use a total of 45 tasks from OGBench [67] meant to test diverse capabilities like
learning from suboptimal trajectories with high dimensional actions, trajectory stitching and long-
horizon reasoning. Performance is measured using the average success rate of reaching a goal in
50 independent trials. Baselines. We compare with 6 different baselines. GCBC is the GCBC 4.1
algorithm with a gaussian policy, and FM-GCBC is the GCBC 4.1 algorithm with a flow-matching
based policy [57]. The velocity field for FM-GCBC is a fully connected network trained using flow

matching. FM-GCBC is the closest baseline to NF-GCBC as it uses the same underlying algorithm,
uses a fully connected network like NF-GCBC, and uses an expressive family of policy models.
GCIQL [48] is an offline RL algorithm that learns the optimal value function corresponding to the
best actions in the dataset. QRL [88] uses a quasimetric architecture to learn the optimal value
function and CRL [25] uses contrastive learning to estimate behavior policy’s value function.

= @ 0.50
g 0.90 o
3 ©
t £
: IIE |
Soss = @
c _g 0.25
; £ |
- anlll : |
© .00 — ~mullll o
g 3
E < 0.0
0 20 40 NF-GCBC FM-GCBC GCBC GCIQL QRL CRL
Offline GCRL benchmark (45 tasks) Offline GCRL benchmark (45 tasks)

Figure 4: Conditional Imitation Learning. (Left) NF-GCBC exceeds its gaussian counterpart GCBC on
40/45 tasks, demonstrates that using expressive models like NFs can significantly improve performance. (Right)
Despite being a BC-based algorithm, NF-GCBC outperforms all offline RL baselines across 45 tasks. NF-GCBC
performs 77% better than FM-GCBC which is the closest baseline that uses a flow matching policy with GCBC.

Results. In Fig. 4 (left), we see that NF-GCBC exceeds the performance (often significantly) of
GCBC on 40/45 tasks. This underscores the importance of using an expressive policy with the
GCBC algorithm. In Fig. 4 (right), NF-GCBC, despite being a BC based algorithm, outperforms
all baselines, including dedicated offline RL algorithms. We have added separate task wise plots in
Appendix C. NF-GCBC outperforms FM-GCBC, which is the closest baseline, by 77%. While this
does not necessarily imply that NFs are more expressive than flow-matching models, we hypothesize
that all else being equal (e.g., fully connected architectures and identical underlying algorithms),
NFs are better able to imitate the data using simple architectures as they directly optimize for log
likelihoods. Flow matching models on the other hand estimate probabilities indirectly (by learning an
SDE / ODE), and might require more complex architectures (transformers or convolutional networks)
to work well.

6.3 Offline RL

—— NF-RLBC (ours) FQL IFQL IDQL ReBRAC BC
090 .
oo | EH | | 090 C-. [
[0} i
g . ! e
c
@ 0.45 | ; 045 |
0.45
3 oas | 045
o
2 : I |
s I I
0 . : .
0.00 0.00 0.00 0.00 0.00 L 0.00
puzzle-3x3-play scene-play antmaze-large-nav. cube-single-play humanoidmaze-medium-nav. antsoccer-arena-nav.

Figure 5: Offline RL. NF-RLBC outperforms all baselines on 15/30 tasks, and achieves top 2 results on 10/30
tasks. Notably, NF-RLBC achieves much higher results than all baselines on puzzle-3x3-play and scene-play,
which require the most long horizon and sequential reasoning. For example, on puzzle-3x3-play NF-RLBC
performs 230% better than the next best baseline.

While NF-GCBC performs better than offline RL algorithms on average, there are certain tasks like
puzzle-3x3-play where only TD based methods succeed (Appendix C). This task, and many others as
we will see, require learning a value function and accurately extracting behaviors from it. Fortunately,
NFs can be trained using both VI and MLE (3). This allows us to train MaxEnt RL+BC (Section 4.2,
Eq. (9)) using our NF architecture as a policy (NF-RLBC).

Tasks. We use a total of 30 tasks from prior work [68] testing offline RL with expressive policies.
Each task has a goal which requires completing K subtasks. At each step, the agent gets a reward
equal to the negative of the number of subtasks left to be completed. For our experiments, we
choose tasks that cover a diverse set of challenges and robots. Tasks like humanoidmaze-medium-
navigate and antmaze-medium-navigate contain diverse suboptimal trajectories and high dimensional
actions. Antsoccer-arena-navigate requires controlling a quadruped agent to dribble a ball to a
goal location. Scene-play requires manipulating multiple objects and puzzle-3x3-play requires

—— NF-UGS CRL-minmax CRL-uniform

ant-u-maze ant-big-maze ant-hard-maze aggregated scores
1.0
% 1.0
= 0.5
n 0.5
¢ os
o 05
>
@
0.0 0.0 0.0 0.0
5e+07 le+08 5e+07 le+08 S5e+07 le+08 : NF-UGS CRL-oracle
environment steps environment steps environment steps

Figure 6: GCRL. (first 3 from left) NF-UGS consistently outperforms other unsupervised baselines. (rightmost)
NF-UGS achieves higher asymptotic success rates than the CRL-oracle averaged across all tasks. Note that
CRL-oracle makes extra assumptions about the availability of test-time goals.

combinatorial generalization and long-horizon reasoning. We hypothesize that the Q function for
the some of these tasks (esp manipulation tasks like puzzle and scene which require long horizon
reasoning) can have narrow modes of good actions and a large number of bad actions. Hence using
direct gradient based optimization can be crucial to search for good actions. Baselines. We choose
5 representative baselines. BC performs BC with a gaussian policy, ReBRAC [84] is an offline RL
algorithm with a gaussian policy that achieves impressive results on prior benchmarks [27]. IDQL [37]
uses importance resampling to improve over a diffusion policy. IFQL is the flow counterpart of
IDQL [68]. FQL [68] is a strong offline RL algorithm that distills a flow-matching policy into a
one-step policy, while jointly maximizing the Q-function. Notably, all offline RL algorithms (IDQL,
IFQL, FQL) have to incorporate additional components—such as distillation or resampling—to
leverage policy expressiveness.

Results. Figure 5, shows that on average NF-RLBC outperforms all baselines on 15/30 tasks,
and achieves top 2 results on 10/30 tasks. Notably, NF-RLBC achieves much higher results than
all baselines on puzzle-3x3-play and scene-play, which require most long horizon and sequential
reasoning (on puzzle-3x3-play NF-RLBC performs 230% better than the next best baseline). NF-
RLBC is able to search for good actions because it directly uses gradient based optimization to
backpropagate action gradients through the policy. All other offline RL algorithms with expressive
policy classes (IDQL, IFQL, FQL) have to use extra intermediate steps.

6.4 Goal Conditioned RL

In this section, we use our NF architecture to estimate both the Q-function (Eq. (11)) and the coverage
density (Eq. (12)). Both quantities model the distribution over the same random variable (future goals),
with the Q-function conditioned on a state-action pair. We use a single neural network to estimate
both by employing a masking scheme to indicate the presence or absence of conditioning [39]. We
then train a goal-conditioned policy to maximize the Q-function in a standard actor-critic setup, and
sample training goals using the canonical UGS algorithm (Section 4.3), resulting in our NF-UGS
method.

Tasks. We use three problems from the UGS literature [70, 9] ant-u-maze, ant-big-maze and
ant-hard-maze. These environments are difficult because the goal test distribution is unknown, and
success requires thorough exploration of the entire maze. Baselines. We compare against three
baselines. CRL-oracle [25, 9] uses contrastive learning to estimate the Q-function and serves as an
oracle baseline as it uses test goals pi(g) to collect data during training. CRL-uniform is a variant
that samples goals uniformly from the replay buffer, while CRL-minmax selects goals with the lowest
Q-value from the initial state of the MDP — intuitively targeting the goals the agent believes are
hardest to reach. The aim of these comparisons isn’t to propose a state of the art method, but rather to
check whether NFs can efficiently estimate the coverage densities of the non-stationary RL data for
unsupervised exploration. Results. These experiments aim to evaluate whether NFs can efficiently
estimate both the Q-function and the coverage density. As shown in Fig. 6, NF-UGS outperforms
all baselines, and notably the oracle algorithm as well (aggregated score is the average of the final
success rates across all three tasks). Unlike the minmax strategy, which plateaus over time, NF-UGS
continues to improve by sampling goals to maximize the entropy of the coverage distribution [70].

7 Conclusion

In this paper, we view RL problems from a probabilistic perspective, asking: which probabilistic
models provide the capabilities necessary for efficient RL? We argue that NFs offer a compelling
answer. NFs outperform strong baselines across diverse RL settings, often with fewer parameters and
lower compute, leading to simpler algorithms. By making density estimation simpler and effective,
we hope our work opens new avenues for areas such as distributional RL, bayesian RL, and RL safety.

A primary limitation of NFs is that they have restrictive architectures, in that they have to be
invertible. Nevertheless, there is a rich line of work characterizing which NF architectures are
universal [21, 17, 65]. Another limitation of our work is that we do not explore new NF architectures;
the design we use is mainly adapted from prior work (Section 5).

Acknowledgments and Disclosure of Funding

The authors are pleased to acknowledge that the work reported on in this paper was substantially
performed using the Princeton Research Computing resources at Princeton University which is
consortium of groups led by the Princeton Institute for Computational Science and Engineering (PIC-
SciE) and Office of Information Technology’s Research Computing. The authors thank Emmanuel
Bengio, Liv d’ Aliberti and Eva Yi Xie for their detailed reviews on our initial drafts. The authors
thank Seohong Park for providing code for some baselines and Catherine Ji for helping find a bug in
our code. The authors also thank Shuangfei Zhai and the members of Princeton RL lab for helpful
discussions.

References

[1] Agarwal, R., Schuurmans, D., and Norouzi, M. (2020). An optimistic perspective on offline reinforcement
learning. In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 104-114. PMLR.

[2] Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola, T., and Agrawal, P. (2023). Is conditional generative
modeling all you need for decision-making?

[3] Ba,J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.
[4] Bain, M. and Sammut, C. (1995). A framework for behavioural cloning. In Machine Intelligence 15.

[5] Bengio, E., Jain, M., Korablyov, M., Precup, D., and Bengio, Y. (2021). Flow network based generative
models for non-iterative diverse candidate generation.

[6] Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and Bengio, E. (2023). Gflownet foundations.

[7] Black, K., Brown, N., Driess, D., Esmail, A., Equi, M., Finn, C., Fusai, N., Groom, L., Hausman, K., Ichter,
B., Jakubczak, S., Jones, T., Ke, L., Levine, S., Li-Bell, A., Mothukuri, M., Nair, S., Pertsch, K., Shi, L. X.,
Tanner, J., Vuong, Q., Walling, A., Wang, H., and Zhilinsky, U. (2024). 7o: A vision-language-action flow
model for general robot control.

[8] Blei, D. M., Kucukelbir, A., and and, J. D. M. (2017). Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859-877.

[9] Bortkiewicz, M., Patucki, W., Myers, V., Dziarmaga, T., Arczewski, T., Kucinski, L., and Eysenbach, B.
(2025). Accelerating goal-conditioned reinforcement learning algorithms and research. In The Thirteenth
International Conference on Learning Representations.

[10] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations of
Python+NumPy programs. GitHub repository.

[11] Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan, K., Hausman, K.,
Herzog, A., Hsu, J., , et al. (2023). Rt-1: Robotics transformer for real-world control at scale.

[12] Chao, C.-H., Feng, C., Sun, W.-F,, Lee, C.-K., See, S., and Lee, C.-Y. (2024). Maximum entropy
reinforcement learning via energy-based normalizing flow. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

10

[13] Chebotar, Y., Vuong, Q., Hausman, K., Xia, F.,, Lu, Y., Irpan, A., Kumar, A., Yu, T., Herzog, A., Pertsch,
K., Gopalakrishnan, K., Ibarz, J., Nachum, O., Sontakke, S. A., Salazar, G., Tran, H. T., Peralta, J., Tan, C.,
Manjunath, D., Singh, J., Zitkovich, B., Jackson, T., Rao, K., Finn, C., and Levine, S. (2023). Q-transformer:
Scalable offline reinforcement learning via autoregressive q-functions. In Tan, J., Toussaint, M., and Darvish,
K., editors, Proceedings of The 7th Conference on Robot Learning, volume 229 of Proceedings of Machine
Learning Research, pages 3909-3928. PMLR.

[14] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P, Srinivas, A., and Mordatch, I.
(2021). Decision transformer: Reinforcement learning via sequence modeling. In Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems.

[15] Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel, B., Tedrake, R., and Song, S. (2024). Diffusion
policy: Visuomotor policy learning via action diffusion.

[16] Collaboration, E., O’Neill, A., Rehman, A., Gupta, A., Maddukuri, A., Gupta, A., Padalkar, A., Lee, A.,
Pooley, A., Gupta, A., Mandlekar, A., et al. (2024). Open x-embodiment: Robotic learning datasets and rt-x
models.

[17] Cornish, R., Caterini, A., Deligiannidis, G., and Doucet, A. (2020). Relaxing bijectivity constraints
with continuously indexed normalising flows. In III, H. D. and Singh, A., editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 2133-2143. PMLR.

[18] Ding, Y., Florensa, C., Abbeel, P., and Phielipp, M. (2019). Goal-conditioned imitation learning. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc.

[19] Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear independent components estimation. arXiv:
Learning.

[20] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real NVP. In International
Conference on Learning Representations.

[21] Draxler, F., Wahl, S., Schnorr, C., and Kéthe, U. (2024). On the Universality of Volume-Preserving and
Coupling-Based Normalizing Flows. arXiv preprint arXiv:2402.06578.

[22] Emmons, S., Eysenbach, B., Kostrikov, 1., and Levine, S. (2022). Rvs: What is essential for offline RL via
supervised learning? In International Conference on Learning Representations.

[23] Eysenbach, B., Salakhutdinov, R., and Levine, S. (2021). C-learning: Learning to achieve goals via
recursive classification. In International Conference on Learning Representations.

[24] Eysenbach, B., Udatha, S., Salakhutdinov, R. R., and Levine, S. (2022a). Imitating past successes can
be very suboptimal. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors,
Advances in Neural Information Processing Systems, volume 35, pages 6047-6059. Curran Associates, Inc.

[25] Eysenbach, B., Zhang, T., Levine, S., and Salakhutdinov, R. (2022b). Contrastive learning as goal-
conditioned reinforcement learning. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances
in Neural Information Processing Systems.

[26] Florensa, C., Held, D., Geng, X., and Abbeel, P. (2018). Automatic goal generation for reinforcement
learning agents. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1515-1528. PMLR.

[27] Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2021). D4rl: Datasets for deep data-driven
reinforcement learning.

[28] Fujimoto, S. and Gu, S. S. (2021). A minimalist approach to offline reinforcement learning. In Ranzato,
M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information
Processing Systems, volume 34, pages 20132-20145. Curran Associates, Inc.

[29] Fujimoto, S., Meger, D., and Precup, D. (2019). Off-policy deep reinforcement learning without exploration.
In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 2052-2062. PMLR.

[30] Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C., Eysenbach, B., and Levine, S. (2019). Learning to
reach goals via iterated supervised learning. arXiv preprint arXiv:1912.06088.

11

[31] Graikos, A., Malkin, N., Jojic, N., and Samaras, D. (2022). Diffusion models as plug-and-play priors. In
Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in Neural Information Processing
Systems.

[32] Grigsby, J., Fan, L., and Zhu, Y. (2024). AMAGQO: Scalable in-context reinforcement learning for adaptive
agents. In The Twelfth International Conference on Learning Representations.

[33] Haarnoja, T., Hartikainen, K., Abbeel, P., and Levine, S. (2018a). Latent space policies for hierarchical
reinforcement learning. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1851-1860. PMLR.

[34] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018b). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Dy, J. and Krause, A., editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 1861-1870. PMLR.

[35] Hafner, D., Lillicrap, T., Fischer, L., Villegas, R., Ha, D., Lee, H., and Davidson, J. (2019). Learning latent
dynamics for planning from pixels. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 2555-2565. PMLR.

[36] Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2024). Mastering diverse domains through world models.

[37] Hansen-Estruch, P., Kostrikov, I., Janner, M., Kuba, J. G., and Levine, S. (2023). Idgl: Implicit g-learning
as an actor-critic method with diffusion policies.

[38] Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
[39] Ho, J. and Salimans, T. (2022). Classifier-free diffusion guidance.

[40] Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A. (2018). Neural autoregressive flows. In Dy, J.
and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 2078-2087. PMLR.

[41] Janner, M., Du, Y., Tenenbaum, J., and Levine, S. (2022). Planning with diffusion for flexible behavior
synthesis. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 9902-9915. PMLR.

[42] Janner, M., Li, Q., and Levine, S. (2021). Offline reinforcement learning as one big sequence modeling
problem. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in
Neural Information Processing Systems, volume 34, pages 1273—-1286. Curran Associates, Inc.

[43] Jordan, M. L. and Bishop, C. M. (2001). An introduction to graphical models. Tutorial material.

[44] Jordan, M. 1., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational
methods for graphical models, page 105-161. MIT Press, Cambridge, MA, USA.

[45] Kaelbling, L. P. (1993). Learning to achieve goals. In International Joint Conference on Artificial
Intelligence.

[46] Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc.

[47] Kingma, D. P, Salimans, T., Jozefowicz, R., Chen, X., Sutskever, 1., and Welling, M. (2016). Improved
variational inference with inverse autoregressive flow. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, L., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.

[48] Kostrikov, L., Nair, A., and Levine, S. (2021). Offline reinforcement learning with implicit g-learning.

[49] Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy g-learning via
bootstrapping error reduction. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

[50] Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative g-learning for offline reinforcement
learning. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural
Information Processing Systems, volume 33, pages 1179-1191. Curran Associates, Inc.

12

[51] Laskin, M., Srinivas, A., and Abbeel, P. (2020). CURL: Contrastive unsupervised representations for
reinforcement learning. In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 5639-5650. PMLR.

[52] Lee, A. X., Nagabandi, A., Abbeel, P.,, and Levine, S. (2020). Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages 741-752. Curran
Associates, Inc.

[53] Lee, S., Wang, Y., Etukuru, H., Kim, H. J., Shafiullah, N. M. M., and Pinto, L. (2024). Behavior generation
with latent actions. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and
Berkenkamp, F., editors, Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pages 26991-27008. PMLR.

[54] Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review.

[55] Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial, review, and
perspectives on open problems.

[56] Lin, E, Hu, Y., Sheng, P., Wen, C., You, J., and Gao, Y. (2025). Data scaling laws in imitation learning for
robotic manipulation.

[57] Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. (2023). Flow matching for generative
modeling.

[58] Lu, C., Ball, P.J., Teh, Y. W., and Parker-Holder, J. (2023). Synthetic experience replay. In Thirty-seventh
Conference on Neural Information Processing Systems.

[59] Ma, Y. J.,, Sodhani, S., Jayaraman, D., Bastani, O., Kumar, V., and Zhang, A. (2023). VIP: Towards
universal visual reward and representation via value-implicit pre-training. In The Eleventh International
Conference on Learning Representations.

[60] Micheli, V., Alonso, E., and Fleuret, F. (2023). Transformers are sample-efficient world models. In The
Eleventh International Conference on Learning Representations.

[61] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., and Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

[62] Myers, V., Zheng, C., Dragan, A. D., Levine, S., and Eysenbach, B. (2024). Learning temporal distances:
Contrastive successor features can provide a metric structure for decision-making. In /CML.

[63] Ni, T., Eysenbach, B., and Salakhutdinov, R. (2022). Recurrent model-free RL can be a strong baseline for
many POMDPs. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors,
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 16691-16723. PMLR.

[64] OpenAl, O., Plappert, M., Sampedro, R., Xu, T., Akkaya, I., Kosaraju, V., Welinder, P., D’Sa, R., Petron,
A., d. O. Pinto, H. P,, Paino, A., Noh, H., Weng, L., Yuan, Q., Chu, C., and Zaremba, W. (2021). Asymmetric
self-play for automatic goal discovery in robotic manipulation.

[65] Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research,
22(57):1-64.

[66] Papamakarios, G., Pavlakou, T., and Murray, I. (2017). Masked autoregressive flow for density estimation.
In Guyon, L., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

[67] Park, S., Frans, K., Eysenbach, B., and Levine, S. (2025a). OGBench: Benchmarking offline goal-
conditioned RL. In The Thirteenth International Conference on Learning Representations.

[68] Park, S., Li, Q., and Levine, S. (2025b). Flow g-learning. ArXiv.
[69] Paszke, A., Gross, S., Massa, E., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,

B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning
library.

13

[70] Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. (2020). Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In III, H. D. and Singh, A., editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 7750-7761. PMLR.

[71] Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural network. In Touretzky, D.,
editor, Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann.

[72] Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and Levine, S. (2020). Skew-fit: State-covering
self-supervised reinforcement learning.

[73] Ren, A.Z., Lidard, J., Ankile, L. L., Simeonov, A., Agrawal, P., Majumdar, A., Burchfiel, B., Dai, H., and
Simchowitz, M. (2024). Diffusion policy policy optimization.

[74] Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In Bach, F. and
Blei, D, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1530-1538, Lille, France. PMLR.

[75] Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S., and Brain, G. (2018).
Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1134-1141.

[76] Shafiullah, N. M. M., Cui, Z. J., Altanzaya, A., and Pinto, L. (2022). Behavior transformers: Cloning k
modes with one stone. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in Neural
Information Processing Systems.

[77] Singh, A., Liu, H., Zhou, G., Yu, A., Rhinehart, N., and Levine, S. (2021). Parrot: Data-driven behavioral
priors for reinforcement learning. In International Conference on Learning Representations.

[78] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised
learning using nonequilibrium thermodynamics.

[79] Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. (2023). Consistency models.

[80] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021). Score-based
generative modeling through stochastic differential equations.

[81] Stooke, A., Lee, K., Abbeel, P., and Laskin, M. (2021). Decoupling representation learning from reinforce-
ment learning. In Meila, M. and Zhang, T., editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 9870-9879. PMLR.

[82] Sukhbaatar, S., Lin, Z., Kostrikov, L., Synnaeve, G., Szlam, A., and Fergus, R. (2018). Intrinsic motivation
and automatic curricula via asymmetric self-play.

[83] Tabak, E. and Vanden-Eijnden, E. (2010). Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217-233.

[84] Tarasov, D., Kurenkov, V., Nikulin, A., and Kolesnikov, S. (2023). Revisiting the minimalist approach to
offline reinforcement learning.

[85] van den Oord, A., Vinyals, O., and kavukcuoglu, k. (2017). Neural discrete representation learning. In
Guyon, L., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

[86] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

[87] Venkatraman, S., Khaitan, S., Akella, R. T., Dolan, J., Schneider, J., and Berseth, G. (2024). Reasoning
with latent diffusion in offline reinforcement learning. In The Twelfth International Conference on Learning
Representations.

[88] Wang, T., Torralba, A., Isola, P, and Zhang, A. (2023). Optimal goal-reaching reinforcement learning
via quasimetric learning. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 36411-36430. PMLR.

14

[89] Weng, T., Bajracharya, S. M., Wang, Y., Agrawal, K., and Held, D. (2022). Fabricflownet: Bimanual cloth
manipulation with a flow-based policy. In Faust, A., Hsu, D., and Neumann, G., editors, Proceedings of
the 5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages
192-202. PMLR.

[90] Yarats, D., Zhang, A., Kostrikov, 1., Amos, B., Pineau, J., and Fergus, R. (2021). Improving sample
efficiency in model-free reinforcement learning from images. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(12):10674—10681.

[91] Zhai, S., Zhang, R., Nakkiran, P., Berthelot, D., Gu, J., Zheng, H., Chen, T., Bautista, M. A., Jaitly, N., and
Susskind, J. (2024). Normalizing flows are capable generative models. arXiv preprint arXiv:2412.06329.

[92] Zheng, Q., Le, M., Shaul, N., Lipman, Y., Grover, A., and Chen, R. T. (2023). Guided flows for generative
modeling and decision making. arXiv preprint arXiv:2311.13443.

[93] Lukasz Kaiser, Babaeizadeh, M., Mitos, P., Osinski, B., Campbell, R. H., Czechowski, K., Erhan, D., Finn,
C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R., Tucker, G., and Michalewski, H. (2020). Model
based reinforcement learning for atari. In International Conference on Learning Representations.

15

A Implementation details.

In this section we provide all the implementation details as well as hyper-parameters used for all
the algorithms in our experiments — NF-BC, NF-GCBC, NF-RLBC, and NF-UGS. Unless specified
otherwise, we chose common hyper-parameters used in prior work without tuning.

A.1 Imitation Learning: NF-BC

For all imitation learning, we use a policy with 12 NF blocks. The fully connected networks of the
coupling network for each NF block consist of two hidden layers with 512 activations each. We use a
fully connected network for the state-goal encoder with 4 hidden layers having 512 activations each.

It is common in the NF literature to add some noise to the training inputs before training an NF using
MLE [74, 91]. For NF-BC, we add gaussian noise to the actions before training. Hence, NF-BC
models the noisy behavior policy instead 7¢(q | s). To reduce noise from the obtained samples,
Zhai et al. [91] propose a denoising trick:

z~po, yi=fNz) 2=y + 0>V, logps(z)

We use this trick in all our NF-BC experiments. Table 2 contains the values of hyperparameters used
by NF-BC. All experiments were done on RTX 3090s, A5000s or A6000s and did not require more
than 20 hours. Experiment speed is mostly bottlenecked by intermediate evaluation of BC policies
because the environments are slow and the number of rollouts per evaluation is 50. For example, the
experiments on the multimodal-ant environment took 20 hours, but on pusht they were finished in
less than 90 minutes.

Table 2: NF-BC: Hyper-parameters and their values.

Hyper-parameter Description
channels 512
noise std 0.1
blocks 12
encoder num layers 4

rep dims 512

A.2 Conditional Imitation Learning: NF-GCBC

For all conditional imitation learning experiments, we use a policy with 6 NF blocks. The fully
connected networks of the coupling network for each NF block consist of two hidden layers with
256 activations each. We use a fully connected network for the state-goal encoder with 4 hidden
layers having 512 activations each. The output representation dimensions are 64. We also employ
the denoising trick proposed by [91] and mentioned in Appendix A.l. Table 3 contains the values of
hyperparamters used by NF-GCBC. All experiments were done on RTX 3090s, A5000s or A6000s
and did not require more than 3 hours each.

Table 3: NF-GCBC: Hyper-parameters and their values.

Hyper-parameter Description
channels 512
noise std 0.1
blocks 6
encoder num layers 4

rep dims 512
Future goal sampling discount Table 4

16

Table 4: NF-GCBC: Environment values for future goal sampling discount values. For all GCBC algorithms,
including the GCBC baselines, we tuned this value in the set {0.97, 0.99}

Environment Name Future goals sampling discount value ~
puzzle 3 x 3 play 0.97
scene play 0.97
cube single play 0.97
cube double play 0.99
humanoidmaze medium navigation 0.97
antmaze large navigation 0.99
antsoccer arena navigation 0.97
antmaze medium stitch 0.97
antsoccer arena stitch 0.97

A.3 Offline RL: NF-RLBC

For all offline RL experiments, we use a policy with 6 NF blocks. The fully connected networks of the
coupling network for each NF block consist of two hidden layers with 256 activations each. We use a
fully connected network for the state-goal encoder with 4 hidden layers having 512 activations each.
The output representation dimensions are 64. Table 5 contains the values of main hyperparameters
used by NF-RLBC. All experiments were done on RTX 3090s, A5000s or A6000s and did not require
more than 3 hours each.

Table 5: NF-RLBC: Hyper-parameters and their values.

Hyper-parameter Description
channels 512
noise std 0.1
actor entropy coefficient (A in Eq. (9)) 0.0
actor BC loss coefficient (« in Eq. (9)) Table 6
blocks 6
encoder num layers 4

rep dims 512

Table 6: NF-RLBC: Environment wise actor BC loss coefficient. We use the same hyperparameter tuning
procedure as all the baselines [68]. See App E.2. of Park et al. [68]

Environment Name Actor BC loss coefficient «
puzzle 3 x 3 play 10.0
scene play 10.0
antmaze large navigation 1.0
cube single play 10.0
humanoidmaze medium navigation 1.0
antsoccer arena navigation 1.0

A.4 Unsupervised RL: NF-UGS

For all unsupervised RL experiments, we use a goal conditioned value function with 6 NF blocks.
The fully connected networks of the coupling network for each NF block consist of two hidden
layers with 256 activations each. We use a fully connected network for the state-action encoder with
4 hidden layers having 1024 activations each. We train both the conditional py(g | s,a) and the
unconditional pg(g) using the same network. We apply a mask on the conditional variable inputs
with probability 0.1. The discount factor we use is 0.99. We add a gaussian noise with standard
deviation 0.05. Because we do not sample from the model in NF-UGS, we do not need to employ the
denoising trick. Instead, 1024 random goals from the buffer are sampled and the one with the lowest

17

marginal density py(g) is selected for data collection. All experiments were done on RTX 3090s,
A5000s or A6000s and did not require more than 20 hours each.

B More details about NF block.

Z’§+1 xé—i—l

(#)TW, where W = PLU

ol
(e a i3
MLP
+ LayerNorm
y G
x7 g

Figure 7: NF block.

It requires the same cost as the coupling of the forward block to calculate the coupling of the inverse
block f1 "

&, &5 = split(z"),

i =7t
wy = 75 x exp(sp(21,y)) — ap(@1,y)),

x' = concat(zt, 2b).

See Fig. 7 for a visualization of each NF block.

Table 7: Imitation Learning: Performance with varying numbers of NF blocks on the Push-T task.
number of NF blocks Push-T

6 0.77
14 0.79
24 0.827
28 0.859
32 0.85
40 0.844
48 0.87
54 0.85

Table 8: Imitation Learning: Performance for different NF coupling layer widths on the Push-T
task.

width of NF’s coupling layers Push-T

128 0.79
256 0.82
1024 0.823

18

Table 9: Imitation Learning: Performance with varying noise levels for the denoising trick (Ap-

pendix A.1, [91]) on the Push-T task.

noise_std Push-T

0.5 0.77
0.3 0.79
0.1 0.827
0.05 0.84
0.03 0.873
0.01 0.83
0.0 NaN

Table 10: Conditional Imitation Learning: Ablation study for the importance of various components
of NF-GCBC. These experiments show that the architectural modifications we propose are crucial for
performance of NFs in the context of RL. We hope that the above experiments serve as sufficient

motivation for our design choices.

Method antmaze-large-navigate scene-play cube-single-play
NF-GCBC 0.32 0.42 0.795
without permutation flows 0.26 0.04 0.0
without LayerNorm 0.29 0.3 0.0
without sampling trick 0.3 0.42 0.69

C Additional results.

Table 11 and Table 12 contain additional experimental results.

D Ablation experiments.

In Table 8, Table 7, Table 9 we ablate the values of the width of the coupling networks, the number of
NF blocs, and the levels of noise for the denoising trick Appendix A.l for NF-BC. These ablation
experiments aim to show which hyper-parameters are important to tune and which hyper-parameters

NF-BC is robust to.

In Table 10, we present experiments ablating the inclusion of LayerNorm, a generalized permutation

layer, and the sampling trick in NF-GCBC.

Table 11: Task wise performance for Fig. 4.

Environment Score

puzzle-3x3-play-v0 0.045+0.005
cube-single-play-v0 0.795+0.109
scene-play-v0 0.420+0.008
cube-double-play-v0 0.351+0.087
antmaze-medium-stitch-vQ 0.566+0.068
humanoidmaze-medium-navigate-v0 0.314+0.042
antmaze-large-navigate-v0 0.320+0.055
antsoccer-arena-navigate-v0 0.621+0.007
antsoccer-arena-stitch-v0 0.643+0.016

19

Table 12: Task wise performance for Fig. 5. Scores are mean + std.

Environment Score

antmaze-large-navigate-singletask-task1-v0 0.764+0.073
antmaze-large-navigate-singletask-task2-v0 0.724+0.088
antmaze-large-navigate-singletask-task3-v0 0.924+0.023
antmaze-large-navigate-singletask-task4-v0 0.616+0.314
antmaze-large-navigate-singletask-task5-v0 0.608+0.399
antsoccer-arena-navigate-singletask-task1-v0 0.600+0.122
antsoccer-arena-navigate-singletask-task2-v0 0.556+0.096
antsoccer-arena-navigate-singletask-task3-v0 0.420+0.077
antsoccer-arena-navigate-singletask-task4-vQ 0.480+0.061
antsoccer-arena-navigate-singletask-task5-v0 0.336+0.062
cube-single-play-singletask-task1-v0 0.440+0.057
cube-single-play-singletask-task2-v0 0.640+0.087
cube-single-play-singletask-task3-v0 0.768+0.060
cube-single-play-singletask-task4-v0 0.600+0.082
cube-single-play-singletask-task5-v0 0.616+0.067

humanoidmaze-medium-navigate-singletask-task1-v0 0.036+0.045
humanoidmaze-medium-navigate-singletask-task2-vO0 ~ 0.188+0.097
humanoidmaze-medium-navigate-singletask-task3-v0 0.148+0.072
humanoidmaze-medium-navigate-singletask-task4-vO0 0.016+0.015
humanoidmaze-medium-navigate-singletask-taskS-v0 0.208+0.053

puzzle-3x3-play-singletask-task1-v0 0.996+0.008
puzzle-3x3-play-singletask-task2-v0 0.996+0.008
puzzle-3x3-play-singletask-task3-v0 0.976+0.029
puzzle-3x3-play-singletask-task4-v0 0.996+0.008
puzzle-3x3-play-singletask-task5-v0 0.996+0.008
scene-play-singletask-task1-v0 1.000=+0.000
scene-play-singletask-task2-v0 0.880+0.075
scene-play-singletask-task3-v0 0.988+0.016
scene-play-singletask-task4-v0 0.856+0.056
scene-play-singletask-task5-v0 0.000=+0.000

E Hyperparameters used by behavior cloning algorithms based on different
probabilistic models.

Table 13: Hyper-parameters used by NF-BC.

Hyper-parameter Description

channels width of each layer of the coupling MLP network.
noise std added noise to labels for training the NF using MLE.
blocks number of NF blocks.

encoder num layers number of layers in the observation encoder MLP network.
rep dims output dimension of observation encoder MLP network.

20

Table 14: Hyper-parameters used by BET.

Hyper-parameter Description

embedding dims dimension length for attention vectors.
num layers number of attention blocks.

num heads number of heads in attention.

act scale action scaling parameter.

num bins number of centroids for k-means.
offset prediction ~ whether to predict offsets for actions or not.
offset loss scale action offset prediction loss coefficient.
gamma focal loss parameter.

Table 15: Hyper-parameters used by DiffPolicy-C.

Hyper-parameter Description

time-step embedding dims embedding dimension of diffusion timestep.
down dims downsampling dimensions for Unet architecture.
kernel size kernel size for CNNs in Unet.

n groups number of groups for group normalization.
scheduler train timesteps Length of the forward diffusion chain while training.
num inference steps Length of the denoising steps while sampling.
beta schedule type type of scheduler for noising.

beta start first-step noise for diffusion scheduler.

beta end last-step noise for diffusion scheduler.

ema inverse gamma parameter for ema rate schedule.

ema power parameter for ema rate schedule.

ema min minimum value of ema decay rate.

ema max maximum value of ema decay rate.

Table 16: Hyper-parameters used by DiffPolicy-T.

Hyper-parameter Description

time-step embedding dims embedding dimension of diffusion timestep.
embedding dims dimension length for attention vectors.
num layers number of attention blocks.

num heads number of heads in attention.
scheduler train timesteps Length of the forward diffusion chain while training.
num inference steps Length of the denoising steps while sampling.
beta schedule type type of scheduler for noising.

beta start first-step noise for diffusion scheduler.
beta end last-step noise for diffusion scheduler.
ema inverse gamma parameter for ema rate schedule.

ema power parameter for ema rate schedule.

ema min minimum value of ema decay rate.

ema max maximum value of ema decay rate.

21

Table 17: Hyper-parameters used by VQ-BET.

Hyper-parameter Description

embedding dims dimension length for attention vectors.
num layers number of attention blocks.

num heads number of heads in attention.
action seq len sequence length used to train the behavior transformer.
vqvae num embed cookbook size of vqvae.

vqvae embedding dims embedding dimensions of vqvae codes.
vqvae groups number of groups in residual vqvae.
encoder loss multiplier encoder loss coefficient.

offset loss multiplier action offset prediction loss coefficient.
secondary code multiplier secondary code prediction loss coefficient.
gamma focal loss parameter.

F Societal Impacts

Positive Impacts. Our work directly improves various RL algorithms in various RL problem
settings, which can benefit domains like robotics, healthcare, and energy systems by enabling efficient
autonomous decision-making.

Negative Impacts. As with many advances in reinforcement learning, improvements in policy
expressiveness can be misused in domains such as surveillance, autonomous weapons, or manipulation
in recommendation systems. Further, increased training complexity may lead to higher computational
costs, raising concerns about energy use and environmental impact.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are that our experiments
show that NFs are expressive, flexible and generally capable models for many RL problems
like imitation learning, offline, goal conditioned RL and unsupervised RL. Towards the end
of our introduction, we highlight the success results of NF based algorithms in all of these
problem settings. Section 6 contains detailed discussions of these experiments and results
which concretely justify these claims.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the second paragraph of Section 7 discussion the main limitations of our
work.

Guidelines:

22

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Our paper is primarily an empirical paper. While Section 4 does provide a unifying proba-
bilistic framework to think about many RL algorithms, the specific algorithm-wise results
are known and have been cited accordingly.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Yes, the paper provide all information needed to reproduce the all the experimental results.
Appendix A contains the implementation details of all the algorithms, including the hyper-
parameters used and their values. We have also provided the code for all our experiments
organized in a readable manner in supplementary experiments. We have also provided the
code for our architecture in both Jax [10] and PyTorch [69].

23

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Like mentioned in the previous answer, we have provided the code for all our experiments
organized in a readable manner in supplementary experiments. We have also provided the
code for our architecture in both Jax [10] and PyTorch [69].

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Appendix A contains the implementation details of all the algorithms, including the hyper-
parameters used, their values, and details of how they were chosen. Every subsection
of Section 6 contains detailed description of the tasks and baselines for all RL problems
(offline imitation learning, conditional offline imitation learning, offline RL, unsupervised
goal conditioned RL).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, all experiments are conducted across five seeds and error bars are shown
for all bar / graph plots.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

25

9.

10.

Justification: In Appendix A, we provide the type of GPUs used and the time taken for all
our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I have read the guidelines and our research does indeed conform, in every
respect, with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix F we have added a brief discussion of both positive and potentially
negative societal impacts of our work.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

26

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not use any of data or models that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Wherever necessary, we have cited the original source of the datasets and
benchmarks used in our paper Section 6.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, our code is well documented. Details about the architecture, experiments
and results have been provided in the paper Section 6, Appendix A.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

27

paperswithcode.com/datasets

14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There are no crowdsourcing experiments in our paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	Many RL Algorithms do MLE and VI.
	Offline Imitation Learning (IL)
	Offline RL
	Goal conditioned RL (GCRL)

	A Simple and Efficient NF Architecture for RL
	Experiments
	Imitation Learning (IL)
	Conditional Imitation Learning
	Offline RL
	Goal Conditioned RL

	Conclusion
	Implementation details.
	Imitation Learning: NF-BC
	Conditional Imitation Learning: NF-GCBC
	Offline RL: NF-RLBC
	Unsupervised RL: NF-UGS

	More details about NF block.
	Additional results.
	Ablation experiments.
	Hyperparameters used by behavior cloning algorithms based on different probabilistic models.
	Societal Impacts

