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ABSTRACT

Spatiotemporal partial differential equations (PDEs) underpin a wide range of
scientific and engineering applications, yet classical solvers are computationally
costly on large or irregular domains. Neural PDE solvers have emerged as an ef-
ficient alternative, but they struggle to generalize to unseen source terms, which
represent external forcing such as heat generation, body forces, or reaction rates.
Since existing models typically mix the source with the system state, they lack
a principled mechanism to capture source responses. We propose DGNet, a dis-
crete Green network that explicitly decouples system evolution from source re-
sponse. The key idea is to transform the classical Green’s function—a corner-
stone of PDE theory—into a graph-based discrete formulation, preserving the su-
perposition principle in a computable update rule. To ensure fidelity on irregular
meshes, we construct a hybrid operator by combining physics-based discretiza-
tions with GNN-based corrections, while a lightweight residual GNN captures
dynamics beyond the operator. Across three categories of spatiotemporal PDE
scenarios, DGNet consistently achieves state-of-the-art accuracy. In particular, on
the most challenging setting with entirely novel source terms, DGNet maintains
stable performance while existing approaches collapse.

1 INTRODUCTION

Spatiotemporal partial differential equations (PDEs) form the foundation of modeling dynamical
systems across science and engineering, governing phenomena in fluid dynamics (Hirsch, 2007),
weather forecasting (Lynch, 2008), molecular dynamics (Lelievre & Stoltz, 2016), and energy sys-
tems (Rı́os-Mercado & Borraz-Sánchez, 2015). Accurately solving such PDEs is crucial for scien-
tific discovery and engineering design. Classical numerical solvers (Anderson, 2002; Evans et al.,
2012) can provide reliable solutions but often become computationally prohibitive for large-scale or
irregular domains. This has spurred growing interest in neural PDE solvers that learn to approximate
solutions more efficiently (Raissi et al., 2019; Brandstetter et al., 2022; Zeng et al., 2025). Since spa-
tiotemporal PDEs are typically discretized over irregular meshes, they can be naturally represented
as graphs, making graph-based formulations a compelling foundation for learning-based solvers.

A distinctive feature of spatiotemporal PDEs is the presence of a source term, f(x, t), representing
external forcing applied over space and time. Examples include time-varying heat sources in con-
duction (Hahn & Özisik, 2012), body forces in fluid dynamics (Pope, 2001), time-dependent cur-
rents in electromagnetics (Taflove et al., 2005), spatiotemporal reaction rates in reaction–diffusion
systems (Murray, 2007), and seismic excitations in elasticity (Aki & Richards, 2002). These sources
are not peripheral details but often define the problem itself. Nevertheless, existing neural solvers
usually entangle the source term with the system state as a single input, lacking a dedicated struc-
ture to model its effect. This design severely limits generalization: models trained on one set of
sources exhibit sharp performance degradation when confronted with unseen sources, a scenario
that is ubiquitous in scientific and engineering practice.

Another difficulty lies in combining physics priors with neural solvers. While physics-informed de-
signs can improve data efficiency, naively injecting priors into flexible neural architectures is brittle
on irregular meshes and complex dynamics. Green’s function provides a principled foundation: it
effectively “extracts” the solution u from the direct action of the operator Lx, recasting the PDE
solution into two explicit components—the homogeneous evolution and the forced response. This
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separation is precisely what enables us to treat the source term as a first-class input, rather than mix-
ing it implicitly with the system state. However, applying continuous Green’s functions directly in
learning is intractable: closed-form expressions rarely exist for complex geometries, and evaluating
the integrals is prohibitively expensive. Our key contribution is to make this classical theory dis-
crete. We develop a discrete Green formulation on graphs that preserves the superposition structure
in a computable update rule, thus bridging continuous PDE theory with neural solvers and providing
a natural interface for embedding physics priors together with learnable corrections from GNNs.

Our contributions can be summarized as follows:

• We propose DGNet, a new paradigm for spatiotemporal PDEs that explicitly decouples system
evolution from source response. This is made possible by leveraging Green’s function to “extract”
the solution u from the direct action of the operator Lx, thereby treating the source term as a
first-class input rather than an implicit perturbation.

• We develop a discrete Green’s function formulation on graphs, transforming a classical continuous
tool into a computable update rule. This preserves the superposition principle in the discrete
setting, and provides a principled interface where physics priors are embedded at the operator
level and GNNs learn corrections that compensate discretization errors on irregular meshes.

• We demonstrate that DGNet achieves state-of-the-art performance across multiple PDE bench-
marks, with particularly strong gains in the most challenging scenarios involving diverse and
unseen source terms.

2 RELATED WORK

Physics-informed neural networks (PINNs). PINNs (Raissi et al., 2019) represent a prior-heavy
paradigm, where PDE residuals and boundary conditions are incorporated as soft constraints in the
training loss. This makes them data-efficient, since only sparse observations are required. However,
PINNs essentially learn a specific solution under the training setup, and thus cannot generalize to
domains, parameters, or forcing terms beyond the training distribution. Variants (Yu et al., 2022;
Sukumar & Srivastava, 2022; Costabal et al., 2024) have attempted to improve stability or efficiency,
but the lack of out-of-distribution generalization remains a fundamental limitation.

Neural operators. Neural operator methods adopt the opposite, largely data-driven stance: they
directly learn mappings between infinite-dimensional function spaces from data. Representative
works include DeepONet (Lu et al., 2021) and the Fourier Neural Operator (FNO) (Li et al., 2021),
along with many extensions in the spectral or kernel domains (Guibas et al., 2021; Li et al., 2023;
George et al., 2024; Tran et al., 2023). These models achieve strong generalization across resolutions
and physical parameters. Yet, they usually treat external forcing implicitly within the dynamics, and
lack an explicit mechanism to handle varying source terms during time marching.

Graph-based PDE solvers. For spatiotemporal PDEs on irregular domains, graphs provide a nat-
ural backbone. The Graph Network Simulator (GNS) (Sanchez-Gonzalez et al., 2020b) introduced
the encoder–processor–decoder framework for physical simulation. Subsequent works enhanced
physical consistency by embedding conservation laws (Sanchez-Gonzalez et al., 2020a; Cranmer
et al., 2020; Bishnoi et al., 2023), incorporating operator blocks (Seo et al., 2019; Horie & Mitsume,
2022; Zeng et al., 2025), or enforcing invariants such as momentum conservation (Bishnoi et al.,
2024). BENO (Wang et al., 2024) further drew inspiration from Green’s functions, but focused
on time-independent elliptic PDEs. Despite these advances, graph-based solvers remain limited in
generalizing beyond training conditions.

Generalization challenges in PDE solvers. Generalization is central to neural PDE solvers. Neural
operators such as FNO (Li et al., 2021) generalize across resolutions, DeepONet (Lu et al., 2021)
across parameters, and BroGNet (Bishnoi et al., 2024) across system sizes. Yet a critical gap re-
mains: none of these approaches can generalize to unseen source terms, which frequently arise in
scientific and engineering systems. Such varying sources are ubiquitous in practice, including time-
varying heat sources in conduction (Hahn & Özisik, 2012), body forces in fluid dynamics (Pope,
2001), time-dependent currents in electromagnetics (Taflove et al., 2005), spatiotemporal reaction
rates in reaction–diffusion systems (Murray, 2007), and seismic excitations in elasticity (Aki &
Richards, 2002).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 DGNET: DISCRETE GREEN NETWORKS WITH SOURCE SUPERPOSITION

Here, we introduce our proposed DGNet, for learning spatiotemporal PDEs with varying sources.
We begin in Section 3.1 by formalizing the problem setup and highlighting the critical role of source
terms. In Section 3.2, we introduce Green’s function and the superposition principle, which nat-
urally decompose the PDE solution into state evolution and source response. In Section 3.3, we
derive the discrete Green formulation by discretizing both space and time, leading to a source-aware
update rule. In Section 3.4, we describe our physics–neural hybrid operator that combines numerical
discretization with a GNN-based correction to construct a high-fidelity solver. Finally, Section 3.5
describes the prediction and training procedure.

3.1 PROBLEM FORMULATION

We consider physical systems governed by spatiotemporal partial differential equations (PDEs) of
the form

∂u(x, t)

∂t
= Lx[u(x, t)] + f(x, t), (x, t) ∈ Ω× (0, T ], (1)

where u(x, t) ∈ R denotes the physical state, Lx is a spatial differential operator characterizing the
system dynamics, and f(x, t) is the source term.

The evolution is uniquely determined by an initial condition (IC) and boundary conditions (BCs).
The IC specifies u(x, 0) = u0(x). On the boundary ∂Ω, we primarily consider Dirichlet BCs
u(x, t) = g(x, t) for x ∈ ∂ΩD and Neumann BCs ∂u(x,t)

∂n = h(x, t) for x ∈ ∂ΩN , with ∂ΩD ∪
∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅. Other BC types (e.g., Robin, periodic) are accommodated in the
same framework.

In many real-world systems, the source f(x, t) varies substantially across space and time and thus
plays a decisive role in the solution behavior. However, existing learning-based solvers often assume
a fixed or implicitly absorbed source, limiting generalization across forcing patterns.

3.2 GREEN’S FUNCTION REPRESENTATION

Directly solving the PDE (1) is often challenging. The Green’s function method from PDE the-
ory (Arfken et al., 2013) provides a principled way to characterize the system response. The Green’s
function G(x, t;x′, τ) is uniquely determined by(

∂

∂t
− Lx

)
G(x, t;x′, τ) = δ(x− x′) δ(t− τ), (2)

where δ(·) is the Dirac delta function. Physically, G(x, t;x′, τ) describes the influence observed at
(x, t) due to a unit-strength point source applied at (x′, τ).

Crucially, the Green’s function acts as a mathematical device to “extract” the solution u from the
direct action of the operator Lx. Instead of learning Lx[u] as an inseparable whole, the Green
representation rewrites the PDE solution in terms of a propagation kernel defined by Lx and a
convolution with the source term. According to the superposition principle (Boyce et al., 2017), the
complete solution u(x, t) can therefore be expressed as

u(x, t) =

∫
Ω

G(x, t;x′, 0)u0(x
′) dx′︸ ︷︷ ︸

Evolution of initial state

+

∫ t

0

∫
Ω

G(x, t;x′, τ) f(x′, τ) dx′dτ︸ ︷︷ ︸
Response to source term

. (3)

This representation makes two key points explicit. First, the solution naturally decomposes into
the evolution of the initial condition and the accumulated response to the source term. Second,
it elevates f(x, t) to a first-class input of the model, enabling a unified treatment of diverse and
time-varying forcing conditions. In the next section, we describe how this continuous formulation
is discretized on graphs, leading to a discrete Green’s function that forms the foundation of our
learning architecture.
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3.3 DISCRETIZATION

While Green’s function provides an elegant continuous representation, it is rarely available in closed
form on complex domains and evaluating the integrals is computationally prohibitive. We therefore
develop a discrete Green formulation on graphs that preserves the superposition structure in a com-
putable update rule. In this process, the role of the Green’s function naturally emerges as a discrete
propagation operator that evolves the system state and incorporates the effect of the source term at
each time step.

Graph-based ODE system. Graph-based discretization is particularly suitable for spatiotemporal
PDEs on irregular meshes, as it provides a flexible representation of spatial operators and naturally
supports message-passing based corrections. Therefore in DGNet, we discretize the spatial domain
Ω into N nodes {x0, . . . ,xN−1}, and represent it as a graph G = (V, E), where V is the set of nodes
and E is the edge set constructed once using Delaunay triangulation. Each node i ∈ V corresponds
to a spatial location xi.

At a discrete time tk, the physical state values {u(xi, t
k)}N−1

i=0 form a state vector

uk =
(
u(x0, t

k), . . . , u(xN−1, t
k)
)
∈ RN ,

and similarly the source term values {f(xi, t
k)}N−1

i=0 form a vector

fk =
(
f(x0, t

k), . . . , f(xN−1, t
k)
)
∈ RN .

When the time index k is not critical, we simply denote them by u and f .

With these definitions, the continuous PDE (1) can be written in discrete form as
du

dt
= Lu+ f , (4)

where L ∈ RN×N is the matrix discretization of the spatial operator Lx. For node i, the action of
L on the state vector u is [Lu]i =

∑N
j=1[L]ij [u]j , where [·]ij denotes the (i, j)-th entry of a matrix

and [·]j denotes the j-th component of a vector.

Time integration. We apply a midpoint (Crank–Nicolson) discretization on [tk, tk+1]: let ∆t =
tk+1 − tk, the time increment is (uk+1 − uk)/∆t, and the right-hand side is approximated by a
trapezoidal average, yielding

uk+1 − uk

∆t
= 1

2

(
Luk + Luk+1

)
+ 1

2

(
fk + fk+1

)
. (5)

Rearranging terms yields a sparse linear system:(
I− ∆t

2 L
)
uk+1 =

(
I+ ∆t

2 L
)
uk + ∆t

2

(
fk + fk+1

)
. (6)

Discrete Green’s function. From Eq. 6, the discrete Green’s function is identified as

G(∆t) =
(
I− ∆t

2 L
)−1

.

Thus the single-step update becomes

uk+1 = G(∆t)
(
I+ ∆t

2 L
)
uk +G(∆t)∆t

2

(
fk + fk+1

)
. (7)

This discrete formulation mirrors the superposition principle (3): the next state uk+1 results from the
propagation of the current state under G(∆t) together with the accumulated response to the source
term within the interval ∆t. A full derivation of this update scheme is provided in Appendix A.

As naively computing the inverse
(
I− ∆t

2 L
)−1

is infeasible for large systems. Instead, we solve the
equivalent sparse linear system, where L is already sparse due to local mesh interactions. Impor-
tantly, the coefficient matrix

(
I− ∆t

2 L
)

depends only on the static mesh geometry and thus remains
fixed throughout rollout. We therefore adopt a “factorize once, solve many times” strategy: a single
sparse LU factorization is performed before rollout, and its factors are cached and reused for all time
steps via efficient forward/backward substitution. This reduces per-step cost to nearly linear in the
number of nonzeros, making the discrete Green solver practical for large meshes (see Appendix C.2
for details).

4
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PDE Problem Formulation

Green's Function Representation

Continuous

Graph-based ODE system

Discrete Green’s function

Discrete

source term 𝑓𝑘 

System evolution

Source response 

predicted state 𝑢𝑘+1 

system state 𝑢𝑘 

discretization

Mesh information

𝐋physics  𝐋neural  

Operator 𝐋

Figure 1: Overview of DGNet architecture. The model centers on a hybrid operator L = Lphysics +
Lneural, where Lphysics encodes gradient and Laplacian discretizations and Lneural is a GNN-based
correction for mesh-induced errors. This operator is integrated into the discrete Green’s function
update (Eq. 7), which naturally combines system evolution with source-term response.

3.4 PHYSICS–NEURAL HYBRID OPERATOR

The core of our architecture lies in constructing a high-fidelity operator L for the discrete ODE
system. Instead of relying solely on data-driven models or purely hand-crafted discretizations, we
propose a hybrid approach that combines the best of both worlds:

L = Lphysics + Lneural. (8)

Here, Lphysics is built directly from mesh geometry using numerical discretization techniques, ensur-
ing consistency with physical laws. Meanwhile, Lneural is a learnable correction term, parameterized
by a GNN, that compensates for discretization errors on irregular meshes.

3.4.1 PHYSICS PRIOR OPERATOR LPHYSICS

Among the various spatial operators appearing in PDEs, the gradient and Laplacian are the most
fundamental and widely used components (e.g., in diffusion, convection–diffusion, and Poisson-
type equations). Accordingly, we construct Lphysics directly from mesh geometry using established
discretization schemes, namely the Green–Gauss theorem (Löhner, 2008) and the discrete Laplace–
Beltrami operator (Meyer et al., 2003). These methods are widely used in computational physics
and provide physically consistent priors on irregular meshes, ensuring that Lphysics encodes reliable
physics knowledge. Accordingly, Lphysics is instantiated as follows:

• Gradient operator. [Lphysics]ij =
mij lij
2Ai

if j ∈ N(i) and, [Lphysics]ii = −∑
k∈N(i)

miklik
2Ai

, other
elements are zero. Where Ai is the control volume, and mij is is the scalar projection of unit
normal nij , lij is the face length.

• Laplacian operator. [Lphysics]ij =
wij

di
if j ∈ N(i) and [Lphysics]ii = − 1

di

∑
k∈N(i) wik, other

elements are zero. With cotangent weights wij =
1
2 (cotαij + cotβij) and Voronoi area di.

3.4.2 NEURAL CORRECTION OPERATOR LNEURAL

Although Lphysics provides a principled foundation, its discretization error can be significant on
coarse or skewed meshes. We therefore introduce a correction matrix Lneural, learned by a GNN
following the Encode–Process–Decode paradigm (Sanchez-Gonzalez et al., 2020b).

Encoder. Node features consist of the spatial coordinates xi and node type Ci (interior or boundary),
which are mapped to embeddings as h0

i = NodeEncoder([xi, Ci]). Edge features consist of the
relative displacement xij = xj − xi and distance dij = ∥xj − xi∥2, mapped to embeddings as
eij = EdgeEncoder([xij , dij ]).

5
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Processor. The processor consists of M layers of message-passing neural networks (MPNNs). At
the m-th layer, we obtain

hm+1
i = Update

(
hm
i ,

∑
j∈N(i)

Message(hm
i ,hm

j , eij)

)
+ hm

i . (9)

Decoder. After M layers, for each edge (i, j), we concatenate final node embeddings and pass them
through a decoder to predicts edge-level corrections:

[Lneural]ij = Decoder([hM
i ,hM

j ]). (10)

For simplicity, we implement all neural components, including the node encoder, edge encoder,
message function, update function, and decoder, as multilayer perceptrons (MLPs).

3.5 PREDICTION AND TRAINING

With the hybrid operator L = Lphysics + Lneural, the system state is updated by the discrete Green
solver in Eq. 7, yielding predictions ûk at each global time step tk.

To further improve accuracy, we include a lightweight residual GNN correction module in the pre-
diction path. This design follows prior physics–neural hybrid solvers (Meng & Karniadakis, 2020;
Wu et al., 2024; Long et al., 2023; Zeng et al., 2025), which demonstrate that small residual mod-
ules can effectively approximate dynamics not explicitly captured by the physical operator, while
preserving interpretability of the operator-based formulation.

For training, the full trajectory (u0, . . . ,uT−1) is segmented into shorter sub-sequences of length
Q ≪ T : (us0 ,us1 , . . . ,usQ−1), where sq denotes the global time index of the q-th step in
the sub-sequence (corresponding to time point tsq ). The model rolls out from us0 to predict
(ûs1 , . . . , ûsQ−1). Following prior work (Brandstetter et al., 2022; Pfaff et al., 2021; Sanchez-
Gonzalez et al., 2020b), we apply the pushforward trick and inject small noise into us0 during
training to alleviate error accumulation and improve robustness. The loss is computed only on the
first and last predictions of each sub-sequence:

L = ∥ûs1 − us1∥2 + ∥ûsQ−1 − usQ−1∥2.

The learnable parameters are optimized with Adam using a decayed learning rate schedule.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate DGNet on three categories of spatialtemporal PDE systems: (1) classi-
cal equations (Allen–Cahn, Fisher–KPP, FitzHugh–Nagumo) to validate accuracy on canonical
diffusion-, advection-, and reaction-driven dynamics, (2) complex geometric domains (contaminant
transport with cylinder, sediment, and irregular obstacles) to test robustness on irregular meshes and
boundary conditions, and (3) generalization to unseen source terms (laser heat treatment) to evaluate
adaptability to novel forcing conditions. Table 1 summarizes the governing equations, physical con-
texts, and the meaning of the source term in each scenario. Detailed dataset parameters (domains,
mesh sizes, time steps, boundary conditions, and trajectory splits) are deferred to Appendix B.

Baselines. We compare DGNet with representative neural PDE solvers: DeepONet (Lu et al., 2021),
MGN (Pfaff et al., 2021), MP-PDE (Brandstetter et al., 2022), PhyMPGN (Zeng et al., 2025), and
BENO (Wang et al., 2024). These cover operator-learning, graph-based, and hybrid paradigms. All
baselines are tuned to have comparable numbers of parameters and training costs. Implementation
details are provided in Appendix C.

Evaluation Metrics. We report Mean Squared Error (MSE) and Relative ℓ2 Error (RNE). RNE is
defined as ∥û−u∥2/∥u∥2, where û and u denote predicted and ground-truth states. We report log10
MSE for readability, while the relative ranking remains consistent with raw MSE.

6
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Table 1: Governing equations and physical contexts for experimental scenarios.

Name Physical Scenario Mathematical Formulation Meaning of Source Term
Allen–Cahn Phase separation ∂tu = ϵ2∇2u− (u3 − u) Driving force for separation
Fisher–KPP Population dynamics ∂tu+ c · ∇u = ρu(1− u) Logistic growth

FitzHugh–Nagumo Excitable systems ∂tu = Du∇2u+Γ(−u3+u−v); ∂tv =
Dv∇2v + Γβ(u− αv)

Excitation–recovery coupling

Contaminant Trans-
port

Channel flow with obsta-
cles ∂tc+u·∇c = D∇2c+ρgc(1−c)−kdc Reaction (generation/decay)

Laser Heat Laser heating ρcp∂tT = k∇2T − h(T − Tamb) +
Q(x, t)

Moving laser heat source

4.2 PERFORMANCE COMPARISON

Table 2 summarizes results across all experimental scenarios, covering the three categories of spa-
tiotemporal PDE systems considered in this paper. DGNet achieves state-of-the-art performance on
every task and metric. Additional extended tables and visualizations are provided in Appendix D.

Table 2: Results across scenarios from three categories of spatiotemporal PDE systems. For both
MSE (in log scale) and RNE, lower values indicate better performance. The best results are high-
lighted in bold.

Scenario Metric DeepONet MGN MP-PDE BENO PhyMPGN DGNet

Allen-
Cahn

MSE 2.60e-01 2.70e-01 8.52e-01 2.52e+00 5.16e-01 8.75-03
RNE 0.6686 0.6813 1.2109 2.0813 0.9420 0.0188

Fisher-
KPP

MSE 3.05e-02 3.66e-03 9.90e-02 6.26e-02 1.50e-02 2.59e-04
RNE 0.4181 0.1448 0.7530 0.5989 0.9270 0.0238

FitzHugh-
Nagumo

MSE 2.49e-06 3.75e-05 6.464e-06 2.14e-04 1.69e-03 1.18e-07
RNE 0.9745 3.4815 1.4454 8.3106 23.5696 0.0952

Cylinder MSE 4.44e-02 6.38e-03 9.31e-02 6.76e-02 4.13e-01 1.00e-04
RNE 0.5976 0.7154 0.8644 0.7364 1.8201 0.0196

Sediments MSE 3.61e-02 5.94e-03 7.10e-03 1.07e-01 2.00e-01 4.60e-04
RNE 0.4759 0.6103 0.6673 0.8180 1.1186 0.0282

Complex
Obstacles

MSE 5.33e-02 7.79e-03 6.09e-03 7.66e-02 2.97e-01 6.69e-05
RNE 0.5061 0.6120 0.5410 0.6069 1.1956 0.0211

Laser Heat MSE 2.48e+03 4.98e+03 3.88e+03 1.95e+03 6.78e+03 1.76e+01
RNE 0.1208 0.1711 0.1510 0.1071 0.1998 0.0102

4.2.1 CLASSICAL PDES

To validate the accuracy of DGNet as a general-purpose PDE solver, we first evaluate it on three
well-established classical systems: the diffusion-dominated Allen–Cahn equation, the advection-
driven Fisher–KPP equation, and the coupled FitzHugh–Nagumo system representing excitable me-
dia. These tasks span distinct physical regimes (diffusion, advection–reaction, and multi-variable
coupling), and are widely used as canonical benchmarks in scientific machine learning.

Table 2 reports the quantitative results. DGNet consistently outperforms all baselines by a large
margin across all equations, achieving up to one to two orders of magnitude lower mean squared er-
ror (MSE). This demonstrates that the proposed discrete Green formulation, combined with physics-
informed operators, yields substantial improvements in precision. Figure 2 provides qualitative com-
parisons. For the Allen–Cahn and Fisher–KPP equations, DGNet’s predictions closely match the
ground truth, whereas other models exhibit noticeable deviations, with MGN performing relatively
better than the rest. The FitzHugh–Nagumo system is particularly challenging due to the forma-
tion of nonlinear spiral waves. Here, only DGNet successfully reproduces the propagation of spiral
structures over long horizons, while baselines either dissipate the patterns or introduce severe distor-
tions. Interestingly, BENO—although designed for steady-state PDEs—captures some ripple-like
features, likely because its architecture explicitly incorporates boundary conditions. These results
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confirm that DGNet is capable of accurately solving diverse PDEs with very different underlying
dynamics, highlighting its versatility and reliability as a spatiotemporal solver.

Ground truth DGNet DeepONet MGN MPPDE BENO PhyMPGN

Figure 2: Visualization of prediction results on classical PDE scenarios. Rows from top to bottom
correspond to the Allen–Cahn, FitzHugh–Nagumo, and Fisher–KPP equations, respectively.

4.2.2 COMPLEX GEOMETRIC DOMAINS

We next examine the ability of DGNet to handle PDEs defined on irregular meshes with com-
plex boundaries. These scenarios simulate contaminant transport in a channel flow, with obstacles
of varying shapes that induce rich flow structures. The three cases considered are: (i) a circu-
lar cylinder, (ii) sediment deposits on the walls, and (iii) a combination of elliptical obstacles and
airfoil-shaped wall structures. Such settings are challenging due to intricate boundary conditions
and highly nonuniform meshes.

Table 2 shows that DGNet achieves the lowest errors across all three domains, substantially out-
performing baseline models. Figure 3 provides qualitative comparisons. In the cylinder scenario,
DGNet accurately captures the Kármán vortex street in the wake of the obstacle, while other models
exhibit distorted or dissipated vortical patterns. In the more complex sediment and obstacle cases,
DGNet’s predictions remain visually indistinguishable from ground truth, successfully reproduc-
ing contaminant filaments stretched and folded by the flow. By contrast, baseline methods either
blur these fine-scale structures or fail to track their spatial location. These results demonstrate that
the discrete Green formulation, combined with physics-informed operators, generalizes robustly to
irregular geometries and nontrivial boundary conditions.

Ground truth DGNet DeepONet MGN MPPDE BENO PhyMPGN

Figure 3: Visualization of prediction results on scenarios with complex geometric domains. Rows
from top to bottom correspond to the cylinder, sediment, and complex obstacle cases, respectively.

4.2.3 GENERALIZATION TO UNSEEN SOURCE TERMS

A key motivation for DGNet is its ability to generalize beyond source terms encountered during
training. To test this, we consider a laser heat treatment task governed by the transient heat equation,
where the source term f(x, t) corresponds to the spatiotemporally varying power density of moving
laser beams. During training, the model is exposed to trajectories generated from a subset of source
patterns. At test time, it must adapt to entirely novel laser paths, such as spline and Lissajous curves,
that were never seen during training. This setup directly evaluates the zero-shot generalization
capability to new forcing conditions.
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Quantitative results in Table 2 show that most baseline models suffer severe degradation when con-
fronted with unseen source terms: their errors increase by several orders of magnitude compared to
the training distribution. In contrast, DGNet maintains stable accuracy, with almost no performance
drop relative to its results on seen source terms. Figure 4 further highlights this difference. DGNet
accurately reproduces the spatiotemporal evolution of the temperature field, including the movement
and spread of high-temperature regions, even under entirely novel laser trajectories. By comparison,
baseline predictions collapse: the high-temperature regions become misplaced or overly diffused,
failing to follow the true laser paths. These experiments confirm that DGNet uniquely addresses a
critical limitation of existing neural PDE solvers, achieving robust generalization to unseen source
terms—a scenario ubiquitous in real-world scientific and engineering applications.

Ground truth DGNet DeepONet MGN MPPDE BENO PhyMPGN

Figure 4: Visualization of generalization performance on the laser heat scenario with unseen sources.

4.3 ABLATION STUDY

We compare DGNet against four variants on the complex obstacle scenario: (A) w/o Lphysics: re-
moves the physics prior operator; (B) w/o Lneural: removes the neural correction operator; (C)
w/o Residual GNN: removes the residual GNN while retaining the discrete Green solver; (D) w/o
Green: replaces the discrete Green solver with a generic end-to-end GNN that only consumes oper-
ator features. The results are shown in Figure 5. Among all variants, w/o Green suffers the largest
performance drop, highlighting the central role of the discrete Green solver as the physical back-
bone. Removing Lphysics degrades performance more severely than removing Lneural, demonstrating
that the physics prior provides essential structural knowledge while the neural correction mainly
fine-tunes discretization errors. Finally, the decline in the w/o Residual GNN variant confirms the
residual GNN’s effectiveness in capturing additional dynamics and improving overall accuracy.

DGNet w/o Lphysics w/o Lneural w/o fit w/o Green
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Figure 5: Ablation study on the complex obstacle scenario.

5 CONCLUSION

In this work, we introduced DGNet, a discrete Green network that tackles two longstanding chal-
lenges of neural PDE solvers: robust handling of irregular geometries and generalization to unseen
source terms. By discretizing Green’s function on graphs, DGNet transforms a classical continuous
tool into a practical solver that preserves the superposition principle. Coupled with physics-based
operators and GNN corrections, this framework provides a principled interface between physical
fidelity and learnable flexibility. Extensive experiments across three categories of spatiotemporal
PDE systems demonstrated that DGNet consistently achieves state-of-the-art accuracy, and uniquely
maintains stable performance under entirely novel source terms, where existing baselines collapse.
Looking ahead, several open challenges remain, including extending the method to strongly nonlin-
ear PDEs, scaling to very large systems, and generalizing from two- to three-dimensional domains.
We view these as promising directions for advancing discrete Green methods and broadening their
impact in scientific machine learning.
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Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. Discrete differential-geometry
operators for triangulated 2-manifolds. In Visualization and Mathematics III, pp. 35–57. Springer,
2003.

James D Murray. Mathematical biology: I. An introduction, volume 17. Springer Science & Busi-
ness Media, 2007.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.

Stephen B Pope. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021, 2001.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Roger Z Rı́os-Mercado and Conrado Borraz-Sánchez. Optimization problems in natural gas trans-
portation systems: A state-of-the-art review. Applied Energy, 147:536–555, 2015.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ODE integrators. In ICLR 2020 Workshop on Integration of Deep Neural Models
and Differential Equations, 2020a.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Confer-
ence on Machine Learning, pp. 8459–8468. PMLR, 2020b.

Sungyong Seo, Chuizheng Meng, and Yan Liu. Physics-aware difference graph networks for
sparsely-observed dynamics. In International Conference on Learning Representations, 2019.

Natarajan Sukumar and Ankit Srivastava. Exact imposition of boundary conditions with distance
functions in physics-informed deep neural networks. Computer Methods in Applied Mechanics
and Engineering, 389:114333, 2022.

Allen Taflove, Susan C Hagness, and Melinda Piket-May. Computational electromagnetics: the
finite-difference time-domain method. The Electrical Engineering Handbook, 3(629-670):15,
2005.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. In International Conference on Learning Representations, 2023.

Haixin Wang, Jiaxin Li, Anubhav Dwivedi, Kentaro Hara, and Tailin Wu. BENO: Boundary-
embedded neural operators for elliptic PDEs. In International Conference on Learning Repre-
sentations, 2024.

Hao Wu, Huiyuan Wang, Kun Wang, Weiyan Wang, Yangyu Tao, Chong Chen, Xian-Sheng Hua,
Xiao Luo, et al. Prometheus: Out-of-distribution fluid dynamics modeling with disentangled
graph ODE. In International Conference on Machine Learning, 2024.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bocheng Zeng, Qi Wang, Mengtao Yan, Yang Liu, Ruizhi Chengze, Yi Zhang, Hongsheng Liu,
Zidong Wang, and Hao Sun. PhyMPGN: Physics-encoded message passing graph network for
spatiotemporal PDE systems. In International Conference on Learning Representations, 2025.

A DERIVATION OF THE DISCRETE GREEN SOLVER

For completeness, we outline the derivation of the discrete Green solver and its relation to implicit
time integration. Unlike explicit propagation matrices, which are dense and costly to construct, our
approach realizes the Green operator implicitly through sparse linear solves.

A.1 EXPLICIT VS. IMPLICIT GREEN FORMULATION

The discrete propagation matrix G(∆t) formally maps the state uk to uk+1 and serves as the discrete
analogue of the continuous Green’s function:

uk+1 = G(∆t)uk.

Each column of G(∆t) corresponds to the system response from a unit impulse at one node, while
each row represents how contributions from all nodes aggregate to update a given node. However,
explicitly forming G(∆t) requires O(N2) storage and computation, which is infeasible for large
meshes. We therefore derive an implicit realization based on stable time integration.

A.2 CRANK–NICOLSON DERIVATION

Starting from the semi-discretized ODE system
du

dt
= Lu+ f ,

we apply the Crank–Nicolson scheme for stability and second-order accuracy. The time derivative
is approximated by a central difference,

du

dt
≈ uk+1 − uk

∆t
,

while Lu and f are approximated by their averages at tk and tk+1. This yields
uk+1 − uk

∆t
= 1

2

(
Luk + Luk+1

)
+ 1

2

(
fk + fk+1

)
.

Rearranging terms gives the sparse linear system(
I− ∆t

2 L
)
uk+1 =

(
I+ ∆t

2 L
)
uk + ∆t

2

(
fk + fk+1

)
,

which is equivalent to applying the discrete Green’s function

G(∆t) =
(
I− ∆t

2 L
)−1

.

A.3 EFFICIENT IMPLEMENTATION

In practice, we do not compute the inverse explicitly. Since L is sparse and depends only on the static
mesh geometry, the coefficient matrix

(
I − ∆t

2 L
)

is also sparse and remains fixed during rollout.
We therefore adopt a “factorize once, solve many times” strategy: a single sparse LU factorization
is performed before rollout, and forward/backward substitution reuses the factors at each time step.
This reduces the per-step cost to nearly linear in the number of nonzeros, making the discrete Green
solver scalable to large systems.

B DATASET DETAILS

We evaluate DGNet on three categories of PDE systems: (1) classical equations (Allen–Cahn,
Fisher–KPP, FitzHugh–Nagumo), (2) contaminant transport in complex geometric domains, and (3)
laser heat treatment with varying source terms. High-fidelity simulation data are generated with the
FEniCSx finite element library on unstructured meshes and small time steps. Detailed parameters
are reported in Table 3. Below we outline the dataset settings.
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B.1 CLASSICAL PDES

Allen–Cahn. Phase separation with ϵ = 0.04 on [0, 1]2, ∆t = 0.005, 1000 steps. Mesh: perturbed
35 × 35 grid (∼1296 nodes). Initial condition: random noise in [−0.5, 0.5]. Boundary condition:
homogeneous Neumann. Trajectories: 20 (10 train / 10 test).

Fisher–KPP. Advection–reaction equation with ρ = 1.0, c = [0.1, 0.12], domain [0, 1]2. ∆t =
0.00125, 1600 steps. Mesh: perturbed 40 × 40 grid (∼1681 nodes). Initial condition: Gaussian
blobs. Boundary: inflow Dirichlet, outflow natural. Trajectories: 20 (10 train / 10 test).

FitzHugh–Nagumo. Two-component excitable system with parameters Du = 1/L2
s, Dv =

6.181/L2
s, Γ = 9.657, α = 0.5, β = 2.1, Ls = 16π. Domain [0, 1]2, ∆t = 0.005, 1200 steps.

Mesh: perturbed 99 × 99 grid (∼10,000 nodes). Initial: circular perturbation. Boundary: inflow
Dirichlet (u = 0, v = 0), others Neumann. Trajectories: 10 (7 train / 3 test).

B.2 COMPLEX GEOMETRIC DOMAINS

All scenarios solve coupled Navier–Stokes and reaction–advection–diffusion equations. Fluid den-
sity ρ = 1.0, viscosity µ = 5 × 10−3, contaminant D = 2 × 10−3, ρg = 0.1, kd = 0.025.
Simulation: T = 100s, ∆t = 0.05s, 2000 steps. Trajectories: 20 (15 train / 5 test).

Cylinder. Rectangular channel [0, 24]× [0, 8], obstacle: central circle (r = 1.0), Re = 240.

Sediments. Same channel, three asymmetric smooth bumps attached to top/bottom walls.

Complex Obstacles. Same channel, two ellipses + NACA airfoil-shaped bumps/grooves.

B.3 LASER HEAT TREATMENT (VARYING SOURCE TERMS)

Transient heat conduction with ρ = 7850, cp = 450, k = 50, hconv = 25. Domain: complex plate
with gear + circular holes. Boundary: convective, initial T = 298.15K. Heat source Q(x, t): 10
moving lasers with random paths (orbit, spline, Lissajous, etc.). Simulation: T = 60s, ∆t = 0.5s,
120 steps. Trajectories: 40 (20 train / 20 test).

Table 3: Simulation parameters of all datasets used in experiments.

Dataset Domain Nodes (approx.) ∆t Steps Traj. (train/test)

Classical PDEs
Allen–Cahn [0, 1]2 1,296 0.005 1,000 10 / 10
Fisher–KPP [0, 1]2 1,681 0.00125 1,600 10 / 10
FitzHugh–Nagumo [0, 1]2 10,000 0.005 1,200 7 / 3

Complex Geometric Domains
Cylinder [0, 24]× [0, 8] 2,275 0.05 2,000 15 / 5
Sediments [0, 24]× [0, 8] 5,758 0.05 2,000 15 / 5
Complex Obstacles [0, 24]× [0, 8] 8,841 0.05 2,000 15 / 5

Varying Source Term
Laser Heat Complex Plate 6,072 0.5 120 20 / 20

C EXPERIMENTAL SETUP

All experiments are conducted on a workstation with four NVIDIA RTX 4090 (24GB) GPUs. Train-
ing typically completes within hours to one day depending on dataset size. Ground-truth PDE
data are generated using FEniCSx (dolfinx 0.9.0). DGNet is implemented in PyTorch 2.5.1 with
CUDA 12.4 and Python 3.13.5.
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C.1 TRAINING HYPERPARAMETERS

All models are trained with Adam and a step LR scheduler. We adopt trajectory segmentation
for efficiency, and apply the loss only to the first and last predictions of each segment to balance
single-step accuracy and long-term stability. Table 4 lists the hyperparameters for each experimental
scenario (the three contaminant transport cases share identical settings).

Table 4: Training hyperparameters for each experimental scenario.

Scenario Batch Size Initial LR Epochs Decay Step Decay Rate Sub-seq. Length Train/Test Trajs.
Allen–Cahn 36 1e-3 600 200 0.1 20 10/10
Fisher–KPP 24 5e-4 3000 600 0.1 10 10/10
FitzHugh–Nagumo 10 1e-3 2000 500 0.1 10 7/3
Cylinder 6 5e-4 1200 300 0.2 6 15/5
Sediments 6 5e-4 1200 300 0.2 6 15/5
Complex Obstacles 6 5e-4 1200 300 0.2 6 15/5
Laser Heat 8 5e-4 400 200 0.1 8 20/20

C.2 IMPLEMENTATION DETAILS

To solve the sparse linear system in Eq. (9), Auk+1
inter = b, we employ a factorize-once strategy with

GPU-accelerated sparse algebra.

Pre-computation. The system matrix A = (I − ∆t
2 L) depends only on mesh geometry and ∆t,

so it is built once before training. It is converted to a CuPy sparse matrix and factorized using
cupy.sparse.linalg.splu, producing LU factors cached as A lu.

Forward pass. At each step, the cached LU factors are used to efficiently solve Auk+1
inter = b

by forward/backward substitution, avoiding explicit matrix inversion and enabling fast long-term
rollouts.

Backward pass. We implement a custom torch.autograd.Function with an adjoint for-
mulation. Gradients are obtained by solving ATgb = gu,inter using the cached LU factors, ensuring
differentiability and efficiency.

D MORE EXPERIMENTAL RESULTS

D.1 VISUALIZATION OF LEARNED OPERATOR L
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Figure 6: Comparison of the learned operator with the reference. Left: input physical field. Center:
reference operator computed by finite difference. Right: operator predicted by DGNet.

Figure 6 compares the operator predicted by our model (right) with the reference computed by a
finite difference scheme (center), given the same input physical field (left). The learned operator
closely matches the reference in both structural patterns and numerical scale, demonstrating that
DGNet accurately captures operator-level dynamics.
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Figure 7: Heatmap visualization of operator matrices. Left: Lphysics. Middle: Lneural. Right: final
corrected operator L.

Figure 7 shows heatmaps of Lphysics (left), Lneural (middle), and the final corrected operator L (right).
The magnitude of entries in Lneural is significantly smaller than in Lphysics, indicating that the neural
component mainly provides fine-grained corrections on top of the physical prior.

D.2 FULL PERFORMANCE COMPARISON

Table 5 presents the complete performance comparison with standard deviations.
Table 5: Results across experimental scenarios from three categories of spatiotemporal PDE sys-
tems. For both MSE (in log scale) and RNE, lower values indicate better performance. The best
results are highlighted in bold. Compared to Table 2, this table additionally reports the standard
deviations.

Scenario Metric DeepONet MGN MP-PDE BENO PhyMPGN DGNet

Allen-
Cahn

MSE 2.60e-01 2.70e-01 8.52e-01 2.52e+00 5.16e-01 8.75e-03
(1.2e-02) (1.5e-02) (3.1e-02) (1.1e-01) (2.4e-02) (5.1e-04)

RNE 0.6686 0.6813 1.2109 2.0813 0.9420 0.0188
(0.021) (0.025) (0.042) (0.051) (0.033) (0.0005)

Fisher-
KPP

MSE 3.05e-02 3.66e-03 9.90e-02 6.26e-02 1.50e-02 2.59e-04
(1.1e-03) (1.5e-04) (2.1e-03) (1.8e-03) (0.9e-03) (1.2e-05)

RNE 0.4181 0.1448 0.7530 0.5989 0.9270 0.0238
(0.015) (0.008) (0.021) (0.019) (0.028) (0.0009)

FitzHugh-
Nagumo

MSE 2.49e-06 3.75e-05 6.46e-06 2.14e-04 1.69e-03 1.18e-07
(1.3e-07) (1.8e-06) (2.1e-07) (1.1e-05) (8.2e-05) (5.5e-09)

RNE 0.9745 3.4815 1.4454 8.3106 23.5696 0.0952
(0.031) (0.055) (0.048) (0.121) (0.523) (0.0021)

Cylinder
Flow

MSE 4.44e-02 6.38e-03 9.31e-02 6.76e-02 4.13e-01 1.00e-04
(1.5e-03) (2.1e-04) (2.5e-03) (1.9e-03) (1.4e-02) (5.2e-06)

RNE 0.5976 0.7154 0.8644 0.7364 1.8201 0.0196
(0.018) (0.023) (0.029) (0.021) (0.045) (0.0006)

Sediments

MSE 3.61e-02 5.94e-03 7.10e-03 1.07e-01 2.00e-01 4.60e-04
(1.2e-03) (1.8e-04) (2.2e-04) (5.3e-03) (9.1e-03) (1.5e-05)

RNE 0.4759 0.6103 0.6673 0.8180 1.1186 0.0282
(0.016) (0.019) (0.021) (0.025) (0.034) (0.0008)

Complex
Obstacles

MSE 5.33e-02 7.79e-03 6.09e-03 7.66e-02 2.97e-01 6.69e-05
(1.7e-03) (2.5e-04) (1.9e-04) (2.4e-03) (1.1e-02) (2.1e-06)

RNE 0.5061 0.6120 0.5410 0.6069 1.1956 0.0211
(0.015) (0.018) (0.016) (0.019) (0.037) (0.0005)

Laser Heat

MSE 2.48e+03 4.98e+03 3.88e+03 1.95e+03 6.78e+03 1.76e+01
(1.2e+02) (1.5e+02) (1.4e+02) (1.1e+02) (2.1e+02) (8.5e-01)

RNE 0.1208 0.1711 0.1510 0.1071 0.1998 0.0102
(0.005) (0.008) (0.007) (0.004) (0.009) (0.0003)
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