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ABSTRACT

We introduce an output layer for neural networks that ensures satisfaction of con-
vex constraints. Our approach, Πnet, leverages operator splitting for rapid and
reliable projections in the forward pass, and the implicit function theorem for
backpropagation. We deploy Πnet as a feasible-by-design optimization proxy
for parametric constrained optimization problems and obtain modest-accuracy so-
lutions faster than traditional solvers when solving a single problem, and signif-
icantly faster for a batch of problems. We surpass state-of-the-art learning ap-
proaches by orders of magnitude in terms of training time, solution quality, and
robustness to hyperparameter tuning, while maintaining similar inference times.
Finally, we tackle multi-vehicle motion planning with non-convex trajectory pref-
erences and provide Πnet as a GPU-ready package implemented in JAX.
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y
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Figure 1: Illustration of the Πnet architecture. The infeasible output of the backbone network is
projected onto the feasible set through an operator splitting scheme. To train the backbone network,
we use the implicit function theorem to backpropagate the loss through the projection layer.

1 INTRODUCTION

In this work, we deploy neural networks (NNs) to generate feasible-by-design candidate solutions
(see Figure 1) for the parametric constrained optimization problem:

minimize
y

φ(y, x) subject to y ∈ C(x), P(x)

where y ∈ Rd is the decision variable, x ∈ Rp is the context (or parameter) of the problem instance,
φ : Rd × Rp → R is the objective function, and C(x) ⊆ Rd is a non-empty, closed, convex set for
all x. We provide a pedagogical example to explain this formulation in Appendix A.
Constrained optimization has universal applicability, from safety-critical applications such as the op-
timal power flow in electrical grids (Nellikkath & Chatzivasileiadis, 2022), to logistics and schedul-
ing (Bengio et al., 2021), and even biology, where enforcing priors on the solution can enhance its
interpretability (Balcerak et al., 2025; Terpin et al., 2024b). In many applications, optimization pro-
grams are solved repeatedly, given different contexts: in logistics, the demands and forecasts vary
(Baptiste et al., 2001); in model predictive control (MPC) (Chen et al., 2018; Tabas & Zhang, 2022),
the initial conditions; in motion planning, the position of obstacles (Marcucci et al., 2023); in trust-
region policy optimization, the advantage function and the trust-region center (Terpin et al., 2022b).
This task often becomes computationally challenging when, for example, y is high-dimensional, φ is
non-convex, or new solutions are required at a high frequency. Rather than solving each problem in-
stance from scratch, the mapping from contexts to solutions can be learned with NNs. Despite their
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successes, NNs typically lack inherent mechanisms to ensure satisfaction of explicit constraints, a
limitation that motivates a large body of existing work:

Soft-constrained NNs. Soft penalty terms for constraint violations in the objective function are
one approach to incorporate constraints in NNs (Márquez-Neila et al., 2017), and have been adopted
to solve parametric constrained optimization problems (Tuor et al., 2021), and partial differential
equations through physics-informed NNs (Erichson et al., 2019; Raissi et al., 2019). Despite their
ability to handle general constraints, these approaches offer no guarantees at inference time. Beside
requiring manual tuning of the penalty parameters, which is challenging yet critical for good perfor-
mance, the use of soft constraints is discouraged for the following reasons. First, the structure of the
constraints set can be exploited to design more efficient algorithms; see, e.g., the simplex algorithm
(Dantzig, 2002). Second, treating constraints softly may significantly alter the problem solution
regardless of tuning (Grontas et al., 2024). Third, certain constrained optimization problems (e.g.,
linear programs) may not admit a solution at all when constraints are treated softly.

Hard-constrained NNs. To circumvent the shortcomings of soft constraints, hard-constrained
neural networks (HCNNs) aim to enforce constraints on the NN output by design. Frerix et al.
(2020) address linear homogeneous inequality constraints by parameterizing the feasible set. Simi-
larly, RAYEN (Tordesillas et al., 2023) enforces various convex constraints by scaling the line seg-
ment between infeasible points and a fixed point in the feasible set’s interior. While these methods
enjoy rapid inference, they require expensive offline preprocessing and are not directly applicable
to constraints that depend on the NN input, i.e., they consider feasible sets C and not C(x) in P(x).
Differently, Min et al. (2024) propose a closed-form expression to recover feasibility for polyhedral
constraints and employs cvxpylayers (Agrawal et al., 2019) for more general convex sets. Chen
et al. (2018); Cristian et al. (2023) orthogonally project the NN output or intermediate layers us-
ing Dykstra’s algorithm (Boyle & Dykstra, 1986), but rely on loop unrolling for backpropagation,
which can be prohibitive in terms of memory and computation. Departing from convex sets, DC3
(Donti et al., 2021) introduces an equality completion and inequality correction procedure akin to
soft-constrained approaches, but applied during inference. Lastrucci & Schweidtmann (2025) im-
pose non-linear equality constraints by recursively linearizing them. Lagrangian and augmented
Lagrangian approaches are considered by Fioretto et al. (2021); Park & Van Hentenryck (2023) for
general non-convex constraints, with drawbacks similar to soft constraints, whereas Kratsios et al.
(2021) consider a (probabilistic) sampling approach. Recently, LinSATNet (Wang et al., 2023) has
been proposed to impose non-negative linear constraints, which is a restrictive constraint class that
renders none of the problems of interest for this work amenable to LinSATNet. This limitation is
partially relaxed by GLinSAT (Zeng et al., 2024), which however requires bounded constraints, an
assumption not satisfied by, e.g., epigraph reformulations (Stellato et al., 2020, Appendix A.5-A.7).

Implicit layers. Implicit layers embed optimization problems such as quadratic programs (QPs)
(Amos & Kolter, 2017; Butler & Kwon, 2023), conic programs (Agrawal et al., 2019), non-linear
least-squares (Pineda et al., 2022), or fixed-point equations (Bai et al., 2019; Winston & Kolter,
2020) as NN layers, and apply the implicit function theorem (Dontchev & Rockafellar, 2009) to
various measures of optimality. Our work is an instance of implicit layers; see Appendix C.5.

ML for optimization. Using constrained NN architectures to learn solution mappings is among
many successful efforts to exploit ML techniques to accelerate (King et al., 2024; Sambharya et al.,
2024) or replace optimization solvers (Bertsimas & Stellato, 2022; Zamzam & Baker, 2020). These
approaches are referred to as amortized optimization, learning to optimize or optimization learning,
and the surveys (Amos, 2023; Van Hentenryck, 2025) cover multiple aspects of the topic.

Contributions. We propose a NN architecture, Πnet, that generates feasible-by-design so-
lutions for P(x). Given a context x, we deploy a backbone NN to produce a raw output yraw

that we orthogonally project onto C(x), y = argminz∈C(x) ∥z − yraw∥2. In particular:

• We use an operator splitting scheme to compute the projection in the forward pass, and back-
propagate through it via the implicit function theorem. Our work is an instance of implicit
layers (see Appendix C.5), but it specializes in projection problems whose structure can be
significantly exploited, achieving rapid training and improved inference speed. Our sim-
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ple idea yields a learning architecture that surpasses state-of-the-art learning approaches by
orders of magnitude in terms of training time, solution quality, and robustness to hyperpa-
rameter tuning, while maintaining similar inference times.

• We implement a hyperparameter tuning and matrix equilibration strategy that boosts Πnet’s
performance and robustifies it against data scaling. As a result, Πnet solves challenging
benchmarks on which existing methods struggle, and is substantially less sensitive to hyper-
parameter tuning. In addition, we deploy Πnet on a real-world application in multi-vehicle
motion planning with non-convex trajectory costs.

• We provide an efficient and GPU-ready implementation of Πnet in JAX. We make our code
available in the supplementary material.

Notation. The indicator function of a set K is IK(y) = 0 if y ∈ K, and +∞ otherwise.
The proximal operator of a proper, closed and convex function f with parameter σ > 0 is
proxσf (x) = argminy{f(y) + 1

2σ∥y − x∥
2}. The projection onto a non-empty, closed, and convex

set C is ΠC(x) = proxIC
(x). For a differentiable mapping F : Rn → Rm, its Jacobian evaluated at

x̂ ∈ Rn is denoted by ∂F (x)
∂x

∣∣
x=x̂
∈ Rm×n; we use d instead of ∂ when referring to total derivatives.

Given a vector v ∈ Rm, the vector-Jacobian product (VJP) of F at x̂ with v is v⊤ ∂F (x)
∂x

∣∣
x=x̂
∈ Rn.

2 TRAINING HARD-CONSTRAINED NEURAL NETWORKS

We develop an NN layer that projects the output of any backbone NN onto C(x), and discuss how
Πnet can be trained to generate solutions of P(x), for any given x.

2.1 PROJECTION LAYER

Given a context x, the backbone network produces the raw output yraw = f(x; θ), where θ are the
network weights. We enforce feasibility by projecting yraw onto C(x):

y = ΠC(x)
(
yraw
)
= argminz∈C(x)

∥∥z − yraw
∥∥2. (1)

We highlight two benefits of this approach:

✓ Constraint satisfaction. By design, the output y of the projection layer always lies in C(x).
✓ Decomposition of specifications. The hard constraints prescribe the required behavior of the

output, while the objective prescribes the desired behavior. Contrary to soft-constrained NNs, no
tradeoff between the two behaviors is introduced in our proposed framework.

We consider constraints that can be expressed as C = Πd(A ∩ K), where A,K ⊆ Rn, n ≥ d,
are closed, convex sets that we design, and Πd is the projection onto the first d coordinates. We
omit the dependence on x for brevity, but stress that our method readily handles context-dependent
constraints. Notice that we work in the possibly higher-dimensional Rn, by introducing an auxiliary
variable yaux ∈ Rn−d. This provides us the flexibility to choose A and K such that their respective
projections ΠA and ΠK admit a closed-form expression or are numerically-efficient. In particular,
A will be a hyperplane defined by the coefficient matrix A and the offset vector b, andK a Cartesian
product of the formK = K1×K2 ⊆ Rd×Rn−d. This representation can describe many constraints
of practical interest and we instantiate it with an example next (see Appendix E for more). Consider
polytopic sets that are often employed in robotics (Chen et al., 2018), numerical solutions to partial
differential equations (PDE) (Raissi et al., 2019), and non-convex relaxations for trajectory planning
(Malyuta et al., 2022), among others. They are expressed as {y ∈ Rd |Ey = q, l ≤ Cy ≤ u}, for
someE, q, l, C, u of appropriate dimensions. We introduce the auxiliary variable yaux = Cy ∈ Rnineq

with dimension n− d = nineq. Then, we define A, K ⊆ Rn as the following hyperplane and box

A =

{[
y
yaux

] ∣∣∣∣
[
E 0
C −I

]

︸ ︷︷ ︸
=A

[
y
yaux

]
=

[
q
0

]

︸︷︷︸
=b

}
, K =

{[
y
yaux

] ∣∣∣∣ y ∈ Rd, l ≤ yaux ≤ u
}
.

3
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Importantly, C = Πd(A ∩ K) and both ΠA and ΠK can be evaluated in closed form for several
constraint sets ubiquitous in practice:

Aeqy = beq (Eq)
ℓbox ≤ y ≤ ubox (Box)
ℓineq ≤ Aineqy ≤ uineq (Ineq)

∥Asoc,iy + asoc,i∥2 ≤ f⊤soc,iy + bsoc,i, i = 1, . . . , Nsoc (SOC)

∥Aℓ1,iy + aℓ1,i∥1 ≤ f⊤ℓ1,iy + bℓ1,i, i = 1, . . . , Nℓ1 (ℓ1 − ball)

∥Aℓ∞,iy + aℓ∞,i∥∞ ≤ f⊤ℓ∞,iy + bℓ∞,i, i = 1, . . . , Nℓ∞ (ℓ∞ − ball)

ySj ≥ 0, ∥ySj∥1 = 1, for index sets Sj (Simplex)

(2)

Remark. We stress that the decomposition C = Πd(A ∩ K) is not an assumption. One can always
decompose a convex set in this way, e.g., by considering the trivial decomposition A = C and
K = Rd. Instead, determiningA andK is a design choice which we leverage to make the projections
ΠA and ΠK computationally efficient. We note two important points regarding this design choice:

• The only assumption is that ΠA and ΠK and their VJP are computable. Being computationally
efficient is an added benefit of our decomposition, but is not necessary. In this work, our focus is
on the sets listed as those are the ones that are most interesting in practice.

• We show in Appendix E that many practically-relevant constraints C, such as the ones listed in
(2), as well as their intersections and Cartesian products and the intersections and Cartesian
products all admit efficient decompositions. In fact, this list is not exhaustive; see, e.g., Condat
(2016); Boyd & Vandenberghe (2004).

2.1.1 FORWARD PASS

To compute the projection y = ΠC(x)(yraw) we employ the Douglas-Rachford algorithm (Bauschke
& Combettes, 2017, Sec. 28.3), which solves optimization problems of the form minz g(z) + h(z),
where g and h are proper, closed, convex functions. To rewrite (1) in this composite form, we use
the auxiliary variable yaux ∈ Rn−d and the indicator function of A and K to obtain:

(ΠC(yraw), y
⋆
aux) = argmin

y,yaux

{
∥y − yraw∥2 + IA

([
y
yaux

])
+ IK

([
y
yaux

])}
. (3)

Then, we split the objective function as follows

g

([
y
yaux

])
= IA

([
y
yaux

])
and h

([
y
yaux

])
= ∥y − yraw∥2 + IK

([
y
yaux

])
.

By applying the Douglas-Rachford algorithm we obtain the fixed-point iteration:
zk+1 = proxσg(sk) (4a)

tk+1 = proxσh(2zk+1 − sk) (4b)
sk+1 = sk + ω(tk+1 − zk+1) (4c)

where σ > 0 is a scaling and ω ∈ (0, 2) a re-
laxation parameter. The proximal operators
in (4a) and (4b) can be evaluated explicitly,
see Appendix D.1, allowing us to implement
(4) as in Algorithm 1. Note that we write
zk = [zk,1 zk,2]

⊤ where zk,1 ∈ Rd and
zk,2 ∈ Rn−d correspond to y and yaux.

ALGORITHM 1. Operator splitting for projection

Inputs: x, yraw,K ∈ N, σ, ω.
Initialization: s0 ∈ Rn

For k = 0 to K − 1:

zk+1 ← ΠA(x)(sk)

tk+1 ←
[
ΠK1(x)(

2zk+1,1−sk,1+2σyraw

1+2σ )
ΠK2(x)(2zk+1,2 − sk,2)

]

sk+1 ← sk + ω(tk+1 − zk+1)

Output: zK,1, sK

Under mild conditions, namely strict feasibility of (3), we show in Appendix D.2 that the iterates zk
and tk converge to a solution of (3). We denote the limits z∞(yraw) = limk→∞ zk and s∞(yraw) =
limk→∞ sk, and highlight their dependence on the point-to-be-projected yraw. In particular, we have
z∞,1(yraw) = ΠC(yraw). In practice, we run a finite number of iterations K ∈ N of (4), which

4
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we set to K = n iter fwd during training and K = n iter test during testing, and take
y = zK,1 as the output of the projection layer. We detail our hyperparameters in Section 2.4. We
note that, although zK will not necessarily lie on A ∩ K, because K ∈ N is finite, Algorithm 1
guarantees that zK ∈ A. By our choice ofA, this implies that zK,1 satisfies any equality constraints
in the problem. The feasibility-by-design comes from the convergence rates, which we derive and
empirically demonstrate in Appendix D.3: for a sufficiently high number of iterations, the output of
our projection layer is arbitrarily close to the true projection.

2.1.2 BACKWARD PASS

To train the backbone network using backpropagation, we need to efficiently differentiate the loss L
(which in general depends on the projected output of the network and on the input; see Section 2.2)
with respect to the backbone network parameters θ. The chain rule gives us:

dL(ΠC(f(x; θ)), x)
dθ

=
∂L(y, x)
∂y

∣∣∣∣
y=ΠC(f(x;θ))

∂ΠC(yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

∂f(x;ϑ)

∂ϑ

∣∣∣∣
ϑ=θ

. (5)

Since the first and last terms are standard and typically computed with automatic differentiation, we
only need to provide an efficient computational routine for the VJP

v 7→ v⊤
(
∂ΠC(yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

)
. (6)

Rather than differentiating through all the iterations of Algorithm 1 by loop unrolling, we exploit
the implicit function theorem (Dontchev & Rockafellar, 2009) to efficiently evaluate (6). To do so,
we first recall that ΠC(yraw) =

[
Id 0d×(n−d)

]
ΠA(s∞(yraw)) which implies that:

v⊤
(
∂ΠC(yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

)
=

(
[
v⊤ 0

] ∂ΠA(s)
∂s

∣∣∣∣
s=s∞(yraw)

)
∂s∞(yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

, (7)

and note that the first VJP is straightforward to compute since ΠA is an affine mapping. Therefore,
to evaluate (7) we need to backpropagate through s∞(yraw). Since s∞(yraw) is the fixed point of
iteration (4), it satisfies the equation s∞(yraw) = Φ(s∞(yraw), yraw),where Φ represents one iteration
of (4a)-(4c), namely, sk+1 = Φ(sk, yraw). The implicit function theorem applied to s∞(yraw) =
Φ(s∞(yraw), yraw) yields the VJP, see Appendix D.4,

v 7→ ξ(yraw, v)
⊤ ∂Φ(s∞(yraw), yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

, (8)

where ξ(yraw, v) is a solution of the linear system
(
I − ∂Φ(s, yraw)

∂s

∣∣∣∣
s=s∞(yraw)

)⊤

ξ(yraw, v) = v. (9)

The matrix in (9) may not be invertible (Agrawal et al., 2019); even if it is, constructing it and
computing its inverse may be prohibitively expensive in high dimensions. This difficulty can be cir-
cumvented by computing a heuristic quantity. In this vein, we deploy the JAX (Bradbury et al., 2018)
implementation of the bi-conjugate gradient stable iteration (bicgstab, van der Vorst (1992)), an
indirect linear system solver that requires only matrix-vector products. Therefore, we implement
(8) and (9) using VJPs involving ∂Φ(s∞(yraw), yraw)/∂yraw and ∂Φ(s, yraw)/∂s, respectively. We
efficiently do this using JAX VJP routines and note that each step of the solver for (9) has essentially
the same computational cost as one step of (4). The maximum number of bicgstab steps for (9),
n iter bwd, is a hyperparameter. In both (8) and (9), we use the output of the forward pass, i.e.,
sK in place of the intractable s∞. We discuss almost-everywhere differentiability of our projection
layer and the applicability of the implicit function theorem in Appendix F.

2.2 LOSS

The training loss L
(
ΠC(x)(f(x; θ)), x

)
, which is a function of the context and the constrained NN

output, can be crafted according to the specific requirement’s of the problem. In our experiments, we
directly minimize the objective of P(x) using the network’s output by setting L(y, x) = φ(y, x). In
our framework we can, loosely speaking, interpret training as performing projected gradient descent
on the raw NN output space, akin to the work of Cristian et al. (2023).

5
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2.3 NETWORK ARCHITECTURE

Πnet is flexible: the projection layer can be appended to any NN; see Figure 1. We summarize the
forward and backward pass of Πnet in Alg. 2, while its training and testing is outlined in Alg. 3.

ALGORITHM 2. Πnet

Forward:∣∣∣∣∣∣∣

Inputs: x, θ,K, σ, ω
yraw ← f(x; θ)
y, s← Call Algorithm 1(x, yraw,K, σ, ω)
Output: y, s

Backward:∣∣∣∣∣∣∣∣∣∣∣∣

Inputs: s∞, v ∈ Rd

v1 ←
[
v⊤ 0

]
(∂ΠA(s)/∂s)

∣∣
s=s∞

ξ(yraw, v1)← Solve (9) with v1 as RHS
v2 ← ξ(yraw, v1)

⊤(∂Φ(s, yraw)/∂yraw)
∣∣
s=s∞

v3 ← v⊤2 (∂f(x;ϑ)/∂ϑ)
∣∣
ϑ=θ

Output: v3

ALGORITHM 3. Training/Testing of Πnet

Inputs: Chosen/Tuned hyperparameters
(see Section 2.4)

Training:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ1 ← Initialize weights
For ℓ = 1 to n epochs:

x← Sample from training set
y, s← Forward(x, θ,n iter fwd, σ, ω)
L(y, x), ∂L(y, x)/∂y ← Compute loss
∂L/∂θ ← Backward(s, ∂L(y, x)/∂y)
θℓ+1 ← Optimizer update

Output : θn epochs

Testing:∣∣∣∣∣
x← Sample from test set
y, s← Forward(x, θ,n iter test, σ, ω)
Output : y

2.4 THE SHARP BITS (SHORT VERSION)

To push the performance of Πnet, we adopt two important numerical techniques. First, we im-
prove the conditioning of the matrix A(x), that defines the set A(x), by implementing the Ruiz
equilibration algorithm (Wathen, 2015); see Appendix C.1. Second, we exploit the fact that, com-
pared to existing methods, Πnet relies only on a few hyperparameters. Specifically, n iter fwd
(number of iterations for the forward pass during training), n iter test (number of iterations
for the forward pass during inference), omega, sigma (standard Douglas-Rachford parameters),
and n iter bwd (number of iterations in the bicgstab procedure). We describe an auto-tuning
procedure that recommends hyperparameters by evaluating the projection on a subset of the vali-
dation set in Appendix C.2, and assess its effectiveness in Appendix C.3. Finally, we highlight our
choice of enforcing constraints during training, as opposed to training an unconstrained network and
introducing the projection layer only afterwards. We do so because the latter approach may result in
training instabilities or suboptimal performance; see Appendix C.4.

3 NUMERICAL EXPERIMENTS

The code is made available in the supplementary material. The empirical data was collected on an
Ubuntu 22.04 machine equipped with an AMD Ryzen Threadripper PRO 5995WX processor and
an Nvidia RTX 4090 GPU. For experiments with second-order cone constraints, see Appendix B.5.

3.1 BENCHMARKS AND COMPARISONS WITH STATE-OF-THE-ART

We consider a set of standard convex and non-convex problems classically used to compare HCNNs.

Experimental setup. We consider the benchmark problems introduced by Donti et al. (2021):

minimize
y∈Rd

J(y) subject to Ay = x, Cy ≤ u,

where J(·) is defined as J(y) = y⊤Qy + q⊤y for the convex problem setup, and as J(y) =
y⊤Qy + q⊤ sin(y) for the non-convex, and Q ∈ Rd×d ≻ 0, q ∈ Rd, A ∈ Rneq×d, x ∈ Rneq , C ∈
Rnineq×d, u ∈ Rnineq . In particular, In the work of Donti et al. (2021), Q is diagonal with positive
entries, A,C, u are fixed matrices/vector and the contexts x are generated so that all problem in-
stances are guaranteed to be feasible. Donti et al. (2021) consider problems with d = 100. Here, we
include larger problem dimensions, (d, neq, nineq) ∈ {(100, 50, 50), (1000, 500, 500)}, which we
generated with the same scheme. We refer to these datasets as small and large. For each dataset, we
generated 10000 contexts split as 7952/1024/1024 among training/validation/test sets.
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Figure 2: Scatter plots of RS and CV on the small and large non-convex problems on the test set.
The red dashed lines show the thresholds to consider a candidate solution optimal.

Baselines. We compare Πnet to DC3 (Donti et al., 2021) and a traditional Solver. For the con-
vex objective the Solver is the QP solver OSQP (Stellato et al., 2020), while for the non-convex
objective is IPOPT (Wächter & Biegler, 2006). Further, we compare to an implicit layer approach,
where instead of computing the projection (1) with Algorithm 1, we use the JAXopt (Blondel
et al., 2022) GPU-friendly implementation of OSQP that employs implicit differentiation. Both
Πnet, DC3, and the JAXopt approach use a self-supervised loss (i.e., L = J) and as backbone
a multi-layer perceptron (MLP) with 2 hidden layers of 200 neurons each and ReLU activations.
Additionally, DC3 includes batch normalization and drop out, as well as soft penalty terms in the
loss. We use the default parameters of DC3 unless otherwise stated. In particular, the DC3 algo-
rithm with default parameters diverged during training on the large datasets, an effect observed by
Tordesillas et al. (2023). To rectify this, we tuned the learning rate of DC3’s correction process for
the large dataset, and found that 10−8 enables the network to learn. In Appendix B.2, we investigate
if DC3’s performance can be improved by adapting hyperparameters. For Πnet we use only 50
training epochs, while for DC3 we use the default 1000. For JAXopt we use a tolerance of 10−3

and 12 epochs, in the interest of training time. On both convex and non-convex benchmarks, we use
JAXopt as a replacement for our custom projection layer after the backbone NN. The training times
reported are, thus, the ones of the backbone network. We omit comparisons with cvxpylayers
(Agrawal et al., 2019) since JAXopt is a more recent and stronger baseline: it implements similar
functionalities, but it is executable on the GPU; see also Appendix B.

Metrics. We compare methods in terms of the following metrics on the test set:

• Relative suboptimality (RS): The suboptimality of a candidate solution ŷ compared to the optimal
objective J(y⋆), computed by the Solver. Since methods may violate constraints and obtain a
better solution we clip this value, RS := max (0, (J(ŷ)− J(y⋆))/J(y⋆)) .

• Constraint violation (CV): We define CV = max(∥Aŷ − x∥∞, ∥max(Cŷ − u, 0)∥∞).

• Learning curves: Progress on RS and CV over wall-clock time on the validation set.

• Single inference time: The time required to solve one instance at test time.

• Batch inference time: The time required to solve a batch of 1024 instances at test time.

Next, we report and discuss the results on the non-convex datasets. In the interest of space, the
results on the convex problems are given in Appendix B.2.

Results. The RS and CV for each problem instance in the test set are reported in Figure 2. We
consider a candidate solution to be optimal if the condition CV ≤ 10−3 and RS ≤ 5% is satisfied.
These prerequisites for low accuracy solutions are similar to, though somewhat looser from, those
employed by numerical solvers (O’donoghue et al., 2016; Stellato et al., 2020). In fact, Πnet clears
these thresholds by a margin. In practice, any solver achieving a CV below 10−5 is considered high-
accuracy (Stellato et al., 2020) and there is little benefit to go below that. Instead, when methods
have sufficiently low CV, having a low RS is better.
Compared to DC3, we correctly solve the vast majority of test problems. Importantly, the very low
and consistent constraint violation across all problem instances significantly facilitates the tuning
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Figure 3: Comparison of the learning curves in terms of average RS and CV on the validation set, on
the small and large non-convex problems. The solid lines denote the mean and the shaded area the
standard deviation across 5 seeds. The learning curves for JAXopt on the large dataset are reported
only in Appendix B because of the orders of magnitude longer training times.

of the number of iterations. By contrast, on the large problems, DC3 exhibits CV and RS that are
unacceptably large for any meaningful application. We conjecture that Πnet significantly outper-
forms DC3 in RS due to the absence of soft penalties in our training loss and the orthogonality of the
projection. The JAXopt approach performs better than DC3 but significantly worse than Πnet.
The learning curves are shown in Figure 3. Πnet achieves better performance at a fraction of the
training time. Crucially, our scheme attains satisfactory CV throughout training, implying that Πnet
can reliably compute feasible solutions even with a tiny training budget. Note that our training curves
include the setup time for Πnet (the matrix equilibration, the calculation of the pseudo-inverse for
the projection onto the affine subspace, and just-in-time compilation). We omit the JAXopt results
on the large dataset as it requires roughly 14 hours to complete training. The substantial difference in
training times between Πnet and JAXopt underscores the importance of the specialized splitting
we employed exploiting the structure of the projection problem, and our specialized implementation.
We report inference times in Table 2 in Appendix B. All approaches significantly outperform the
Solver. Although DC3 is slightly faster than Πnet, it generates solutions of much lower quality
(in RS and CV), hence demonstrating that the advantages of Πnet come with only a minor runtime
trade-off compared to DC3.
To summarize our findings, we showed that existing HCNN methods suffer either from long train-
ing/inference times or low quality solutions. Πnet address both shortcomings, while retaining
modularity and simplicity.

3.2 ΠNET APPLIED: MULTI-VEHICLE MOTION PLANNING

We present an approach to synthesize transition trajectories between multi-vehicle configurations
that optimize some non-linear, fleet-level objective subject to dynamics, state and input constraints.
We feed an NN with the initial and terminal fleet configurations (the context x), obtain the raw input
trajectories and use the vehicle dynamics to infer the full state-input trajectories that serves as the
raw output yraw, which are then projected for ensured constraint satisfaction; see Figure 4.

Experimental setup. We follow the formulation in (Augugliaro et al., 2012). Specifically, we
denote with pi[t] ∈ Rm the generalized coordinates of vehicle i at the discrete times t ∈ {1, . . . , T},
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JOINT OPTIMIZATION DECOUPLED CONSTRAINT SATISFACTION
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Backbone NN



u1[0] · · · u1[T − 1]
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uN [0] · · · uN [T − 1]


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Raw fleet
input trajectories Raw vehicles

trajectories (yraw)

f(x)

y

Πnet
projection layer

Fleet trajectories
(y, after unbatching)

Figure 4: (Top) The Πnet approach to constrained multi-vehicle motion planning with arbitrary
differentiable objective functions φ. (Bottom) From left to right, we show examples of the synthe-
sized trajectories for 3 different objectives: φleft = effort, φmid = φleft+preference, φright =
φmid +coverage. We refer the reader to Appendix B.3 for formal definitions and additional plots.

and with vi[t] and ai[t] its generalized velocity and acceleration. Its simple discretized dynamics
read vi[t+1] = vi[t]+hai[t], pi[t+1] = pi[t]+hvi[t]+

h2

2 ai[t]. We formulate the motion planning
task for the fleet as a parametric program in the form of P(x), where C(x) includes box constraints
on positions (workspace constraints), velocities, and accelerations (physical limits), affine inequality
constraints for jerk limits, and equality constraints for the dynamics and initial/final configuration
for each vehicle. The objective function φ encapsulates a fleet-level objective; here we consider a
weighted sum of workspace coverage, input effort, and trajectory preference given by a potential
function; see Appendix B.3 for a rigorous definition.

Qualitative results. We display some of the resulting trajectories for different weights in the ob-
jective in Figure 4 and report more visualizations and analysis for larger fleets and longer horizons in
Appendix B.3. Crucially, both convex and non-convex objectives are handled effectively by Πnet,
resulting in trajectories that adhere to the goals prescribed by the different objective functions.

Practical Relevance. Multi-vehicle motion planning has received substantial attention for its prac-
tical applications (Terpin et al., 2022a; 2024a), and we highlight three benefits of our approach:

✓ Constraint satisfaction. We ensure dynamics, state, and input constraint satisfaction, similar to
optimization-based trajectory generation methods (Augugliaro et al., 2012).

✓ Parallelizability. Our approach is parallelizable in two ways. First, it enables multiple problem
instances (different initial and final configurations) to be solved in batches. Second, since the
constraints we consider are decoupled between the vehicles, we can jointly predict the raw input
trajectories (to enable the network to minimize the joint objective), while solving the projections
for each vehicle separately; see Figure 4.

✓ Arbitrary objective optimization. Our framework can handle any almost everywhere differen-
tiable objective, encoded in Πnet’s loss L = φ. Importantly, we see this example as a proof of
concept towards constrained human-preference optimization (e.g., using (Christiano et al., 2017)).
Deploying a traditional solver for this problem is very challenging because the objective functions
considered are not available in closed form and are highly non-linear.

We implement this application in a separate codebase in the supplementary material, demonstrat-
ing also the little overhead required to integrate Πnet into specific applications. We also explore
trajectory planning on a longer horizon (up to 750 steps, amounting to about 9000 optimization
variables and constraints), as well as high-dimensional contexts (mono-channel, 1024 × 1024 im-
ages) in Appendix B.4. Our current formulation focuses only on convex, decoupled-among-vehicles
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constraints. Future works could address collision avoidance constraints through sequential convexi-
fication techniques (Augugliaro et al., 2012; Malyuta et al., 2022).

4 CONCLUSIONS

Contributions. We introduced an output layer that enforces convex constraints satisfaction on the
output of an any backbone NN via an operator splitting scheme. The backpropagation is achieved via
the implicit function theorem, enabling efficient training. Our work focused on the gritty details of
optimizing Πnet, introducing also simple yet effective techniques such as hyperparameter tuning
and matrix equilibration procedures. We showed through extensive benchmarks that Πnet suc-
ceeds where existing learning methods fail. We provide a GPU-ready implementation in JAX, and
showcase how our layer can be embedded in an example application, multi-vehicle motion planning.

Limitations. One limitation of our work is the requirement of convex constraint sets. Despite the
numerous applications involving only convex constraints (Boyd & Vandenberghe, 2004), and the nu-
merous applications that can be losslessly convexified (Malyuta et al., 2022), we acknowledge that
future work should investigate how to relax this structural assumption. One potential approach could
involve sequential convexification of non-convex constraints, similar to the algorithm in (Lastrucci
& Schweidtmann, 2025) that addresses non-linear equality constraints, or by employing homeomor-
phisms (Liang et al., 2024).

Outlook. We believe that Πnet holds the potential to substantially impact a wide range of ma-
chine learning domains where constraint satisfaction is crucial. Relevant examples include neural
PDE solvers (Raissi et al., 2019), scheduling (Baptiste et al., 2001), and robotics (Malyuta et al.,
2022), among others. We demonstrated the potential of Πnet in some of these applications in Sec-
tion 3, and we believe that applying our method to new applications represents an exciting avenue
for future work. We expect the integration of hard constraints into large-scale models to result in
more robust performance and more trustworthy machine learning systems.
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A TOY VISUAL EXAMPLE

In this section, we instantiate our method on a very simple and interpretable toy problem: learning
to predict the outputs of a model predictive control (MPC) policy (Chen et al., 2018). In high-
dimensional scenarios and for long horizons, running MPC in real-time often becomes a compu-
tational bottleneck, so learning to predict its outputs–even with minor suboptimality, as long as
constraints are still satisfied–can bring substantial benefits (Chen et al., 2018).

Experimental setting. We consider a two-dimensional single integrator system, and define an
MPC control law given by the solution of

minimize
uk∈[−1,1]2

N−1∑

k=0

∥xk − x̂∥2+∥uk∥2 subject to x0 = x, xk+1 = xk+uk, xk ∈ [−10, 10]2. (10)

Here, xk denotes the system state, uk the control input, and x̂ = [3, −12] is a target state. We
sample the context (in this case, the initial condition for the MPC), x = x0, uniformly in [−10, 10]2.
We deploy Πnet to learn the solution of (10) as a function of x. We use a self-supervised loss and
the backbone NN is an MLP with two hidden layers of 200 neurons and relu activations.

Results. We superimpose Πnet’s prediction and the solution of (10) given by a Solver. Further,
to illustrate the importance of hard constraints, we also plot the prediction of the same MLP trained
with soft constraints, i.e., adding to the loss the term λ(EQCV+INEQCV), where EQCV and INEQCV
is the maximum violation of the equality and inequality constraints, respectively, for two values of
λ.
We represent x̂ with a star, x with a square, and
state constraints with a dashed rectangle. We tested
the trained network in 1000 instances generated by
sampling x uniformly in [−10, 10]2. Πnet achieves
an average relative suboptimality of approximately
0.02%, and constraints satisfied in 100% of problem
instances to within a tolerance of 10−3. It is also ap-
parent that different values of λ induce different be-
haviors: Larger values enforce the constraints at the
expense of optimality, smaller values do not enforce
constraints. ⋆x̂

x

Πnet
Solver
SoftMLP λ = 1
SoftMLP λ = 0.001
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Method RS CV Single inference time [s] Batch inference time [s]
cvxpylayers 0.0036 0.00005 0.0120 2.5917
Πnet (CPU) 0.0035 0.00000 0.0052 0.0957
Πnet (GPU) 0.0035 0.00000 0.0065 0.0135

Table 1: Comparison with cvxpylayers on the small, non-convex benchmark. The RS and CV
values reported are the averages over the test set.

DC3 ΠnetJAXopt Convex
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R
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Figure 5: Scatter plots of RS and CV on the small and large convex problems on the test set. The
red dashed lines show the thresholds to consider a candidate solution optimal.

B ADDITIONAL RESULTS

In this section, we collect the additional results for Section 3 and the ablation studies on some DC3
hyperparameters.

B.1 A COMPARISON WITH CVXPYLAYERS .

We compare Πnet with cvxpylayers on the small non-convex benchmark, and report the re-
sults in Table 1. We use cvxpylayers as an alternative to our custom projection layer, in an
analogous manner to the comparison with JAXopt in Section 3.1. Since cvxpylayers runs
exclusively on the CPU, we report the results of Πnet on both CPU and GPU. In all cases, we
provide a training budget of 25 epochs. For cvxpylayers this corresponds to roughly 10 minutes
of wall-clock time, whereas for Πnet this corresponds to 4 and 28 seconds on the GPU and CPU,
respectively. We observe that Πnet attains similar performance in terms of RS and CV, but signifi-
cantly outperforms cvxpylayers in terms of inference and training time. We omit further results
with cvxpylayers, since JAXopt is a more recent and stronger baseline: it implements similar
functionalities, but it is executable on the GPU (see Figures 2 and 3, and Table 2).

B.2 ADDITIONAL ANALYSES FOR SECTION 3.1.

Additional results. We report the inference times on the non-convex datasets in Table 2. We report
the omitted benchmark results on the small and large convex datasets of Section 3.1 in Figures 5
and 6 and Table 3, which further substantiate our claims. We report the omitted learning curves for
JAXopt on the large convex and non-convex datasets in Figure 7 and Figure 8, respectively.

DC3: Hyperparameter ablations. In our benchmarks of Section 3.1, we highlighted two weak-
nesses in the performance of DC3: (i) in both small and large non-convex problems the RS is un-
satisfactory; (ii) in the large non-convex problem the CV is unsatisfactory. We investigated whether
these shortcomings can be mitigated by choosing hyperparameters which are different from the de-
faults. In particular, we tried to address (i) by decreasing the soft penalty parameter for CV in DC3’s
loss function from the default 10.0 to 2.0; (ii) by increasing the number of correction steps from
the default 10 to 50. We superimpose the obtained RS and CV in Figure 9, and report the inference
times in Table 4 (only for the case of more correction steps, since changing the soft penalty does not
affect inference times). Importantly, these results show both the lack of a clear decoupling between
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Method Single inference [s] Batch inference [s]
median LQ UQ min max median LQ UQ min max

Non-convex small
DC3 0.0019 0.0018 0.0019 0.0018 0.0026 0.0020 0.0019 0.0020 0.0019 0.0023
Solver 0.0334 0.0298 0.0497 0.0207 0.1213 41.748 40.200 43.198 36.764 47.149
JAXopt 0.0134 0.0131 0.0136 0.0122 0.0145 0.1371 0.1364 0.1532 0.1357 0.1540
Πnet 0.0056 0.0055 0.0056 0.0054 0.0072 0.0130 0.0128 0.0131 0.0123 0.0147
Non-convex large
DC3 0.0016 0.0016 0.0017 0.0015 0.0046 0.0248 0.0248 0.0248 0.0247 0.0255
Solver 10.159 9.4739 10.807 7.4350 12.612 10720 9538.4 10800 9417.8 16502
JAXopt 0.0578 0.0575 0.0590 0.0559 0.0596 19.430 19.430 19.430 19.429 19.430
Πnet 0.0063 0.0063 0.0064 0.0061 0.0092 0.2804 0.2799 0.2807 0.2794 0.2912

Table 2: Inference time comparison for single-instance and batch (1024 contexts) settings, evaluated
on the small and large non-convex problems. The table reports the median, lower quartile (LQ, 25th
percentile), upper quartile (UQ, 75th percentile), min and max of the runtime.

Method Single inference [s] Batch inference [s]
median LQ UQ min max median LQ UQ min max

Convex small
DC3 0.0033 0.0032 0.0033 0.0031 0.0050 0.0033 0.0033 0.0034 0.0032 0.0044
Solver 0.0019 0.0018 0.0019 0.0011 0.0083 1.9350 1.9264 1.9441 1.8931 2.0282
Solver† 0.0006 0.0006 0.0006 0.0006 0.0024 0.6190 0.6168 0.6217 0.6100 0.6746
JAXopt 0.0142 0.0138 0.0150 0.0124 0.0165 0.1603 0.1590 0.1648 0.1581 0.1794
Πnet 0.0055 0.0055 0.0056 0.0053 0.0060 0.0130 0.0128 0.0130 0.0125 0.0136
Convex large
DC3 0.0072 0.0072 0.0073 0.0071 0.0115 0.0349 0.0349 0.0351 0.0348 0.0369
Solver 0.6660 0.6613 0.6716 0.3159 0.7079 680.59 676.24 682.52 662.29 687.84
Solver† 0.0603 0.0589 0.0620 0.0466 0.9501 62.022 61.591 62.558 60.064 70.987
JAXopt 0.0630 0.0623 0.0641 0.0601 0.0668 21.504 21.504 21.505 21.504 21.505
Πnet 0.0063 0.0063 0.0064 0.0061 0.0145 0.2800 0.2797 0.2804 0.2794 0.2851

Table 3: Inference time comparison for single-instance and batch (1024 contexts) settings, evaluated
on the small and large convex problems. The table reports the median, lower quartile (LQ, 25th
percentile), upper quartile (UQ, 75th percentile), min and max of the runtime. We report results of
the Solver (i.e., OSQP) in two modes, normal and parametric labeled with Solver and Solver†,
respectively. Parametric mode means that we inform OSQP that we are repeatedly solving problems
with the same structure, which speeds up solution time by reusing calculations across consecutive
calls. We note that this is a feature of OSQP that may or may not be available in other solvers.
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Figure 6: Comparison of the learning curves in terms of average RS and CV on the validation set,
on the small and large convex problems. The solid lines denote the mean and the shaded area the
standard deviation across 5 seeds. The learning curves for JAXopt on the large dataset are reported
in Figure 7 because of the orders of magnitude longer training times.
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Figure 7: Comparison of the training times in terms of RS and CV for the different methods in the
small and large convex problem setting. The solid lines denote the mean and the shaded area the
standard deviation across 10 seeds. Note the different timescale on the large dataset results, due to
the large training time of JAXopt.
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Figure 8: Comparison of the learning curves in terms of average RS and CV on the validation set,
on the small and large non-convex problems. The solid lines denote the mean and the shaded area
the standard deviation across 5 seeds.
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Figure 9: Scatter plots of RS and CV on the small and large non-convex problems on the test set.
The red dashed lines show the thresholds to consider a candidate solution optimal. We superimpose
the results of the main text with the ones obtained using more correction steps and a smaller soft
penalty in the DC3 algorithm.

the various parameters of the DC3 algorithm and the advantages of our projection scheme; see also
Appendix C.

B.3 ADDITIONAL DETAILS AND RESULTS FOR SECTION 3.2

We detail the problem setup for the multi-vehicle motion planning application in Section 3.2 and
present additional results. Recall that we denote with pi[t] ∈ Rm the generalized coordinates of
vehicle i at the discrete times t ∈ {1, . . . , T + 1}, and with vi[t] and ai[t] its generalized velocity
and acceleration. Its simple discretized dynamics read vi[t + 1] = vi[t] + hai[t], pi[t + 1] =
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Method Single inference [s] Batch inference [s]
median LQ UQ min max median LQ UQ min max

Non-convex small
DC3 0.0080 0.0080 0.0080 0.0079 0.0087 0.0081 0.0081 0.0082 0.0081 0.0083
Solver 0.9724 0.6925 1.4587 0.3562 3.6359 1258.8 1243.8 1264.3 1185.2 1299.0
Πnet 0.0056 0.0055 0.0056 0.0054 0.0072 0.0130 0.0128 0.0131 0.0123 0.0147
Non-convex large
DC3 0.0070 0.0069 0.0073 0.0068 0.0105 0.1177 0.1177 0.1177 0.1176 0.1180
Solver 6.8153 6.7161 6.9636 6.2371 12.046 6991.4 6986.1 7498.7 6964.0 7523.3
Πnet 0.0063 0.0063 0.0064 0.0061 0.0092 0.2804 0.2799 0.2807 0.2794 0.2912

Table 4: Inference time comparison for single-instance and batch-instance (1024 problems) settings
across different methods, evaluated on small and large non-convex problems. The table reports
median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile
(UQ, 75th percentile), min and max of the runtime. DC3 uses more than the default correction steps.

pi[t] + hvi[t] +
h2

2 ai[t]. We have constraints on each of these variables and, thus, we consider as

optimization variable y =
[
p⊤ v⊤ a⊤

]⊤
, with

p =
[
p1[0]

⊤ · · · pN [0]⊤ · · · p1[T ]
⊤ · · · pN [T ]⊤

]⊤
,

v =
[
v1[0]

⊤ · · · vN [0]⊤ · · · v1[T ]
⊤ · · · vN [T ]⊤

]⊤
,

a =
[
a1[0]

⊤ · · · aN [0]⊤ · · · a1[T − 1]⊤ · · · aN [T − 1]⊤
]
,

where N is the number of vehicles. Below, we use m = 2. We want the network to generate
trajectories that go from a given set of initial positions p̄1[0], . . . , p̄N [0] to a set of final positions
p̄1[T + 1], . . . , p̄N [T + 1]. This is the context of the optimization problem, i.e.,

x =
[
p̄1[0]

⊤ · · · p̄N [0]⊤ · · · p̄1[T + 1]⊤ · · · p̄N [T + 1]⊤
]⊤
.

The constraints on the system are:

• Dynamic constraints. The optimization variables p, v, a are related by the system dynamics, via
an equality constraint of the type Adyny = 0.

• Initial and final positions constraints. We ensure that the optimal y satisfies the given initial and
terminal position constraints via the equality constraint Aify = b(x). Importantly, we observe that
the context affects the constraint via the vector b(x), which in this case is simply x.

• Workspace, velocity and acceleration constraints. These constraints impose box constraints lp ≤
p ≤ up, lv ≤ v ≤ uv, la ≤ a ≤ ua.

• Jerk constraints. Jerk constraints limit how abrupt the change in accelerations can be. These are
affine inequality constraints of the type l ≤ (ai[t + 1] − ai[t])/h ≤ u, which we can compactly
write as ljerk ≤ Cy ≤ ujerk for appropriate C, ljerk, ujerk.

The objective is to minimize

φ(y) = effort(y) + λ · preference(y) + ν · coverage(y)
where effort(y) describes the input effort of the solution y, preference(y) describes the fit-
ness of y with respect to a spatial potential ψ, and coverage(y) describes the fraction of the
workspace that the agents cover over time, and λ, ν ≥ 0 are tuning parameters. In our experiment,
we use them as binary variables to show the effects of adding certain terms to the objective function.
The different terms are defined as follows:

• Input effort (effort). The input effort is

effort(y) =
N∑

i=1

T−1∑

t=0

∥ai[t]∥2.
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Figure 10: Preference and coverage. On the left we depict the landscape of the potential ψ(·) with
the working space delimited by the red, dashed rectangle. In the middle we report the image used to
compute the coverage score of the trajectory on the right.

• Individual contribution (preference). Each vehicle tries to minimize the cumulative value
along the path of the scaled Ishigami potential (Terpin et al., 2024b)

ψ
( z

1.25

)
= 0.05

(
sin(z1) + 7 sin(z2)

2
+

1

10

(
z1 + z2

2

)4

sin(z1)

)
,

depicted on the left of Figure 10. That is,

preference(y) =
N∑

i=1

T∑

t=0

ψ(pi[t]).

• Fleet contribution (coverage). We define the coverage over time as the fraction of the space
[(pmin)1, (pmax)1] × [(pmin)2, (pmax)2] the vehicles sweep over during their trajectory. We map
the position of the ith vehicle into a continuous pixel-space of size H ×W = 16× 16 via

ui =
(pi[t])1 − (pmin)1
(pmax)1 − (pmin)1

W, vi = H − (pi[t])2 − (pmin)2
(pmax)2 − (pmin)2

H.

On each pixel (u, v) we place a bivariate Gaussian

Gi(u, v) = A exp

(
− 1

2(1− ρ2)

[
(u− ui)2

σ2
x

+
(v − vi)2

σ2
y

− 2ρ(u− ui)(v − vi)
σxσy

])
,

where A = 200, σx = σy = 1, ρ = 0 are hyperparameters. We sum (and clip) the N kernels to
obtain a coverage image,

I(u, v) = min

(
N∑

i=1

Gi(u, v), 255

)
.

We display I for a sampled trajectory in Figure 10. Finally, the coverage score is computed as

coverage(y) = − 1

HW

H∑

p=1

W∑

q=1

I(p, q)

255
,

measuring the fraction of pixels covered by the Gaussian footprints in a differentiable manner.

Overall, the optimization problem reads:

minimize
y∈Rd

φ(y) subject to

[
Aif
Adyn

]
y =

[
b(x)
0

]
,

[
lp
lv
la

]
≤ y ≤

[
up
uv
ua

]
, ljerk ≤ Cy ≤ ujerk.

In Figures 11 and 12 we report various trajectories generated with Πnet with different number of
vehicles N ∈ {5, 15} and horizon T = 25. These additional qualitative results show the effective-
ness of Πnet in synthesizing trajectories that optimize non-convex, fleet-level preferences also for
large fleets and long horizons: in the largest setting reported here, there are n = 3030 optimization
variables (d = 2280).
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Figure 11: A collection of synthesized 5-vehicles trajectories. Each row relates to a different instance
of initial and final configurations, and from left to right we report the generated trajectory with a
network trained with (λ, ν) = (0, 0), (λ, ν) = (1, 0) and (λ, ν) = (1, 1), respectively.
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Figure 12: A collection of synthesized 15-vehicles trajectories. Each row relates to a different
instance of initial and final configurations, and from left to right we report the generated trajectory
with a network trained with (λ, ν) = (0, 0), (λ, ν) = (1, 0) and (λ, ν) = (1, 1), respectively.
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H = 100, res = 1024
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Figure 13: Examples of resulting trajectories for the experiments in Appendix B.4.

B.4 CONTEXTUAL COVERAGE AND LONG-HORIZON PLANNING

Building on top of the trajectory planning application, we provide some preliminary evidence that
Πnet is capable of handling:

1. very high-dimensional context size (in the millions of variables); and
2. a large number of optimization variables and constraints (in the tens of thousands).

For this, we focus on a single vehicle with the same constraints as in the previous section, increase
the horizon length, and consider as cost function the average along the trajectory of the value as-
signed (via bilinear interpolation) to the position of the vehicle by a discrete map m of resolution
res × res. Thus, the context x corresponds to the initial and final location as well as the map m.
We generate the map m by sampling uniformly at random one of four locations

c ∈ {(−2.5,−2.5), (−2.5, 2.5), (2.5,−2.5), (2.5, 2.5)}.
Then, the res×res pixels comprising the map m correspond to a uniform discretization of the grid
[−5, 5]× [−5, 5], with values resulting from a gaussian with center c and a standard deviation of 2.
This simple construction (in the sense that the single parameter controlling the map m is which cwas
used) allows to test how Πnet deals with backbone networks that have as input high-dimensional
contexts, while keeping fixed the number of optimization variables.
For this, we use a convolutional neural network with three layers, 16 features and downsampling
factor D for each layer, followed by a linear layer and a softmax, resulting in 4 logits. These are
appended to the vector input (the initial and final positions) as input to the same MLP used in the
previous experiments. We note that the convolutional neural network and the MLP are trained jointly
as the backbone of Πnet. We consider two cases:

1. H = 100, res = 1024, D = 4. In this case, we evaluate if Πnet enables training end-to-
end of neural networks with constraints even when the context is very high-dimensional (for a
comparison, Donti et al. (2021) consider a context of dimension 50).

2. H = 750, res = 64, D = 2. In this case, we evaluate Πnet for a context of size similar
to that typical of, e.g., reinforcement learning settings and a number of optimization variables
and constraints two orders of magnitude larger than state-of-the-art parametric optimization al-
gorithms (for instance, Donti et al. (2021) consider 100 optimization variables, and 50 equality
and inequality constraints).

In both settings, Πnet successfully learns to solve the planning task, as qualitatively shown in
Figure 13. Despite the simplicity of the maps used, we believe that these examples show the promise
of using Πnet for high-dimensional optimization problems with very large contexts.

B.5 SECOND ORDER CONE CONSTRAINTS.

In this section, we provide evidence that Πnet can be used to solve parametric problems with
second-order cone constraints. By doing so, we also elaborate on how one can introduce additional
constraint types into Πnet effortlessly.

Experimental setup. We focus on problems of the form:

minimize
y=(y1,y2)

c⊤y1 subject to Ay1 + y2 = b, y2 ∈ K′
1, (11)
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where A ∈ Rd2×d1 , c, y1 ∈ Rd1 , y2, b ∈ Rd2 ,K′
1 = {y2 ∈ Rd2 | ∥y2,:−1∥2 ≤ y2,−1} is a second-

order cone, and y2,:−1 denotes the first d2 − 1 entries of y2, and y2,−1 the last one. We make the
following two observations:

• First, the feasible set is non-linear and possibly unbounded. Thus, methods like GLinSAT (Zeng
et al., 2024) are not applicable.

• Second, one cannot train an unconstrained network and then apply the projection layer, since the
optimization objective is linear and, thus, the network would diverge. See also Appendix C.4.

To generate the problem data, we follow the procedure described by O’donoghue et al. (2016, Sec-
tion 6.6), reported here for completeness and to clarify the elements of the random parametric prob-
lems we consider. First, we generate a random matrix A ∈ Rd2×d1 sampling uniformly at random
in [−1, 1]d2×d1 . The matrix A is fixed for all the problems of a training run, i.e., it is not a con-
text/parameter of the problem. In other words,A is context-independent. We repeat each experiment
for 100 different seeds, to ensure that the results are analogous irrespectively of the matrix A. Given
A, we generate a batch of B problems as follows:

1. We sampleB random vectors z uniformly in [−1, 1]d2 andB random primal solutions y⋆1 ∈ Rd1 .

2. We project z onto the second-order cone to obtain y⋆2 = ΠK′
1
(z).

3. We set b = Ay⋆1 + y⋆2 and c = −A⊤(y⋆2 − z).
The optimal value of the problem is then given by c⊤y⋆1 , and the context x (i.e., the input to the
NN), is x = (b, c). For Πnet, we employ the same MLP used in Appendix A followed by the
Πnet projection layer, so that the optimal output should yield ŷ = (ŷ1, ŷ2) with c⊤ŷ1 ≈ c⊤y⋆1 .
For the experiments in this section, we use (d1, d2) ∈ {(25, 25), (500, 500)} (we refer to these
configurations as small and large, respectively) and B = 128. We train the network for 1000 epochs
with a different batch at each epoch, and then generate an additional one for evaluation at the end
of the training, on which we calculate the statistics. We compare the performances of our method
against:

• cvxpylayers Agrawal et al. (2019), which we use as a replacement of our custom projection
layer. This is the same procedure we adopted in Section 3.1 for JAXopt. Here, we consider
cvxpylayers because JAXopt does not support second-order cone constraints.

• SCS O’donoghue et al. (2016), a traditional first-order solver for second-order cone programs. To
make our comparison with SCS as fair and comprehensive as possible, we perform two bench-
marks. On one, we interface SCS through the very popular parser CVXPY (Diamond & Boyd,
2016) using its Disciplined Parametrized Programming functionality, as many users would do. On
the other benchmark, we interface SCS directly and exploited its native parametric programming
functionality, as more advanced users would.

Remark. It is important to note that with these benchmarks we are exploiting the full paramet-
ric capabilities of existing solvers, which is not always the case by end-users or even other hard-
constrained NN benchmarks.

Similarly to the linearly-constrained benchmarks in Section 3.1, we consider learning curves, RS,
CV, and inference times.

Integrating (11) into Πnet. Equivalently, we can write (11) as:

minimize
y

[
c⊤ 0

]
y subject to [A I] y = b, y ∈ K1, (12)

with K1 = Rn × K′
1, K′

1 being the second-order cone, and without K2 since we do not use any
auxiliary variable (i.e., n = d = d1 + d2). We recall here that K1 and K2 refer to the problem
formulation in Section 2.1. In view of Appendix E, this amounts to a lifted formulation of second-
order cones and is thus without loss of generality. Now, (12) is in our standard formulation and we
can apply Algorithm 1. In particular, with the notation used in Algorithm 1, we only need to define
the projection

tk+1 = ΠK1

(
2zk+1,1 − sk,1 + 2σyraw,1

1 + 2σ

)
.
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Figure 14: Scatter plots of RS and CV on the second-order cone programs on the test set. The red
dashed lines show the thresholds to consider a candidate solution optimal.

Method Single inference [s] Batch inference [s]
median LQ UQ min max median LQ UQ min max

Small second-order cone programs
CVXPY 0.00076 0.00074 0.00078 0.00071 0.00084 0.59085 0.58784 0.59399 0.57668 0.70665
SCS 0.00005 0.00004 0.00005 0.00004 0.00005 0.04612 0.04580 0.04652 0.04483 0.04926
cvxpylayers 0.00857 0.00813 0.01270 0.00706 0.06567 1.82553 1.68570 4.47413 1.65853 5.73859
Πnet 0.00905 0.00884 0.00928 0.00848 0.01137 0.02265 0.02245 0.02292 0.02202 0.02415
Large second-order cone programs
CVXPY 0.06721 0.06658 0.06743 0.06578 0.06899 62.70289 62.65441 62.76826 62.46146 63.31168
SCS 0.01072 0.01049 0.01078 0.00976 0.01155 10.97265 10.80431 11.10839 10.68313 26.18852
cvxpylayers 2.36724 2.29826 2.41810 2.18466 4.04885 342.35211 341.85465 343.06660 341.65177 344.11561
Πnet 0.01219 0.01187 0.01356 0.01113 0.04383 0.90982 0.90932 0.91134 0.90844 0.94499

Table 5: Inference time comparison for single-instance and batch-instance (1024 problems) settings
across different methods, evaluated on the second-order cone programs. The table reports median
runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile (UQ,
75th percentile), min and max of the runtime.

Denoting with tk+1,:d1 , zk+1,1,:d1 , sk,1,:d1 , yraw,:d1 the first d1 entries of the vectors
tk+1, zk+1,1, sk,1, yraw,1 and with tk+1,d1:, zk+1,1,d1:, sk,1,d1:, yraw,d1: the remaining d2 entries, we
have

tk+1,:d1
=

2zk+1,1,:d1
− sk,1,:d1

+ 2σyraw,1,:d1

1 + 2σ
and

tk+1,d1: = ΠK′
1

(
2zk+1,2,d1: − sk,2,d1: + 2σyraw,2,d1:

1 + 2σ

)
.

The projection ΠK′
1
(·) onto the second-order cone admits a closed form expression; see, e.g., the

work of Busseti et al. (2019).

Results. In Figure 14 we report the RS and CV for each problem instance in the test set. Analo-
gously to the linearly constrained benchmarks in Section 3.1, we consider a candidate solution to
be optimal if the condition CV ≤ 10−3 and RS ≤ 5% is satisfied. We report training curves in
Figure 15 and inference times in Table 5.
Compared to cvxpylayers, Πnet can train and perform inference significantly faster, even or-
ders of magnitude for large problems. Moreover, Πnet provides solutions with both lower RS and
CV. Compared to SCS, Πnet is faster at inference for a batch of small problems, and both a single
and a batch of large problems. Instead, SCS is faster for single small problems.
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Figure 15: Comparison of the learning curves in terms of average RS and CV on the validation set, on
the second-order cone programs. The solid lines denote the mean and the shaded area the standard
deviation across 5 seeds.
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C THE SHARP BITS

Numerical optimization is an art of details, and this section describes the sharp bits of Πnet, which
are fundamental to make HCNNs work reliably.

C.1 MATRIX EQUILIBRATION

The precision and convergence rates of both the forward (Section 2.1.1) and backward (Sec-
tion 2.1.2) passes in our projection layer are heavily influenced, via (4a) and (9), by the condition

number of the matrix A(x) in the equality constraint A(x)
[
y
yaux

]
= b(x) (Wathen, 2015). The con-

dition number of a matrixA (we drop the dependency on x for clarity of exposition) is defined as the
ratio of its maximum singular value to its minimum singular value, and the procedure of decreasing
this ratio for improving numerical performance is called preconditioning or equilibration.

To achieve this, we seek a diagonal scaling (Wathen, 2015). The idea is that to solve A
[
y
yaux

]
= b,

one can instead solve DrADc

[
ỹ
ỹaux

]
= Drb for invertible matrices Dr ∈ Rm×m, Dc ∈ Rn×n

and recover the solution as
[
y
yaux

]
= Dc

[
ỹ
ỹaux

]
. We implement a modified version of Ruiz’s equi-

libration (Wathen, 2015) which is outlined in Algorithm 4. In our numerical experiments we use
K = 25, ε = 10−3 and the Gauss-Seidel update mode.

ALGORITHM 4. Modified Ruiz’s equilibration

Inputs: A ∈ Rm×n, maximum iterations K, tolerance ε, update mode (Gauss-Seidel or Jacobi)
Dr ← Im, Dc ← In
Ascaled ← A
For k = 1 to K:

If Gauss-Seidel update:∣∣∣∣∣∣∣∣∣∣∣∣

Compute row norms dr,i = ∥(Ascaled)i,:∥2 for all i
Dr ← diag(1/

√
dr,1, . . . , 1/

√
dr,m) ·Dr

Ascaled ← diag(1/
√
dr,1, . . . , 1/

√
dr,m) ·Ascaled

Compute column norms dc,i = ∥(Ascaled):,i∥2 for all i
Dc ← Dc · diag(1/

√
dc,1, . . . , 1/

√
dc,n)

Ascaled ← Ascaled · diag(1/
√
dc,1, . . . , 1/

√
dc,n)

Else:∣∣∣∣∣∣∣∣∣∣

Compute row norms dr,i = ∥(Ascaled)i,:∥2 for all i
Compute column norms dc,i = ∥(Ascaled):,i∥2 for all i
Dr ← diag(1/

√
dr,1, . . . , 1/

√
dr,m) ·Dr

Dc ← Dc · diag(1/
√
dc,1, . . . , 1/

√
dc,n)

Ascaled ← diag(1/
√
dr,1, . . . , 1/

√
dr,m) ·Ascaled · diag(1/

√
dc,1, . . . , 1/

√
dc,n)

Compute row norms dr,i = ∥(Ascaled)i,:∥2 for all i
Compute column norms dc,i = ∥(Ascaled):,i∥2 for all i
If (1−min(dr,i)/max(dr,i)) < ε and (1−min(dc,i)/max(dc,i)) < ε:
| Return Dr, Dc

Return Dr, Dc

Next, we describe how the matrix equilibration affects the Douglas-Rachford algorithm in the case
of polytopic constraint sets. To start, we observe that K is a box constraint and, thus, can be written
as

K = K1 ×K2 = K1,1 × . . .×K1,d ×K2,1 × . . .×K2,n−d.

Then, we rewrite (3) in terms of the new coordinates:
[
ỹ
ỹaux

]
= D−1

c

[
y
yaux

]
=

[
D−1

c,1

D−1
c,2

] [
y
yaux

]
.
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That is, since
[
y
yaux

]
∈ A ⇐⇒

[
ỹ
ỹaux

]
∈ Ã = {v |DrADcv = Drb} =

{
v | Ãv = b̃

}

[
y
yaux

]
∈ K ⇐⇒

[
ỹ
ỹaux

]
∈ K̃ = d−1

c,1K1,1 × . . .× d−1
c,dK1,d

× d−1
c,d+1K2,1 × . . .× d−1

c,nK2,n−d

= K̃1,1 × . . .× K̃1,d × K̃2,1 × . . .× K̃2,n−d

= K̃1 × K̃2,

we seek to solve

(ΠC(yraw), y
⋆
aux) = Dc · argmin

ỹ,ỹaux

{
∥Dc,1ỹ − yraw∥2 + IÃ

([
ỹ
ỹaux

])
+ IK̃

([
ỹ
ỹaux

])}
. (13)

Then, we split the objective function as follows

g̃

([
ỹ
ỹaux

])
= IÃ

([
ỹ
ỹaux

])
and h̃

([
ỹ
ỹaux

])
= ∥Dc,1ỹ − yraw∥2 + IK̃

([
ỹ
ỹaux

])

and by applying the Douglas-Rachford algorithm we obtain the fixed-point iteration

k = 0, 1, . . . ,K − 1



z̃k+1 =

[
z̃k,1
z̃k,2

]
= proxσg̃(sk) = ΠÃ(s̃k)

t̃k+1 = proxσh̃(2z̃k+1 − s̃k) =
[

♢
ΠK̃2

(2z̃k+1,2 − s̃k,2)
]

s̃k+1 =

[
s̃k+1,1

s̃k+1,2

]
= s̃k + ω(t̃k+1 − z̃k+1)

(14a)

(14b)

(14c)

where ♢ = [. . . ♢i . . .]
⊤, with (using the notation (v)i to indicate the ith entry of the vector v)

♢i = ΠK̃1,i

(
2σdc,iyraw + 2(z̃k+1,1)i − (s̃k,1)i

1 + 2σd2c,i

)
.

The equilibration effectively only changes (14b). To prove the update in (14b), we note that equili-
bration does not affect the solution of the proximal in (14b) with respect to the auxiliary variables:

proxσh̃ (2z̃k+1 − s̃k) = argmin
ṽ,ṽaux

∥Dc,1ṽ − yraw∥2 + IK̃
([

ṽ
ṽaux

])
+

1

2σ

∥∥∥∥
[
ṽ
ṽaux

]
− 2z̃k+1 + s̃k

∥∥∥∥
2

=



argmin
ṽ∈K̃1

∥Dc,1ṽ − yraw∥2 + 1
2σ∥ṽ − 2z̃k+1,1 + s̃k,1∥2

argmin
ṽaux∈K̃2

1
2σ∥ṽaux − 2z̃k+1,2 + s̃k,2∥2




=

[
♢

ΠK̃2
(2z̃k+1,2 − s̃k,2)

]
.

In particular, since

l ≤ yaux ≤ u ⇐⇒ D−1
c,2 l ≤ D−1

c,2yaux ≤ D−1
c,2u ⇐⇒ D−1

c,2 l ≤ ỹaux ≤ D−1
c,2u

the projection onto K̃2 remains a projection onto a box, but we modify the upper and lower bounds
of the box according to Dc,2. We can write ♢, by completing the square, as

argmin
ṽ∈K̃1

∥∥(Id + 2σD2
c,1

)
ṽ − (2σDc,1yraw + 2z̃k+1,1 − s̃k,1)

∥∥2
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and, thus,

♢i = argmin
ṽ∈K̃1,i

∥∥(1 + 2σd2c,i
)
ṽ − (2σdc,iyraw + 2(z̃k+1,1)i − (s̃k,1)i)

∥∥2

= argmin
ṽ∈K̃1,i

∥∥∥∥∥ṽ −
2σdc,iyraw + 2(z̃k+1,1)i − (s̃k,1)i

1 + 2σd2c,i

∥∥∥∥∥

2

= ΠK̃1,i

(
2σdc,iyraw + 2(z̃k+1,1)i − (s̃k,1)i

1 + 2σd2c,i

)
.

Although we described the case with box constraints, our changes can be adapted for other constraint
classes such as second-order cone constraints by equilibrating equally variables that are coupled by
the constraints. We leave these modifications for future work.

C.2 AUTO-TUNE PROCEDURE

During the auto-tuning procedure, we will tune the hyperparameters sigma and n iter fwd. For
the remaining ones, we set omega and n iter bwd to their respective default values 1.7 and 25.
For simplicity, we set n iter test to be equal to n iter fwd.
For the auto-tuning, we consider a subset of the validation set consisting of 150 contexts x out of
the 1024 used in the benchmark problems of Section 3.1. Then, we generate 150 corresponding
points-to-be-projected from a standard normal distribution N (0, I), which will serve as a proxy for
the infeasible output of the backbone NN. First, to tune sigma we generate 100 logarithmically-
spaced number between 10−3 and 5.05. Then, we compute the projection for each sigma on the
150 context–infeasible point pairs, by running 100 iterations of the projection layer. We evaluate
the quality of each sigma by computing the resulting maximum constraint violation and average
relative suboptimality of the projection, i.e., ∥zK − yraw∥/

∥∥ΠC(x)(yraw)− yraw
∥∥. We consider any

sigma for which both metrics are below certain thresholds to be candidate hyperparameters. We
choose among the candidate hyperparameters the one with the minimum constraint violation.
We use the same procedure to choose n iter fwd from the set {50, 100, . . . , 350, 400}, where the
projection is evaluated using the previously determined sigma.

C.3 ABLATIONS.

We evaluate the effectiveness of the matrix equilibration and auto-tuning by comparing the perfor-
mance of our method with and without the different components on the large non-convex problem of
Section 3.1. We test 3 different configurations: default hyperparameters and no equilibration; auto-
tuned hyperparameters and no equilibration; auto-tuned hyperparameters and equilibration. We
respectively refer to these configurations as Default, Auto and Πnet. On this problem setting,
performing auto-tuning takes roughly 2 minutes, while the equilibration takes less than 1 second.
The (tuned) hyperparameters for each configuration are as follows:

Default← sigma = 1.0, n iter fwd = 100

Auto← sigma = 3.28, n iter fwd = 350

Πnet← sigma = 0.161, n iter fwd = 50

and the remaining ones are chosen as discussed previously. We note that the large difference in
the value of sigma between Auto and Πnet is due to the equilibration that changes the problem
scaling.
We report in Figure 16 the RS and CV by all 3 configurations, training curves are shown in Figure 17
for 50 training epochs and for a single seed, and inference times are given in Table 6. From Figure 16
we can readily deduce the substantial improvement in terms of CV that both auto-tuning and equili-
bration offers. Additionally, Figure 17 and Table 6 highlight the clear benefits of our preprocessing
steps in terms of both training time and inference time. These benefits are due primarily to the fact
that a well-tuned and equilibrated projection layer requires significantly fewer iterations to achieve
a satisfactory CV, specifically 50 iterations instead of 100 and 350 for default and only auto-tuned,
respectively.
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Figure 16: Visualization of the ablation results in Appendix C.3. Scatter plots of RS and CV for the
methods on the large non-convex problems on the test set. The red dashed lines show the thresholds
that we require to consider a candidate solution optimal.
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Figure 17: Comparison of the training times in terms of RS and CV for the different ablation config-
uration on the large non-convex problem setting. For simplicity, we report the learning curves only
for a single seed.

Method Single inference [s] Batch inference [s]
median LQ UQ min max median LQ UQ min max

Non-convex large
Default 0.0080 0.0080 0.0081 0.0075 0.0090 0.5491 0.5490 0.5493 0.5487 0.5495
Auto 0.0141 0.0139 0.0143 0.0135 0.0150 1.8900 1.8899 1.8901 1.8896 1.8903
Πnet 0.0063 0.0063 0.0064 0.0061 0.0092 0.2804 0.2799 0.2807 0.2794 0.2912

Table 6: Inference time comparison for single-instance and batch-instance (1024 problems) settings
across different ablation configurations, evaluated on the large non-convex problem. The table re-
ports median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper
quartile (UQ, 75th percentile), min and max of the runtime.
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test = 50 test = 25 test = 12 test = 2 test = 100
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Figure 18: Scatter plot of RS and CV on the small non-convex test problems for a Πnet network
trained with 50 iterations and evaluated with different numbers of iterations at test time. The red
dashed lines indicate the thresholds used to consider a candidate solution optimal.

In our experiments, we have extensively tested the effects of using a different number of forward
iterations during testing (n iter test) compared to the training (n iter fwd), with both more
and fewer iterations at test time. Using more iterations works well and stably, and is meaningful to
achieve reduced constraint violation. Using less iterations needs more care. Slightly less iterations is
often possible and can improve inference time. Significantly less may cause issues since the iterates
might not be close to a fixed-point anymore. Of course, “slightly” and “significantly” here depend on
the problem at hand. For this, in Figure 18 we report the RS and CV obtained by training Πnet with
n iter fwd = 50, and then deploying with different number of iterations during testing. Perhaps
interestingly, note that the RS is unaffected by the number of iterations during testing, whereas
the CV gradually decreases. This is true as long as we have enough iterations: as the number of
iterations during test becomes too small (e.g., 2) also the RS is affected: The output is not close to
the projection anymore.
Finally, in Figures 19 and 20 we report an ablation study on the parameters σ and ω. These results,
together with the ones on the number of forward and backward iterations (cf. Figure 18 and Appen-
dices D.3 and F), substantiate the claim of little sensitivity of Πnet to hyperparameter tuning. In
particular, Figures 19 and 20 show that different values of the parameters σ and ω yield qualitatively
similar behaviors. For ω, we see clearly that different values effectively only change the convergence
rates: With more iterations, all values of ω achieve sufficiently low CV.

C.4 WHY ENFORCING CONSTRAINTS DURING TRAINING?

Πnet enforces the constraints during training, which warrants a discussion: What changes if one
trains an unconstrained network and enforces the constraints only during inference? We answer this
question with illustrative examples.

Some optimization problems may cause divergence of the network if trained unconstrained.
The first example shows that, without constraints, the training process may even diverge, as the
optimization problems we are interested in may not even be meaningful in the absence of constraints.
Consider the parametric (in x) optimization problem:

minimize
y∈R

xy subject to 0 ≤ y ≤ 1.

The optimal solution is

y⋆(x) =





0 if x < 0

1 if x > 0

any y ∈ [0, 1] otherwise.

−2 −1 1 2

−1

1

2

y⋆(x) = 1 for x < 0

y⋆(x) = 0 for x > 0
y⋆(0) ∈ [0, 1]

x

y

−5

0

5

φ
(x
,y
)
=

x
y
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Figure 19: Scatter plot of RS and CV on the small non-convex test problems for a Πnet network
trained with different values of σ and (top) 50, (bottom) 100 forward iterations. The red dashed lines
indicate the thresholds used to consider a candidate solution optimal.
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Figure 20: Scatter plot of RS and CV on the small non-convex test problems for a Πnet network
trained with different values of ω. The red dashed lines indicate the thresholds used to consider a
candidate solution optimal.
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However, if we would train an unconstrained network to predict ŷ(x), its values would result in
ŷ(x)→ +∞ for x > 0 and ŷ(x)→ −∞ for x < 0.
It is easy to see how one may build higher-dimensional examples along the same lines of the pre-
sented one. Importantly, this example shows that, without constraints, the problem may be altered
significantly to the point that it is not even possible to train an unconstrained network.

The projection of the unconstrained optimizer is often suboptimal. Our second example shows
that applying the projection layer to the solution of the unconstrained problem does not yield, in
general, the solution to the constrained problem.
As a consequence, one can expect a strong decrease in per-
formance when training the network unconstrained (i.e., to
solve the unconstrained optimization problem) and only at
inference adding a projection layer (i.e., projecting the solu-
tion of the unconstrained problem onto the feasible set).
Consider the parametric (in x) optimization problem de-
picted on the right. Here, one may train an unconstrained
network to optimize the objective function, finding the op-
timizer ŷ(x) = x + 2. However, projecting this onto the
constraints y ≤ x would result in y = x, which is sub-
optimal compared to the constrained optimizer y⋆(x) =
x−2. Importantly, this simple example shows an instance in
which training without constraints may downgrade the per-
formances of the network.

−4 −2 2 4

−2

2

4

x

y

φ(y, x)

Feasible set
Unconstrained optimizer
Constrained optimizer
Projection of the unconstrained optimizer

An empirical case-study. In the third example, we train an unconstrained network on the small
non-convex benchmark (using soft penalty terms) and add the projection layer only during inference
on the test set (we refer to this as Πnet-inf). The resulting average RS on the test set for Πnet-
inf is 0.02178, whereas for Πnet it is 0.00216 using roughly the same computational budget
(8 seconds of wall-clock time). The constraint violation is the same for both methods, since they
use our projection layer during inference. Training with Πnet (i.e., enforcing constraints during
training) achieves one order of magnitude better RS. In fact, if we increase the computational budget,
Πnet continues to reduce the RS down to 0.0007 for 50 seconds of training. On the contrary,
Πnet-inf cannot reduce the RS further even with more training (or more hyperparameter tuning).
Therefore, we observe in practice what our previous examples outlined: enforcing the constraints
during training allows the network to anticipate the projection and further improve its predictions.

Constraints as an inductive bias. There is a subtle difference between constraining the archi-
tecture of a neural network (e.g., by ensuring that the neural network is a convex function for any
values of the weights, as done by Amos et al. (2017)) and constraining the output to satisfy some
properties without altering the “backbone” network architecture. In Πnet, one can use the best
existing architecture unaltered, but training it with the inductive bias that the output will be modified
so to satisfy the constraints. For this, one may argue that enforcing the constraints during training
improves the performance of the network at inference time, rather than downgrading it. We thus
believe that an approach like Πnet may, in fact, change the common perspective on the difficulty
of training hard-constrained networks.

Remark. It is perhaps worth clarifying the distinction between our work and the work of Amos
et al. (2017):

1. Input convex neural networks learn a scalar-valued function, which is guaranteed to be a convex
function of its input for any appropriate choices of the network weights (see Amos et al. (2017,
Propositions 1, 2)). Then, during inference, a minimum of this function is computed. Recall that
the set of minimizers of a convex function is a convex set, and in this sense Πnet and input
convex neural networks are similar.

2. On the contrary, Πnet learns a vector-valued mapping which is guaranteed to lie on a convex
set chosen a-priori for any choice of the weights.
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C.5 ΠNET AS AN IMPLICIT LAYER

The techniques used to implement Πnet (operator-splitting and backpropagation via the implicit
function theorem) are fundamental and widely adopted in the literature. In this sense, Πnet is a
special case of implicit layers (Agrawal et al., 2019; Butler & Kwon, 2023). However, our key ideas
are related to the type of problem we are solving (a projection) and how the structure of this problem
can be exploited to derive an efficient formulation of the optimization algorithm. The improvement
over the state of the art (as exemplified by our results in Section 3) is achieved by focusing on a
problem setting that is sufficiently general yet rich in structure, and by adopting the right optimiza-
tion techniques (e.g., which split to perform to deploy the Douglas-Rachford algorithm). The key
ideas, in this sense, are:

1. Using a single additional layer instead of multiple ones.
2. Using a projection layer.
3. Adapting the Douglas-Rachford algorithm to best exploit the resulting problem structure.
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D DERIVATION DETAILS

In this section, we report the derivations omitted in the text.

D.1 DERIVATION OF ALGORITHM 1.

To derive Algorithm 1 from (4), we will explicitly write the proximal operators in (4). For the
z-update, we recall that g = IA and σ > 0, from which it immediately follows that proxσg = ΠA.
For the t-update, we recall that:

h

([
y
yaux

])
= ∥y − yraw∥2 + IK

([
y
yaux

])

and using the definition of the proximal operator yields:

proxσh (2zk+1 − sk) = argmin
y,yaux

∥y − yraw∥2 + IK
([

y
yaux

])
+

1

2σ

∥∥∥∥
[
y
yaux

]
− 2zk+1 + sk

∥∥∥∥
2

=



argmin
y∈K1

∥y − yraw∥2 + 1
2σ∥y − 2zk+1,1 + sk,1∥2

argmin
yaux∈K2

1
2σ∥yaux − 2zk+1,2 + sk,2∥2




=

[
ΠK1

(
2zk+1,1−s+2σyraw

1+2σ )
ΠK2

(2zk+1,2 − sk,2)

]
.

D.2 CONVERGENCE PROOF OF (4).

In this subsection, we show that (4) converges to a solution of (3). To do so, we first introduce the
following mild assumption on the feasibility of the problem.
Assumption 1. A ∩ riK ̸= ∅, where ri is the relative interior.

This assumption corresponds to strict feasibility of (3). In fact, if K is a polyhedron, then we can
relax Assumption 1 to A ∩K ≠ ∅.
To obtain our convergence result, we simply note that iteration (4) is the Douglas-Rachford algo-
rithm applied to problem (3) and, under Assumption 1, we invoke the Corollaries 27.6 and 28.3 in
(Bauschke & Combettes, 2017) which yield the desired result.

D.3 CONVERGENCE RATES OF (4).

The convergence rate of the Douglas-Rachford algorithm is a well-studied topic in the literature,
which we report here for completeness. For the case of a convex QP, it has been shown that the
Douglas-Rachford algorithm attains a linear convergence rate (Peña et al., 2021, Subsection 3.2),
namely an ε-optimal solution is computed inO(log(1/ε)) iterations. This result applies to our algo-
rithm in the case of polyhedral constraints, and indeed we have observed these rates in our numer-
ical experiments (see also Figure 21). Other technical conditions for linear convergence are given
in (Hong & Luo, 2017, Assumption A); their applicability to our setting depends on the specific
constraint set C. In the general setting, the Douglas-Rachford algorithm typically attains a O(1/k)
convergence rate (where k is the number of iterations), hence requiring O(1/ε) iterations (Davis &
Yin, 2017).
We visualize these convergence rates in the plot in Figure 21, showing how for increasing iterations
we get a rapidly decreasing CV. Specifically, for one of the benchmarks, we provide the CV for 100
instances in the test set for an increasing number of iterations. In particular, we observe that within
very few iterations the constraints are satisfied up to high accuracy (e.g., 10−5 as in (Stellato et al.,
2020)).

D.4 DERIVATION OF THE BACKWARD PASS

Applying the implicit function theorem to s∞(yraw) = Φ(s∞(yraw), yraw) yields the linear equation:
(
I − ∂Φ(s, yraw)

∂s

∣∣∣∣
s=s∞(yraw)

)
∂s∞(yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

=
∂Φ(s, yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

, (15)

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80 90 100

10−14

10−11

10−8

10−5

10−2

101

n iter fwd

C
V

Figure 21: Constraint violation for 100 problem instances (light blue) in the test set of the
small non-convex benchmark as the number of iterations in the forward pass n iter fwd (i.e.,
n iter train increases, as well as the maximum CV among all instances (dark blue).

whose unknown is the Jacobian matrix ∂s∞(yraw)
∂yraw

∣∣
yraw=f(x;θ)

.

Now, to compute the VJP

v⊤
∂s∞(yraw)

∂yraw

∣∣
yraw=f(x;θ)

where v ∈ Rn+d, we assume that the linear system (9) admits a solution, namely ξ(yraw, v). Next,
we pre-multiply (15) by ξ(yraw, v)

⊤:

ξ(yraw, v)
⊤
(
I − ∂Φ(s, yraw)

∂s

∣∣∣∣
s=s∞(yraw)

)
∂s∞(yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

= ξ(yraw, v)
⊤ ∂Φ(s, yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

=⇒ v⊤
∂s∞(yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

= ξ(yraw, v)
⊤ ∂Φ(s, yraw)

∂yraw

∣∣∣∣
yraw=f(x;θ)

where the implication follows by the definition of ξ(yraw, v). This gives rise to our backward pass
outlined in (8) and (9).

D.5 COMPUTATIONAL COMPLEXITY OF ΠNET .

Here we derive the computational complexity of Πnet for both the forward and backward pass.

Forward. The complexity of the projection operations in Algorithm 1 are determined by1 the sets
A(x), K1(x) and K2(x), by the cost of instantiating them given the context x, which may depend
on the dimensionality p of x, and by the dimensions of the input n, d and n − d. We denote the
complexity of these operations as gx(n, p), gA(n), gK1(d) and gK2(n− d). The overall complexity
is:

O (gx(n, p) +K(gA(n) + gK1(d) + gK2(n− d) + n)) ,

where K = n iter fwd is the number of forward iterations, and the term n is due to the sum2 in the
governing update (4c).
Next, we analyze the complexity of gx(n, p), gA(n), gK1

(d) and gK2
(n− d):

• gx(n, p) is problem specific. In the examples presented in this work, the complexity is linear in
p and amounts to stacking the vectors describing the problem instance (e.g., the initial and final
position of the vehicles in Section 3.2) into the equality constraints. In general, one may expect
gx(n, p) to be dominated by the other contributions. If the matrix A is context dependent, an
additional cost is the calculation of the pseudo-inverse, which we use to compute the projection

1The complexity also depends on the batch size, but the operations can be fully parallelized over a batch
and, thus, we focus on the per-element complexity.

2On a GPU, this entry-wise vector sum can be parallelized, but here we focus on the number of operations.
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onto the hyperplane: gx(n, p) = n3; see also the next item. When the matrix A is independent of
the context, the pseudo-inverse can be computed only once at the instantiation of the method, and
its computational complexity does not affect the forward pass.

• gA(n) is the cost of the projection on the hyperplane identified by a matrix A ∈ R(d+d′)×n and a
vector b ∈ Rd+d′

. The parameter d′ is problem-dependent, but usually proportional to the number
of inequality constraints; see Appendix E. For this reason, we carry out the complexity analysis for
A ∈ Rn×n. For the projection, we need the pseudo-inverse of A, which we compute once for all
iterations. Thus, we account for this complexity in gx(n, p). Then, the complexity of computing
the projection is dominated by matrix-vector multiplications: gA(n) = n2.

• gK1
(d) and gK2

(n− d) are the cost of the projection onto a box after a linear combination of the
input. Thus, gK1

(d) + gK2
(n− d) = n.

Overall, the complexity of the forward pass is O(n2) for context-independent A and O(n3) for
context-dependent A. On a GPU and for context-independent A matrices, the effective compute
time is possibly linear in n.

Backward. For the backward pass, we need to:

• Compute the v for the linear system in (9), for which we need only the first VJP in (7). The
complexity is O(d(n+ d)) = O(n2).

• Solve the linear system in (9) using bicgstab (van der Vorst, 1992). The complexity of this
operation is O(K ′(n + d)d) = O(K ′n2), where K ′ = n iter backward is the number of
iterations used for bicgstab.

• We compute the VJP in (8). By direct inspection of the computational graph of (4a)-(4c), com-
plexity of this step is O(d(d+ n)) = O(n2).

Overall, the backpropagation through our projection layer has complexity O(n2), with the constant
dominated by the number of iterations used for bicgstab.
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E MORE EXAMPLES OF CONSTRAINT SETS

In this section, we describe how several classes of constraints that can be described within our
framework admit an efficient projection. We stress that the decomposition C = Πd(A ∩ K) is not
an assumption. One can always decompose a convex set in this way, e.g., by considering the trivial
decomposition A = C and K = Rd. Instead, determining A and K is a design choice which we
leverage to make the projections ΠA and ΠK computationally efficient. We note two important
points regarding this design choice:

• The only assumption is that ΠA and ΠK and their VJP are computable. Being computationally
efficient is an added benefit of our decomposition, but is not necessary.

• Below, we show that many practically-relevant constraints C can be decomposed in a
computationally-efficient manner: polyhedra, second-order cones, sparsity constraints, simplices,
and the intersections and Cartesian products all admit efficient decompositions. In fact, this list is
not exhaustive; see, e.g., (Condat, 2016; Boyd & Vandenberghe, 2004).

We believe the implementation and adoption of these constraints in practical applications represents
an important direction for future work.

Polytopic sets are often employed to enforce constraints in robotics (Augugliaro et al., 2012),
numerical solutions to PDE (Raissi et al., 2019), and non-convex relaxations for trajectory planning
(Malyuta et al., 2022), among others. They are expressed as

{y ∈ Rd |Ey = q, l ≤ Cy ≤ u},
for some E, q, l, C, u of appropriate dimensions. We introduce the auxiliary variable yaux = Cy ∈
Rnineq with dimension n − d = nineq. Then, we respectively define A, K ⊆ Rn as the following
affine subspace and box

A =

{[
y
yaux

] ∣∣∣∣
[
E 0
C −I

]

︸ ︷︷ ︸
=A

[
y
yaux

]
=

[
q
0

]

︸︷︷︸
=b

}
, K =

{[
y
yaux

] ∣∣∣∣ y ∈ Rd, l ≤ yaux ≤ u
}
.

Importantly, C = Πd(A ∩ K) and both ΠA and ΠK can be evaluated in closed form (Bauschke &
Combettes, 2017, Chapter 29).

Second-order cones are employed in portfolio optimization (Brodie et al., 2009), robust control
(Chen et al., 2018), and support vector machines (Maldonado & López, 2014), among others. They
involve constraints of the form:

{y ∈ Rd | ∥Cy + c∥2 ≤ f⊤y + e}.

Introducing the auxiliary variables yaux,1 = Cy+ c ∈ Rnc and yaux,2 = f⊤y+ e ∈ R, of dimension
n− d = nc + 1, we obtain the representation:

A =

{[
y

yaux,1
yaux,2

] ∣∣∣∣∣

[
C −I 0
f⊤ 0 −1

]

︸ ︷︷ ︸
=A

[
y

yaux,1
yaux,2

]
=

[
−c
−e
]

︸ ︷︷ ︸
=b

}
, K =

{[
y

yaux,1
yaux,2

] ∣∣∣∣∣ ∥yaux,1∥2 ≤ yaux,2

}

for quantities of the appropriate dimensions. Again, ΠA and ΠK admit a closed form solution (Boyd
& Vandenberghe, 2004).

Sparsity constraints encourage solutions with fewer active variables, such as the number of open
positions in portfolio optimization (Brodie et al., 2009), or the “mass splitting” in optimal transport
(Dantzig, 2002). Explicitly, they read

{y ∈ Rd | ∥Cy + c∥1 ≤ f⊤y + e}

Analogously to second-order cones constraints, employing a slack variable they can be reduced to a
projection onto the l1 ball, which can be done efficiently (Condat, 2016).
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Cartesian products of simplices are the standard constraints in optimal transport (Dantzig, 2002)
formulations, since they encode the set of admissible coupling measures. While these constraints can
also be expressed as generic polytopic sets, an alternative representation using our proposed form
can potentially yield more efficient solutions. For instance, for some v1, . . . , vn, w1, . . . , wm ≥ 0,
consider the following constraint set

C =
{
y ∈ Rd1×d2 | yij ≥ 0,

n∑

i=1

yij = wj ,

m∑

j=1

yij = vi

}

=

{
y ∈ Rd1×d2 |

n∑

i=1

yij = wj

}
∩



y ∈ Rd1×d2 | yij ≥ 0,

m∑

j=1

yij = vi



 .

= A ∩ B
Notice, that C = Πd(A ∩ K) as required by our constraint decomposition, and Πd(·) is redundant
since A and K are of the same dimension as C. The projections ΠA and ΠK can be evaluated
efficiently since A is a hyperplane and K is a cartesian product of simplices (Condat, 2016).

The intersection of previous sets can readily be expressed in our representation. For instance,
the intersection of a polytope and second-order cone can be expressed as the following set:

{y ∈ Rd |Ey = q, l ≤ Cy ≤ u, ∥Fy + c∥2 ≤ f⊤y + e}.

We introduce the auxiliary variables yaux, 1 = Cy ∈ Rnineq , yaux, 2 = Fy ∈ Rnc , yaux, 3 = f⊤y ∈ R
and obtain the representation:

A =








y
yaux, 1
yaux, 2
yaux, 3




∣∣∣∣∣∣∣



E 0 0 0
C −I 0 0
F 0 −I 0
f⊤ 0 0 −1







y
yaux, 1
yaux, 2
yaux, 3


 =



q
0
−c
−e







,

K = Rd × {yaux, 1 ∈ Rnineq | l ≤ yaux, 1 ≤ u} ×
{[
yaux, 2
yaux, 3

]
∈ Rnc+1 | ∥yaux, 2∥ ≤ yaux, 3

}
.

As before, the projections ΠA and ΠK admit closed-form expressions.
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F ON THE DIFFERENTIABILITY OF THE PROJECTION LAYER AND THE
APPLICABILITY OF THE IMPLICIT FUNCTION THEOREM

In this section, we discuss the theoretical aspects of the differentiability of the proposed projection
layer, as well as the applicability of the implicit function theorem.

F.1 ALMOST EVERYWHERE DIFFERENTIABILITY

To start, we note that since the layers of the backbone network will be at most almost everywhere
differentiable (e.g., for ReLU activations), all one may be interested in is to have almost everywhere
differentiability of the projection layer. In fact, our experiments show that in practice this is sufficient
for markedly surpassing the state of the art. On Euclidean spaces (more generally, on Hilbert spaces)
the projection operator is globally 1-Lipschitz (see, e.g., (Bauschke & Combettes, 2017, Proposition
4.16), and recall that firmly non-expansive implies 1-Lipschitz). Then, with Rademacher’s theo-
rem (Simon et al., 1984, Theorem 1.4) we conclude that the projection layer is almost everywhere
differentiable (in the Lebesgue measure sense).

F.2 APPLICABILITY OF THE IMPLICIT FUNCTION THEOREM

Providing a full theoretical analysis is beyond the scope of the paper, and we believe it would dis-
tract the reader from the main message of the paper. Nonetheless, we (i) believe this to be a very
interesting mathematical quest for future work, and (ii) that the outline presented here can give a
sense to the reader of why the proposed projection layer is theoretically sound.
The implicit function theorem is applicable under local differentiability conditions. The way that re-
lated works handle non-smooth points is to either (i) show that if the linear system (9) is non-singular,
then multiple solutions exist and they belong to the subdifferential (see, e.g., (Amos & Kolter, 2017,
Appendix C.1)) or (ii) they resort to heuristics, e.g., by solving a least-squares approximation rather
than the linear system itself (see, e.g., (Agrawal et al., 2019, Section 4.3)). We similarly run finitely
many bicgstab iterations, which is very computationally attractive as it avoids run-time checks
and, in our numerical experience, is quite stable; see Appendix F.3.
Perhaps surprisingly, one can define an implicit function theorem even on non-smooth points by
employing conservative gradients, a recent generalization of the subdifferential (Bolte & Pauwels,
2021). This formulation is valid for non-smooth locally Lipschitz mappings, to which our projection
layer belongs. We refer to the seminal works of Bolte & Pauwels (2021); Bolte et al. (2021) for the
precise statement of the non-smooth variant of the theorem. In this framework, the implicit function
theorem formula and the chain rule used in Section 2.1.2 hold under very mild conditions. Roughly
speaking, this would correspond to our operator Φ(x, y) being semialgebraic and contractive with
respect to y (Bolte et al., 2024). With this, we could conclude that our derivation in Section 2.1.2
holds everywhere.

F.3 EFFECTIVENESS OF THE BACKWARD PASS IN APPROXIMATING THE GRADIENT

In this section, we empirically assess how well the proposed backward pass approximates the true
gradient induced by the projection operator. Concretely, we compare the VJP obtained from the
implicit function theorem–based backward pass with finite-difference estimates on a representative
problem instance.

Experimental setup We fix two problem instances in the non-convex small benchmark (see Sec-
tion 3.1) by fixing the right-hand side of the equality constraints. We then generate a set of 100
points-to-be-projected xi100i=1 by sampling each coordinate from a normal distribution with standard
deviation 10. For each xi, we also sample 100 normally distributed vectors vi for comparing the
VJP. As a reference “ground truth”, we compute the VJP using central finite differences with step
size ε = 10−6, which yields an approximation with O(ε2) truncation error. We then compute
the VJP using our backward pass for varying numbers of backward iterations n iter bwd. For
each configuration, we report (i) the ℓ2-norm of the difference and (ii) the cosine similarity, thereby
quantifying both the absolute and directional accuracy of the proposed backward pass. For both
methods, we use n iter fwd = 200 forward iterations for computing the projection accurately.
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Figure 22: VJP estimation error (measured via the ℓ2-norm of the difference and the cosine sim-
ilarity) for 100 different vectors vi instances (light blue) for two different instances of the small
non-convex benchmark as the number of iterations in the backward pass n iter bwd increases, as
well as the maximum ℓ2-error and the minimum cosine similarity among all instances (dark blue).

Results As shown in Figure 22, the discrepancy between the VJP computed with our backward
pass and the finite-difference reference decreases rapidly as the number of backward iterations in-
creases. These results indicate that the proposed backward pass yields a highly accurate approxima-
tion of the true gradient even with a relatively small number of iterations.
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