

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ΠNET: OPTIMIZING HARD-CONSTRAINED NEURAL NETWORKS WITH ORTHOGONAL PROJECTION LAYERS

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce an output layer for neural networks that ensures satisfaction of convex constraints. Our approach, Πnet, leverages operator splitting for rapid and reliable projections in the forward pass, and the implicit function theorem for backpropagation. We deploy Πnet as a *feasible-by-design* optimization proxy for parametric constrained optimization problems and obtain modest-accuracy solutions faster than traditional solvers when solving a single problem, and significantly faster for a batch of problems. We surpass state-of-the-art learning approaches by orders of magnitude in terms of training time, solution quality, and robustness to hyperparameter tuning, while maintaining similar inference times. Finally, we tackle multi-vehicle motion planning with non-convex trajectory preferences and provide Πnet as a GPU-ready package implemented in JAX.

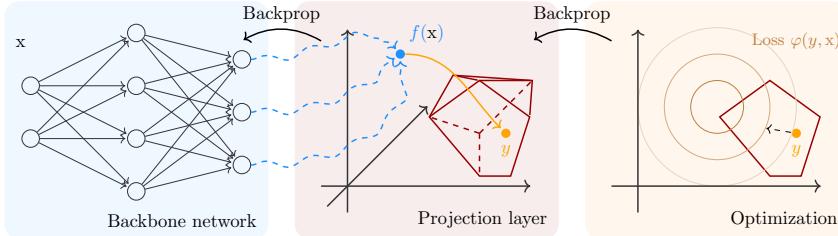


Figure 1: Illustration of the Πnet architecture. The infeasible output of the *backbone* network is projected onto the feasible set through an operator splitting scheme. To train the backbone network, we use the implicit function theorem to backpropagate the loss through the projection layer.

1 INTRODUCTION

In this work, we deploy neural networks (NNs) to generate *feasible-by-design* candidate solutions (see Figure 1) for the parametric constrained optimization problem:

$$\underset{y}{\text{minimize}} \quad \varphi(y, x) \quad \text{subject to} \quad y \in \mathcal{C}(x), \quad \mathcal{P}(x)$$

where $y \in \mathbb{R}^d$ is the decision variable, $x \in \mathbb{R}^p$ is the context (or parameter) of the problem instance, $\varphi : \mathbb{R}^d \times \mathbb{R}^p \rightarrow \mathbb{R}$ is the objective function, and $\mathcal{C}(x) \subseteq \mathbb{R}^d$ is a non-empty, closed, convex set for all x . We provide a pedagogical example to explain this formulation in Appendix A.

Constrained optimization has universal applicability, from safety-critical applications such as the optimal power flow in electrical grids (Nellikkath & Chatzivassileiadis, 2022), to logistics and scheduling (Bengio et al., 2021), and even biology, where enforcing priors on the solution can enhance its interpretability (Balcerak et al., 2025; Terpin et al., 2024b). In many applications, optimization programs are solved repeatedly, given different contexts: in logistics, the demands and forecasts vary (Baptiste et al., 2001); in model predictive control (MPC) (Chen et al., 2018; Tabas & Zhang, 2022), the initial conditions; in motion planning, the position of obstacles (Marcucci et al., 2023); in trust-region policy optimization, the advantage function and the trust-region center (Terpin et al., 2022b). This task often becomes computationally challenging when, for example, y is high-dimensional, φ is non-convex, or new solutions are required at a high frequency. Rather than solving each problem instance from scratch, the mapping from contexts to solutions can be learned with NNs. Despite their

054 successes, NNs typically lack inherent mechanisms to ensure satisfaction of explicit constraints, a
 055 limitation that motivates a large body of existing work:
 056

057 **Soft-constrained NNs.** Soft penalty terms for constraint violations in the objective function are
 058 one approach to incorporate constraints in NNs (Márquez-Neila et al., 2017), and have been adopted
 059 to solve parametric constrained optimization problems (Tuor et al., 2021), and partial differential
 060 equations through physics-informed NNs (Erichson et al., 2019; Raissi et al., 2019). Despite their
 061 ability to handle general constraints, these approaches offer no guarantees at inference time. Beside
 062 requiring manual tuning of the penalty parameters, which is challenging yet critical for good perfor-
 063 mance, the use of soft constraints is discouraged for the following reasons. First, the structure of the
 064 constraints set can be exploited to design more efficient algorithms; see, e.g., the simplex algorithm
 065 (Dantzig, 2002). Second, treating constraints softly may significantly alter the problem solution
 066 regardless of tuning (Grontas et al., 2024). Third, certain constrained optimization problems (e.g.,
 067 linear programs) may not admit a solution at all when constraints are treated softly.
 068

069 **Hard-constrained NNs.** To circumvent the shortcomings of soft constraints, hard-constrained
 070 neural networks (HCNNs) aim to enforce constraints on the NN output by design. Frerix et al.
 071 (2020) address linear homogeneous inequality constraints by parameterizing the feasible set. Simi-
 072 larly, RAYEN (Tordesillas et al., 2023) enforces various convex constraints by scaling the line seg-
 073 ment between infeasible points and a fixed point in the feasible set’s interior. While these methods
 074 enjoy rapid inference, they require expensive offline preprocessing and are not directly applicable
 075 to constraints that depend on the NN input, i.e., they consider feasible sets \mathcal{C} and not $\mathcal{C}(x)$ in $\mathcal{P}(x)$. Differently,
 076 Min et al. (2024) propose a closed-form expression to recover feasibility for polyhedral
 077 constraints and employs `cvxpylayers` (Agrawal et al., 2019) for more general convex sets. Chen
 078 et al. (2018); Cristian et al. (2023) orthogonally project the NN output or intermediate layers using
 079 Dykstra’s algorithm (Boyle & Dykstra, 1986), but rely on loop unrolling for backpropagation,
 080 which can be prohibitive in terms of memory and computation. Departing from convex sets, DC3
 081 (Donti et al., 2021) introduces an equality completion and inequality correction procedure akin to
 082 soft-constrained approaches, but applied during inference. Lastrucci & Schweidtmann (2025) im-
 083 pose non-linear equality constraints by recursively linearizing them. Lagrangian and augmented
 084 Lagrangian approaches are considered by Fioretto et al. (2021); Park & Van Hentenryck (2023) for
 085 general non-convex constraints, with drawbacks similar to soft constraints, whereas Kratsios et al.
 086 (2021) consider a (probabilistic) sampling approach. Recently, LinSATNet (Wang et al., 2023) has
 087 been proposed to impose non-negative linear constraints, which is a restrictive constraint class that
 088 renders none of the problems of interest for this work amenable to LinSATNet. This limitation is
 089 partially relaxed by GLinSAT (Zeng et al., 2024), which however requires bounded constraints, an
 090 assumption not satisfied by, e.g., epigraph reformulations (Stellato et al., 2020, Appendix A.5-A.7).
 091

092 **Implicit layers.** *Implicit layers* embed optimization problems such as quadratic programs (QPs)
 093 (Amos & Kolter, 2017; Butler & Kwon, 2023), conic programs (Agrawal et al., 2019), non-linear
 094 least-squares (Pineda et al., 2022), or fixed-point equations (Bai et al., 2019; Winston & Kolter,
 095 2020) as NN layers, and apply the implicit function theorem (Dontchev & Rockafellar, 2009) to
 096 various measures of optimality. Our work is an instance of implicit layers; see Appendix C.5.
 097

098 **ML for optimization.** Using constrained NN architectures to learn solution mappings is among
 099 many successful efforts to exploit ML techniques to accelerate (King et al., 2024; Sambharya et al.,
 100 2024) or replace optimization solvers (Bertsimas & Stellato, 2022; Zamzam & Baker, 2020). These
 101 approaches are referred to as *amortized optimization*, *learning to optimize* or *optimization learning*,
 102 and the surveys (Amos, 2023; Van Hentenryck, 2025) cover multiple aspects of the topic.
 103

104 **Contributions.** We propose a NN architecture, Π_{Inet} , that generates feasible-by-design so-
 105 lutions for $\mathcal{P}(x)$. Given a context x , we deploy a *backbone* NN to produce a raw output y_{raw}
 106 that we orthogonally project onto $\mathcal{C}(x)$, $y = \operatorname{argmin}_{z \in \mathcal{C}(x)} \|z - y_{\text{raw}}\|^2$. In particular:

- 107 • We use an operator splitting scheme to compute the projection in the forward pass, and back-
 108 propagate through it via the implicit function theorem. Our work is an instance of implicit
 109 layers (see Appendix C.5), but it specializes in projection problems whose structure can be
 110 significantly exploited, achieving rapid training and improved inference speed. Our sim-
 111

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

ple idea yields a learning architecture that surpasses state-of-the-art learning approaches by orders of magnitude in terms of training time, solution quality, and robustness to hyperparameter tuning, while maintaining similar inference times.

- We implement a hyperparameter tuning and matrix equilibration strategy that boosts Π_{net} 's performance and robustifies it against data scaling. As a result, Π_{net} solves challenging benchmarks on which existing methods struggle, and is substantially less sensitive to hyperparameter tuning. In addition, we deploy Π_{net} on a real-world application in multi-vehicle motion planning with non-convex trajectory costs.
- We provide an efficient and GPU-ready implementation of Π_{net} in JAX. We make our code available in the supplementary material.

Notation. The indicator function of a set \mathcal{K} is $\mathcal{I}_{\mathcal{K}}(y) = 0$ if $y \in \mathcal{K}$, and $+\infty$ otherwise. The proximal operator of a proper, closed and convex function f with parameter $\sigma > 0$ is $\text{prox}_{\sigma f}(x) = \arg\min_y \{f(y) + \frac{1}{2\sigma} \|y - x\|^2\}$. The projection onto a non-empty, closed, and convex set \mathcal{C} is $\Pi_{\mathcal{C}}(x) = \text{prox}_{\mathcal{I}_{\mathcal{C}}}(x)$. For a differentiable mapping $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$, its Jacobian evaluated at $\hat{x} \in \mathbb{R}^n$ is denoted by $\frac{\partial F(x)}{\partial x} \big|_{x=\hat{x}} \in \mathbb{R}^{m \times n}$; we use d instead of ∂ when referring to total derivatives. Given a vector $v \in \mathbb{R}^m$, the vector-Jacobian product (VJP) of F at \hat{x} with v is $v^\top \frac{\partial F(x)}{\partial x} \big|_{x=\hat{x}} \in \mathbb{R}^n$.

2 TRAINING HARD-CONSTRAINED NEURAL NETWORKS

We develop an NN layer that projects the output of any backbone NN onto $\mathcal{C}(x)$, and discuss how Π_{net} can be trained to generate solutions of $\mathcal{P}(x)$, for any given x .

2.1 PROJECTION LAYER

Given a context x , the backbone network produces the raw output $y_{\text{raw}} = f(x; \theta)$, where θ are the network weights. We enforce feasibility by projecting y_{raw} onto $\mathcal{C}(x)$:

$$y = \Pi_{\mathcal{C}(x)}(y_{\text{raw}}) = \arg\min_{z \in \mathcal{C}(x)} \|z - y_{\text{raw}}\|^2. \quad (1)$$

We highlight two benefits of this approach:

- ✓ **Constraint satisfaction.** By design, the output y of the projection layer always lies in $\mathcal{C}(x)$.
- ✓ **Decomposition of specifications.** The hard constraints prescribe the *required* behavior of the output, while the objective prescribes the *desired* behavior. Contrary to soft-constrained NNs, *no tradeoff between the two behaviors is introduced in our proposed framework*.

We consider constraints that can be expressed as $\mathcal{C} = \Pi_d(\mathcal{A} \cap \mathcal{K})$, where $\mathcal{A}, \mathcal{K} \subseteq \mathbb{R}^n$, $n \geq d$, are closed, convex sets that we design, and Π_d is the projection onto the first d coordinates. We omit the dependence on x for brevity, but stress that our method readily handles context-dependent constraints. Notice that we work in the possibly higher-dimensional \mathbb{R}^n , by introducing an auxiliary variable $y_{\text{aux}} \in \mathbb{R}^{n-d}$. This provides us the flexibility to choose \mathcal{A} and \mathcal{K} such that their respective projections $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ admit a closed-form expression or are numerically-efficient. In particular, \mathcal{A} will be a hyperplane defined by the coefficient matrix A and the offset vector b , and \mathcal{K} a Cartesian product of the form $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 \subseteq \mathbb{R}^d \times \mathbb{R}^{n-d}$. This representation can describe many constraints of practical interest and we instantiate it with an example next (see Appendix E for more). Consider polytopic sets that are often employed in robotics (Chen et al., 2018), numerical solutions to partial differential equations (PDE) (Raissi et al., 2019), and non-convex relaxations for trajectory planning (Malyuta et al., 2022), among others. They are expressed as $\{y \in \mathbb{R}^d \mid Ey = q, l \leq Cy \leq u\}$, for some E, q, l, C, u of appropriate dimensions. We introduce the auxiliary variable $y_{\text{aux}} = Cy \in \mathbb{R}^{n_{\text{ineq}}}$ with dimension $n - d = n_{\text{ineq}}$. Then, we define $\mathcal{A}, \mathcal{K} \subseteq \mathbb{R}^n$ as the following hyperplane and box

$$\mathcal{A} = \left\{ \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \mid \underbrace{\begin{bmatrix} E & 0 \\ C & -I \end{bmatrix} \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix}}_{=A} = \begin{bmatrix} q \\ 0 \end{bmatrix} \right\}, \quad \mathcal{K} = \left\{ \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \mid y \in \mathbb{R}^d, l \leq y_{\text{aux}} \leq u \right\}.$$

Importantly, $\mathcal{C} = \Pi_d(\mathcal{A} \cap \mathcal{K})$ and both $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ can be evaluated in closed form for several constraint sets ubiquitous in practice:

$$\begin{aligned}
 165 \quad & A_{\text{eq}}y = b_{\text{eq}} & & \text{(Eq)} \\
 166 \quad & \ell_{\text{box}} \leq y \leq u_{\text{box}} & & \text{(Box)} \\
 167 \quad & \ell_{\text{ineq}} \leq A_{\text{ineq}}y \leq u_{\text{ineq}} & & \text{(Ineq)} \\
 168 \quad & \|A_{\text{soc},i}y + a_{\text{soc},i}\|_2 \leq f_{\text{soc},i}^T y + b_{\text{soc},i}, \quad i = 1, \dots, N_{\text{soc}} & & \text{(SOC)} \quad (2) \\
 169 \quad & \|A_{\ell_1,i}y + a_{\ell_1,i}\|_1 \leq f_{\ell_1,i}^T y + b_{\ell_1,i}, \quad i = 1, \dots, N_{\ell_1} & & (\ell_1 - \text{ball}) \\
 170 \quad & \|A_{\ell_\infty,i}y + a_{\ell_\infty,i}\|_\infty \leq f_{\ell_\infty,i}^T y + b_{\ell_\infty,i}, \quad i = 1, \dots, N_{\ell_\infty} & & (\ell_\infty - \text{ball}) \\
 171 \quad & y_{\mathcal{S}_j} \geq 0, \quad \|y_{\mathcal{S}_j}\|_1 = 1, \quad \text{for index sets } \mathcal{S}_j & & \text{(Simplex)} \\
 172 \quad & & & \\
 173 \quad & & & \\
 174 \quad & & & \\
 175 \quad & & & \\
 \end{aligned}$$

Remark. We stress that the decomposition $\mathcal{C} = \Pi_d(\mathcal{A} \cap \mathcal{K})$ is not an assumption. One can always decompose a convex set in this way, e.g., by considering the trivial decomposition $\mathcal{A} = \mathcal{C}$ and $\mathcal{K} = \mathbb{R}^d$. Instead, determining \mathcal{A} and \mathcal{K} is a design choice which we leverage to make the projections $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ computationally efficient. We note two important points regarding this design choice:

- The only assumption is that $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ and their VJP are computable. Being computationally efficient is an added benefit of our decomposition, but is not necessary. In this work, our focus is on the sets listed as those are the ones that are most interesting in practice.
- We show in Appendix E that many practically-relevant constraints \mathcal{C} , such as the ones listed in (2), as well as their intersections and Cartesian products and the intersections and Cartesian products all admit efficient decompositions. In fact, this list is not exhaustive; see, e.g., Condat (2016); Boyd & Vandenberghe (2004).

2.1.1 FORWARD PASS

To compute the projection $y = \Pi_{\mathcal{C}(\mathbf{x})}(y_{\text{raw}})$ we employ the Douglas-Rachford algorithm (Bauschke & Combettes, 2017, Sec. 28.3), which solves optimization problems of the form $\min_z g(z) + h(z)$, where g and h are proper, closed, convex functions. To rewrite (1) in this composite form, we use the auxiliary variable $y_{\text{aux}} \in \mathbb{R}^{n-d}$ and the indicator function of \mathcal{A} and \mathcal{K} to obtain:

$$194 \quad (\Pi_{\mathcal{C}}(y_{\text{raw}}), y_{\text{aux}}^*) = \operatorname{argmin}_{y, y_{\text{aux}}} \left\{ \|y - y_{\text{raw}}\|^2 + \mathcal{I}_{\mathcal{A}} \left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \right) + \mathcal{I}_{\mathcal{K}} \left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \right) \right\}. \quad (3)$$

Then, we split the objective function as follows

$$198 \quad g \left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \right) = \mathcal{I}_{\mathcal{A}} \left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \right) \quad \text{and} \quad h \left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \right) = \|y - y_{\text{raw}}\|^2 + \mathcal{I}_{\mathcal{K}} \left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \right).$$

By applying the Douglas-Rachford algorithm we obtain the fixed-point iteration:

$$202 \quad z_{k+1} = \operatorname{prox}_{\sigma g}(s_k) \quad (4a)$$

$$203 \quad t_{k+1} = \operatorname{prox}_{\sigma h}(2z_{k+1} - s_k) \quad (4b)$$

$$204 \quad s_{k+1} = s_k + \omega(t_{k+1} - z_{k+1}) \quad (4c)$$

where $\sigma > 0$ is a scaling and $\omega \in (0, 2)$ a relaxation parameter. The proximal operators in (4a) and (4b) can be evaluated explicitly, see Appendix D.1, allowing us to implement (4) as in Algorithm 1. Note that we write $z_k = [z_{k,1} \ z_{k,2}]^\top$ where $z_{k,1} \in \mathbb{R}^d$ and $z_{k,2} \in \mathbb{R}^{n-d}$ correspond to y and y_{aux} .

Under mild conditions, namely strict feasibility of (3), we show in Appendix D.2 that the iterates z_k and t_k converge to a solution of (3). We denote the limits $z_\infty(y_{\text{raw}}) = \lim_{k \rightarrow \infty} z_k$ and $s_\infty(y_{\text{raw}}) = \lim_{k \rightarrow \infty} s_k$, and highlight their dependence on the point-to-be-projected y_{raw} . In particular, we have $z_{\infty,1}(y_{\text{raw}}) = \Pi_{\mathcal{C}}(y_{\text{raw}})$. In practice, we run a finite number of iterations $K \in \mathbb{N}$ of (4), which

ALGORITHM 1. Operator splitting for projection

Inputs: $\mathbf{x}, y_{\text{raw}}, K \in \mathbb{N}, \sigma, \omega$.

Initialization: $s_0 \in \mathbb{R}^n$

For $k = 0$ **to** $K - 1$:

$$\begin{cases} z_{k+1} \leftarrow \Pi_{\mathcal{A}(\mathbf{x})}(s_k) \\ t_{k+1} \leftarrow \left[\begin{array}{c} \Pi_{\mathcal{K}_1(\mathbf{x})} \left(\frac{2z_{k+1,1} - s_{k,1} + 2\sigma y_{\text{raw}}}{1+2\sigma} \right) \\ \Pi_{\mathcal{K}_2(\mathbf{x})} \left(2z_{k+1,2} - s_{k,2} \right) \end{array} \right] \\ s_{k+1} \leftarrow s_k + \omega(t_{k+1} - z_{k+1}) \end{cases}$$

Output: $z_{K,1}, s_K$

we set to $K = \text{n_iter_fwd}$ during training and $K = \text{n_iter_test}$ during testing, and take $y = z_{K,1}$ as the output of the projection layer. We detail our hyperparameters in Section 2.4. We note that, although z_K will not necessarily lie on $\mathcal{A} \cap \mathcal{K}$, because $K \in \mathbb{N}$ is finite, Algorithm 1 guarantees that $z_K \in \mathcal{A}$. By our choice of \mathcal{A} , this implies that $z_{K,1}$ satisfies any equality constraints in the problem. The feasibility-by-design comes from the convergence rates, which we derive and empirically demonstrate in Appendix D.3: for a sufficiently high number of iterations, the output of our projection layer is arbitrarily close to the true projection.

2.1.2 BACKWARD PASS

To train the backbone network using backpropagation, we need to efficiently differentiate the loss \mathcal{L} (which in general depends on the projected output of the network and on the input; see Section 2.2) with respect to the backbone network parameters θ . The chain rule gives us:

$$\frac{d\mathcal{L}(\Pi_C(f(x; \theta)), x)}{d\theta} = \frac{\partial \mathcal{L}(y, x)}{\partial y} \bigg|_{y=\Pi_C(f(x; \theta))} \frac{\partial \Pi_C(y_{\text{raw}})}{\partial y_{\text{raw}}} \bigg|_{y_{\text{raw}}=f(x; \theta)} \frac{\partial f(x; \theta)}{\partial \theta} \bigg|_{\theta=\theta}. \quad (5)$$

Since the first and last terms are standard and typically computed with automatic differentiation, we only need to provide an efficient computational routine for the VJP

$$v \mapsto v^\top \left(\frac{\partial \Pi_C(y_{\text{raw}})}{\partial y_{\text{raw}}} \bigg|_{y_{\text{raw}}=f(x; \theta)} \right). \quad (6)$$

Rather than differentiating through all the iterations of Algorithm 1 by loop unrolling, we exploit the implicit function theorem (Dontchev & Rockafellar, 2009) to efficiently evaluate (6). To do so, we first recall that $\Pi_C(y_{\text{raw}}) = [I_d \quad \mathbf{0}_{d \times (n-d)}] \Pi_{\mathcal{A}}(s_\infty(y_{\text{raw}}))$ which implies that:

$$v^\top \left(\frac{\partial \Pi_C(y_{\text{raw}})}{\partial y_{\text{raw}}} \bigg|_{y_{\text{raw}}=f(x; \theta)} \right) = \left([v^\top \quad \mathbf{0}] \frac{\partial \Pi_{\mathcal{A}}(s)}{\partial s} \bigg|_{s=s_\infty(y_{\text{raw}})} \right) \frac{\partial s_\infty(y_{\text{raw}})}{\partial y_{\text{raw}}} \bigg|_{y_{\text{raw}}=f(x; \theta)}, \quad (7)$$

and note that the first VJP is straightforward to compute since $\Pi_{\mathcal{A}}$ is an affine mapping. Therefore, to evaluate (7) we need to backpropagate through $s_\infty(y_{\text{raw}})$. Since $s_\infty(y_{\text{raw}})$ is the fixed point of iteration (4), it satisfies the equation $s_\infty(y_{\text{raw}}) = \Phi(s_\infty(y_{\text{raw}}), y_{\text{raw}})$, where Φ represents one iteration of (4a)-(4c), namely, $s_{k+1} = \Phi(s_k, y_{\text{raw}})$. The implicit function theorem applied to $s_\infty(y_{\text{raw}}) = \Phi(s_\infty(y_{\text{raw}}), y_{\text{raw}})$ yields the VJP, see Appendix D.4,

$$v \mapsto \xi(y_{\text{raw}}, v)^\top \frac{\partial \Phi(s_\infty(y_{\text{raw}}), y_{\text{raw}})}{\partial y_{\text{raw}}} \bigg|_{y_{\text{raw}}=f(x; \theta)}, \quad (8)$$

where $\xi(y_{\text{raw}}, v)$ is a solution of the linear system

$$\left(I - \frac{\partial \Phi(s, y_{\text{raw}})}{\partial s} \bigg|_{s=s_\infty(y_{\text{raw}})} \right)^\top \xi(y_{\text{raw}}, v) = v. \quad (9)$$

The matrix in (9) may not be invertible (Agrawal et al., 2019); even if it is, constructing it and computing its inverse may be prohibitively expensive in high dimensions. This difficulty can be circumvented by computing a heuristic quantity. In this vein, we deploy the JAX (Bradbury et al., 2018) implementation of the bi-conjugate gradient stable iteration (`bicgstab`, van der Vorst (1992)), an indirect linear system solver that requires only matrix-vector products. Therefore, we implement (8) and (9) using VJPs involving $\partial \Phi(s_\infty(y_{\text{raw}}), y_{\text{raw}})/\partial y_{\text{raw}}$ and $\partial \Phi(s, y_{\text{raw}})/\partial s$, respectively. We efficiently do this using JAX VJP routines and note that each step of the solver for (9) has essentially the same computational cost as one step of (4). The maximum number of `bicgstab` steps for (9), n_iter_bwd , is a hyperparameter. In both (8) and (9), we use the output of the forward pass, i.e., s_K in place of the intractable s_∞ . We discuss almost-everywhere differentiability of our projection layer and the applicability of the implicit function theorem in Appendix F.

2.2 LOSS

The training loss $\mathcal{L}(\Pi_{C(x)}(f(x; \theta)), x)$, which is a function of the context and the constrained NN output, can be crafted according to the specific requirement’s of the problem. In our experiments, we directly minimize the objective of $\mathcal{P}(x)$ using the network’s output by setting $\mathcal{L}(y, x) = \varphi(y, x)$. In our framework we can, loosely speaking, interpret training as performing projected gradient descent on the raw NN output space, akin to the work of Cristian et al. (2023).

270 2.3 NETWORK ARCHITECTURE
271272 Π_{net} is flexible: the projection layer can be appended to *any* NN; see Figure 1. We summarize the
273 forward and backward pass of Π_{net} in Alg. 2, while its training and testing is outlined in Alg. 3.
274275 **ALGORITHM 2. Π_{net}**
276277 **Forward:**278 **Inputs:** $x, \theta, K, \sigma, \omega$
279 $y_{\text{raw}} \leftarrow f(x; \theta)$
280 $y, s \leftarrow \text{Call Algorithm 1}(x, y_{\text{raw}}, K, \sigma, \omega)$
281 **Output:** y, s 282 **Backward:**283 **Inputs:** $s_\infty, v \in \mathbb{R}^d$
284 $v_1 \leftarrow [v^\top \ 0] (\partial \Pi_A(s) / \partial s) \Big|_{s=s_\infty}$
285 $\xi(y_{\text{raw}}, v_1) \leftarrow \text{Solve (9) with } v_1 \text{ as RHS}$
286 $v_2 \leftarrow \xi(y_{\text{raw}}, v_1)^\top (\partial \Phi(s, y_{\text{raw}}) / \partial y_{\text{raw}}) \Big|_{s=s_\infty}$
287 $v_3 \leftarrow v_2^\top (\partial f(x; \theta) / \partial \theta) \Big|_{\theta=\theta}$
288 **Output:** v_3 290 **ALGORITHM 3. Training/Testing of Π_{net}**
291292 **Inputs:** Chosen/Tuned hyperparameters
(see Section 2.4)293 **Training:**294 $\theta_1 \leftarrow \text{Initialize weights}$
295 **For** $\ell = 1$ **to** n_{epochs} :
296 $x \leftarrow \text{Sample from training set}$
297 $y, s \leftarrow \text{Forward}(x, \theta, n_{\text{iter_fwd}}, \sigma, \omega)$
298 $\mathcal{L}(y, x), \partial \mathcal{L}(y, x) / \partial y \leftarrow \text{Compute loss}$
299 $\partial \mathcal{L} / \partial \theta \leftarrow \text{Backward}(s, \partial \mathcal{L}(y, x) / \partial y)$
300 $\theta_{\ell+1} \leftarrow \text{Optimizer update}$
301 **Output:** $\theta_{n_{\text{epochs}}}$ 302 **Testing:**303 $x \leftarrow \text{Sample from test set}$
304 $y, s \leftarrow \text{Forward}(x, \theta, n_{\text{iter_test}}, \sigma, \omega)$
305 **Output:** y

306 2.4 THE SHARP BITS (SHORT VERSION)

307 To push the performance of Π_{net} , we adopt two important numerical techniques. First, we im-
308 prove the conditioning of the matrix $A(x)$, that defines the set $\mathcal{A}(x)$, by implementing the Ruiz
309 equilibration algorithm (Wathen, 2015); see Appendix C.1. Second, we exploit the fact that, com-
310 pared to existing methods, Π_{net} relies only on a few hyperparameters. Specifically, $n_{\text{iter_fwd}}$ (number of iterations for the forward pass during training), $n_{\text{iter_test}}$ (number of iterations for the forward pass during inference), ω , σ (standard Douglas-Rachford parameters),
311 and $n_{\text{iter_bwd}}$ (number of iterations in the `bicgstab` procedure). We describe an auto-tuning
312 procedure that recommends hyperparameters by evaluating the projection on a subset of the vali-
313 dation set in Appendix C.2, and assess its effectiveness in Appendix C.3. Finally, we highlight our
314 choice of enforcing constraints during training, as opposed to training an unconstrained network and
315 introducing the projection layer only afterwards. We do so because the latter approach may result in
316 training instabilities or suboptimal performance; see Appendix C.4.

317 3 NUMERICAL EXPERIMENTS

318 The code is made available in the supplementary material. The empirical data was collected on an
319 Ubuntu 22.04 machine equipped with an AMD Ryzen Threadripper PRO 5995WX processor and
320 an Nvidia RTX 4090 GPU. For experiments with second-order cone constraints, see Appendix B.5.

321 3.1 BENCHMARKS AND COMPARISONS WITH STATE-OF-THE-ART

322 We consider a set of standard convex and non-convex problems classically used to compare HCNNS.

323 **Experimental setup.** We consider the benchmark problems introduced by Donti et al. (2021):

324
$$\underset{y \in \mathbb{R}^d}{\text{minimize}} \quad J(y) \quad \text{subject to} \quad Ay = x, \quad Cy \leq u,$$

325 where $J(\cdot)$ is defined as $J(y) = y^\top Qy + q^\top y$ for the convex problem setup, and as $J(y) =$
326 $y^\top Qy + q^\top \sin(y)$ for the non-convex, and $Q \in \mathbb{R}^{d \times d} \succ 0$, $q \in \mathbb{R}^d$, $A \in \mathbb{R}^{n_{\text{eq}} \times d}$, $x \in \mathbb{R}^{n_{\text{eq}}}$, $C \in$
327 $\mathbb{R}^{n_{\text{ineq}} \times d}$, $u \in \mathbb{R}^{n_{\text{ineq}}}$. In particular, In the work of Donti et al. (2021), Q is diagonal with positive
328 entries, A, C, u are fixed matrices/vector and the contexts x are generated so that all problem in-
329 stances are guaranteed to be feasible. Donti et al. (2021) consider problems with $d = 100$. Here, we
330 include larger problem dimensions, $(d, n_{\text{eq}}, n_{\text{ineq}}) \in \{(100, 50, 50), (1000, 500, 500)\}$, which we
331 generated with the same scheme. We refer to these datasets as small and large. For each dataset, we
332 generated 10000 contexts split as 7952/1024/1024 among training/validation/test sets.

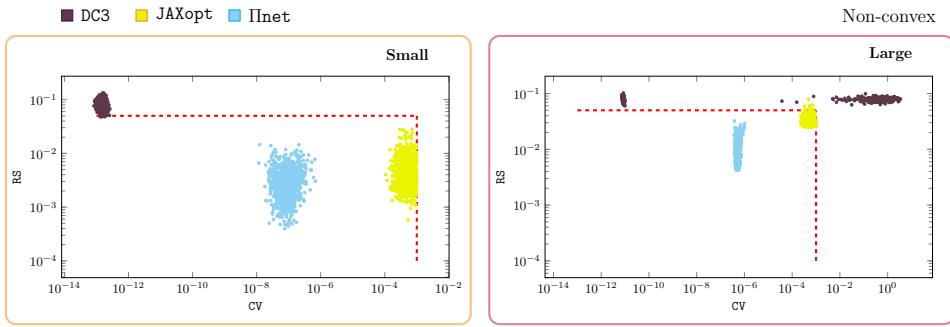


Figure 2: Scatter plots of RS and CV on the small and large non-convex problems on the test set. The red dashed lines show the thresholds to consider a candidate solution optimal.

Baselines. We compare IIInet to DC3 (Donti et al., 2021) and a traditional Solver. For the convex objective the Solver is the QP solver OSQP (Stellato et al., 2020), while for the non-convex objective is IPOPT (Wächter & Biegler, 2006). Further, we compare to an implicit layer approach, where instead of computing the projection (1) with Algorithm 1, we use the JAXopt (Blondel et al., 2022) GPU-friendly implementation of OSQP that employs implicit differentiation. Both IIInet, DC3, and the JAXopt approach use a self-supervised loss (i.e., $\mathcal{L} = J$) and as backbone a multi-layer perceptron (MLP) with 2 hidden layers of 200 neurons each and ReLU activations. Additionally, DC3 includes batch normalization and drop out, as well as soft penalty terms in the loss. We use the default parameters of DC3 unless otherwise stated. In particular, the DC3 algorithm with default parameters diverged during training on the large datasets, an effect observed by Tordesillas et al. (2023). To rectify this, we tuned the learning rate of DC3’s correction process for the large dataset, and found that 10^{-8} enables the network to learn. In Appendix B.2, we investigate if DC3’s performance can be improved by adapting hyperparameters. For IIInet we use only 50 training epochs, while for DC3 we use the default 1000. For JAXopt we use a tolerance of 10^{-3} and 12 epochs, in the interest of training time. On both convex and non-convex benchmarks, we use JAXopt as a replacement for our custom projection layer after the backbone NN. The training times reported are, thus, the ones of the backbone network. We omit comparisons with cvxpylayers (Agrawal et al., 2019) since JAXopt is a more recent and stronger baseline: it implements similar functionalities, but it is executable on the GPU; see also Appendix B.

Metrics. We compare methods in terms of the following metrics on the test set:

- Relative suboptimality (RS): The suboptimality of a candidate solution \hat{y} compared to the optimal objective $J(y^*)$, computed by the Solver. Since methods may violate constraints and obtain a better solution we clip this value, $RS := \max(0, (J(\hat{y}) - J(y^*))/J(y^*))$.
- Constraint violation (CV): We define $CV = \max(\|A\hat{y} - x\|_\infty, \|\max(C\hat{y} - u, 0)\|_\infty)$.
- Learning curves: Progress on RS and CV over wall-clock time on the validation set.
- Single inference time: The time required to solve one instance at test time.
- Batch inference time: The time required to solve a batch of 1024 instances at test time.

Next, we report and discuss the results on the non-convex datasets. In the interest of space, the results on the convex problems are given in Appendix B.2.

Results. The RS and CV for each problem instance in the test set are reported in Figure 2. We consider a candidate solution to be optimal if the condition $CV \leq 10^{-3}$ and $RS \leq 5\%$ is satisfied. These prerequisites for low accuracy solutions are similar to, though somewhat looser from, those employed by numerical solvers (O’donoghue et al., 2016; Stellato et al., 2020). In fact, IIInet clears these thresholds by a margin. In practice, any solver achieving a CV below 10^{-5} is considered high-accuracy (Stellato et al., 2020) and there is little benefit to go below that. Instead, when methods have sufficiently low CV, having a low RS is better.

Compared to DC3, we correctly solve the vast majority of test problems. Importantly, the very low and consistent constraint violation across all problem instances significantly facilitates the tuning

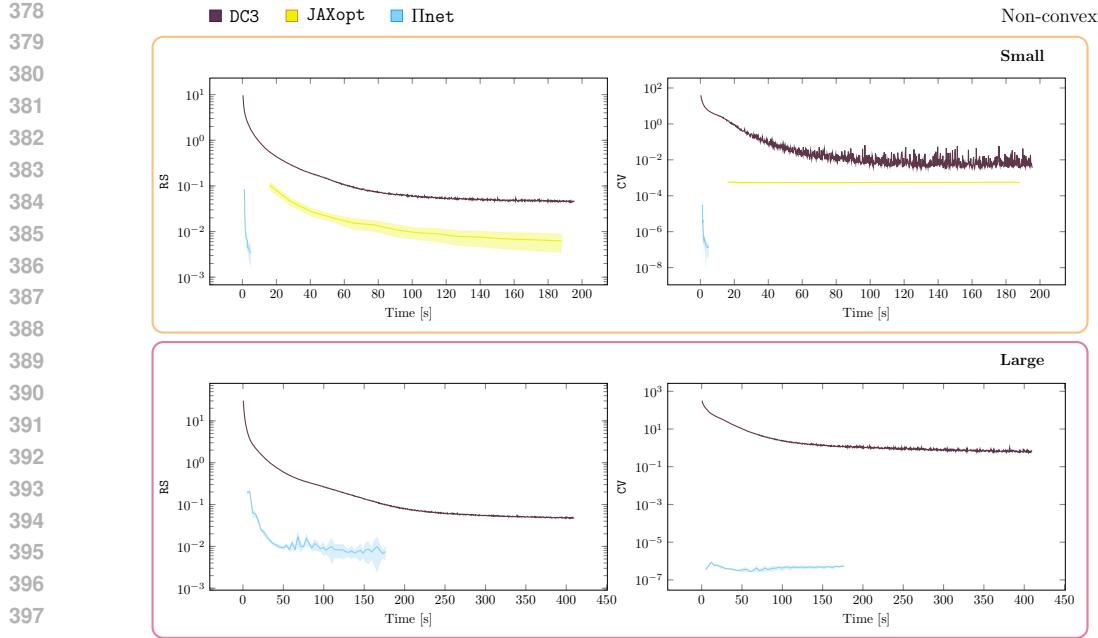


Figure 3: Comparison of the learning curves in terms of average RS and CV on the validation set, on the small and large non-convex problems. The solid lines denote the mean and the shaded area the standard deviation across 5 seeds. The learning curves for JAXopt on the large dataset are reported only in Appendix B because of the orders of magnitude longer training times.

of the number of iterations. By contrast, on the large problems, DC3 exhibits CV and RS that are unacceptably large for any meaningful application. We conjecture that IIInet significantly outperforms DC3 in RS due to the absence of soft penalties in our training loss and the orthogonality of the projection. The JAXopt approach performs better than DC3 but significantly worse than IIInet.

The learning curves are shown in Figure 3. IIInet achieves better performance at a fraction of the training time. Crucially, our scheme attains satisfactory CV *throughout* training, implying that IIInet can reliably compute feasible solutions even with a tiny training budget. Note that our training curves include the setup time for IIInet (the matrix equilibration, the calculation of the pseudo-inverse for the projection onto the affine subspace, and just-in-time compilation). We omit the JAXopt results on the large dataset as it requires roughly 14 hours to complete training. The substantial difference in training times between IIInet and JAXopt underscores the importance of the specialized splitting we employed exploiting the structure of the projection problem, and our specialized implementation.

We report inference times in Table 2 in Appendix B. All approaches significantly outperform the Solver. Although DC3 is slightly faster than IIInet, it generates solutions of much lower quality (in RS and CV), hence demonstrating that the advantages of IIInet come with only a minor runtime trade-off compared to DC3.

To summarize our findings, we showed that existing HCNN methods suffer either from long training/inference times or low quality solutions. IIInet address both shortcomings, while retaining modularity and simplicity.

3.2 IIInet Applied: Multi-vehicle Motion Planning

We present an approach to synthesize transition trajectories between multi-vehicle configurations that optimize some non-linear, *fleet-level* objective subject to dynamics, state and input constraints. We feed an NN with the initial and terminal fleet configurations (the context x), obtain the raw input trajectories and use the vehicle dynamics to infer the full state-input trajectories that serves as the raw output y_{raw} , which are then projected for ensured constraint satisfaction; see Figure 4.

Experimental setup. We follow the formulation in (Augugliaro et al., 2012). Specifically, we denote with $p_i[t] \in \mathbb{R}^m$ the generalized coordinates of vehicle i at the discrete times $t \in \{1, \dots, T\}$,

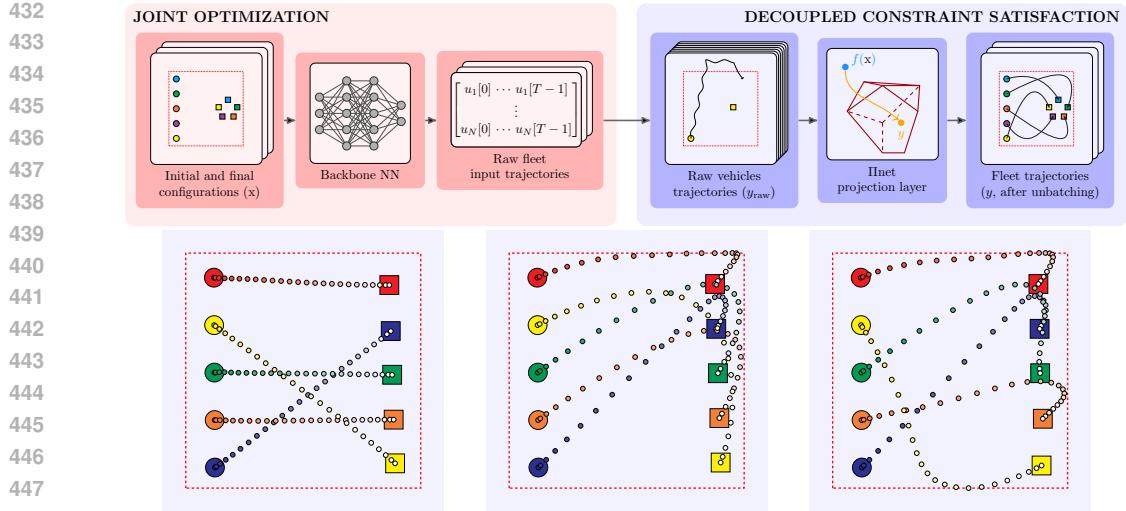


Figure 4: (Top) The Π net approach to constrained multi-vehicle motion planning with arbitrary differentiable objective functions φ . (Bottom) From left to right, we show examples of the synthesized trajectories for 3 different objectives: $\varphi_{\text{left}} = \text{effort}$, $\varphi_{\text{mid}} = \varphi_{\text{left}} + \text{preference}$, $\varphi_{\text{right}} = \varphi_{\text{mid}} + \text{coverage}$. We refer the reader to Appendix B.3 for formal definitions and additional plots.

and with $v_i[t]$ and $a_i[t]$ its generalized velocity and acceleration. Its simple discretized dynamics read $v_i[t+1] = v_i[t] + h a_i[t]$, $p_i[t+1] = p_i[t] + h v_i[t] + \frac{h^2}{2} a_i[t]$. We formulate the motion planning task for the fleet as a parametric program in the form of $\mathcal{P}(x)$, where $\mathcal{C}(x)$ includes box constraints on positions (workspace constraints), velocities, and accelerations (physical limits), affine inequality constraints for jerk limits, and equality constraints for the dynamics and initial/final configuration for each vehicle. The objective function φ encapsulates a *fleet-level* objective; here we consider a weighted sum of workspace coverage, input effort, and trajectory preference given by a potential function; see Appendix B.3 for a rigorous definition.

Qualitative results. We display some of the resulting trajectories for different weights in the objective in Figure 4 and report more visualizations and analysis for larger fleets and longer horizons in Appendix B.3. Crucially, both convex and non-convex objectives are handled effectively by Π net, resulting in trajectories that adhere to the goals prescribed by the different objective functions.

Practical Relevance. Multi-vehicle motion planning has received substantial attention for its practical applications (Terpin et al., 2022a; 2024a), and we highlight three benefits of our approach:

- ✓ **Constraint satisfaction.** We ensure dynamics, state, and input constraint satisfaction, similar to optimization-based trajectory generation methods (Augugliaro et al., 2012).
- ✓ **Parallelizability.** Our approach is parallelizable in two ways. First, it enables multiple problem instances (different initial and final configurations) to be solved in batches. Second, since the constraints we consider are decoupled between the vehicles, we can *jointly* predict the raw input trajectories (to enable the network to minimize the joint objective), while solving the projections for each vehicle separately; see Figure 4.
- ✓ **Arbitrary objective optimization.** Our framework can handle any almost everywhere differentiable objective, encoded in Π net's loss $\mathcal{L} = \varphi$. Importantly, we see this example as a proof of concept towards constrained human-preference optimization (e.g., using (Christiano et al., 2017)). Deploying a traditional solver for this problem is very challenging because the objective functions considered are not available in closed form and are highly non-linear.

We implement this application in a separate codebase in the supplementary material, demonstrating also the little overhead required to integrate Π net into specific applications. We also explore trajectory planning on a longer horizon (up to 750 steps, amounting to about 9000 optimization variables and constraints), as well as high-dimensional contexts (mono-channel, 1024×1024 images) in Appendix B.4. Our current formulation focuses only on convex, decoupled-among-vehicles

486 constraints. Future works could address collision avoidance constraints through sequential convexification
 487 techniques (Augugliaro et al., 2012; Malyuta et al., 2022).
 488

489 4 CONCLUSIONS 490

491 **Contributions.** We introduced an output layer that enforces convex constraints satisfaction on the
 492 output of an any backbone NN via an operator splitting scheme. The backpropagation is achieved via
 493 the implicit function theorem, enabling efficient training. Our work focused on the gritty details of
 494 optimizing Π_{net} , introducing also simple yet effective techniques such as hyperparameter tuning
 495 and matrix equilibration procedures. We showed through extensive benchmarks that Π_{net} suc-
 496 cedes where existing learning methods fail. We provide a GPU-ready implementation in JAX, and
 497 showcase how our layer can be embedded in an example application, multi-vehicle motion planning.
 498

499 **Limitations.** One limitation of our work is the requirement of convex constraint sets. Despite the
 500 numerous applications involving only convex constraints (Boyd & Vandenberghe, 2004), and the nu-
 501 merous applications that can be losslessly convexified (Malyuta et al., 2022), we acknowledge that
 502 future work should investigate how to relax this structural assumption. One potential approach could
 503 involve sequential convexification of non-convex constraints, similar to the algorithm in (Lastrucci
 504 & Schweidtmann, 2025) that addresses non-linear equality constraints, or by employing homeomor-
 505 phisms (Liang et al., 2024).
 506

507 **Outlook.** We believe that Π_{net} holds the potential to substantially impact a wide range of ma-
 508 chine learning domains where constraint satisfaction is crucial. Relevant examples include neural
 509 PDE solvers (Raissi et al., 2019), scheduling (Baptiste et al., 2001), and robotics (Malyuta et al.,
 510 2022), among others. We demonstrated the potential of Π_{net} in some of these applications in Sec-
 511 tion 3, and we believe that applying our method to new applications represents an exciting avenue
 512 for future work. We expect the integration of hard constraints into large-scale models to result in
 513 more robust performance and more trustworthy machine learning systems.
 514

515 REFERENCES 516

517 Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
 518 Differentiable convex optimization layers. *Advances in neural information processing systems*,
 519 2019.

520 Brandon Amos. Tutorial on amortized optimization. *Foundations and Trends® in Machine Learn-
 521 ing*, 2023.

522 Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
 523 In *International Conference on Machine Learning*, 2017.

524 Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In *International Confer-
 525 ence on Machine Learning*, 2017.

526 Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. Generation of collision-free
 527 trajectories for a quadrocopter fleet: A sequential convex programming approach. In *IEEE/RSJ
 528 international conference on Intelligent Robots and Systems*, 2012.

529 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *Advances in neural
 530 information processing systems*, 2019.

531 Michal Balcerak, Tamaz Amiranashvili, Suprosanna Shit, Antonio Terpin, Sebastian Kaltenbach,
 532 Petros Koumoutsakos, and Bjoern Menze. Energy matching: Unifying flow matching and energy-
 533 based models for generative modeling. *arXiv preprint arXiv:2504.10612*, 2025.

534 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. *Constraint-based scheduling: applying con-
 535 straint programming to scheduling problems*. Springer New York, 2001.

536 H.H. Bauschke and P.L. Combettes. *Convex Analysis and Monotone Operator Theory in Hilbert
 537 Spaces*. Springer International Publishing, 2017.

540 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a methodological tour d'horizon. *European Journal of Operational Research*, 2021.

541

542 Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds. *INFORMS Journal on Computing*, 2022.

543

544 Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
545 López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
546 *Advances in neural information processing systems*, 2022.

547

548 Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
549 stochastic gradient methods and deep learning. *Mathematical Programming*, 188(1):19–51, 2021.

550

551 Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differentiation
552 for machine-learning and optimization. *Advances in neural information processing systems*, 34:
553 13537–13549, 2021.

554

555 Jérôme Bolte, Edouard Pauwels, and Antonio Silveti-Falls. Differentiating nonsmooth solutions to
556 parametric monotone inclusion problems. *SIAM Journal on Optimization*, 34(1):71–97, 2024.

557

558 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

559

560 James P. Boyle and Richard L. Dykstra. A method for finding projections onto the intersection of
convex sets in Hilbert spaces. In *Advances in Order Restricted Statistical Inference*, 1986.

561

562 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
563 Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

564

565 Joshua Brodie, Ingrid Daubechies, Christine De Mol, Domenico Giannone, and Ignace Loris. Sparse
566 and stable Markowitz portfolios. *Proceedings of the National Academy of Sciences*, 2009.

567

568 Enzo Busseti, Walaa M Moursi, and Stephen Boyd. Solution refinement at regular points of conic
problems. *Computational Optimization and Applications*, 74(3):627–643, 2019.

569

570 Andrew Butler and Roy H Kwon. Efficient differentiable quadratic programming layers: an ADMM
571 approach. *Computational Optimization and Applications*, 2023.

572

573 Steven Chen, Kelsey Saulnier, Nikolay Atanasov, Daniel D Lee, Vijay Kumar, George J Pappas,
574 and Manfred Morari. Approximating explicit model predictive control using constrained neural
networks. In *American Control Conference*, 2018.

575

576 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
577 reinforcement learning from human preferences. *Advances in neural information processing systems*, 2017.

578

579 Laurent Condat. Fast projection onto the simplex and the l_1 ball. *Mathematical Programming*, 2016.

580

581 Rares Cristian, Pavithra Harsha, Georgia Perakis, Brian L Quanz, and Ioannis Spantidakis. End-to-
582 end learning for optimization via constraint-enforcing approximators. In *Proceedings of the AAAI
Conference on Artificial Intelligence*, 2023.

583

584 George B Dantzig. Linear programming. *Operations research*, 2002.

585

586 Damek Davis and Wotao Yin. Faster convergence rates of relaxed Peaceman-Rachford and ADMM
587 under regularity assumptions. *Mathematics of Operations Research*, 2017.

588

589 Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. *Journal of Machine Learning Research*, 2016.

590

591 Asen L Dontchev and R Tyrrell Rockafellar. *Implicit functions and solution mappings*. Springer,
2009.

592

593 Priya L Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with
hard constraints. In *International Conference on Learning Representations*, 2021.

594 N Benjamin Erichson, Michael Muehlebach, and Michael W Mahoney. Physics-informed autoen-
 595 coders for Lyapunov-stable fluid flow prediction. *arXiv preprint arXiv:1905.10866*, 2019.

596

597 Ferdinando Fioretto, Pascal Van Hentenryck, Terrence W. K. Mak, Cuong Tran, Federico Baldo,
 598 and Michele Lombardi. Lagrangian duality for constrained deep learning. In *Machine Learn-
 599 ing and Knowledge Discovery in Databases. Applied Data Science and Demo Track*. Springer
 600 International Publishing, 2021.

601 Thomas Frerix, Matthias Nießner, and Daniel Cremers. Homogeneous linear inequality constraints
 602 for neural network activations. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 603 and Pattern Recognition Workshops*, 2020.

604 Panagiotis D. Grontas, Anastasios Tsiamis, and John Lygeros. Operator splitting for convex con-
 605 strained Markov decision processes. *arXiv preprint arXiv:2412.14002*, 2024.

606

607 Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction method of
 608 multipliers. *Mathematical Programming*, 2017.

609 Ethan King, James Kotary, Ferdinando Fioretto, and Ján Drgoňa. Metric learning to accelerate
 610 convergence of operator splitting methods. In *IEEE 63rd Conference on Decision and Control*,
 611 2024.

612

613 Anastasis Kratsios, Behnoosh Zamanlooy, Tianlin Liu, and Ivan Dokmanić. Universal approxima-
 614 tion under constraints is possible with transformers. *arXiv preprint arXiv:2110.03303*, 2021.

615 Giacomo Lastrucci and Artur M Schweidtmann. ENFORCE: Exact nonlinear constrained learning
 616 with adaptive-depth neural projection. *arXiv preprint arXiv:2502.06774*, 2025.

617

618 Enming Liang, Minghua Chen, and Steven H Low. Homeomorphic projection to ensure neural-
 619 network solution feasibility for constrained optimization. *Journal of Machine Learning Research*,
 620 25(329):1–55, 2024.

621

622 Sebastián Maldonado and Julio López. Imbalanced data classification using second-order cone
 623 programming support vector machines. *Pattern Recognition*, 2014.

624

625 Danylo Malyuta, Taylor P Reynolds, Michael Szmuk, Thomas Lew, Riccardo Bonalli, Marco
 626 Pavone, and Behçet Açıkmeşe. Convex optimization for trajectory generation: A tutorial on gen-
 627 erating dynamically feasible trajectories reliably and efficiently. *IEEE Control Systems Magazine*,
 628 2022.

629

630 Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. Motion planning around
 631 obstacles with convex optimization. *Science robotics*, 2023.

632

633 Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep net-
 634 works: Promises and limitations. *arXiv preprint arXiv:1706.02025*, 2017.

635

636 Youngjae Min, Anoopkumar Sonar, and Navid Azizan. Hard-constrained neural networks with
 637 universal approximation guarantees. *arXiv preprint arXiv:2410.10807*, 2024.

638

639 Rahul Nellikkath and Spyros Chatzivasileiadis. Physics-informed neural networks for AC optimal
 640 power flow. *Electric Power Systems Research*, 2022.

641

642 Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
 643 splitting and homogeneous self-dual embedding. *Journal of Optimization Theory and Applica-
 644 tions*, 2016.

645

646 Seonho Park and Pascal Van Hentenryck. Self-supervised primal-dual learning for constrained op-
 647 timization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2023.

648

649 Javier Peña, Juan C Vera, and Luis F Zuluaga. Linear convergence of the Douglas-Rachford algo-
 650 rithm via a generic error bound condition. *arXiv preprint arXiv:2111.06071*, 2021.

651

652 Luis Pineda, Taosha Fan, Maurizio Monge, Shobha Venkataraman, Paloma Sodhi, Ricky TQ Chen,
 653 Joseph Ortiz, Daniel DeTone, Austin Wang, Stuart Anderson, et al. Theseus: A library for differ-
 654 entiable nonlinear optimization. *Advances in Neural Information Processing Systems*, 2022.

648 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 649 deep learning framework for solving forward and inverse problems involving nonlinear partial
 650 differential equations. *Journal of Computational physics*, 2019.

651

652 Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. Learning to warm-start
 653 fixed-point optimization algorithms. *Journal of Machine Learning Research*, 2024.

654 Leon Simon et al. Lectures on geometric measure theory. Centre for Mathematical Analysis, Aus-
 655 tralian National University Canberra, 1984.

656

657 Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
 658 an operator splitting solver for quadratic programs. *Mathematical Programming Computation*,
 659 2020.

660 Daniel Tabas and Baosen Zhang. Safe and efficient model predictive control using neural networks:
 661 An interior point approach. In *2022 IEEE 61st Conference on Decision and Control (CDC)*, pp.
 662 1142–1147. IEEE, 2022.

663 Antonio Terpin, Sylvain Fricker, Michel Perez, Mathias Hudoba de Badyn, and Florian Dörfler. Dis-
 664 tributed feedback optimisation for robotic coordination. In *2022 American Control Conference*,
 665 2022a.

666 Antonio Terpin, Nicolas Lanzetti, Batuhan Yardim, Florian Dörfler, and Giorgia Ramponi. Trust
 667 region policy optimization with optimal transport discrepancies: Duality and algorithm for con-
 668 tinuous actions. *Advances in Neural Information Processing Systems*, 2022b.

669

670 Antonio Terpin, Nicolas Lanzetti, and Florian Dörfler. Dynamic programming in probability spaces
 671 via optimal transport. *SIAM Journal on Control and Optimization*, 2024a.

672

673 Antonio Terpin, Nicolas Lanzetti, Martín Gadea, and Florian Dörfler. Learning diffusion at light-
 674 speed. In *Advances in Neural Information Processing Systems*, 2024b.

675 Jesus Tordesillas, Jonathan P How, and Marco Hutter. Rayen: Imposition of hard convex constraints
 676 on neural networks. *arXiv preprint arXiv:2307.08336*, 2023.

677

678 Aaron Tuor, Jan Drgona, Elliot Skomski, J Koch, Z Chen, S Dernbach, CM Legaard, and D Vrabie.
 679 NeuroMANCER: Neural modules with adaptive nonlinear constraints and efficient regulariza-
 680 tions, 2021. URL <https://github.com/pnnl/neuromancer>.

681 H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
 682 of nonsymmetric linear systems. *SIAM Journal on Scientific and Statistical Computing*, 1992.

683

684 Pascal Van Hentenryck. Optimization learning. *arXiv preprint arXiv:2501.03443*, 2025.

685

686 Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-search
 687 algorithm for large-scale nonlinear programming. *Mathematical programming*, 2006.

688

689 Runzhong Wang, Yunhao Zhang, Ziao Guo, Tianyi Chen, Xiaokang Yang, and Junchi Yan. LinSAT-
 690 Net: the positive linear satisfiability neural networks. In *International Conference on Machine
 Learning*, 2023.

691

692 Andrew J Wathen. Preconditioning. *Acta Numerica*, 2015.

693

694 Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. *Advances in neural
 information processing systems*, 2020.

695

696 Ahmed S Zamzam and Kyri Baker. Learning optimal solutions for extremely fast AC optimal power
 697 flow. In *IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids*, 2020.

698

699 Hongtai Zeng, Chao Yang, Yanzhen Zhou, Cheng Yang, and Qinglai Guo. GLinSAT: The general
 700 linear satisfiability neural network layer by accelerated gradient descent. *Advances in Neural
 Information Processing Systems*, 2024.

701

702	CONTENTS	
703		
704	1 Introduction	1
705		
706	2 Training Hard-Constrained Neural Networks	3
707		
708	2.1 Projection layer	3
709	2.1.1 Forward pass	4
710	2.1.2 Backward pass	5
711	2.2 Loss	5
712	2.3 Network architecture	6
713	2.4 The sharp bits (short version)	6
714		
715		
716	3 Numerical experiments	6
717	3.1 Benchmarks and comparisons with state-of-the-art	6
718	3.2 Π net applied: Multi-vehicle motion planning	8
719		
720	4 Conclusions	10
721		
722	A Toy visual example	18
723		
724	B Additional results	19
725		
726	B.1 A comparison with cvxpylayers.	19
727	B.2 Additional analyses for Section 3.1.	19
728	B.3 Additional details and results for Section 3.2	23
729	B.4 Contextual coverage and long-horizon planning	28
730	B.5 Second order cone constraints.	28
731		
732	C The sharp bits	32
733		
734	C.1 Matrix equilibration	32
735	C.2 Auto-tune procedure	34
736	C.3 Ablations.	34
737	C.4 Why enforcing constraints during training?	36
738	C.5 Π net as an implicit layer	39
739		
740	D Derivation details	40
741		
742	D.1 Derivation of Algorithm 1.	40
743	D.2 Convergence proof of (4).	40
744	D.3 Convergence rates of (4).	40
745	D.4 Derivation of the backward pass	40
746	D.5 Computational complexity of Π net.	41
747		
748		
749	E More examples of constraint sets	43
750		
751	F On the differentiability of the projection layer and the applicability of the implicit function theorem	45
752		
753	F.1 Almost everywhere differentiability	45
754	F.2 Applicability of the implicit function theorem	45
755	F.3 Effectiveness of the backward pass in approximating the gradient	45

756 LIST OF FIGURES
757

758 1	Illustration of the II _{net} architecture. The infeasible output of the <i>backbone</i> network 759 is projected onto the feasible set through an operator splitting scheme. To train the 760 backbone network, we use the implicit function theorem to backpropagate the loss 761 through the projection layer.	1
762 2	Scatter plots of RS and CV on the small and large non-convex problems on the 763 test set. The red dashed lines show the thresholds to consider a candidate solution 764 optimal.	7
765 3	Comparison of the learning curves in terms of average RS and CV on the validation 766 set, on the small and large non-convex problems. The solid lines denote the mean 767 and the shaded area the standard deviation across 5 seeds. The learning curves for 768 JAXopt on the large dataset are reported only in Appendix B because of the orders 769 of magnitude longer training times.	8
770 4	(Top) The II _{net} approach to constrained multi-vehicle motion planning with ar- 771bitrary differentiable objective functions φ . (Bottom) From left to right, we 772 show examples of the synthesized trajectories for 3 different objectives: $\varphi_{\text{left}} =$ 773 effort , $\varphi_{\text{mid}} = \varphi_{\text{left}} + \text{preference}$, $\varphi_{\text{right}} = \varphi_{\text{mid}} + \text{coverage}$. We refer the 774 reader to Appendix B.3 for formal definitions and additional plots.	9
775 5	Scatter plots of RS and CV on the small and large convex problems on the test set. 776 The red dashed lines show the thresholds to consider a candidate solution optimal.	19
777 6	Comparison of the learning curves in terms of average RS and CV on the validation 778 set, on the small and large convex problems. The solid lines denote the mean and the 779 shaded area the standard deviation across 5 seeds. The learning curves for JAXopt 780 on the large dataset are reported in Figure 7 because of the orders of magnitude 781 longer training times.	21
782 7	Comparison of the training times in terms of RS and CV for the different methods in 783 the small and large convex problem setting. The solid lines denote the mean and the 784 shaded area the standard deviation across 10 seeds. Note the different timescale on 785 the large dataset results, due to the large training time of JAXopt.	22
786 8	Comparison of the learning curves in terms of average RS and CV on the validation 787 set, on the small and large non-convex problems. The solid lines denote the mean 788 and the shaded area the standard deviation across 5 seeds.	23
789 9	Scatter plots of RS and CV on the small and large non-convex problems on the 790 test set. The red dashed lines show the thresholds to consider a candidate solution 791 optimal. We superimpose the results of the main text with the ones obtained using 792 more correction steps and a smaller soft penalty in the DC3 algorithm.	23
793 10	Preference and coverage. On the left we depict the landscape of the potential $\psi(\cdot)$ 794 with the working space delimited by the red, dashed rectangle. In the middle we 795 report the image used to compute the coverage score of the trajectory on the right. .	25
796 11	A collection of synthesized 5-vehicles trajectories. Each row relates to a different 797 instance of initial and final configurations, and from left to right we report the gen- 798 erated trajectory with a network trained with $(\lambda, \nu) = (0, 0)$, $(\lambda, \nu) = (1, 0)$ and 799 $(\lambda, \nu) = (1, 1)$, respectively.	26
800 12	A collection of synthesized 15-vehicles trajectories. Each row relates to a different 801 instance of initial and final configurations, and from left to right we report the gen- 802 erated trajectory with a network trained with $(\lambda, \nu) = (0, 0)$, $(\lambda, \nu) = (1, 0)$ and 803 $(\lambda, \nu) = (1, 1)$, respectively.	27
804 13	Examples of resulting trajectories for the experiments in Appendix B.4.	28
805 14	Scatter plots of RS and CV on the second-order cone programs on the test set. The 806 red dashed lines show the thresholds to consider a candidate solution optimal. . . .	30
807 15	Comparison of the learning curves in terms of average RS and CV on the validation 808 set, on the second-order cone programs. The solid lines denote the mean and the 809 shaded area the standard deviation across 5 seeds.	31

810	16	Visualization of the ablation results in Appendix C.3. Scatter plots of RS and CV for the methods on the large non-convex problems on the test set. The red dashed lines show the thresholds that we require to consider a candidate solution optimal.	35
811	17	Comparison of the training times in terms of RS and CV for the different ablation configuration on the large non-convex problem setting. For simplicity, we report the learning curves only for a single seed.	35
812	18	Scatter plot of RS and CV on the small non-convex test problems for a Π net network trained with 50 iterations and evaluated with different numbers of iterations at test time. The red dashed lines indicate the thresholds used to consider a candidate solution optimal.	36
813	19	Scatter plot of RS and CV on the small non-convex test problems for a Π net network trained with different values of σ and (top) 50, (bottom) 100 forward iterations. The red dashed lines indicate the thresholds used to consider a candidate solution optimal.	37
814	20	Scatter plot of RS and CV on the small non-convex test problems for a Π net network trained with different values of ω . The red dashed lines indicate the thresholds used to consider a candidate solution optimal.	37
815	21	Constraint violation for 100 problem instances (light blue) in the test set of the small non-convex benchmark as the number of iterations in the forward pass <code>n_iter_fwd</code> (i.e., <code>n_iter_train</code> increases, as well as the maximum CV among all instances (dark blue).	41
816	22	VJP estimation error (measured via the ℓ_2 -norm of the difference and the cosine similarity) for 100 different vectors v_i instances (light blue) for two different instances of the small non-convex benchmark as the number of iterations in the backward pass <code>n_iter_bwd</code> increases, as well as the maximum ℓ_2 -error and the minimum cosine similarity among all instances (dark blue).	46
817			
818			
819			
820			
821			
822			
823			
824			
825			
826			
827			
828			
829			
830			
831			
832			
833			
834			
835			
836			
837			
838			
839			
840			
841			
842			
843			
844			
845			
846			
847			
848			
849			
850			
851			
852			
853			
854			
855			
856			
857			
858			
859			
860			
861			
862			
863			

864
865

LIST OF TABLES

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

1	Comparison with <code>cvxpylayers</code> on the small, non-convex benchmark. The RS and CV values reported are the averages over the test set.	19
2	Inference time comparison for single-instance and batch (1024 contexts) settings, evaluated on the small and large non-convex problems. The table reports the median, lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime.	20
3	Inference time comparison for single-instance and batch (1024 contexts) settings, evaluated on the small and large convex problems. The table reports the median, lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime. We report results of the <code>Solver</code> (i.e., <code>OSQP</code>) in two modes, normal and parametric labeled with <code>Solver</code> and <code>Solver[†]</code> , respectively. Parametric mode means that we inform <code>OSQP</code> that we are repeatedly solving problems with the same structure, which speeds up solution time by reusing calculations across consecutive calls. We note that this is a feature of <code>OSQP</code> that may or may not be available in other solvers.	20
4	Inference time comparison for single-instance and batch-instance (1024 problems) settings across different methods, evaluated on small and large non-convex problems. The table reports median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime. <code>DC3</code> uses more than the default correction steps.	24
5	Inference time comparison for single-instance and batch-instance (1024 problems) settings across different methods, evaluated on the second-order cone programs. The table reports median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime.	30
6	Inference time comparison for single-instance and batch-instance (1024 problems) settings across different ablation configurations, evaluated on the large non-convex problem. The table reports median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime.	35

918 A TOY VISUAL EXAMPLE
919

920 In this section, we instantiate our method on a very simple and interpretable toy problem: learning
921 to predict the outputs of a model predictive control (MPC) policy (Chen et al., 2018). In high-
922 dimensional scenarios and for long horizons, running MPC in real-time often becomes a compu-
923 tational bottleneck, so learning to predict its outputs—even with minor suboptimality, as long as
924 constraints are still satisfied—can bring substantial benefits (Chen et al., 2018).

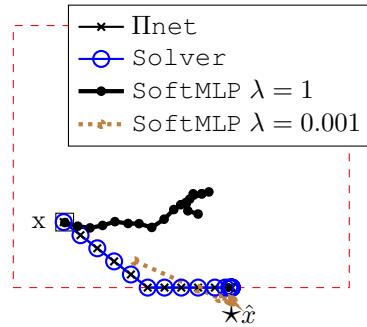
925 **Experimental setting.** We consider a two-dimensional single integrator system, and define an
926 MPC control law given by the solution of
927

$$928 \underset{u_k \in [-1,1]^2}{\text{minimize}} \sum_{k=0}^{N-1} \|x_k - \hat{x}\|^2 + \|u_k\|^2 \quad \text{subject to} \quad x_0 = x, x_{k+1} = x_k + u_k, x_k \in [-10, 10]^2. \quad (10)$$

931 Here, x_k denotes the system state, u_k the control input, and $\hat{x} = [3, -12]$ is a target state. We
932 sample the context (in this case, the initial condition for the MPC), $x = x_0$, uniformly in $[-10, 10]^2$.
933 We deploy Π_{net} to learn the solution of (10) as a function of x . We use a self-supervised loss and
934 the backbone NN is an MLP with two hidden layers of 200 neurons and `relu` activations.

935 **Results.** We superimpose Π_{net} ’s prediction and the solution of (10) given by a `Solver`. Further,
936 to illustrate the importance of *hard* constraints, we also plot the prediction of the same MLP trained
937 with soft constraints, i.e., adding to the loss the term $\lambda(\text{EQCV} + \text{INEQCV})$, where `EQCV` and `INEQCV`
938 is the maximum violation of the equality and inequality constraints, respectively, for two values of
939 λ .

940 We represent \hat{x} with a star, x with a square, and
941 state constraints with a dashed rectangle. We tested
942 the trained network in 1000 instances generated by
943 sampling x uniformly in $[-10, 10]^2$. Π_{net} achieves
944 an average relative suboptimality of approximately
945 0.02%, and constraints satisfied in 100% of problem
946 instances to within a tolerance of 10^{-3} . It is also ap-
947 parent that different values of λ induce different be-
948 haviors: Larger values enforce the constraints at the
949 expense of optimality, smaller values do not enforce
950 constraints.



Method	RS	CV	Single inference time [s]	Batch inference time [s]
cvxpylayers	0.0036	0.00005	0.0120	2.5917
IIinet (CPU)	0.0035	0.00000	0.0052	0.0957
IIinet (GPU)	0.0035	0.00000	0.0065	0.0135

Table 1: Comparison with `cvxpylayers` on the small, non-convex benchmark. The RS and CV values reported are the averages over the test set.

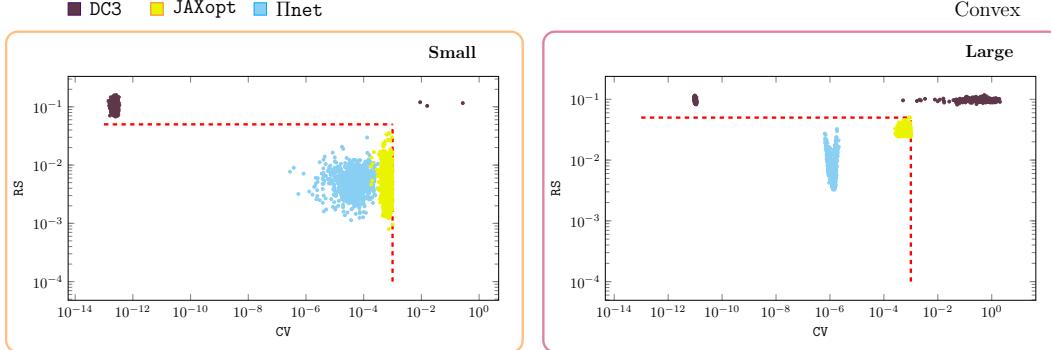


Figure 5: Scatter plots of RS and CV on the small and large convex problems on the test set. The red dashed lines show the thresholds to consider a candidate solution optimal.

B ADDITIONAL RESULTS

In this section, we collect the additional results for Section 3 and the ablation studies on some DC3 hyperparameters.

B.1 A COMPARISON WITH CVXPYLAYERS.

We compare IIinet with `cvxpylayers` on the small non-convex benchmark, and report the results in Table 1. We use `cvxpylayers` as an alternative to our custom projection layer, in an analogous manner to the comparison with `JAXopt` in Section 3.1. Since `cvxpylayers` runs exclusively on the CPU, we report the results of IIinet on both CPU and GPU. In all cases, we provide a training budget of 25 epochs. For `cvxpylayers` this corresponds to roughly 10 minutes of wall-clock time, whereas for IIinet this corresponds to 4 and 28 seconds on the GPU and CPU, respectively. We observe that IIinet attains similar performance in terms of RS and CV, but significantly outperforms `cvxpylayers` in terms of inference and training time. We omit further results with `cvxpylayers`, since `JAXopt` is a more recent and stronger baseline: it implements similar functionalities, but it is executable on the GPU (see Figures 2 and 3, and Table 2).

B.2 ADDITIONAL ANALYSES FOR SECTION 3.1.

Additional results. We report the inference times on the non-convex datasets in Table 2. We report the omitted benchmark results on the small and large convex datasets of Section 3.1 in Figures 5 and 6 and Table 3, which further substantiate our claims. We report the omitted learning curves for `JAXopt` on the large convex and non-convex datasets in Figure 7 and Figure 8, respectively.

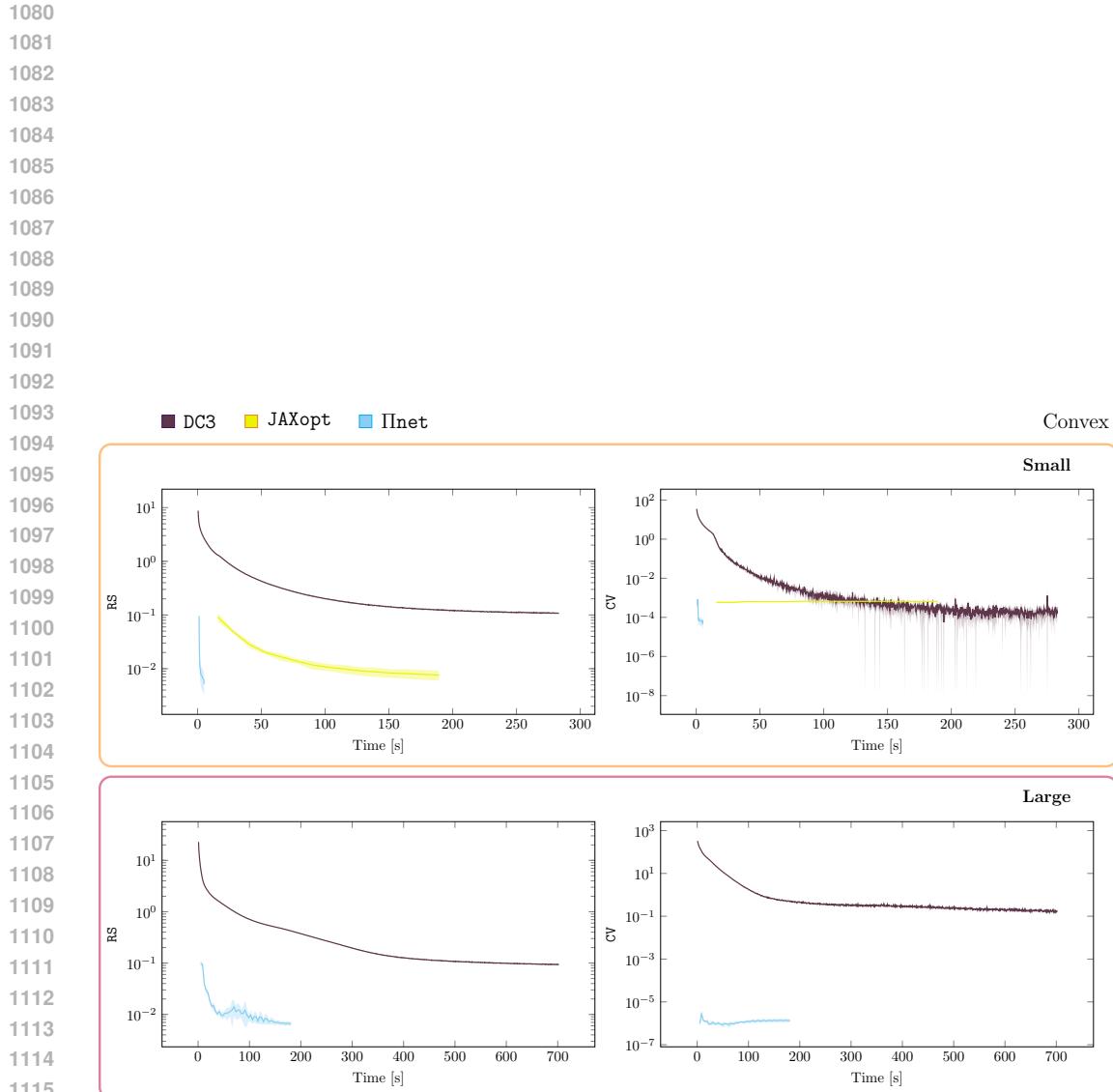
DC3: Hyperparameter ablations. In our benchmarks of Section 3.1, we highlighted two weaknesses in the performance of DC3: (i) in both small and large non-convex problems the RS is unsatisfactory; (ii) in the large non-convex problem the CV is unsatisfactory. We investigated whether these shortcomings can be mitigated by choosing hyperparameters which are different from the defaults. In particular, we tried to address (i) by decreasing the soft penalty parameter for CV in DC3’s loss function from the default 10.0 to 2.0; (ii) by increasing the number of correction steps from the default 10 to 50. We superimpose the obtained RS and CV in Figure 9, and report the inference times in Table 4 (only for the case of more correction steps, since changing the soft penalty does not affect inference times). Importantly, these results show both the lack of a clear decoupling between

Method	Single inference [s]					Batch inference [s]				
	median	LQ	UQ	min	max	median	LQ	UQ	min	max
Non-convex small										
DC3	0.0019	0.0018	0.0019	0.0018	0.0026	0.0020	0.0019	0.0020	0.0019	0.0023
Solver	0.0334	0.0298	0.0497	0.0207	0.1213	41.748	40.200	43.198	36.764	47.149
JAXopt	0.0134	0.0131	0.0136	0.0122	0.0145	0.1371	0.1364	0.1532	0.1357	0.1540
IInet	0.0056	0.0055	0.0056	0.0054	0.0072	0.0130	0.0128	0.0131	0.0123	0.0147
Non-convex large										
DC3	0.0016	0.0016	0.0017	0.0015	0.0046	0.0248	0.0248	0.0248	0.0247	0.0255
Solver	10.159	9.4739	10.807	7.4350	12.612	10720	9538.4	10800	9417.8	16502
JAXopt	0.0578	0.0575	0.0590	0.0559	0.0596	19.430	19.430	19.430	19.429	19.430
IInet	0.0063	0.0063	0.0064	0.0061	0.0092	0.2804	0.2799	0.2807	0.2794	0.2912

Table 2: Inference time comparison for single-instance and batch (1024 contexts) settings, evaluated on the small and large non-convex problems. The table reports the median, lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime.

Method	Single inference [s]					Batch inference [s]				
	median	LQ	UQ	min	max	median	LQ	UQ	min	max
Convex small										
DC3	0.0033	0.0032	0.0033	0.0031	0.0050	0.0033	0.0033	0.0034	0.0032	0.0044
Solver	0.0019	0.0018	0.0019	0.0011	0.0083	1.9350	1.9264	1.9441	1.8931	2.0282
Solver [†]	0.0006	0.0006	0.0006	0.0006	0.0024	0.6190	0.6168	0.6217	0.6100	0.6746
JAXopt	0.0142	0.0138	0.0150	0.0124	0.0165	0.1603	0.1590	0.1648	0.1581	0.1794
IInet	0.0055	0.0055	0.0056	0.0053	0.0060	0.0130	0.0128	0.0130	0.0125	0.0136
Convex large										
DC3	0.0072	0.0072	0.0073	0.0071	0.0115	0.0349	0.0349	0.0351	0.0348	0.0369
Solver	0.6660	0.6613	0.6716	0.3159	0.7079	680.59	676.24	682.52	662.29	687.84
Solver [†]	0.0603	0.0589	0.0620	0.0466	0.9501	62.022	61.591	62.558	60.064	70.987
JAXopt	0.0630	0.0623	0.0641	0.0601	0.0668	21.504	21.504	21.505	21.504	21.505
IInet	0.0063	0.0063	0.0064	0.0061	0.0145	0.2800	0.2797	0.2804	0.2794	0.2851

Table 3: Inference time comparison for single-instance and batch (1024 contexts) settings, evaluated on the small and large convex problems. The table reports the median, lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime. We report results of the Solver (i.e., OSQP) in two modes, normal and parametric labeled with Solver and Solver[†], respectively. Parametric mode means that we inform OSQP that we are repeatedly solving problems with the same structure, which speeds up solution time by reusing calculations across consecutive calls. We note that this is a feature of OSQP that may or may not be available in other solvers.



1118 Figure 6: Comparison of the learning curves in terms of average RS and CV on the validation set,
1119 on the small and large convex problems. The solid lines denote the mean and the shaded area the
1120 standard deviation across 5 seeds. The learning curves for JAXopt on the large dataset are reported
1121 in Figure 7 because of the orders of magnitude longer training times.

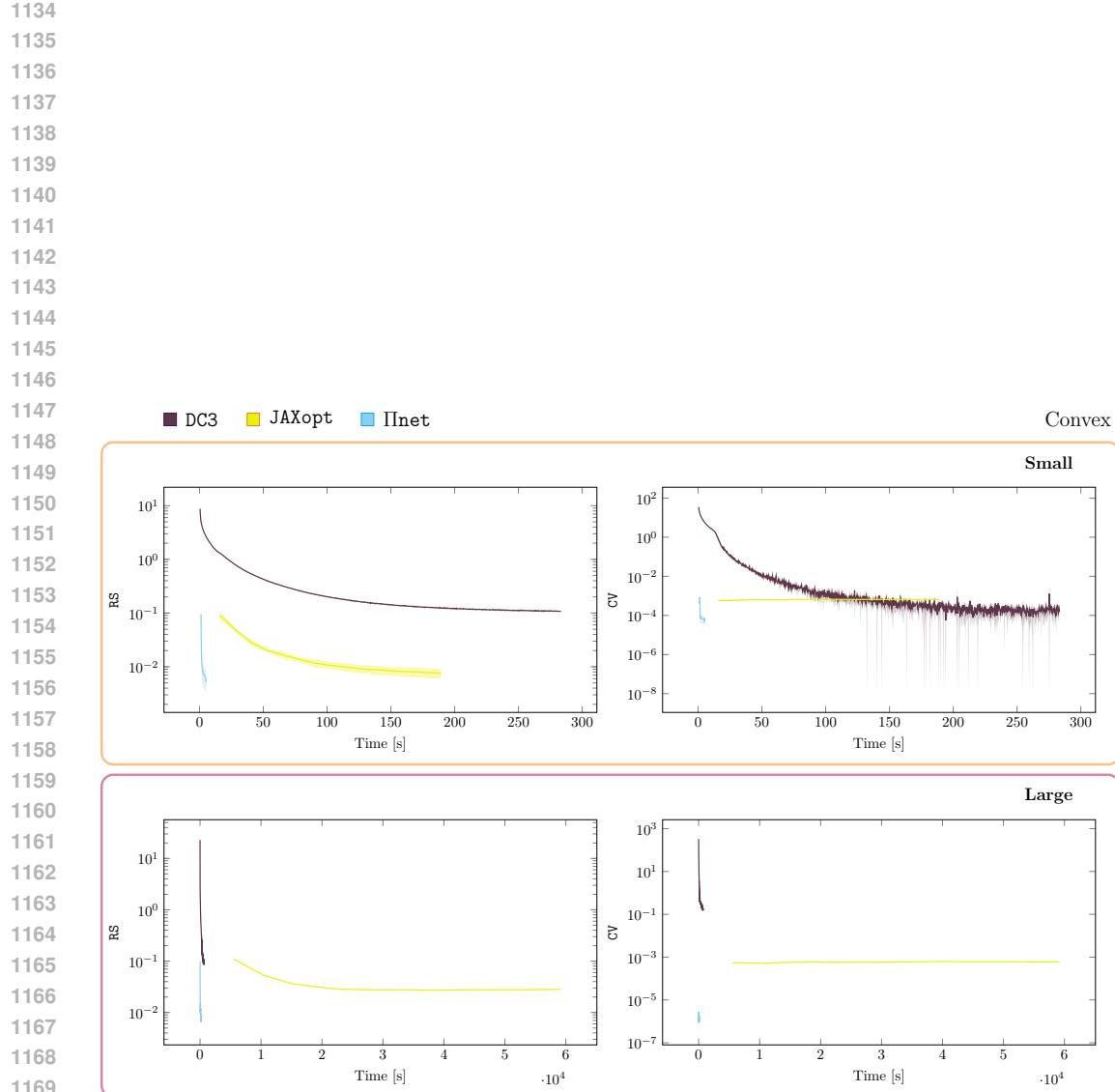


Figure 7: Comparison of the training times in terms of RS and CV for the different methods in the small and large convex problem setting. The solid lines denote the mean and the shaded area the standard deviation across 10 seeds. Note the different timescale on the large dataset results, due to the large training time of JAXopt.

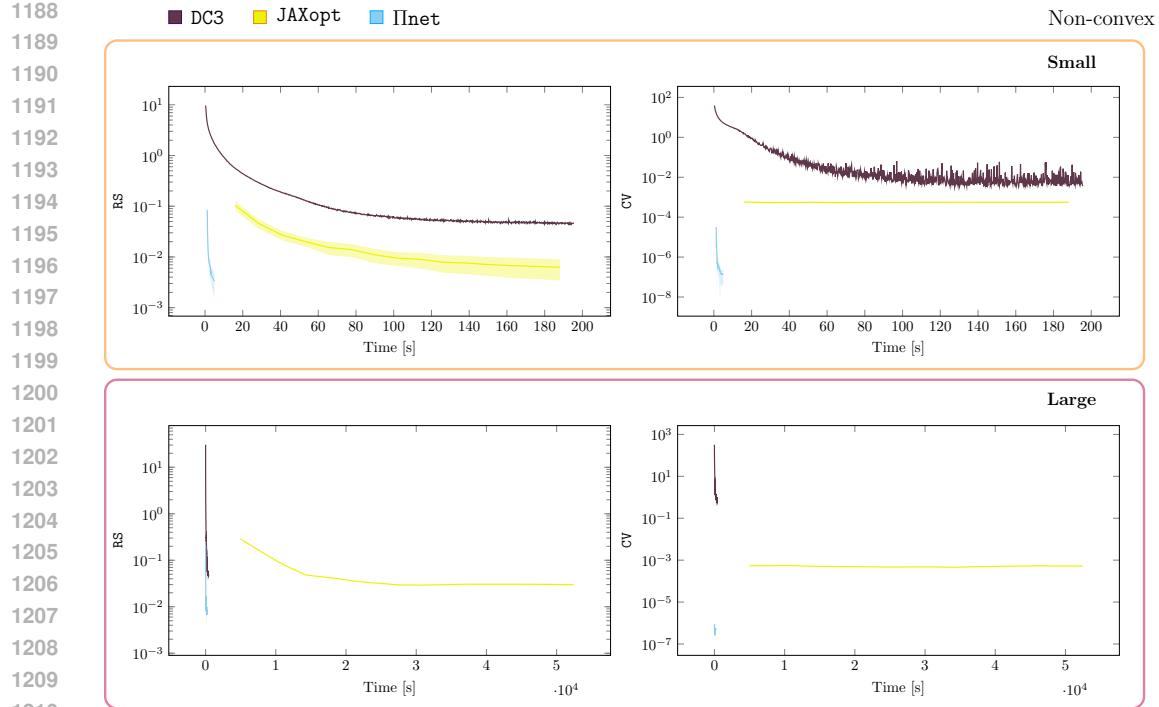


Figure 8: Comparison of the learning curves in terms of average RS and CV on the validation set, on the small and large non-convex problems. The solid lines denote the mean and the shaded area the standard deviation across 5 seeds.

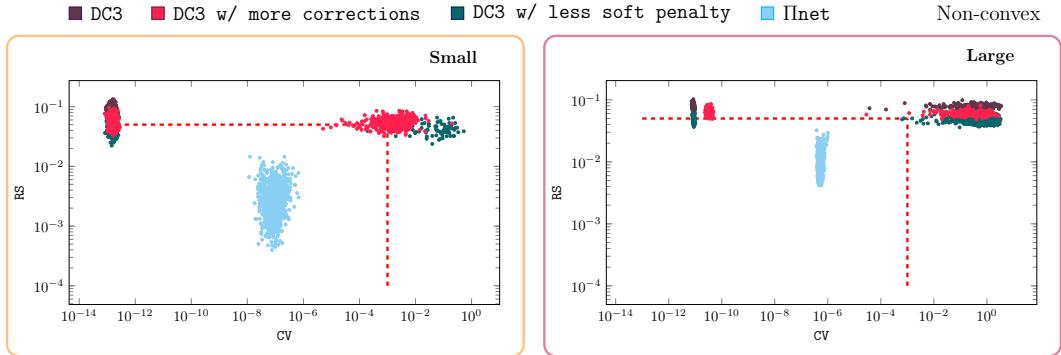


Figure 9: Scatter plots of RS and CV on the small and large non-convex problems on the test set. The red dashed lines show the thresholds to consider a candidate solution optimal. We superimpose the results of the main text with the ones obtained using more correction steps and a smaller soft penalty in the DC3 algorithm.

the various parameters of the DC3 algorithm and the advantages of our projection scheme; see also Appendix C.

B.3 ADDITIONAL DETAILS AND RESULTS FOR SECTION 3.2

We detail the problem setup for the multi-vehicle motion planning application in Section 3.2 and present additional results. Recall that we denote with $p_i[t] \in \mathbb{R}^m$ the generalized coordinates of vehicle i at the discrete times $t \in \{1, \dots, T+1\}$, and with $v_i[t]$ and $a_i[t]$ its generalized velocity and acceleration. Its simple discretized dynamics read $v_i[t+1] = v_i[t] + ha_i[t]$, $p_i[t+1] =$

Method	Single inference [s]					Batch inference [s]				
	median	LQ	UQ	min	max	median	LQ	UQ	min	max
Non-convex small										
DC3	0.0080	0.0080	0.0080	0.0079	0.0087	0.0081	0.0081	0.0082	0.0081	0.0083
Solver	0.9724	0.6925	1.4587	0.3562	3.6359	1258.8	1243.8	1264.3	1185.2	1299.0
IIInet	0.0056	0.0055	0.0056	0.0054	0.0072	0.0130	0.0128	0.0131	0.0123	0.0147
Non-convex large										
DC3	0.0070	0.0069	0.0073	0.0068	0.0105	0.1177	0.1177	0.1177	0.1176	0.1180
Solver	6.8153	6.7161	6.9636	6.2371	12.046	6991.4	6986.1	7498.7	6964.0	7523.3
IIInet	0.0063	0.0063	0.0064	0.0061	0.0092	0.2804	0.2799	0.2807	0.2794	0.2912

Table 4: Inference time comparison for single-instance and batch-instance (1024 problems) settings across different methods, evaluated on small and large non-convex problems. The table reports median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime. DC3 uses more than the default correction steps.

$p_i[t] + h v_i[t] + \frac{h^2}{2} a_i[t]$. We have constraints on each of these variables and, thus, we consider as optimization variable $y = [p^\top \ v^\top \ a^\top]^\top$, with

$$\begin{aligned} p &= [p_1[0]^\top \ \cdots \ p_N[0]^\top \ \cdots \ p_1[T]^\top \ \cdots \ p_N[T]^\top]^\top, \\ v &= [v_1[0]^\top \ \cdots \ v_N[0]^\top \ \cdots \ v_1[T]^\top \ \cdots \ v_N[T]^\top]^\top, \\ a &= [a_1[0]^\top \ \cdots \ a_N[0]^\top \ \cdots \ a_1[T-1]^\top \ \cdots \ a_N[T-1]^\top], \end{aligned}$$

where N is the number of vehicles. Below, we use $m = 2$. We want the network to generate trajectories that go from a given set of initial positions $\bar{p}_1[0], \dots, \bar{p}_N[0]$ to a set of final positions $\bar{p}_1[T+1], \dots, \bar{p}_N[T+1]$. This is the *context* of the optimization problem, i.e.,

$$x = [\bar{p}_1[0]^\top \ \cdots \ \bar{p}_N[0]^\top \ \cdots \ \bar{p}_1[T+1]^\top \ \cdots \ \bar{p}_N[T+1]^\top]^\top.$$

The constraints on the system are:

- *Dynamic constraints.* The optimization variables p, v, a are related by the system dynamics, via an equality constraint of the type $A_{\text{dyn}}y = 0$.
- *Initial and final positions constraints.* We ensure that the optimal y satisfies the given initial and terminal position constraints via the equality constraint $A_{\text{if}}y = b(x)$. Importantly, we observe that the context affects the constraint via the vector $b(x)$, which in this case is simply x .
- *Workspace, velocity and acceleration constraints.* These constraints impose box constraints $l_p \leq p \leq u_p, l_v \leq v \leq u_v, l_a \leq a \leq u_a$.
- *Jerk constraints.* Jerk constraints limit how abrupt the change in accelerations can be. These are affine inequality constraints of the type $l \leq (a_i[t+1] - a_i[t])/h \leq u$, which we can compactly write as $l_{\text{jerk}} \leq Cy \leq u_{\text{jerk}}$ for appropriate $C, l_{\text{jerk}}, u_{\text{jerk}}$.

The objective is to minimize

$$\varphi(y) = \text{effort}(y) + \lambda \cdot \text{preference}(y) + \nu \cdot \text{coverage}(y)$$

where $\text{effort}(y)$ describes the input effort of the solution y , $\text{preference}(y)$ describes the fitness of y with respect to a spatial potential ψ , and $\text{coverage}(y)$ describes the fraction of the workspace that the agents cover over time, and $\lambda, \nu \geq 0$ are tuning parameters. In our experiment, we use them as binary variables to show the effects of adding certain terms to the objective function. The different terms are defined as follows:

- *Input effort* (effort). The input effort is

$$\text{effort}(y) = \sum_{i=1}^N \sum_{t=0}^{T-1} \|a_i[t]\|^2.$$

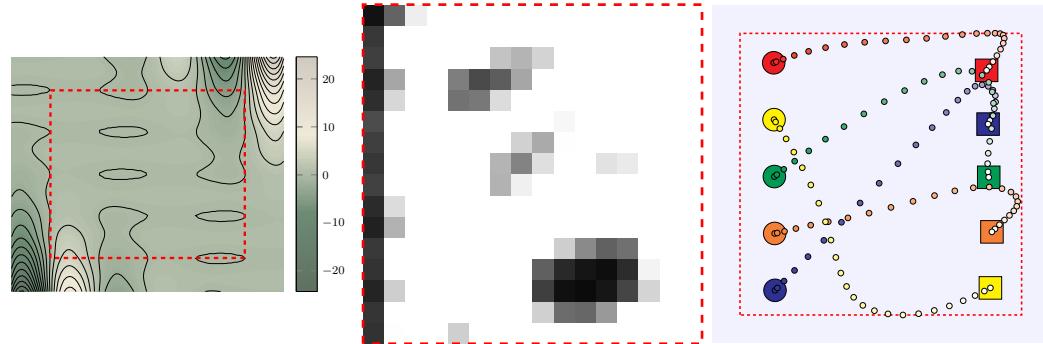


Figure 10: Preference and coverage. On the left we depict the landscape of the potential $\psi(\cdot)$ with the working space delimited by the red, dashed rectangle. In the middle we report the image used to compute the coverage score of the trajectory on the right.

- *Individual contribution* (preference). Each vehicle tries to minimize the cumulative value along the path of the scaled Ishigami potential (Terpin et al., 2024b)

$$\psi\left(\frac{z}{1.25}\right) = 0.05 \left(\sin(z_1) + 7 \sin(z_2)^2 + \frac{1}{10} \left(\frac{z_1 + z_2}{2} \right)^4 \sin(z_1) \right),$$

depicted on the left of Figure 10. That is,

$$\text{preference}(y) = \sum_{i=1}^N \sum_{t=0}^T \psi(p_i[t]).$$

- *Fleet contribution* (coverage). We define the coverage over time as the fraction of the space $[(p_{\min})_1, (p_{\max})_1] \times [(p_{\min})_2, (p_{\max})_2]$ the vehicles sweep over during their trajectory. We map the position of the i^{th} vehicle into a continuous pixel-space of size $H \times W = 16 \times 16$ via

$$u_i = \frac{(p_i[t])_1 - (p_{\min})_1}{(p_{\max})_1 - (p_{\min})_1} W, \quad v_i = H - \frac{(p_i[t])_2 - (p_{\min})_2}{(p_{\max})_2 - (p_{\min})_2} H.$$

On each pixel (u, v) we place a bivariate Gaussian

$$G_i(u, v) = A \exp \left(-\frac{1}{2(1-\rho^2)} \left[\frac{(u-u_i)^2}{\sigma_x^2} + \frac{(v-v_i)^2}{\sigma_y^2} - \frac{2\rho(u-u_i)(v-v_i)}{\sigma_x \sigma_y} \right] \right),$$

where $A = 200$, $\sigma_x = \sigma_y = 1$, $\rho = 0$ are hyperparameters. We sum (and clip) the N kernels to obtain a coverage image,

$$I(u, v) = \min \left(\sum_{i=1}^N G_i(u, v), 255 \right).$$

We display I for a sampled trajectory in Figure 10. Finally, the coverage score is computed as

$$\text{coverage}(y) = -\frac{1}{HW} \sum_{p=1}^H \sum_{q=1}^W \frac{I(p, q)}{255},$$

measuring the fraction of pixels covered by the Gaussian footprints in a differentiable manner.

Overall, the optimization problem reads:

$$\underset{y \in \mathbb{R}^d}{\text{minimize}} \quad \varphi(y) \quad \text{subject to} \quad \begin{bmatrix} A_{\text{if}} \\ A_{\text{dyn}} \end{bmatrix} y = \begin{bmatrix} b(x) \\ 0 \end{bmatrix}, \quad \begin{bmatrix} l_p \\ l_v \\ l_a \end{bmatrix} \leq y \leq \begin{bmatrix} u_p \\ u_v \\ u_a \end{bmatrix}, \quad l_{\text{jerk}} \leq Cy \leq u_{\text{jerk}}.$$

In Figures 11 and 12 we report various trajectories generated with Π_{net} with different number of vehicles $N \in \{5, 15\}$ and horizon $T = 25$. These additional qualitative results show the effectiveness of Π_{net} in synthesizing trajectories that optimize non-convex, fleet-level preferences also for large fleets and long horizons: in the largest setting reported here, there are $n = 3030$ optimization variables ($d = 2280$).

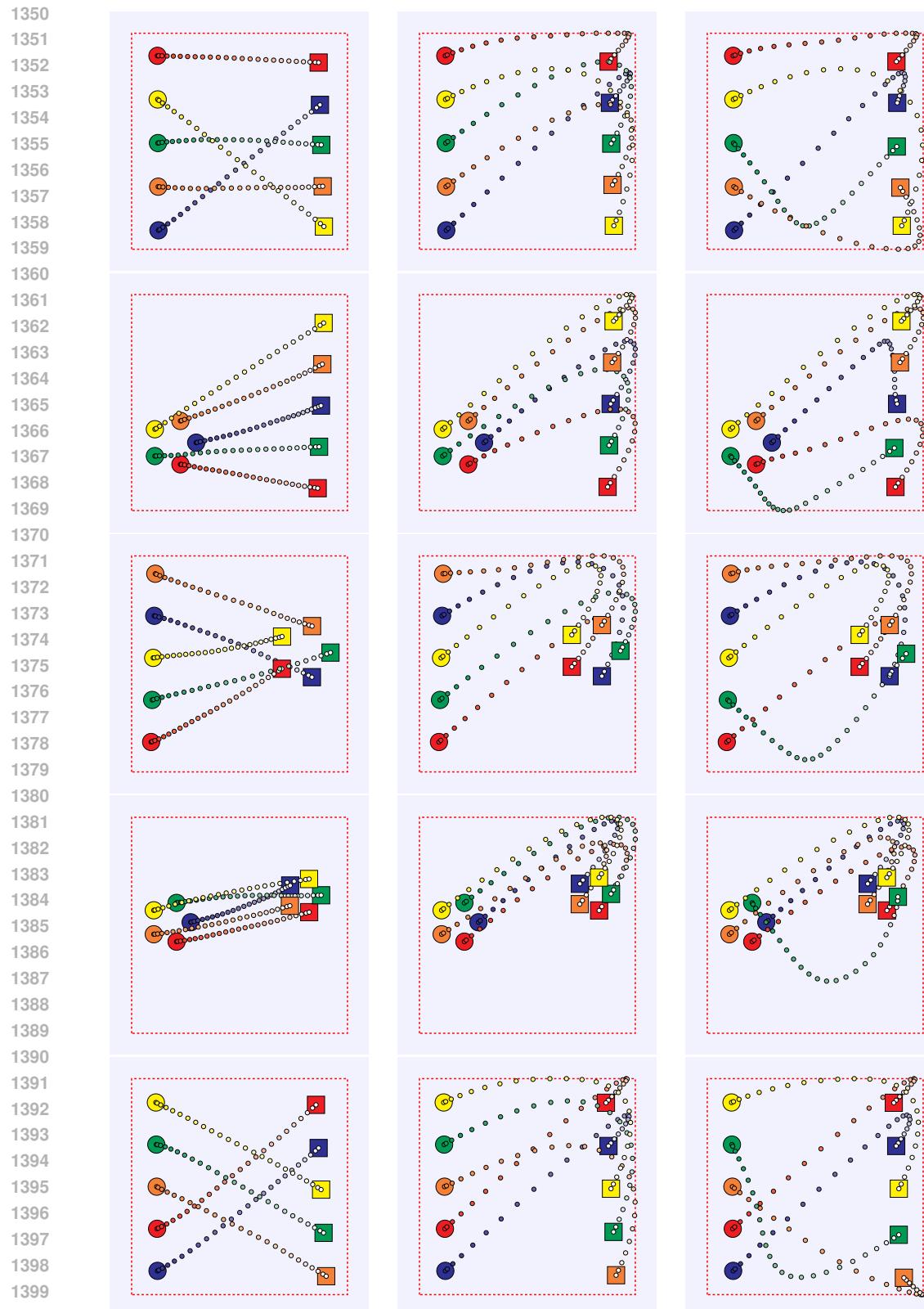


Figure 11: A collection of synthesized 5-vehicles trajectories. Each row relates to a different instance of initial and final configurations, and from left to right we report the generated trajectory with a network trained with $(\lambda, \nu) = (0, 0)$, $(\lambda, \nu) = (1, 0)$ and $(\lambda, \nu) = (1, 1)$, respectively.

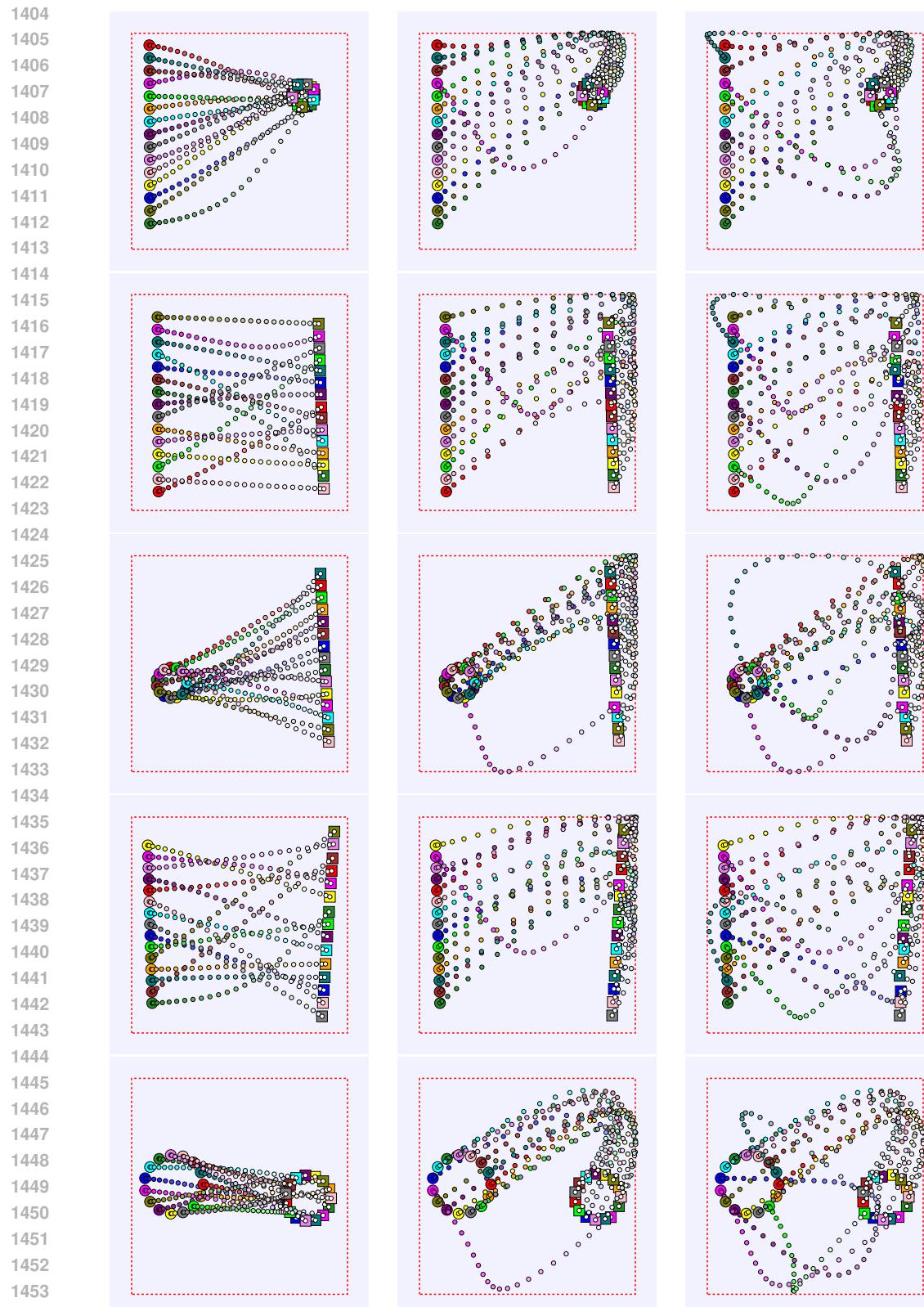


Figure 12: A collection of synthesized 15-vehicles trajectories. Each row relates to a different instance of initial and final configurations, and from left to right we report the generated trajectory with a network trained with $(\lambda, \nu) = (0, 0)$, $(\lambda, \nu) = (1, 0)$ and $(\lambda, \nu) = (1, 1)$, respectively.

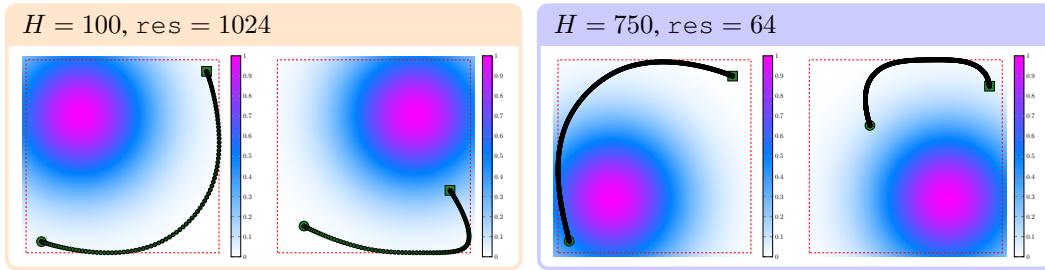


Figure 13: Examples of resulting trajectories for the experiments in Appendix B.4.

1470 B.4 CONTEXTUAL COVERAGE AND LONG-HORIZON PLANNING

1471 Building on top of the trajectory planning application, we provide some preliminary evidence that
 1472 Π net is capable of handling:

- 1474 1. very high-dimensional context size (in the millions of variables); and
- 1475 2. a large number of optimization variables and constraints (in the tens of thousands).

1476 For this, we focus on a single vehicle with the same constraints as in the previous section, increase
 1477 the horizon length, and consider as cost function the average along the trajectory of the value as-
 1478 signed (via bilinear interpolation) to the position of the vehicle by a discrete map m of resolution
 1479 $\text{res} \times \text{res}$. Thus, the context x corresponds to the initial and final location as well as the map m .
 1480 We generate the map m by sampling uniformly at random one of four locations

$$1481 c \in \{(-2.5, -2.5), (-2.5, 2.5), (2.5, -2.5), (2.5, 2.5)\}.$$

1482 Then, the $\text{res} \times \text{res}$ pixels comprising the map m correspond to a uniform discretization of the grid
 1483 $[-5, 5] \times [-5, 5]$, with values resulting from a gaussian with center c and a standard deviation of 2.
 1484 This simple construction (in the sense that the single parameter controlling the map m is which c was
 1485 used) allows to test how Π net deals with backbone networks that have as input high-dimensional
 1486 contexts, while keeping fixed the number of optimization variables.

1487 For this, we use a convolutional neural network with three layers, 16 features and downsampling
 1488 factor D for each layer, followed by a linear layer and a softmax, resulting in 4 logits. These are
 1489 appended to the vector input (the initial and final positions) as input to the same MLP used in the
 1490 previous experiments. We note that the convolutional neural network and the MLP are trained jointly
 1491 as the backbone of Π net. We consider two cases:

- 1493 1. $H = 100$, $\text{res} = 1024$, $D = 4$. In this case, we evaluate if Π net enables training end-to-
 1494 end of neural networks with constraints even when the context is very high-dimensional (for a
 1495 comparison, Donti et al. (2021) consider a context of dimension 50).
- 1496 2. $H = 750$, $\text{res} = 64$, $D = 2$. In this case, we evaluate Π net for a context of size similar
 1497 to that typical of, e.g., reinforcement learning settings and a number of optimization variables
 1498 and constraints two orders of magnitude larger than state-of-the-art parametric optimization
 1499 algorithms (for instance, Donti et al. (2021) consider 100 optimization variables, and 50 equality
 1500 and inequality constraints).

1501 In both settings, Π net successfully learns to solve the planning task, as qualitatively shown in
 1502 Figure 13. Despite the simplicity of the maps used, we believe that these examples show the promise
 1503 of using Π net for high-dimensional optimization problems with very large contexts.

1504 B.5 SECOND ORDER CONE CONSTRAINTS.

1505 In this section, we provide evidence that Π net can be used to solve parametric problems with
 1506 second-order cone constraints. By doing so, we also elaborate on how one can introduce additional
 1507 constraint types into Π net effortlessly.

1508 **Experimental setup.** We focus on problems of the form:

$$1511 \underset{y=(y_1, y_2)}{\text{minimize}} \quad c^\top y_1 \quad \text{subject to} \quad Ay_1 + y_2 = b, \quad y_2 \in \mathcal{K}'_1, \quad (11)$$

1512 where $A \in \mathbb{R}^{d_2 \times d_1}$, $c, y_1 \in \mathbb{R}^{d_1}$, $y_2, b \in \mathbb{R}^{d_2}$, $\mathcal{K}'_1 = \{y_2 \in \mathbb{R}^{d_2} \mid \|y_{2,:-1}\|_2 \leq y_{2,-1}\}$ is a second-
 1513 order cone, and $y_{2,:-1}$ denotes the first $d_2 - 1$ entries of y_2 , and $y_{2,-1}$ the last one. We make the
 1514 following two observations:

1515

- 1516 • First, the feasible set is non-linear and possibly unbounded. Thus, methods like GLinSAT (Zeng
 1517 et al., 2024) are not applicable.
- 1518 • Second, one cannot train an unconstrained network and then apply the projection layer, since the
 1519 optimization objective is linear and, thus, the network would diverge. See also Appendix C.4.

1520 To generate the problem data, we follow the procedure described by O’donoghue et al. (2016, Section
 1521 6.6), reported here for completeness and to clarify the elements of the random parametric prob-
 1522 lems we consider. First, we generate a random matrix $A \in \mathbb{R}^{d_2 \times d_1}$ sampling uniformly at random
 1523 in $[-1, 1]^{d_2 \times d_1}$. The matrix A is fixed for all the problems of a training run, i.e., it is not a con-
 1524 text/context parameter of the problem. In other words, A is context-independent. We repeat each experiment
 1525 for 100 different seeds, to ensure that the results are analogous irrespectively of the matrix A . Given
 1526 A , we generate a batch of B problems as follows:

1527

- 1528 1. We sample B random vectors z uniformly in $[-1, 1]^{d_2}$ and B random primal solutions $y_1^* \in \mathbb{R}^{d_1}$.
- 1529 2. We project z onto the second-order cone to obtain $y_2^* = \Pi_{\mathcal{K}'_1}(z)$.
- 1530 3. We set $b = Ay_1^* + y_2^*$ and $c = -A^\top(y_2^* - z)$.

1532 The optimal value of the problem is then given by $c^\top y_1^*$, and the context x (i.e., the input to the
 1533 NN), is $x = (b, c)$. For Π_{net} , we employ the same MLP used in Appendix A followed by the
 1534 Π_{net} projection layer, so that the optimal output should yield $\hat{y} = (\hat{y}_1, \hat{y}_2)$ with $c^\top \hat{y}_1 \approx c^\top y_1^*$.
 1535 For the experiments in this section, we use $(d_1, d_2) \in \{(25, 25), (500, 500)\}$ (we refer to these
 1536 configurations as small and large, respectively) and $B = 128$. We train the network for 1000 epochs
 1537 with a different batch at each epoch, and then generate an additional one for evaluation at the end
 1538 of the training, on which we calculate the statistics. We compare the performances of our method
 1539 against:

1540

- 1541 • `cvxpylayers` Agrawal et al. (2019), which we use as a replacement of our custom projection
 1542 layer. This is the same procedure we adopted in Section 3.1 for `JAXopt`. Here, we consider
 1543 `cvxpylayers` because `JAXopt` does not support second-order cone constraints.
- 1544 • `SCS` O’donoghue et al. (2016), a traditional first-order solver for second-order cone programs. To
 1545 make our comparison with `SCS` as fair and comprehensive as possible, we perform two bench-
 1546 marks. On one, we interface `SCS` through the very popular parser `CVXPY` (Diamond & Boyd,
 1547 2016) using its Disciplined Parametrized Programming functionality, as many users would do. On
 1548 the other benchmark, we interface `SCS` directly and exploited its native parametric programming
 1549 functionality, as more advanced users would.

1550 **Remark.** It is important to note that with these benchmarks we are exploiting the full paramet-
 1551 ric capabilities of existing solvers, which is not always the case by end-users or even other hard-
 1552 constrained NN benchmarks.

1553 Similarly to the linearly-constrained benchmarks in Section 3.1, we consider learning curves, RS,
 1554 CV, and inference times.

1555 **Integrating (11) into Π_{net} .** Equivalently, we can write (11) as:

1556

$$\underset{y}{\text{minimize}} \quad [c^\top \ 0] y \quad \text{subject to} \quad [A \ I] y = b, \quad y \in \mathcal{K}_1, \quad (12)$$

1559 with $\mathcal{K}_1 = \mathbb{R}^n \times \mathcal{K}'_1$, \mathcal{K}'_1 being the second-order cone, and without \mathcal{K}_2 since we do not use any
 1560 auxiliary variable (i.e., $n = d = d_1 + d_2$). We recall here that \mathcal{K}_1 and \mathcal{K}_2 refer to the problem
 1561 formulation in Section 2.1. In view of Appendix E, this amounts to a lifted formulation of second-
 1562 order cones and is thus without loss of generality. Now, (12) is in our standard formulation and we
 1563 can apply Algorithm 1. In particular, with the notation used in Algorithm 1, we only need to define
 1564 the projection

1565

$$t_{k+1} = \Pi_{\mathcal{K}_1} \left(\frac{2z_{k+1,1} - s_{k,1} + 2\sigma y_{\text{raw},1}}{1 + 2\sigma} \right).$$

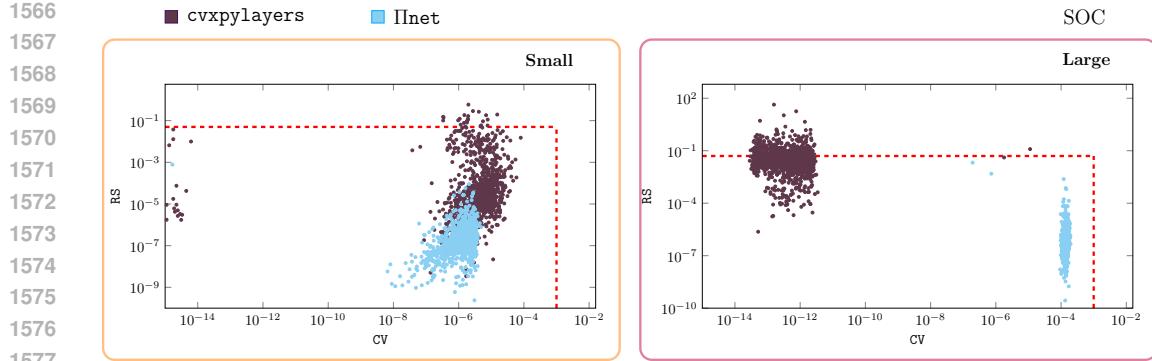


Figure 14: Scatter plots of RS and CV on the second-order cone programs on the test set. The red dashed lines show the thresholds to consider a candidate solution optimal.

Method	Single inference [s]					Batch inference [s]				
	median	LQ	UQ	min	max	median	LQ	UQ	min	max
Small second-order cone programs										
CVXPY	0.00076	0.00074	0.00078	0.00071	0.00084	0.59085	0.58784	0.59399	0.57668	0.70665
SCS	0.00005	0.00004	0.00005	0.00004	0.00005	0.04612	0.04580	0.04652	0.04483	0.04926
cvxpylayers	0.00857	0.00813	0.01270	0.00706	0.06567	1.82553	1.68570	4.47413	1.65853	5.73859
IInet	0.00905	0.00884	0.00928	0.00848	0.01137	0.02265	0.02245	0.02292	0.02202	0.02415
Large second-order cone programs										
CVXPY	0.06721	0.06658	0.06743	0.06578	0.06899	62.70289	62.65441	62.76826	62.46146	63.31168
SCS	0.01072	0.01049	0.01078	0.00976	0.01155	10.97265	10.80431	11.10839	10.68313	26.18852
cvxpylayers	2.36724	2.29826	2.41810	2.18466	4.04885	342.35211	341.85465	343.06660	341.65177	344.11561
IInet	0.01219	0.01187	0.01356	0.01113	0.04383	0.90982	0.90932	0.91134	0.90844	0.94499

Table 5: Inference time comparison for single-instance and batch-instance (1024 problems) settings across different methods, evaluated on the second-order cone programs. The table reports median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime.

Denoting with $t_{k+1,:d_1}, z_{k+1,1,:d_1}, s_{k,1,:d_1}, y_{\text{raw},:d_1}$ the first d_1 entries of the vectors $t_{k+1}, z_{k+1,1}, s_{k,1}, y_{\text{raw},1}$ and with $t_{k+1,d_1:}, z_{k+1,1,d_1:}, s_{k,1,d_1:}, y_{\text{raw},d_1:}$ the remaining d_2 entries, we have

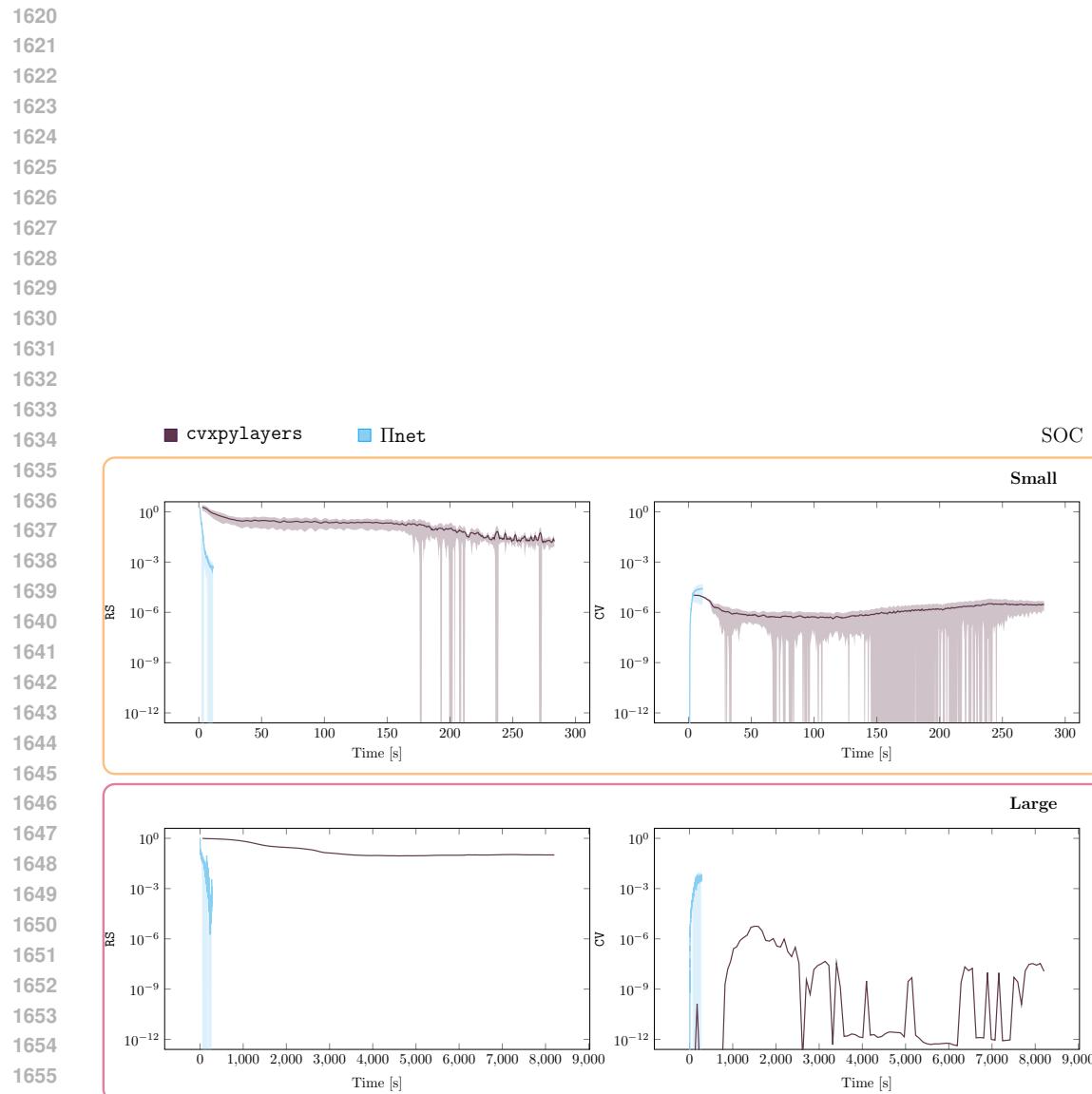
$$t_{k+1,:d_1} = \frac{2z_{k+1,1,:d_1} - s_{k,1,:d_1} + 2\sigma y_{\text{raw},1,:d_1}}{1 + 2\sigma} \quad \text{and}$$

$$t_{k+1,d_1:} = \Pi_{\mathcal{K}'_1} \left(\frac{2z_{k+1,2,d_1:} - s_{k,2,d_1:} + 2\sigma y_{\text{raw},2,d_1:}}{1 + 2\sigma} \right).$$

The projection $\Pi_{\mathcal{K}'_1}(\cdot)$ onto the second-order cone admits a closed form expression; see, e.g., the work of Busseti et al. (2019).

Results. In Figure 14 we report the RS and CV for each problem instance in the test set. Analogously to the linearly constrained benchmarks in Section 3.1, we consider a candidate solution to be optimal if the condition $\text{CV} \leq 10^{-3}$ and $\text{RS} \leq 5\%$ is satisfied. We report training curves in Figure 15 and inference times in Table 5.

Compared to cvxpylayers, IInet can train and perform inference significantly faster, even orders of magnitude for large problems. Moreover, IInet provides solutions with both lower RS and CV. Compared to SCS, IInet is faster at inference for a batch of small problems, and both a single and a batch of large problems. Instead, SCS is faster for single small problems.



1658 **Figure 15: Comparison of the learning curves in terms of average RS and CV on the validation set, on**
 1659 **the second-order cone programs. The solid lines denote the mean and the shaded area the standard**
 1660 **deviation across 5 seeds.**

1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 **C THE SHARP BITS**
16751676 Numerical optimization is an art of details, and this section describes the sharp bits of Π_{net} , which
1677 are fundamental to make HCNNs work reliably.
16781679 **C.1 MATRIX EQUILIBRATION**
16801681 The precision and convergence rates of both the forward (Section 2.1.1) and backward (Sec-
1682 tion 2.1.2) passes in our projection layer are heavily influenced, via (4a) and (9), by the *condition*
1683 *number* of the matrix $A(x)$ in the equality constraint $A(x) \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} = b(x)$ (Wathen, 2015). The con-
1684 dition number of a matrix A (we drop the dependency on x for clarity of exposition) is defined as the
1685 ratio of its maximum singular value to its minimum singular value, and the procedure of *decreasing*
1686 this ratio for improving numerical performance is called *preconditioning* or *equilibration*.
16871688 To achieve this, we seek a *diagonal scaling* (Wathen, 2015). The idea is that to solve $A \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} = b$,
1689 one can instead solve $D_r A D_c \begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} = D_r b$ for invertible matrices $D_r \in \mathbb{R}^{m \times m}, D_c \in \mathbb{R}^{n \times n}$
1690 and recover the solution as $\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} = D_c \begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix}$. We implement a modified version of Ruiz’s equi-
1691 libration (Wathen, 2015) which is outlined in Algorithm 4. In our numerical experiments we use
1692 $K = 25, \varepsilon = 10^{-3}$ and the Gauss-Seidel update mode.
16931694

1695 **ALGORITHM 4. Modified Ruiz’s equilibration**

16961697 **Inputs:** $A \in \mathbb{R}^{m \times n}$, maximum iterations K , tolerance ε , update mode (Gauss-Seidel or Jacobi)
1698 $D_r \leftarrow I_m, D_c \leftarrow I_n$
1699 $A_{\text{scaled}} \leftarrow A$
1700 **For** $k = 1$ **to** K :
1701 **If** Gauss-Seidel update:
1702 Compute row norms $d_{r,i} = \|(A_{\text{scaled}})_{i,:}\|_2$ for all i
1703 $D_r \leftarrow \text{diag}(1/\sqrt{d_{r,1}}, \dots, 1/\sqrt{d_{r,m}}) \cdot D_r$
1704 $A_{\text{scaled}} \leftarrow \text{diag}(1/\sqrt{d_{r,1}}, \dots, 1/\sqrt{d_{r,m}}) \cdot A_{\text{scaled}}$
1705 Compute column norms $d_{c,i} = \|(A_{\text{scaled}})_{:,i}\|_2$ for all i
1706 $D_c \leftarrow D_c \cdot \text{diag}(1/\sqrt{d_{c,1}}, \dots, 1/\sqrt{d_{c,n}})$
1707 $A_{\text{scaled}} \leftarrow A_{\text{scaled}} \cdot \text{diag}(1/\sqrt{d_{c,1}}, \dots, 1/\sqrt{d_{c,n}})$
1708 **Else:**
1709 Compute row norms $d_{r,i} = \|(A_{\text{scaled}})_{i,:}\|_2$ for all i
1710 Compute column norms $d_{c,i} = \|(A_{\text{scaled}})_{:,i}\|_2$ for all i
1711 $D_r \leftarrow \text{diag}(1/\sqrt{d_{r,1}}, \dots, 1/\sqrt{d_{r,m}}) \cdot D_r$
1712 $D_c \leftarrow D_c \cdot \text{diag}(1/\sqrt{d_{c,1}}, \dots, 1/\sqrt{d_{c,n}})$
1713 $A_{\text{scaled}} \leftarrow \text{diag}(1/\sqrt{d_{r,1}}, \dots, 1/\sqrt{d_{r,m}}) \cdot A_{\text{scaled}} \cdot \text{diag}(1/\sqrt{d_{c,1}}, \dots, 1/\sqrt{d_{c,n}})$
1714 Compute row norms $d_{r,i} = \|(A_{\text{scaled}})_{i,:}\|_2$ for all i
1715 Compute column norms $d_{c,i} = \|(A_{\text{scaled}})_{:,i}\|_2$ for all i
1716 **If** $(1 - \min(d_{r,i}) / \max(d_{r,i})) < \varepsilon$ and $(1 - \min(d_{c,i}) / \max(d_{c,i})) < \varepsilon$:
1717 **Return** D_r, D_c
1718 **Return** D_r, D_c
1719

17201721 Next, we describe how the matrix equilibration affects the Douglas-Rachford algorithm in the case
1722 of polytopic constraint sets. To start, we observe that \mathcal{K} is a box constraint and, thus, can be written
1723 as

1724
$$\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 = \mathcal{K}_{1,1} \times \dots \times \mathcal{K}_{1,d} \times \mathcal{K}_{2,1} \times \dots \times \mathcal{K}_{2,n-d}.$$

1725 Then, we rewrite (3) in terms of the new coordinates:

1726
$$\begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} = D_c^{-1} \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} = \begin{bmatrix} D_{c,1}^{-1} & \\ & D_{c,2}^{-1} \end{bmatrix} \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix}.$$

1727

1728 That is, since
1729

$$\begin{aligned}
 1730 \quad \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \in \mathcal{A} &\iff \begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \in \tilde{\mathcal{A}} = \{v \mid D_r A D_c v = D_r b\} = \{v \mid \tilde{A} v = \tilde{b}\} \\
 1731 \quad \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \in \mathcal{K} &\iff \begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \in \tilde{\mathcal{K}} = d_{c,1}^{-1} \mathcal{K}_{1,1} \times \dots \times d_{c,d}^{-1} \mathcal{K}_{1,d} \\
 1732 &\quad \times d_{c,d+1}^{-1} \mathcal{K}_{2,1} \times \dots \times d_{c,n}^{-1} \mathcal{K}_{2,n-d} \\
 1733 &\quad = \tilde{\mathcal{K}}_{1,1} \times \dots \times \tilde{\mathcal{K}}_{1,d} \times \tilde{\mathcal{K}}_{2,1} \times \dots \times \tilde{\mathcal{K}}_{2,n-d} \\
 1734 &\quad = \tilde{\mathcal{K}}_1 \times \tilde{\mathcal{K}}_2,
 \end{aligned}$$

1739 we seek to solve
1740

$$1741 \quad (\Pi_{\mathcal{C}}(y_{\text{raw}}), y_{\text{aux}}^*) = D_c \cdot \operatorname{argmin}_{\tilde{y}, \tilde{y}_{\text{aux}}} \left\{ \|D_{c,1}\tilde{y} - y_{\text{raw}}\|^2 + \mathcal{I}_{\tilde{\mathcal{A}}} \left(\begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \right) + \mathcal{I}_{\tilde{\mathcal{K}}} \left(\begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \right) \right\}. \quad (13)$$

1743 Then, we split the objective function as follows
1744

$$1745 \quad \tilde{g} \left(\begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \right) = \mathcal{I}_{\tilde{\mathcal{A}}} \left(\begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \right) \quad \text{and} \quad \tilde{h} \left(\begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \right) = \|D_{c,1}\tilde{y} - y_{\text{raw}}\|^2 + \mathcal{I}_{\tilde{\mathcal{K}}} \left(\begin{bmatrix} \tilde{y} \\ \tilde{y}_{\text{aux}} \end{bmatrix} \right)$$

1748 and by applying the Douglas-Rachford algorithm we obtain the fixed-point iteration
1749

$$1750 \quad \tilde{z}_{k+1} = \begin{bmatrix} \tilde{z}_{k,1} \\ \tilde{z}_{k,2} \end{bmatrix} = \operatorname{prox}_{\sigma \tilde{g}}(s_k) = \Pi_{\tilde{\mathcal{A}}}(\tilde{s}_k) \quad (14a)$$

$$1751 \quad k = 0, 1, \dots, K-1 \quad \begin{bmatrix} \tilde{t}_{k+1} = \operatorname{prox}_{\sigma \tilde{h}}(2\tilde{z}_{k+1} - \tilde{s}_k) = \left[\begin{smallmatrix} \Pi_{\tilde{\mathcal{K}}_2}(2\tilde{z}_{k+1,2} - \tilde{s}_{k,2}) \\ \diamond \end{smallmatrix} \right] \\ \tilde{s}_{k+1} = \begin{bmatrix} \tilde{s}_{k+1,1} \\ \tilde{s}_{k+1,2} \end{bmatrix} = \tilde{s}_k + \omega(\tilde{t}_{k+1} - \tilde{z}_{k+1}) \end{bmatrix} \quad (14b)$$

$$1752 \quad \begin{bmatrix} \tilde{s}_{k+1} = \begin{bmatrix} \tilde{s}_{k+1,1} \\ \tilde{s}_{k+1,2} \end{bmatrix} = \tilde{s}_k + \omega(\tilde{t}_{k+1} - \tilde{z}_{k+1}) \end{bmatrix} \quad (14c)$$

1757 where $\diamond = [\dots \quad \diamond_i \quad \dots]^T$, with (using the notation $(v)_i$ to indicate the i^{th} entry of the vector v)
1758

$$1759 \quad \diamond_i = \Pi_{\tilde{\mathcal{K}}_{1,i}} \left(\frac{2\sigma d_{c,i} y_{\text{raw}} + 2(\tilde{z}_{k+1,1})_i - (\tilde{s}_{k,1})_i}{1 + 2\sigma d_{c,i}^2} \right).$$

1763 The equilibration effectively only changes (14b). To prove the update in (14b), we note that equilibration
1764 does not affect the solution of the proximal in (14b) with respect to the auxiliary variables:
1765

$$\begin{aligned}
 1766 \quad \operatorname{prox}_{\sigma \tilde{h}}(2\tilde{z}_{k+1} - \tilde{s}_k) &= \operatorname{argmin}_{\tilde{v}, \tilde{v}_{\text{aux}}} \|D_{c,1}\tilde{v} - y_{\text{raw}}\|^2 + \mathcal{I}_{\tilde{\mathcal{K}}} \left(\begin{bmatrix} \tilde{v} \\ \tilde{v}_{\text{aux}} \end{bmatrix} \right) + \frac{1}{2\sigma} \left\| \begin{bmatrix} \tilde{v} \\ \tilde{v}_{\text{aux}} \end{bmatrix} - 2\tilde{z}_{k+1} + \tilde{s}_k \right\|^2 \\
 1767 &= \left[\begin{array}{c} \operatorname{argmin}_{\tilde{v} \in \tilde{\mathcal{K}}_1} \|D_{c,1}\tilde{v} - y_{\text{raw}}\|^2 + \frac{1}{2\sigma} \|\tilde{v} - 2\tilde{z}_{k+1,1} + \tilde{s}_{k,1}\|^2 \\ \operatorname{argmin}_{\tilde{v}_{\text{aux}} \in \tilde{\mathcal{K}}_2} \frac{1}{2\sigma} \|\tilde{v}_{\text{aux}} - 2\tilde{z}_{k+1,2} + \tilde{s}_{k,2}\|^2 \end{array} \right] \\
 1768 &= \left[\begin{array}{c} \diamond \\ \Pi_{\tilde{\mathcal{K}}_2}(2\tilde{z}_{k+1,2} - \tilde{s}_{k,2}) \end{array} \right].
 \end{aligned}$$

1775 In particular, since
1776

$$l \leq y_{\text{aux}} \leq u \iff D_{c,2}^{-1}l \leq D_{c,2}^{-1}y_{\text{aux}} \leq D_{c,2}^{-1}u \iff D_{c,2}^{-1}l \leq \tilde{y}_{\text{aux}} \leq D_{c,2}^{-1}u$$

1778 the projection onto $\tilde{\mathcal{K}}_2$ remains a projection onto a box, but we modify the upper and lower bounds
1779 of the box according to $D_{c,2}$. We can write \diamond , by completing the square, as
1780

$$1781 \quad \operatorname{argmin}_{\tilde{v} \in \tilde{\mathcal{K}}_1} \left\| (I_d + 2\sigma D_{c,1}^2) \tilde{v} - (2\sigma D_{c,1} y_{\text{raw}} + 2\tilde{z}_{k+1,1} - \tilde{s}_{k,1}) \right\|^2$$

1782 and, thus,
 1783

$$\begin{aligned}
 \diamond_i &= \underset{\tilde{v} \in \tilde{\mathcal{K}}_{1,i}}{\operatorname{argmin}} \left\| (1 + 2\sigma d_{c,i}^2) \tilde{v} - (2\sigma d_{c,i} y_{\text{raw}} + 2(\tilde{z}_{k+1,1})_i - (\tilde{s}_{k,1})_i) \right\|^2 \\
 &= \underset{\tilde{v} \in \tilde{\mathcal{K}}_{1,i}}{\operatorname{argmin}} \left\| \tilde{v} - \frac{2\sigma d_{c,i} y_{\text{raw}} + 2(\tilde{z}_{k+1,1})_i - (\tilde{s}_{k,1})_i}{1 + 2\sigma d_{c,i}^2} \right\|^2 \\
 &= \Pi_{\tilde{\mathcal{K}}_{1,i}} \left(\frac{2\sigma d_{c,i} y_{\text{raw}} + 2(\tilde{z}_{k+1,1})_i - (\tilde{s}_{k,1})_i}{1 + 2\sigma d_{c,i}^2} \right).
 \end{aligned}$$

1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793 Although we described the case with box constraints, our changes can be adapted for other constraint
 1794 classes such as second-order cone constraints by equilibrating equally variables that are coupled by
 1795 the constraints. We leave these modifications for future work.

1796 C.2 AUTO-TUNE PROCEDURE

1797 During the auto-tuning procedure, we will tune the hyperparameters `sigma` and `n_iter_fwd`. For
 1798 the remaining ones, we set `omega` and `n_iter_bwd` to their respective default values 1.7 and 25.
 1799 For simplicity, we set `n_iter_test` to be equal to `n_iter_fwd`.

1800 For the auto-tuning, we consider a subset of the validation set consisting of 150 contexts x out of
 1801 the 1024 used in the benchmark problems of Section 3.1. Then, we generate 150 corresponding
 1802 points-to-be-projected from a standard normal distribution $\mathcal{N}(0, I)$, which will serve as a proxy for
 1803 the infeasible output of the backbone NN. First, to tune `sigma` we generate 100 logarithmically-
 1804 spaced number between 10^{-3} and 5.05. Then, we compute the projection for each `sigma` on the
 1805 150 context-infeasible point pairs, by running 100 iterations of the projection layer. We evaluate
 1806 the quality of each `sigma` by computing the resulting maximum constraint violation and average
 1807 relative suboptimality of the projection, i.e., $\|z_K - y_{\text{raw}}\| / \|\Pi_{\mathcal{C}(x)}(y_{\text{raw}}) - y_{\text{raw}}\|$. We consider any
 1808 `sigma` for which both metrics are below certain thresholds to be candidate hyperparameters. We
 1809 choose among the candidate hyperparameters the one with the minimum constraint violation.
 1810

1811 We use the same procedure to choose `n_iter_fwd` from the set $\{50, 100, \dots, 350, 400\}$, where the
 1812 projection is evaluated using the previously determined `sigma`.

1813 C.3 ABLATIONS.

1814 We evaluate the effectiveness of the matrix equilibration and auto-tuning by comparing the performance
 1815 of our method with and without the different components on the large non-convex problem of
 1816 Section 3.1. We test 3 different configurations: default hyperparameters and no equilibration; auto-
 1817 tuned hyperparameters and no equilibration; auto-tuned hyperparameters and equilibration. We
 1818 respectively refer to these configurations as `Default`, `Auto` and `IInet`. On this problem setting,
 1819 performing auto-tuning takes roughly 2 minutes, while the equilibration takes less than 1 second.
 1820 The (tuned) hyperparameters for each configuration are as follows:
 1821

$$\begin{aligned}
 \text{Default} &\leftarrow \text{sigma} = 1.0, \text{n_iter_fwd} = 100 \\
 \text{Auto} &\leftarrow \text{sigma} = 3.28, \text{n_iter_fwd} = 350 \\
 \text{IInet} &\leftarrow \text{sigma} = 0.161, \text{n_iter_fwd} = 50
 \end{aligned}$$

1822 and the remaining ones are chosen as discussed previously. We note that the large difference in
 1823 the value of `sigma` between `Auto` and `IInet` is due to the equilibration that changes the problem
 1824 scaling.

1825 We report in Figure 16 the RS and CV by all 3 configurations, training curves are shown in Figure 17
 1826 for 50 training epochs and for a single seed, and inference times are given in Table 6. From Figure 16
 1827 we can readily deduce the substantial improvement in terms of CV that both auto-tuning and equili-
 1828 bration offers. Additionally, Figure 17 and Table 6 highlight the clear benefits of our preprocessing
 1829 steps in terms of both training time and inference time. These benefits are due primarily to the fact
 1830 that a well-tuned and equilibrated projection layer requires significantly fewer iterations to achieve
 1831 a satisfactory CV, specifically 50 iterations instead of 100 and 350 for default and only auto-tuned,
 1832 respectively.

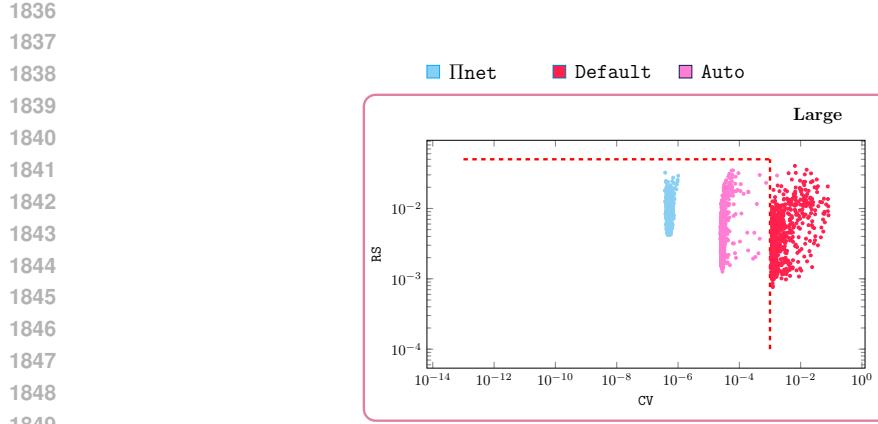


Figure 16: Visualization of the ablation results in Appendix C.3. Scatter plots of RS and CV for the methods on the large non-convex problems on the test set. The red dashed lines show the thresholds that we require to consider a candidate solution optimal.

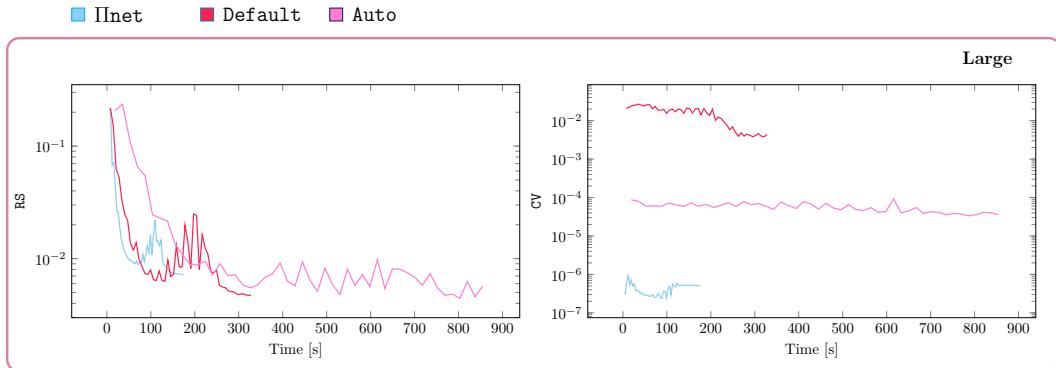


Figure 17: Comparison of the training times in terms of RS and CV for the different ablation configuration on the large non-convex problem setting. For simplicity, we report the learning curves only for a single seed.

Method	Single inference [s]					Batch inference [s]				
	median	LQ	UQ	min	max	median	LQ	UQ	min	max
Non-convex large										
Default	0.0080	0.0080	0.0081	0.0075	0.0090	0.5491	0.5490	0.5493	0.5487	0.5495
Auto	0.0141	0.0139	0.0143	0.0135	0.0150	1.8900	1.8899	1.8901	1.8896	1.8903
IInet	0.0063	0.0063	0.0064	0.0061	0.0092	0.2804	0.2799	0.2807	0.2794	0.2912

Table 6: Inference time comparison for single-instance and batch-instance (1024 problems) settings across different ablation configurations, evaluated on the large non-convex problem. The table reports median runtime along with statistical descriptors: lower quartile (LQ, 25th percentile), upper quartile (UQ, 75th percentile), min and max of the runtime.

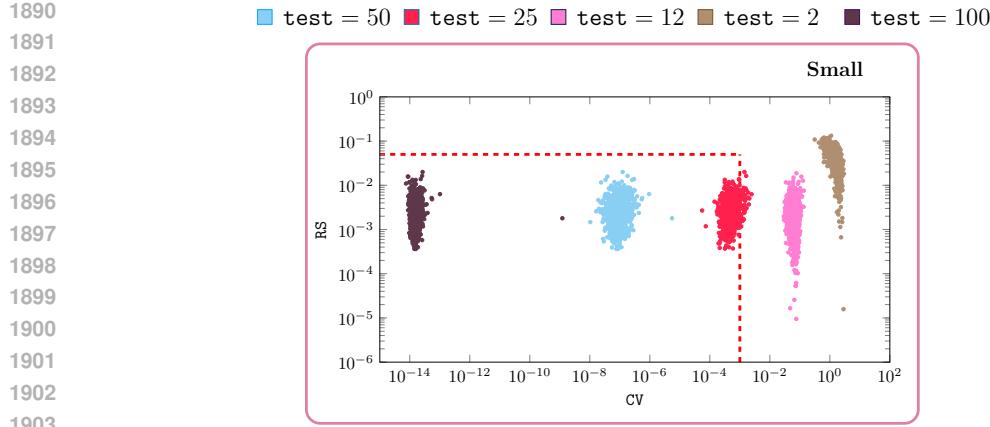


Figure 18: Scatter plot of RS and CV on the small non-convex test problems for a II net network trained with 50 iterations and evaluated with different numbers of iterations at test time. The red dashed lines indicate the thresholds used to consider a candidate solution optimal.

In our experiments, we have extensively tested the effects of using a different number of forward iterations during testing (n_iter_test) compared to the training (n_iter_fwd), with both more and fewer iterations at test time. Using more iterations works well and stably, and is meaningful to achieve reduced constraint violation. Using less iterations needs more care. Slightly less iterations is often possible and can improve inference time. Significantly less may cause issues since the iterates might not be close to a fixed-point anymore. Of course, “slightly” and “significantly” here depend on the problem at hand. For this, in Figure 18 we report the RS and CV obtained by training II net with n_iter_fwd = 50, and then deploying with different number of iterations during testing. Perhaps interestingly, note that the RS is unaffected by the number of iterations during testing, whereas the CV gradually decreases. This is true as long as we have enough iterations: as the number of iterations during test becomes too small (e.g., 2) also the RS is affected: The output is not close to the projection anymore.

Finally, in Figures 19 and 20 we report an ablation study on the parameters σ and ω . These results, together with the ones on the number of forward and backward iterations (cf. Figure 18 and Appendices D.3 and F), substantiate the claim of little sensitivity of II net to hyperparameter tuning. In particular, Figures 19 and 20 show that different values of the parameters σ and ω yield qualitatively similar behaviors. For ω , we see clearly that different values effectively only change the convergence rates: With more iterations, all values of ω achieve sufficiently low CV.

C.4 WHY ENFORCING CONSTRAINTS DURING TRAINING?

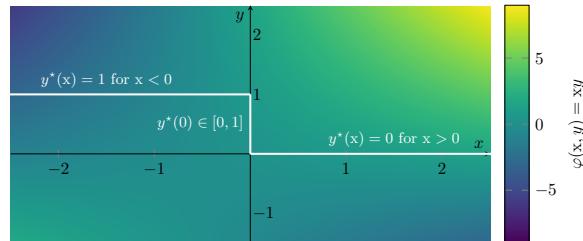
II net enforces the constraints during training, which warrants a discussion: What changes if one trains an unconstrained network and enforces the constraints only during inference? We answer this question with illustrative examples.

Some optimization problems may cause divergence of the network if trained unconstrained. The first example shows that, without constraints, the training process may even diverge, as the optimization problems we are interested in may not even be meaningful in the absence of constraints. Consider the parametric (in x) optimization problem:

$$\underset{y \in \mathbb{R}}{\text{minimize}} \quad xy \quad \text{subject to} \quad 0 \leq y \leq 1.$$

The optimal solution is

$$y^*(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{any } y \in [0, 1] & \text{otherwise.} \end{cases}$$



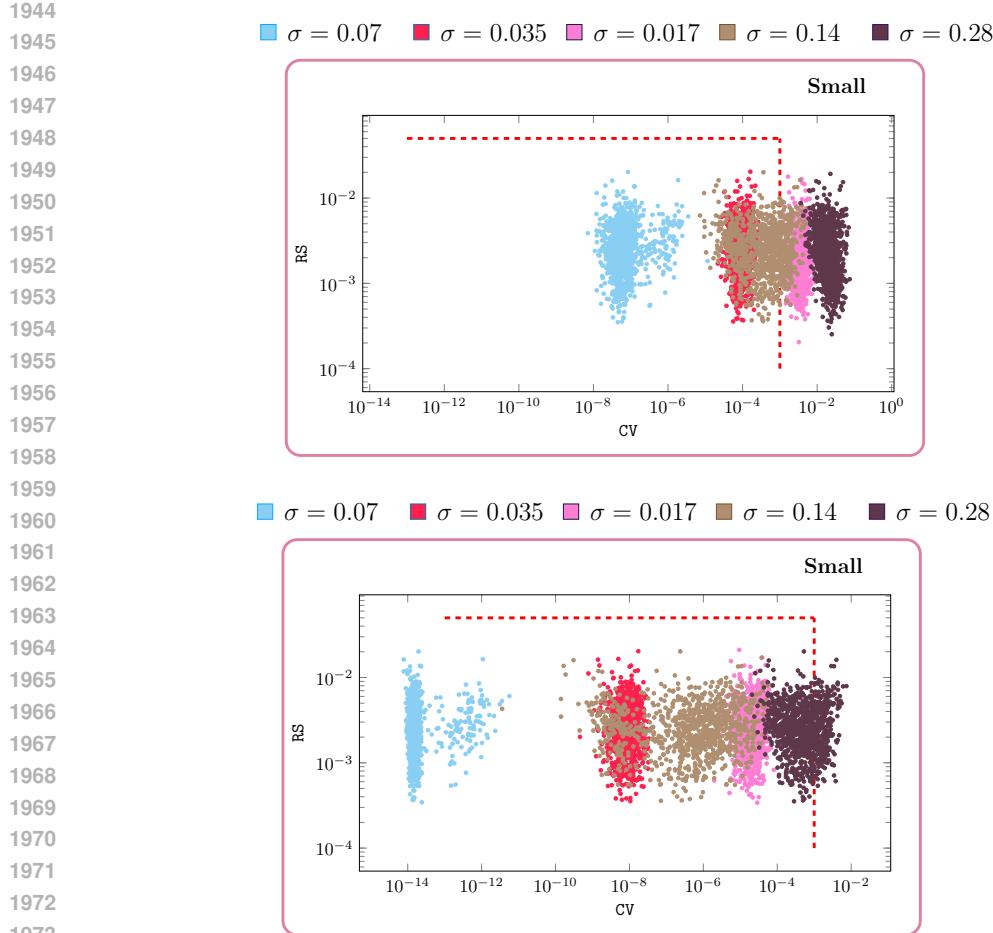


Figure 19: Scatter plot of RS and CV on the small non-convex test problems for a Π_{net} network trained with different values of σ and (top) 50, (bottom) 100 forward iterations. The red dashed lines indicate the thresholds used to consider a candidate solution optimal.

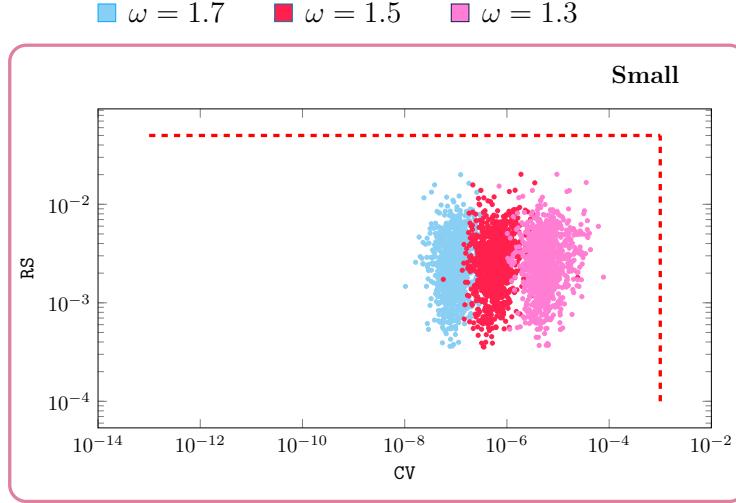


Figure 20: Scatter plot of RS and CV on the small non-convex test problems for a Π_{net} network trained with different values of ω . The red dashed lines indicate the thresholds used to consider a candidate solution optimal.

1998 However, if we would train an unconstrained network to predict $\hat{y}(x)$, its values would result in
 1999 $\hat{y}(x) \rightarrow +\infty$ for $x > 0$ and $\hat{y}(x) \rightarrow -\infty$ for $x < 0$.
 2000

2001 It is easy to see how one may build higher-dimensional examples along the same lines of the
 2002 presented one. Importantly, this example shows that, without constraints, the problem may be altered
 2003 significantly to the point that it is not even possible to train an unconstrained network.
 2004

2005 **The projection of the unconstrained optimizer is often suboptimal.** Our second example shows
 2006 that applying the projection layer to the solution of the unconstrained problem does not yield, in
 2007 general, the solution to the constrained problem.
 2008

2009 As a consequence, one can expect a strong decrease in performance when training the network unconstrained (i.e., to
 2010 solve the unconstrained optimization problem) and only at inference adding a projection layer (i.e., projecting the solution
 2011 of the unconstrained problem onto the feasible set).
 2012

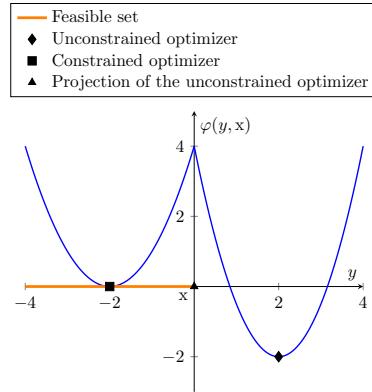
2013 Consider the parametric (in x) optimization problem depicted on the right. Here, one may train an unconstrained
 2014 network to optimize the objective function, finding the optimizer $\hat{y}(x) = x + 2$. However, projecting this onto the
 2015 constraints $y \leq x$ would result in $y = x$, which is suboptimal compared to the constrained optimizer $y^*(x) = x - 2$. Importantly,
 2016 this simple example shows an instance in which training without constraints may downgrade the performances of the network.
 2017

2018 **An empirical case-study.** In the third example, we train an unconstrained network on the small
 2019 non-convex benchmark (using soft penalty terms) and add the projection layer only during inference
 2020 on the test set (we refer to this as $\Pi_{\text{net-inf}}$). The resulting average RS on the test set for $\Pi_{\text{net-inf}}$ is 0.02178, whereas for Π_{net} it is 0.00216 using roughly the same computational budget
 2021 (8 seconds of wall-clock time). The constraint violation is the same for both methods, since they
 2022 use our projection layer during inference. Training with Π_{net} (i.e., enforcing constraints during
 2023 training) achieves one order of magnitude better RS. In fact, if we increase the computational budget,
 2024 Π_{net} continues to reduce the RS down to 0.0007 for 50 seconds of training. On the contrary,
 2025 $\Pi_{\text{net-inf}}$ cannot reduce the RS further even with more training (or more hyperparameter tuning).
 2026 Therefore, we observe in practice what our previous examples outlined: enforcing the constraints
 2027 during training allows the network to anticipate the projection and further improve its predictions.
 2028

2029 **Constraints as an inductive bias.** There is a subtle difference between constraining the architecture
 2030 of a neural network (e.g., by ensuring that the neural network is a convex function for any
 2031 values of the weights, as done by Amos et al. (2017)) and constraining the output to satisfy some
 2032 properties without altering the “backbone” network architecture. In Π_{net} , one can use the best
 2033 existing architecture unaltered, but training it with the inductive bias that the output will be modified
 2034 so to satisfy the constraints. For this, one may argue that enforcing the constraints during training
 2035 improves the performance of the network at inference time, rather than downgrading it. We thus
 2036 believe that an approach like Π_{net} may, in fact, change the common perspective on the difficulty
 2037 of training hard-constrained networks.
 2038

2039 **Remark.** It is perhaps worth clarifying the distinction between our work and the work of Amos
 2040 et al. (2017):
 2041

- 2042 1. Input convex neural networks learn a scalar-valued function, which is guaranteed to be a convex
 2043 function of its input for any appropriate choices of the network weights (see Amos et al. (2017,
 2044 *Propositions 1, 2*)). Then, during inference, a minimum of this function is computed. Recall that
 2045 the set of minimizers of a convex function is a convex set, and in this sense Π_{net} and input
 2046 convex neural networks are similar.
 2047
- 2048 2. On the contrary, Π_{net} learns a vector-valued mapping which is guaranteed to lie on a convex
 2049 set chosen a-priori for any choice of the weights.
 2050



2052 C.5 Π NET AS AN IMPLICIT LAYER
2053

2054 The techniques used to implement Π net (operator-splitting and backpropagation via the implicit
2055 function theorem) are fundamental and widely adopted in the literature. In this sense, Π net is a
2056 special case of implicit layers (Agrawal et al., 2019; Butler & Kwon, 2023). However, our key ideas
2057 are related to the type of problem we are solving (a projection) and how the structure of this problem
2058 can be exploited to derive an efficient formulation of the optimization algorithm. The improvement
2059 over the state of the art (as exemplified by our results in Section 3) is achieved by focusing on a
2060 problem setting that is sufficiently general yet rich in structure, and by adopting the right optimiza-
2061 tion techniques (e.g., which split to perform to deploy the Douglas-Rachford algorithm). The key
2062 ideas, in this sense, are:

2063 1. Using a single additional layer instead of multiple ones.
2064 2. Using a projection layer.
2065 3. Adapting the Douglas-Rachford algorithm to best exploit the resulting problem structure.

2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106 **D DERIVATION DETAILS**
21072108 In this section, we report the derivations omitted in the text.
21092110 **D.1 DERIVATION OF ALGORITHM 1.**2111 To derive Algorithm 1 from (4), we will explicitly write the proximal operators in (4). For the
2112 z -update, we recall that $g = \mathcal{I}_{\mathcal{A}}$ and $\sigma > 0$, from which it immediately follows that $\text{prox}_{\sigma g} = \Pi_{\mathcal{A}}$.
21132114 For the t -update, we recall that:

2115
$$h\left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix}\right) = \|y - y_{\text{raw}}\|^2 + \mathcal{I}_{\mathcal{K}}\left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix}\right)$$

2116

2117 and using the definition of the proximal operator yields:
2118

2119
$$\begin{aligned} \text{prox}_{\sigma h}(2z_{k+1} - s_k) &= \underset{y, y_{\text{aux}}}{\text{argmin}} \|y - y_{\text{raw}}\|^2 + \mathcal{I}_{\mathcal{K}}\left(\begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix}\right) + \frac{1}{2\sigma} \left\| \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} - 2z_{k+1} + s_k \right\|^2 \\ 2120 &= \left[\begin{array}{l} \underset{y \in \mathcal{K}_1}{\text{argmin}} \|y - y_{\text{raw}}\|^2 + \frac{1}{2\sigma} \|y - 2z_{k+1,1} + s_{k,1}\|^2 \\ \underset{y_{\text{aux}} \in \mathcal{K}_2}{\text{argmin}} \frac{1}{2\sigma} \|y_{\text{aux}} - 2z_{k+1,2} + s_{k,2}\|^2 \end{array} \right] \\ 2121 &= \left[\begin{array}{l} \Pi_{\mathcal{K}_1}\left(\frac{2z_{k+1,1} - s + 2\sigma y_{\text{raw}}}{1+2\sigma}\right) \\ \Pi_{\mathcal{K}_2}(2z_{k+1,2} - s_{k,2}) \end{array} \right]. \end{aligned}$$

2122
2123
2124
2125
2126
2127

2128 **D.2 CONVERGENCE PROOF OF (4).**
21292130 In this subsection, we show that (4) converges to a solution of (3). To do so, we first introduce the
2131 following mild assumption on the feasibility of the problem.
21322133 **Assumption 1.** $\mathcal{A} \cap \text{ri } \mathcal{K} \neq \emptyset$, where ri is the relative interior.
21342135 This assumption corresponds to strict feasibility of (3). In fact, if \mathcal{K} is a polyhedron, then we can
2136 relax Assumption 1 to $\mathcal{A} \cap \mathcal{K} \neq \emptyset$.
21372138 To obtain our convergence result, we simply note that iteration (4) is the Douglas-Rachford algo-
2139 rithm applied to problem (3) and, under Assumption 1, we invoke the Corollaries 27.6 and 28.3 in
2140 (Bauschke & Combettes, 2017) which yield the desired result.
21412142 **D.3 CONVERGENCE RATES OF (4).**
21432144 The convergence rate of the Douglas-Rachford algorithm is a well-studied topic in the literature,
2145 which we report here for completeness. For the case of a convex QP, it has been shown that the
2146 Douglas-Rachford algorithm attains a linear convergence rate (Peña et al., 2021, Subsection 3.2),
2147 namely an ε -optimal solution is computed in $\mathcal{O}(\log(1/\varepsilon))$ iterations. This result applies to our algo-
2148 rithm in the case of polyhedral constraints, and indeed we have observed these rates in our numer-
2149 ical experiments (see also Figure 21). Other technical conditions for linear convergence are given
2150 in (Hong & Luo, 2017, Assumption A); their applicability to our setting depends on the specific
2151 constraint set \mathcal{C} . In the general setting, the Douglas-Rachford algorithm typically attains a $\mathcal{O}(1/k)$
2152 convergence rate (where k is the number of iterations), hence requiring $\mathcal{O}(1/\varepsilon)$ iterations (Davis &
2153 Yin, 2017).
21542155 We visualize these convergence rates in the plot in Figure 21, showing how for increasing iterations
2156 we get a rapidly decreasing CV. Specifically, for one of the benchmarks, we provide the CV for 100
2157 instances in the test set for an increasing number of iterations. In particular, we observe that within
2158 very few iterations the constraints are satisfied up to high accuracy (e.g., 10^{-5} as in (Stellato et al.,
2159 2020)).
21602161 **D.4 DERIVATION OF THE BACKWARD PASS**
21622163 Applying the implicit function theorem to $s_{\infty}(y_{\text{raw}}) = \Phi(s_{\infty}(y_{\text{raw}}), y_{\text{raw}})$ yields the linear equation:
2164

2165
$$\left(I - \frac{\partial \Phi(s, y_{\text{raw}})}{\partial s} \Big|_{s=s_{\infty}(y_{\text{raw}})} \right) \frac{\partial s_{\infty}(y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x}; \theta)} = \frac{\partial \Phi(s, y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x}; \theta)}, \quad (15)$$

2166

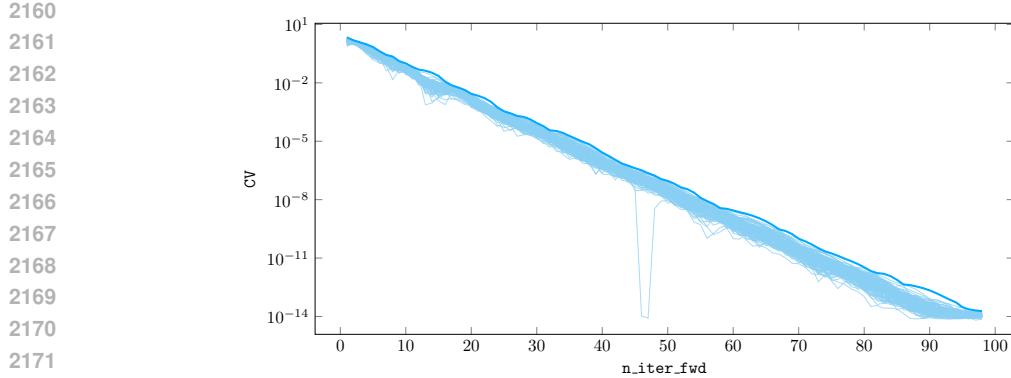


Figure 21: Constraint violation for 100 problem instances (light blue) in the test set of the small non-convex benchmark as the number of iterations in the forward pass $n_{\text{iter_fwd}}$ (i.e., $n_{\text{iter_train}}$ increases, as well as the maximum CV among all instances (dark blue).

whose unknown is the Jacobian matrix $\frac{\partial s_\infty(y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x};\theta)}$.

Now, to compute the VJP

$$v^\top \frac{\partial s_\infty(y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x};\theta)}$$

where $v \in \mathbb{R}^{n+d}$, we assume that the linear system (9) admits a solution, namely $\xi(y_{\text{raw}}, v)$. Next, we pre-multiply (15) by $\xi(y_{\text{raw}}, v)^\top$:

$$\begin{aligned} \xi(y_{\text{raw}}, v)^\top \left(I - \frac{\partial \Phi(s, y_{\text{raw}})}{\partial s} \Big|_{s=s_\infty(y_{\text{raw}})} \right) \frac{\partial s_\infty(y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x};\theta)} &= \xi(y_{\text{raw}}, v)^\top \frac{\partial \Phi(s, y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x};\theta)} \\ \implies v^\top \frac{\partial s_\infty(y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x};\theta)} &= \xi(y_{\text{raw}}, v)^\top \frac{\partial \Phi(s, y_{\text{raw}})}{\partial y_{\text{raw}}} \Big|_{y_{\text{raw}}=f(\mathbf{x};\theta)} \end{aligned}$$

where the implication follows by the definition of $\xi(y_{\text{raw}}, v)$. This gives rise to our backward pass outlined in (8) and (9).

D.5 COMPUTATIONAL COMPLEXITY OF Π_{NET} .

Here we derive the computational complexity of Π_{NET} for both the forward and backward pass.

Forward. The complexity of the projection operations in Algorithm 1 are determined by¹ the sets $\mathcal{A}(\mathbf{x})$, $\mathcal{K}_1(\mathbf{x})$ and $\mathcal{K}_2(\mathbf{x})$, by the cost of instantiating them given the context \mathbf{x} , which may depend on the dimensionality p of \mathbf{x} , and by the dimensions of the input n , d and $n - d$. We denote the complexity of these operations as $g_{\mathbf{x}}(n, p)$, $g_{\mathcal{A}}(n)$, $g_{\mathcal{K}_1}(d)$ and $g_{\mathcal{K}_2}(n - d)$. The overall complexity is:

$$\mathcal{O}(g_{\mathbf{x}}(n, p) + K(g_{\mathcal{A}}(n) + g_{\mathcal{K}_1}(d) + g_{\mathcal{K}_2}(n - d) + n)),$$

where $K = n_{\text{iter_fwd}}$ is the number of forward iterations, and the term n is due to the sum² in the governing update (4c).

Next, we analyze the complexity of $g_{\mathbf{x}}(n, p)$, $g_{\mathcal{A}}(n)$, $g_{\mathcal{K}_1}(d)$ and $g_{\mathcal{K}_2}(n - d)$:

- $g_{\mathbf{x}}(n, p)$ is problem specific. In the examples presented in this work, the complexity is linear in p and amounts to stacking the vectors describing the problem instance (e.g., the initial and final position of the vehicles in Section 3.2) into the equality constraints. In general, one may expect $g_{\mathbf{x}}(n, p)$ to be dominated by the other contributions. If the matrix A is context dependent, an additional cost is the calculation of the pseudo-inverse, which we use to compute the projection

¹The complexity also depends on the batch size, but the operations can be fully parallelized over a batch and, thus, we focus on the per-element complexity.

²On a GPU, this entry-wise vector sum can be parallelized, but here we focus on the number of operations.

2214 onto the hyperplane: $g_x(n, p) = n^3$; see also the next item. When the matrix A is independent of
 2215 the context, the pseudo-inverse can be computed only once at the instantiation of the method, and
 2216 its computational complexity does not affect the forward pass.

2217

- 2218 • $g_A(n)$ is the cost of the projection on the hyperplane identified by a matrix $A \in \mathbb{R}^{(d+d') \times n}$ and a
 2219 vector $b \in \mathbb{R}^{d+d'}$. The parameter d' is problem-dependent, but usually proportional to the number
 2220 of inequality constraints; see Appendix E. For this reason, we carry out the complexity analysis for
 2221 $A \in \mathbb{R}^{n \times n}$. For the projection, we need the pseudo-inverse of A , which we compute once for all
 2222 iterations. Thus, we account for this complexity in $g_x(n, p)$. Then, the complexity of computing
 2223 the projection is dominated by matrix-vector multiplications: $g_A(n) = n^2$.
- 2224 • $g_{\mathcal{K}_1}(d)$ and $g_{\mathcal{K}_2}(n - d)$ are the cost of the projection onto a box after a linear combination of the
 2225 input. Thus, $g_{\mathcal{K}_1}(d) + g_{\mathcal{K}_2}(n - d) = n$.

2226 Overall, the complexity of the forward pass is $\mathcal{O}(n^2)$ for context-independent A and $\mathcal{O}(n^3)$ for
 2227 context-dependent A . On a GPU and for context-independent A matrices, the effective compute
 2228 time is possibly linear in n .

2229 **Backward.** For the backward pass, we need to:

2230

- 2231 • Compute the v for the linear system in (9), for which we need only the first VJP in (7). The
 2232 complexity is $\mathcal{O}(d(n + d)) = \mathcal{O}(n^2)$.
- 2233 • Solve the linear system in (9) using `bicgstab` (van der Vorst, 1992). The complexity of this
 2234 operation is $\mathcal{O}(K'(n + d)d) = \mathcal{O}(K'n^2)$, where $K' = \text{n_iter_backward}$ is the number of
 2235 iterations used for `bicgstab`.
- 2236 • We compute the VJP in (8). By direct inspection of the computational graph of (4a)-(4c), com-
 2237 plexity of this step is $\mathcal{O}(d(d + n)) = \mathcal{O}(n^2)$.

2238 Overall, the backpropagation through our projection layer has complexity $\mathcal{O}(n^2)$, with the constant
 2239 dominated by the number of iterations used for `bicgstab`.

2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268 E MORE EXAMPLES OF CONSTRAINT SETS
2269

2270 In this section, we describe how several classes of constraints that can be described within our
2271 framework admit an efficient projection. We stress that the decomposition $\mathcal{C} = \Pi_d(\mathcal{A} \cap \mathcal{K})$ is not
2272 an assumption. One can always decompose a convex set in this way, e.g., by considering the trivial
2273 decomposition $\mathcal{A} = \mathcal{C}$ and $\mathcal{K} = \mathbb{R}^d$. Instead, determining \mathcal{A} and \mathcal{K} is a design choice which we
2274 leverage to make the projections $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ computationally efficient. We note two important
2275 points regarding this design choice:

- 2276 • The only assumption is that $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ and their VJP are computable. Being computationally
2277 efficient is an added benefit of our decomposition, but is not necessary.
- 2278 • Below, we show that many practically-relevant constraints \mathcal{C} can be decomposed in a
2279 computationally-efficient manner: polyhedra, second-order cones, sparsity constraints, simplices,
2280 and the intersections and Cartesian products all admit efficient decompositions. In fact, this list is
2281 not exhaustive; see, e.g., (Condat, 2016; Boyd & Vandenberghe, 2004).

2283 We believe the implementation and adoption of these constraints in practical applications represents
2284 an important direction for future work.

2285 **Polytopic sets** are often employed to enforce constraints in robotics (Augugliaro et al., 2012),
2286 numerical solutions to PDE (Raissi et al., 2019), and non-convex relaxations for trajectory planning
2287 (Malyuta et al., 2022), among others. They are expressed as

$$2289 \{y \in \mathbb{R}^d \mid E y = q, l \leq C y \leq u\},$$

2290 for some E, q, l, C, u of appropriate dimensions. We introduce the auxiliary variable $y_{\text{aux}} = C y \in \mathbb{R}^{n_{\text{ineq}}}$
2291 with dimension $n - d = n_{\text{ineq}}$. Then, we respectively define $\mathcal{A}, \mathcal{K} \subseteq \mathbb{R}^n$ as the following
2292 affine subspace and box

$$2294 \mathcal{A} = \left\{ \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \mid \underbrace{\begin{bmatrix} E & 0 \\ C & -I \end{bmatrix} \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix}}_{=A} = \begin{bmatrix} q \\ 0 \end{bmatrix} \right\}, \quad \mathcal{K} = \left\{ \begin{bmatrix} y \\ y_{\text{aux}} \end{bmatrix} \mid y \in \mathbb{R}^d, l \leq y_{\text{aux}} \leq u \right\}.$$

2298 Importantly, $\mathcal{C} = \Pi_d(\mathcal{A} \cap \mathcal{K})$ and both $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ can be evaluated in closed form (Bauschke &
2299 Combettes, 2017, Chapter 29).

2300 **Second-order cones** are employed in portfolio optimization (Brodie et al., 2009), robust control
2301 (Chen et al., 2018), and support vector machines (Maldonado & López, 2014), among others. They
2302 involve constraints of the form:

$$2304 \{y \in \mathbb{R}^d \mid \|C y + c\|_2 \leq f^\top y + e\}.$$

2306 Introducing the auxiliary variables $y_{\text{aux},1} = C y + c \in \mathbb{R}^{n_c}$ and $y_{\text{aux},2} = f^\top y + e \in \mathbb{R}$, of dimension
2307 $n - d = n_c + 1$, we obtain the representation:

$$2308 \mathcal{A} = \left\{ \begin{bmatrix} y \\ y_{\text{aux},1} \\ y_{\text{aux},2} \end{bmatrix} \mid \underbrace{\begin{bmatrix} C & -I & 0 \\ f^\top & 0 & -1 \end{bmatrix} \begin{bmatrix} y \\ y_{\text{aux},1} \\ y_{\text{aux},2} \end{bmatrix}}_{=A} = \begin{bmatrix} -c \\ -e \end{bmatrix} \right\}, \quad \mathcal{K} = \left\{ \begin{bmatrix} y \\ y_{\text{aux},1} \\ y_{\text{aux},2} \end{bmatrix} \mid \|y_{\text{aux},1}\|_2 \leq y_{\text{aux},2} \right\}$$

2312 for quantities of the appropriate dimensions. Again, $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ admit a closed form solution (Boyd
2313 & Vandenberghe, 2004).

2315 **Sparsity constraints** encourage solutions with fewer active variables, such as the number of open
2316 positions in portfolio optimization (Brodie et al., 2009), or the “mass splitting” in optimal transport
2317 (Dantzig, 2002). Explicitly, they read

$$2319 \{y \in \mathbb{R}^d \mid \|C y + c\|_1 \leq f^\top y + e\}$$

2321 Analogously to second-order cones constraints, employing a slack variable they can be reduced to a
2322 projection onto the l_1 ball, which can be done efficiently (Condat, 2016).

2322 **Cartesian products of simplices** are the standard constraints in optimal transport (Dantzig, 2002)
 2323 formulations, since they encode the set of admissible coupling measures. While these constraints can
 2324 also be expressed as generic polytopic sets, an alternative representation using our proposed form
 2325 can potentially yield more efficient solutions. For instance, for some $v_1, \dots, v_n, w_1, \dots, w_m \geq 0$,
 2326 consider the following constraint set

$$\begin{aligned} 2327 \quad \mathcal{C} &= \left\{ y \in \mathbb{R}^{d_1 \times d_2} \mid y_{ij} \geq 0, \sum_{i=1}^n y_{ij} = w_j, \sum_{j=1}^m y_{ij} = v_i \right\} \\ 2328 \\ 2329 \\ 2330 \quad &= \left\{ y \in \mathbb{R}^{d_1 \times d_2} \mid \sum_{i=1}^n y_{ij} = w_j \right\} \cap \left\{ y \in \mathbb{R}^{d_1 \times d_2} \mid y_{ij} \geq 0, \sum_{j=1}^m y_{ij} = v_i \right\} \\ 2331 \\ 2332 \\ 2333 \\ 2334 \quad &= \mathcal{A} \cap \mathcal{B} \end{aligned}$$

2335 Notice, that $\mathcal{C} = \Pi_d(\mathcal{A} \cap \mathcal{K})$ as required by our constraint decomposition, and $\Pi_d(\cdot)$ is redundant
 2336 since \mathcal{A} and \mathcal{K} are of the same dimension as \mathcal{C} . The projections $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ can be evaluated
 2337 efficiently since \mathcal{A} is a hyperplane and \mathcal{K} is a cartesian product of simplices (Condat, 2016).

2338 **The intersection of previous sets** can readily be expressed in our representation. For instance,
 2339 the intersection of a polytope and second-order cone can be expressed as the following set:

$$\{y \in \mathbb{R}^d \mid Ey = q, l \leq Cy \leq u, \|Fy + c\|_2 \leq f^\top y + e\}.$$

2343 We introduce the auxiliary variables $y_{\text{aux}, 1} = Cy \in \mathbb{R}^{n_{\text{ineq}}}$, $y_{\text{aux}, 2} = Fy \in \mathbb{R}^{n_c}$, $y_{\text{aux}, 3} = f^\top y \in \mathbb{R}$
 2344 and obtain the representation:

$$\begin{aligned} 2345 \quad \mathcal{A} &= \left\{ \begin{bmatrix} y \\ y_{\text{aux}, 1} \\ y_{\text{aux}, 2} \\ y_{\text{aux}, 3} \end{bmatrix} \mid \begin{bmatrix} E & 0 & 0 & 0 \\ C & -I & 0 & 0 \\ F & 0 & -I & 0 \\ f^\top & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} y \\ y_{\text{aux}, 1} \\ y_{\text{aux}, 2} \\ y_{\text{aux}, 3} \end{bmatrix} = \begin{bmatrix} q \\ 0 \\ -c \\ -e \end{bmatrix} \right\}, \\ 2346 \\ 2347 \\ 2348 \\ 2349 \quad \mathcal{K} &= \mathbb{R}^d \times \{y_{\text{aux}, 1} \in \mathbb{R}^{n_{\text{ineq}}} \mid l \leq y_{\text{aux}, 1} \leq u\} \times \left\{ \begin{bmatrix} y_{\text{aux}, 2} \\ y_{\text{aux}, 3} \end{bmatrix} \in \mathbb{R}^{n_c+1} \mid \|y_{\text{aux}, 2}\| \leq y_{\text{aux}, 3} \right\}. \end{aligned}$$

2350 As before, the projections $\Pi_{\mathcal{A}}$ and $\Pi_{\mathcal{K}}$ admit closed-form expressions.

2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375

2376 **F ON THE DIFFERENTIABILITY OF THE PROJECTION LAYER AND THE**
 2377 **APPLICABILITY OF THE IMPLICIT FUNCTION THEOREM**
 2378

2379 In this section, we discuss the theoretical aspects of the differentiability of the proposed projection
 2380 layer, as well as the applicability of the implicit function theorem.
 2381

2382 **F.1 ALMOST EVERYWHERE DIFFERENTIABILITY**
 2383

2384 To start, we note that since the layers of the backbone network will be at most almost everywhere
 2385 differentiable (e.g., for ReLU activations), all one may be interested in is to have almost everywhere
 2386 differentiability of the projection layer. In fact, our experiments show that in practice this is sufficient
 2387 for markedly surpassing the state of the art. On Euclidean spaces (more generally, on Hilbert spaces)
 2388 the projection operator is globally 1-Lipschitz (see, e.g., (Bauschke & Combettes, 2017, Proposition
 2389 4.16), and recall that firmly non-expansive implies 1-Lipschitz). Then, with Rademacher’s theo-
 2390 rem (Simon et al., 1984, Theorem 1.4) we conclude that the projection layer is almost everywhere
 2391 differentiable (in the Lebesgue measure sense).
 2392

2393 **F.2 APPLICABILITY OF THE IMPLICIT FUNCTION THEOREM**
 2394

2395 Providing a full theoretical analysis is beyond the scope of the paper, and we believe it would dis-
 2396 tract the reader from the main message of the paper. Nonetheless, we (i) believe this to be a very
 2397 interesting mathematical quest for future work, and (ii) that the outline presented here can give a
 2398 sense to the reader of why the proposed projection layer is theoretically sound.

2399 The implicit function theorem is applicable under local differentiability conditions. The way that re-
 2400 lated works handle non-smooth points is to either (i) show that if the linear system (9) is non-singular,
 2401 then multiple solutions exist and they belong to the subdifferential (see, e.g., (Amos & Kolter, 2017,
 2402 Appendix C.1)) or (ii) they resort to heuristics, e.g., by solving a least-squares approximation rather
 2403 than the linear system itself (see, e.g., (Agrawal et al., 2019, Section 4.3)). We similarly run finitely
 2404 many `bicgstab` iterations, which is very computationally attractive as it avoids run-time checks
 2405 and, in our numerical experience, is quite stable; see Appendix F.3.

2406 Perhaps surprisingly, one can define an implicit function theorem even on non-smooth points by
 2407 employing *conservative gradients*, a recent generalization of the subdifferential (Bolte & Pauwels,
 2408 2021). This formulation is valid for non-smooth locally Lipschitz mappings, to which our projection
 2409 layer belongs. We refer to the seminal works of Bolte & Pauwels (2021); Bolte et al. (2021) for the
 2410 precise statement of the non-smooth variant of the theorem. In this framework, the implicit function
 2411 theorem formula and the chain rule used in Section 2.1.2 hold under very mild conditions. Roughly
 2412 speaking, this would correspond to our operator $\Phi(x, y)$ being semialgebraic and contractive with
 2413 respect to y (Bolte et al., 2024). With this, we could conclude that our derivation in Section 2.1.2
 2414 holds everywhere.

2415 **F.3 EFFECTIVENESS OF THE BACKWARD PASS IN APPROXIMATING THE GRADIENT**
 2416

2417 In this section, we empirically assess how well the proposed backward pass approximates the true
 2418 gradient induced by the projection operator. Concretely, we compare the VJP obtained from the
 2419 implicit function theorem-based backward pass with finite-difference estimates on a representative
 2420 problem instance.

2421 **Experimental setup** We fix two problem instances in the non-convex small benchmark (see Sec-
 2422 tion 3.1) by fixing the right-hand side of the equality constraints. We then generate a set of 100
 2423 points-to-be-projected $x_{i=1}^{100}$ by sampling each coordinate from a normal distribution with standard
 2424 deviation 10. For each x_i , we also sample 100 normally distributed vectors v_i for comparing the
 2425 VJP. As a reference “ground truth”, we compute the VJP using central finite differences with step
 2426 size $\varepsilon = 10^{-6}$, which yields an approximation with $\mathcal{O}(\varepsilon^2)$ truncation error. We then compute
 2427 the VJP using our backward pass for varying numbers of backward iterations `n_iter_bwd`. For
 2428 each configuration, we report (i) the ℓ_2 -norm of the difference and (ii) the cosine similarity, thereby
 2429 quantifying both the absolute and directional accuracy of the proposed backward pass. For both
 methods, we use `n_iter_fwd = 200` forward iterations for computing the projection accurately.

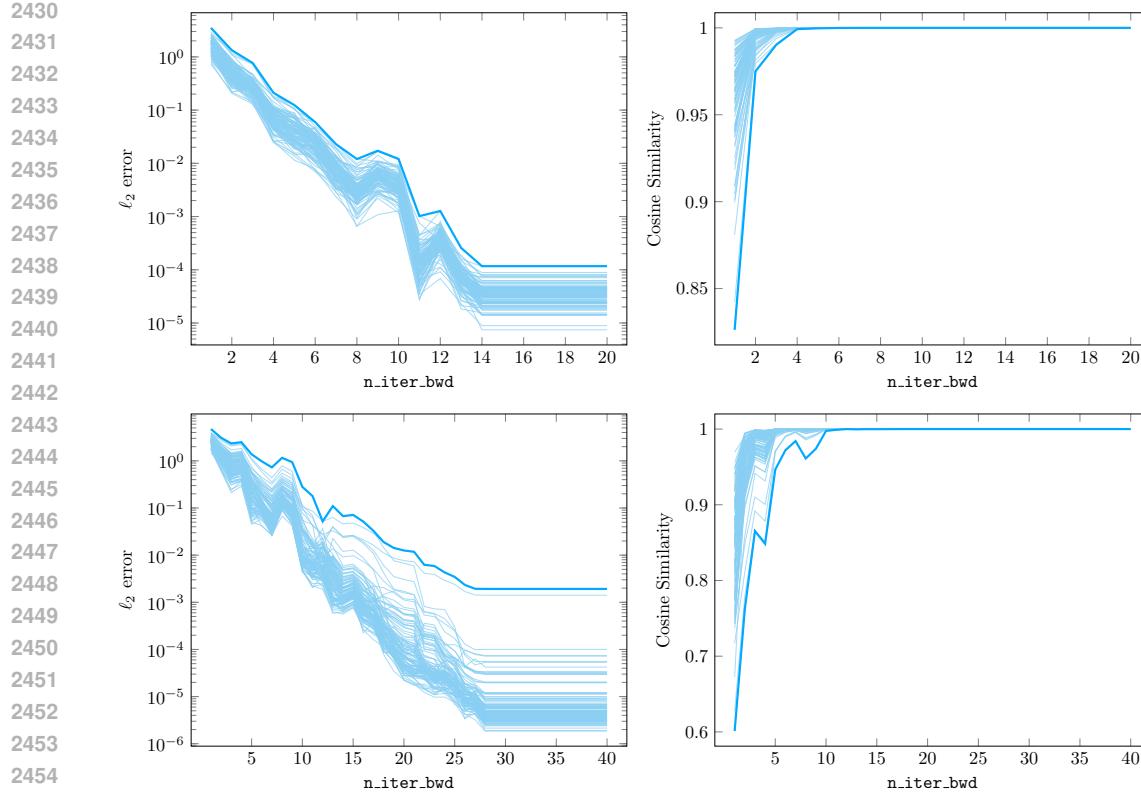


Figure 22: VJP estimation error (measured via the ℓ_2 -norm of the difference and the cosine similarity) for 100 different vectors v_i instances (light blue) for two different instances of the small non-convex benchmark as the number of iterations in the backward pass `n_iter_bwd` increases, as well as the maximum ℓ_2 -error and the minimum cosine similarity among all instances (dark blue).

Results As shown in Figure 22, the discrepancy between the VJP computed with our backward pass and the finite-difference reference decreases rapidly as the number of backward iterations increases. These results indicate that the proposed backward pass yields a highly accurate approximation of the true gradient even with a relatively small number of iterations.