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Abstract

Language models often struggle with cross-mode knowledge retrieval – the
ability to access knowledge learned in one format (mode) when queried
in another. We demonstrate that models trained on multiple data sources
(e.g., Wikipedia and TinyStories) exhibit significantly reduced accuracy
when retrieving knowledge in a format different from its original training
mode. This paper quantitatively investigates this phenomenon through a
controlled study of random token sequence memorization across different
modes. We first explore dataset rewriting as a solution, revealing that
effective cross-mode retrieval requires prohibitively extensive rewriting
efforts that follow a sigmoid-like relationship. As an alternative, we propose
CASCADE, a novel pretraining algorithm that uses cascading datasets with
varying sequence lengths and computing losses on only the second half
of each training sequence to capture knowledge at different scales. Our
experiments demonstrate that CASCADE outperforms dataset rewriting
approaches, even when compressed into a single model with a unified
loss function. This work provides both qualitative evidence of cross-mode
retrieval limitations and a practical solution to enhance language models’
ability to access knowledge independently of its presentational format. To
facilitate research in the field of LLMs, the code is publicly released.1

1 Introduction

Large language models (LLMs) are often pretrained on corpus comprised of several sources,
each with a unique mode (wording style, organization format, etc., will also be referred to
as format). Although LLMs can achieve low losses on validation sets from the same mode,
we observe concrete examples that they cannot perform cross-mode knowledge retrieval
effectively. For example, we can pretrain a language model on both Wikipedia excerpts and
the TinyStories (Eldan & Li, 2023) dataset until convergence. However, when we query the
model for knowledge present in the Wikipedia training set using a story format, the generated
response shows surprisingly low accuracy on average. We illustrate this in Figure 1, with
details in Appendix B.

Motivated by this phenomenon, we research the following question:

How can we make language models capable of cross-mode knowledge retrieval?

We approach this problem quantitatively, focusing on a toy yet fundamental task of memoriz-
ing random token sequences in different modes (Wikipedia and TinyStories). Memorization
of random token sequences can be precisely quantified by computing log probabilities. We
investigate whether language models learn spurious correlations between knowledge and
mode instead of learning knowledge independently. To the best of our knowledge, while
spurious correlations in natural language processing have been widely studied in classifi-
cation tasks, they remain underexplored in general language modeling tasks, particularly

˚Part of this work done when Runlong was an intern at Microsoft Research, Redmond.
1https://github.com/zhourunlong/CASCADE public
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Khalil Fong was a Hong Kong-based American 
singer-songwriter and producer. […] In 2005, 
Fong finally signed a recording contract with 
Warner Records. He then debuted with the 
release of his first album. [BLANK] (Hint: first 
four albums in chronological order, with 
names and years.)

In 2005, Fong debuted with the release of his 
first album, "Soul Boy" (2005). His subsequent 
albums were "This Love" (2006), "Wonderland" 
(2007), and "Orange Moon" (2008).

[…] Four albums, each like a chapter in Khalil's 
tale, walking hand in hand down the path of 
time. [BLANK] (Hint: first four albums in 
chronological order, with names and years.)

Khalil released his albums over a span of 
several years, each resonating with his 
unique sound. The first album was "SoulBoy" 
released in 2005, followed by "SoulBoy Lights 
Up" in 2006. His third album, "Wonderland," 
was launched in 2007, showcasing his 
evolving artistry. Finally, in 2008, Khalil 
released "Orange Moon," completing the 
magical quartet that enchanted listeners 
across the land.

Figure 1: GPT-4o shows inconsistent accuracies when prompted with the same question but
in different formats. Left: the query is in a Wikipedia format. Right: the query is in a story
format. Find more detailed examples in Tables 3 to 5.

in knowledge memorization and manipulation. We hope this work will serve as an initial
study of spurious correlations in general language modeling and inspire more effective and
efficient methods to alleviate this issue.

1.1 Our contributions

Our contributions are twofold - both qualitative and quantitative.

Qualitatively, we build a pipeline (Appendix B) that demonstrates how LLMs fail at cross-
mode knowledge retrieval.

Quantitatively, we focus on the pretraining stage to improve language models’ cross-mode
knowledge retrieval capability. Our quantitative contributions can be summarized as
follows:

‚ Dataset rewriting. We first study how the ratio between non-cross-mode (original in the
dataset) and cross-mode data (rewritten into the dataset, with occurrences controlled by
us) affects the evaluation performance of cross-mode knowledge retrieval (Section 4). We
plot curves of evaluation performance with respect to the ratio r between same-mode and
cross-mode knowledge occurrences. These curves follow a sigmoid-like function: f prq “

a ¨ σpbplogprq ´ cqq. These results demonstrate that effective cross-mode knowledge retrieval
requires extensive rewriting effort, which is prohibitive in practice.

‚ Novel algorithm: CASCADE. We propose a novel algorithm, CASCADE, as a solution.
During pretraining, we use a series of cascading datasets with different sequence lengths to
help the language model capture knowledge at different scales. The loss is calculated on only
the second half of each training sequence. We first show that an original form of CASCADE
using model ensemble achieves better performance than dataset rewriting (Section 5.1), then
improve its complexity by compressing it into a single model with a single loss function
(Section 5.2). We also visualize how different sequence lengths contribute to completing
different knowledge.

2 Related works

We discuss the most related line of works here, deferring the other works to Appendix A.

Consistency. Consistency in language models has earned significant research attention.
Elazar et al. (2021) defined consistency as ”invariance under meaning-preserving alter-
nations” and introduced PARAREL for evaluating factual knowledge consistency across
paraphrases. Inconsistency manifests across various NLP applications: Ribeiro et al. (2019)
identified inconsistencies in question answering systems, while Kryscinski et al. (2019)
studied factual consistency in summarization. Li et al. (2019) and Camburu et al. (2019)
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examined inconsistencies in natural language inference (NLI) systems and explanations, re-
spectively. Researchers have proposed various improvement approaches: Elazar et al. (2021)
introduced a consistency loss function, Kassner et al. (2021) proposed augmenting PLMs
with an evolving memory, Chen et al. (2021) developed explanation-based post-training,
and Asai & Hajishirzi (2020) utilized data augmentation with symmetricity properties.

We highlight that while at a high level the issues associated with cross-mode knowledge retrieval
could be classified as inconsistency, they differ drastically. In previous consistency studies, input
changes are typically small perturbations such as synonym replacement, word or sentence permuta-
tion, or statement-QA conversion, leaving word styles largely unchanged. In contrast, cross-mode
knowledge retrieval applies to entirely different text sources with highly diverse word styles,
making the language model more prone to derive spurious correlations between the mode and the
knowledge.

3 Settings

In this work, we study the knowledge memorization mechanism in language models.
Specifically, we care about how much will the format text influence the language model’s
memorization of the knowledge, and how to reduce this influence. To this end, we will
construct datasets that admit a well-defined criterion of the extent of memorization. The
high-level idea is to define knowledge pieces as random token sequences, thus any language
model is said to memorize the knowledge only if it can perfectly generate the whole sequences,
admitting log probabilities as quantification of memorization. The modes or formats are
defined as texts from different datasets. The language models should separate knowledge
from modes to perform well on cross-mode knowledge retrieval tasks.

Tokenization. We process everything in the token space. We use the GPT-2 tokenizer
(tiktoken.get encoding("gpt2")) in this study, which has a token range of r0, 50256s. Some
other tokens may be used in the experiments, and we constrain them to be in a separate
range of r50257, 50303s.

Notations. Denote Σ as the set of all possible tokens. We use subscripts to denote the
mode name, superscripts to denote the index in a set, and numbers in brackets to denote
the index in a set. For a set X , we use |X | to denote the number of unique elements in X .
For a sequence a, we use |a| to denote the length of a.

Indexing. We follow Python’s indexing convention. Numerical indices start from 0. When
using a range to index, the lower bound is included while the upper bound is excluded.
When indexing an array a, a lower bound of 0 or an upper bound of |a| can be omitted. A
negative index ar´is means ar|a| ´ is.

3.1 Core concepts

First, we introduce core concepts that will be referenced frequently when constructing
datasets and during training and evaluation.

Formats/Modes. We use existing datasets, English Wikipedia excerpts and TinyStories
(Eldan & Li, 2023), as format/mode texts. They are denoted as Fwiki and Fts, respectively. For
training, we take portions from each format, making them roughly equal in token counts.
We take disjoint portions from each format for evaluation.

Knowledge. We use random token sequences as knowledge for the following reasons:

‚ Quantification: Memorizing random token sequences requires precise token-by-token
memorization, unlike general knowledge which can be rephrased in various ways. This
enables exact quantification by computing the log probability of generating a desired
random token sequence.
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Figure 2: Illustration of the datasets. Each line represents a block of Lblk consecutive tokens
in Fwiki or Fts. Knowledge pieces overwrite to some of the blocks in arbitrary positions.
The de-tokenized datasets are shown in the background.

‚ Exclusiveness: We can ensure these knowledge pieces neither appear in mode texts nor
correlate with each other. This prevents knowledge leakage in the training set and eliminates
correlation between mode and knowledge.

We construct K “ 32 pieces of knowledge for each mode:

Kwiki “ tkp0q

wiki, kp1q

wiki, . . . , kpK´1q

wiki u, and Kts “ tkp0q
ts , kp1q

ts , . . . , kpK´1q
ts u.

Each piece of knowledge k P Kwiki Y Kts is a random token sequence with length between
Lknw “ 8 and Lknw “ 512 (both inclusive), and the tokens are from the range of r50296, 50303s.
Each position in the sequence is independently sampled from a uniform distribution over
the token range. To make knowledge exclusive to its corresponding format, these two
knowledge sets are disjoint at the sequence level: Kwiki X Kts “ ∅.

Queries. Queries are “hints” for the language model to complete a knowledge piece, so
we set them as prefixes of each knowledge piece. To make the problem well-defined, the
prefixes should be unique so that they correspond to knowledge pieces in a one-to-one
manner. We find the shortest prefix length so that the induced queries are different:

ℓ “ min l such that |tkr0 : ls | k P Kwiki Y Ktsu| “ 2K.

The queries are defined as

Qwiki “ tqpiq
wiki :“ kpiq

wikir0 : ℓs | 0 ď i ă Ku, and Qts “ tqpiq
ts :“ kpiq

ts r0 : ℓs | 0 ď i ă Ku.

3.2 Problem formulation

Now we formally describe our problem of interest: cross-mode knowledge retrieval.

Datasets. There are two fixed datasets, Dwiki and Dts, each containing knowledge from
only one mode (itself). Taking Wikipedia as an example: The format texts from Fwiki
are divided into consecutive blocks with length Lblk “ 1024. We set hyperparameter
Nocc “ 8192 as the number of occurrences2 for each knowledge piece k P Kwiki in Fwiki,
totaling KNocc occurrences of knowledge pieces. These knowledge pieces are distributed
across KNocc blocks sampled uniformly. Inside each block fwiki, the knowledge piece
overwrites a random, consecutive subsequence with equal probability. An illustration is
shown in Figure 2.

Evaluation. Given these two datasets, we want to quantify the cross-mode knowledge
retrieval capability of language models. Since the only way to memorize the random
sequences is to perfectly generate them, the task is to do completion on the remaining tokens
given a query (“hint”) q. We set Ntest

occ “ 16 occurrences for each query q P Qwiki Y Qts. For
each q, we randomly sample Ntest

occ blocks of length Lblk from the evaluation portion of each
format, Fwiki and Fts, and overwrite it to the end of each block. Suppose q “ kr0 : ℓs for

2This satisfies the 1000-exposure requirement in Allen-Zhu & Li (2024d).
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some k P Kwiki Y Kts by our construction, |k| “ Lknw, and the format text block is f such that
| f | “ Lblk. The criteria is the normalized log probability of the completion part:

1
Lknw ´ ℓ

Lknw´1
ÿ

i“ℓ

logMθpkris | f r: ´Lknws, kr: isq,

where Mθ is the model parameterized by θ. An illustration can be found in Figure 3.
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Figure 3: Illustration of the evaluation datasets. The shadowed parts are for completion and
log probability calculation. The format texts are taken from the evaluation split of Fwiki and
Fts, so they are different from those in Figure 2.

4 A straightforward approach: rewrite the datasets

Direct training on Dwiki Y Dts yields poor performance – as shown in Figure 5, where
dashed horizontal lines represent normalized log probabilities of completions after direct
training using Dwiki Y Dts. Qualitative results (Appendix B) also support this argument.
The language model likely learned a spurious correlation between mode and knowledge, so
when queried with fwiki qts or fts qwiki, it fails to correctly complete with kts or kwiki.

4.1 Method description

A straightforward approach to reduce this spurious correlation is to rewrite the datasets,
incorporating cross-mode knowledge. For example, when rewriting Dwiki into D1

wiki, besides
the original KNocc occurrences of knowledge pieces in Kwiki, we set a hyperparameter Nx

occ
as the number of occurrences for each cross-mode knowledge in this dataset. In practice,
identifying and rewriting all exclusive knowledge is costly, so we use only kp0q

ts , . . . , kpK{2´1q
ts

to rewrite the dataset and use kpK{2q
ts , . . . , kpK´1q

ts as hold-out knowledge for evaluation. Each
kts P kp0q

ts , . . . , kpK{2´1q
ts appears exactly Nx

occ times in D1
wiki, using the same method to generate

Dwiki. An illustration can be found in Figure 4.
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Figure 4: Illustration of dataset rewriting. Readers can compare with Figure 2.

For notational ease, we use the following shorthand:

‚ fts qts and fwiki qwiki: evaluation data with a query from the same mode as the format text.

‚ fts qwiki and fwiki qts: evaluation data with a cross-mode query.
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Figure 5: Normalized log probabilities for different ratios. The x-axis is in log scale. Yellow
dots represent results from individual runs with 5 random seeds, while red crosses show
average values. Dashed horizontal lines indicate results from direct training on the original
datasets, Dwiki and Dts. Cross-mode evaluations use only hold-out queries.

For example, in Figure 3, the first and last entries in the left part are denoted as fwiki qwiki
and fwiki qts, respectively.

4.2 Results

We test this method’s effectiveness by sweeping over Nx
occ P t0u Y t2i | 1 ď i ď 13u. With

ratio r “ Nocc{Nx
occ, we plot the relationship (Figure 5) between r and the convergent

values of normalized log probabilities in evaluation. Experiment details are deferred to
Appendix D. A special case is r “ 8 (dashed horizontal lines), corresponding to Nx

occ “ 0,
which represents the scenario without rewriting.

We also report in Table 1 the normalized log probabilities for small ratios r P t1.0, 2.0, 4.0u.

fts qts fwiki qwiki fts qwiki fwiki qts
r “ 1.0 ´4.87 ˆ 10´6 ´5.94 ˆ 10´6 ´6.75 ˆ 10´5 ´2.98 ˆ 10´4

r “ 2.0 ´8.78 ˆ 10´6 ´8.80 ˆ 10´6 ´1.93 ˆ 10´4 ´9.25 ˆ 10´4

r “ 4.0 ´1.39 ˆ 10´5 ´1.82 ˆ 10´5 ´7.76 ˆ 10´4 ´2.21 ˆ 10´3

Table 1: Normalized log probabilities for small ratios, averaged over 5 random seeds.

4.3 Remarks

We now make several remarks on the method of dataset rewriting.

‚ The relation between the log ratio and the cross-mode evaluation results roughly
follows a sigmoid function. We observe that a sigmoid-like function fits the points well, so
we perform regression using:

f prq “ a ¨ σpbplogprq ´ cqq, where σpxq “
1

1 ` e´x .

The blue curves in Figure 5 display the regressed functions.

‚ Meaningful results only come with extensive rewriting. Table 1 shows that to achieve
cross-mode query performance comparable to non-cross-mode queries, the ratio should be at
most 4.0, meaning Nx

occ ě 2048. However, even when r “ 1.0 (Nx
occ “ 8192), normalized log
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probabilities for cross-mode queries remain at order 10´4, still one order of magnitude worse
than non-cross-mode queries. Additionally, we rewrote half of the different knowledge
pieces, resulting in rewritten knowledge of the same order as the original knowledge. In
practice, such extensive rewriting requires significant human effort to identify and rewrite
knowledge differently across contexts. Even with the help of language models, rewriting
prompts need case-by-case design, which also demands substantial human effort. Moreover,
we hypothesize that:

Data with n " 2 independent modes requires rewriting all npn ´ 1q pairs.

If this hypothesis is true, dataset rewriting becomes prohibitively impractical for achieving
satisfactory performance. Results in Table 11 support this hypothesis when n “ 3.

5 A cure: CASCADE the datasets

As a starting point, we consider an easier problem: suppose the knowledge can only appear
in the end of each sequence blocks of length Lblk, and they all have the same lengths of Lknw.
Assume that Lblk is a multiple of Lknw. If we want the model to perfectly memorize the
knowledge without being affected by modes, we can use a context length of Lctx “ Lknw
in training. This guarantees that each piece of knowledge fits exclusively in some training
sequence, so that it is not correlated with any mode.

In the problem described in Section 3.2, we know neither the exact position nor the exact
length of knowledge pieces, making it impossible to fit them exclusively within training
sequences. As an alternative design, we aim to ensure each knowledge piece occupies a
large portion of some training sequence to minimize the influence of modes.

5.1 Capturing knowledge with doubling context lengths

Roughly speaking, for a knowledge piece of length Lknw, if we set the context length
Lctx ď 2Lknw, then regardless of its location in D, it will occupy at least half of the tokens in
some training sequence. This can be guaranteed when training sequences overlap by Lctx{2.
Since we assume Lknw ď Lknw “ 512, we can train a small number of language models with
context lengths 8, . . . , 1024 “ Lctx using a series of cascading datasets (Figure 6, with details
explained in Section 5.1.1). This ensures each knowledge piece is captured by at least one
language model.

During evaluation and generation, we predict the next token using a probability distribution
that is a weighted average over all models (after normalization).

Since one pass of length L in a transformer requires ΘpL2q time, and our context lengths
follow a geometric sequence, using all models adds little computational overhead compared
to using a single model. We elaborate on this idea in Appendix C.2.

5.1.1 Training

Now we present a novel algorithm, Original CASCADE, realizing the above high-level idea.
“Original” here is to distinguish it from the compressed, more practical variant that will be
introduced in Section 5.2.

We abuse the notation that the original dataset D is an array of tokens. Let M “

log2p2Lknwq “ 10. We train M ´ 2 models M3,M4, . . . ,MM. For each 3 ď m ď M,
Mm is trained on the dataset Dm with context length Lpmq

ctx “ 2m, where Dm :“ tDri ¨ 2m´1 :
i ¨ 2m´1 ` 2ms | i “ 0, 1, . . .u. Note there are overlaps in the sequences of length 2m´1 “ Lm

ctx{2.

For any training sequence s P Dm with |s| “ 2m, the loss is computed only on the second
half of the sequence, i.e., treating the first half as hint and the second half as completion:

Lmpθq “ Es„Dm

«

2m´1
ÿ

i“2m´1

´ logMθpsris | sr: isq

ff

.
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1024

512

256

…

Figure 6: Illustration of cascading datasets. The highlighted part represents the knowledge.
Blocks with a check mark in the top right indicate that the corresponding sequence captures
the knowledge, satisfying Equation (1).

The intuition behind this choice is that we want language models to “think more” before they
“speak.” With access to the full context, models can predict future tokens more accurately.
We show ablation results comparing ① non-overlapping sequences with full loss versus ②
overlapping sequences with loss computed only on the second half in Table 2.

In practice, we use different batch sizes when training different models. Compared to direct
training, we set Bm “ 2B ¨ Lctx{Lpmq

ctx , where the coefficient 2 accounts for the overlapping
sequences. This batch size selection ensures that all models are updated for the same number
of steps.

We show that each knowledge occurrence is guaranteed to be captured by some training
sequence in Appendix C.1.

5.1.2 Model ensemble

Having trained M ´ 2 models M3, . . . ,MM, our next task is to ensemble them to produce
valid probability distributions over tokens. Given an input token array s, we predict the
next token by first querying each model with its corresponding context window to obtain
M ´ 2 probability distributions: for 3 ď m ď M, x P Σ, pmpxq :“ Mmpx | sr´2m´1 :sq.

We then define the confidence of each model by its maximum log probability across the token
space: for 3 ď m ď M, cm :“ maxxPΣ log pmpxq. The weight of each model is calculated by:
for 3 ď m ď M,

wm :“ Softmaxpm | t´ logp´cm1 quM
m1“3q “

expp´ logp´cmqq
řM

m1“3 expp´ logp´cm1 qq
9

1
´cm

.

Considering the cases where cm is extremely close to 0, the practical implementation is
wm91{pϵ ´ cmq where ϵ “ 10´9. The intuition is that we want to emphasize the predictions
of models with high certainty while minimizing the influence of less confident models.

Finally, we compute the ensemble model using the weighted mixture of log probabilities as
lpxq :“

řM
m“3 wm log pmpxq, for any x P Σ.

Evaluation. For efficient evaluation, we calculate probabilities for multiple tokens simulta-
neously with each model. Specifically, for 3 ď m ď M, at position i, we input the sequence
sri ´ 2m´1 : i ` 2m´1s to model Mm to compute logits for positions i ` 1, i ` 2, . . . , i ` 2m´1,
then increment i by 2m´1. After obtaining logits from each model for all positions, we apply
the ensemble method described above to calculate the final probability distribution.

5.2 Compressing all the models

While results in Table 2 demonstrate the effectiveness of using a series of cascading datasets,
the increased total model size raises a significant concern. To address this issue, we compress
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the models by training a single model Mθ using the average of losses tLmuM
m“3. We name

this approach as CASCADE, which minimizes the CASCADE loss defined as:

LCASCADEpθq “
1

M ´ 2

M
ÿ

m“3

Es„Dm

«

2m´1
ÿ

i“2m´1

´ logMθpsris | sr: isq

ff

.

During evaluation or inference as described in Section 5.1.2, we replace all models Mm
with the single model Mθ . This approach maintains the same model size as the baselines
rather than being 8 times larger. Theoretically, CASCADE also does not incur higher time
complexity as we explained in Appendix C.2.

5.3 Results

To ensure fair comparison with dataset rewriting, we evaluate only using the hold-out
knowledge for fts qwiki and fwiki qts. For a comprehensive analysis, we implemented both
training configurations: non-overlapping training sequences with loss computed on the full
sequence, and overlapping training sequences with loss computed only on the second half
of each sequence.

Ablation on practical running time. In practice, the running time of a forward pass
can be reduced significantly to an almost linear dependence on sequence length using
FlashAttention (Dao et al., 2022; Dao, 2023). When training for the same number of epochs,
the CASCADE loss requires approximately M ´ 2 times the training time of the baseline
method (direct training). For a fair comparison, we conducted an ablation study allowing
the baseline method (with context length 1024) to train for the same duration as CASCADE.

We present the normalized log probabilities of (original) CASCADE and ablation studies in
Table 2.

Methods fts qts fwiki qwiki fts qwiki fwiki qts
Direct

Training
(Ablation)

Non-overlap ´1.93 ˆ 10´8 ´1.43 ˆ 10´8 ´4.77 ˆ 10´3 ´1.53 ˆ 10´2

Overlap ´2.29 ˆ 10´8 ´2.16 ˆ 10´7 ´2.66 ˆ 10´1 ´4.31 ˆ 10´1

Original
CASCADE

Non-overlap ´5.91 ˆ 10´6 ´6.21 ˆ 10´6 ´2.45 ˆ 10´5 ´1.36 ˆ 10´4

Overlap ´9.65 ˆ 10´9 ´8.51 ˆ 10´9 ´2.59 ˆ 10´8 ´9.22 ˆ 10´7

CASCADE Non-overlap ´3.87 ˆ 10´5 ´3.95 ˆ 10´5 ´1.87 ˆ 10´4 ´1.54 ˆ 10´4

Overlap ´3.26 ˆ 10´7 ´3.44 ˆ 10´7 ´3.71 ˆ 10´6 ´5.06 ˆ 10´6

Table 2: Normalized log probabilities for different methods, averaged over 5 random seeds.
Cross-mode results better than or equal to the order of 10´6 are in bold red text.

More results can be found in Appendix D.4: To better illustrate the contribution of different
context lengths during evaluation, we display the normalized log probabilities when using
only a single context length (without model ensemble) in Table 9, with specific context lengths
excluded in Table 10, and visualize the weight vector twmu3ďmďM at each token position for
various knowledge lengths in Figure 7. To show the generalization capability of CASCADE,
we compare it with direct training and dataset rewriting when there are 3 modes (Table 11).
We also show the performance of baselines when using a roughly double-sized model in
Table 12.

5.4 Remarks

We now make several remarks for CASCADE.

‚ Cascading the dataset substantially enhances the cross-mode knowledge retrieval
capability of language models. Results in Table 2 demonstrate that with cascading datasets,
models achieve significantly improved cross-mode knowledge retrieval with overlapping
sequences compared to non-overlapping sequences, and most importantly, outperform all
baselines presented in Section 4.2. As anticipated, model compression introduces a minor
performance degradation.
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‚ LCASCADE functions as an implicit regularizer. Unexpectedly, Table 9 shows that training
with LCASCADE alone, even without model ensemble, improves cross-mode knowledge
retrieval capability. This loss function appears to implicitly regularize the language model
against spurious correlations. Comparing Table 9 and the rows corresponding to CASCADE
in Table 2, we observe that model ensemble further enhances performance by an order of
magnitude.

‚ Small context lengths are critical for initial positions. Figure 7 illustrates that for the first
few tokens in the completion, models with smaller context lengths exhibit greater prediction
certainty. Additionally, the context lengths of 128 and 256 appear to be excessive according
to Table 10.

‚ CASCADE delivers benefits beyond simply increasing training epochs. Rows corre-
sponding to direct training in Table 2 confirm that merely extending training time does
not enable baselines to match CASCADE’s performance, with results on fts qwiki and fwiki
qts remaining significantly inferior to CASCADE. Furthermore, in this ablation study, non-
overlapping sequences notably outperform overlapping sequences. This occurs because
cascading context lengths are essential for capturing “local” information, whereas using a
single large context length and calculating loss only on the second half disrupts these “local”
connections.

‚ CASCADE generalizes to more modes better than dataset rewriting. Table 11 confirms
CASCADE’s advantage over direct training and full rewriting when there are 3 modes. The
row corresponding to full rewriting without one mode-knowledge pair corroborates the
remark in Section 4.3 that omitting a mode-knowledge pair directly harms its evaluation
performance, demonstrating that meaningful rewriting requires coverage of all pairs.

‚ CASCADE’s performance matches that of full rewriting while using less than half
the model size. Comparing Tables 11 and 12, increasing model size from 162M to 350M
improves each method’s performance by approximately one order of magnitude. With
this increase, full rewriting (350M) matches CASCADE (162M), while direct training still
struggles with cross-mode knowledge retrieval.

6 Conclusion

We investigated language models’ cross-mode knowledge retrieval capability from both
qualitative and quantitative perspectives. Our qualitative pipeline reveals that LLMs such
as GPT-4o cannot perform cross-mode knowledge retrieval satisfactorily. Quantitatively, we
formulated this problem using two format datasets as modes and random token sequences
as knowledge, and experimented with a straightforward approach – dataset rewriting –
showing that only substantial dataset rewriting efforts can alleviate this issue. Finally,
we proposed CASCADE, a novel pretraining method, along with its model-compression
version. Experiments demonstrate that CASCADE significantly outperforms baselines.

Despite its fundamental nature, our work has several limitations that may inspire future
studies. First, we did not apply our training method to real-world datasets due to limited
computational resources and lack of evaluation metrics. The qualitative pipeline in Ap-
pendix B may serve as a metric, but automatically selecting representative knowledge merits
further study. Second, our study contains at most 3 modes. Future work could study an
n-mode setting where n ą 3 and compute the corresponding normalized log probabilities to
verify CASCADE’s advantage over dataset rewriting. Also, researchers can aim at finding
other novel ideas to get better performances on cross-mode knowledge retrieval.
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Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
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A Additional related works

Physics of language models. A line of closely related works are physics of language
models (Allen-Zhu & Li, 2024a; Ye et al., 2024a;b; Allen-Zhu & Li, 2024b;c;d), which center
around how language models learn and manipulate knowledge. Allen-Zhu & Li (2024a)
demonstrates that transformer-based models like GPT (Radford et al., 2018; 2019; Brown
et al., 2020; Achiam et al., 2023) can effectively learn and generate complex, recursive lan-
guage structures from context-free grammars. In Ye et al. (2024a), the authors investigate
how small language models solve grade-school math problems, distinguishing between
memorization and genuine reasoning. Ye et al. (2024b) focuses on improving models’ reason-
ing accuracy by incorporating“retry data” during pretraining stage. Allen-Zhu & Li (2024b)
finds that knowledge augmentation during pretraining significantly improves the models’
ability to extract and utilize knowledge, introduces novel probing techniques to understand
this process, and suggests to enhance language model training with data rewriting and early
introduction of question-answering tasks. Allen-Zhu & Li (2024c) explores the limitations of
language models in executing basic knowledge manipulation tasks—retrieval, classification,
comparison, and inverse search. It proposes methods like generating more Chain-of-Though
(CoT, Wei et al. (2022)) data, employing retrieval augmented generation (RAG, Lewis et al.
(2020)) and reversal training. Allen-Zhu & Li (2024d) presents a comprehensive study on the
knowledge capacity scaling laws of language models, revealing that a 2bit/param capacity
ratio is achievable across various architectures and training conditions, but is affected by
factors such as training exposure, model architecture, quantization, sparsity, and the quality
of training data.

Spurious correlations. Spurious correlations represent a significant threat to the reliability
and trustworthiness of NLP systems, as they can cause models to learn unintended shortcuts
rather than the underlying task-relevant signals (Eisenstein, 2022; Wang et al., 2022). This
issue has been widely studied in text classifications tasks. Joshi et al. (2022) examines
spurious features through a causal lens, classifying them based on probability of necessity
(PN) and probability of sufficiency (PS). They identify two categories: irrelevant features
(low PN, low PS) and necessary features (high PN, low PS). Wu et al. (2022) introduce a
data generation approach to mitigate spurious correlations by creating debiased versions
of datasets. Bansal & Sharma (2023) estimate the causal effect of features on labels and
regularize models to match this true effect, developing an automated augmentation method
that improves performance on minority groups while maintaining overall accuracy. Lee et al.
(2024) build a human-model interaction interface, allowing users to give descriptions about
models’ misconceptions about spurious correlations, ultimately improving the performance.

B Qualitative studies

B.1 Setup

For qualitative studies, we use paragraphs from Wikipedia as test cases. We manually select
a sentence from the original Wikipedia text, replace it with a [BLANK] along with its hint. We
call this input original, and the selected sentence is called answer.

Next, we prompt GPT-4o using the template in Text Box 1, replacing {text} with original.
This generates a story-style text called altered, which contains a corresponding [BLANK]
with a hint.

We then separately prompt GPT-4o 100 times using the template in Text Box 2, replacing
{text} with original and altered, respectively. To avoid API-side caching, we add ATTEMPT

{i} to the beginning of each prompt. This generates responses rpiq
original and rpiq

altered for
1 ď i ď 100.

Finally, we prompt GPT-4o using the template in Text Box 3, replacing {text} with type,
{response} with rpiq

type, and {answer} with answer, where type P toriginal, alteredu and
1 ď i ď 100. We extract accuracies from the judge outputs and average them.
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You will help me rewrite a text into another style.
I will give you a text based on a fact from Wikipedia.
I left a blank, [BLANK], as well as its hint in the text.
Your task is to rewrite the text into a story, under the setting that a mother is telling a bedtime

story to her kid.
Aside from the information in the original text, you should describe about the environment, the

characters, and the plot.
The rewritten text should be coherent and consistent with the original text.
You must retain the blank and its hint in the rewritten text, for example, when the hint requires to

output three items, you should include the hint in the rewritten text as well.

===== Text =====
{text}

Text Box 1: The input template for rewriting into a story style.

I will give you a text based on a fact.
I left a blank, [BLANK], as well as its hint in the text.
Please fill in the blank after you read the text.
You should provide the most appropriate information, as accurate as possible.

===== Text =====
{text}

Text Box 2: The input template for blank completion.

You are a judge to evaluate the response of the completion system.
I'll provide you a text with a blank, [BLANK].
Then, I'll provide you a response to fill in the blank, and its ground truth answer.
Please evaluate whether the response is correct or not, output a float number between 0 and 1 to

represent the accuracy.
Identify each important aspects in the ground truth answer, and compare them with the response.
The floating number should be finally outputed in the following format:
```Accuracy
[ACCURACY]
```

===== Text =====
{text}

===== Response =====
{response}

===== Ground Truth =====
{answer}

Text Box 3: The input template for judging a completion response.
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B.2 Results

We present three examples in Tables 3 to 5. Detailed results are included in
scripts/eval/data.json in the supplementary materials.

original

Masayoshi Soken (born January 10, 1975) is a Japanese video game composer and sound editor who has worked for Square Enix
since 1998. Soken is best known for being the lead composer and sound director of Final Fantasy XIV and its

expansions and lead composer of Final Fantasy XVI.

Biography
[BLANK] (Hint: Write about Soken's born city, univerisity, and major.) He was exposed to music at a young age - his

father was a professional trumpet player and his mother taught piano. Rather than pursue a career in science, he was
hired as a sound editor and designer at Konami. At Konami, he worked on the arcade rail shooting game Evil Night.

He joined Square in 1998 and his early work at the company primarily focused on sound effect design, rather than
composition. He assisted Kenji Ito on sports video games such as Gekikuukan Pro Baseball: The End of the Century
1999. His debut as a composer came with the Japan-exclusive sports games Nichibeikan Pro Baseball: Final League, in
which he was the sole composer, and World Fantasista with synthesizer programmer Takeharu Ishimoto.

answer

Born in La Paz, Baja California Sur, Mexico, Soken and his family later moved to Tokyo, where he attended the Tokyo
University of Science, majoring in chemistry.

Example
response Masayoshi Soken was born in La Paz, Mexico, but moved to Japan at a young age. He attended the Tokyo University of

Science, where he majored in chemistry. Despite his scientific studies, his passion for music ultimately led him to
a career in video game composition.

Judge
[...]
All four aspects align with the ground truth, so the response accurately fills the blank with the correct information.

Therefore, the accuracy score is:
```Accuracy
1.0
```

altered

[...]
As Masayoshi grew, so did his love for music. He studied diligently, learning how different notes fit together like

puzzle pieces to create beautiful symphonies. The city of [BLANK] (Hint: born city) whispered tales of his origins,
and at [BLANK] (Hint: university), where he immersed himself in [BLANK] (Hint: major), Masayoshi's passion blossomed
like a field of wildflowers under the summer sun.

[...]

Example
response [...]

The city of La Paz (Hint: born city) whispered tales of his origins, and at Tokyo College of Music (Hint: university),
where he immersed himself in music composition (Hint: major), Masayoshi's passion blossomed like a field of
wildflowers under the summer sun.

[...]

Judge
To evaluate the response, I'll compare each aspect of the ground truth with the provided filled text.

1. **Born City:**
- **Ground Truth:** La Paz, Baja California Sur, Mexico
- **Response:** La Paz
- **Evaluation:** Partial match for the city, but missing "Baja California Sur, Mexico."

2. **University:**
- **Ground Truth:** Tokyo University of Science
- **Response:** Tokyo College of Music
- **Evaluation:** Incorrect university.

3. **Major:**
- **Ground Truth:** Chemistry
- **Response:** Music composition
- **Evaluation:** Incorrect major.

Overall, the response contains significant inaccuracies, especially in the university and major fields. The born city
partially matches. Based on the accuracy of these critical elements, I'll give an accuracy score.

```Accuracy
0.2
```

Table 3: Example 1: the average accuracies of the responses for the original input and altered
input are 48.0% and 25.9%, respectively.
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original

Khalil Fong Tai Tung (14 July 1983 - 21 February 2025) was a Hong Kong-based American singer-songwriter and producer.
Fong was notable for introducing a more sophisticated R\&B and soul sound to the Chinese music market, drawing

inspiration from artists like Stevie Wonder, Musiq Soulchild and Earth, Wind \& Fire.

Early life and education
Khalil Fong was born on 14 July 1983 in Hawaii, United States, to an American-Chinese father, a drummer, and Hong Kong

mother, Leung Yu-laam, an English language educator, who would later be Fong's lyricist under the pen name Rulan.

In 2005, Fong finally signed a recording contract with Warner Records. He then debuted with the release of his first
album. [BLANK] (Hint: first four albums in chronological order, with names and years.)

answer

Soulboy (2005), This Love (2006), Wonderland (2007), Orange Moon (2008)

Example
response In 2005, Fong finally signed a recording contract with Warner Records. He then debuted with the release of his first

album, "Soul Boy" (2005). His subsequent albums were "This Love" (2006), "Wonderland" (2007), and "Orange Moon"
(2008).

Judge
[...]
Thus, the response's accuracy is very high despite the minor formatting variance for one album. The substantive content

is correct.

```Accuracy
0.95
```

altered

[...]
Now just imagine, four albums, each like a chapter in Khalil's tale, walking hand in hand down the path of time. [BLANK]

(Hint: first four albums in chronological order, with names and years.) These albums were like magic spells,
spreading beautiful music across the land and filling hearts with joy.

[...]

Example
response Khalil released his albums over a span of several years, each resonating with his unique sound. The first album was "

SoulBoy" released in 2005, followed by "SoulBoy Lights Up" in 2006. His third album, "Wonderland," was launched in
2007, showcasing his evolving artistry. Finally, in 2008, Khalil released "Orange Moon," completing the magical
quartet that enchanted listeners across the land.

Judge
To evaluate the response, let's compare each element with the ground truth:

1. **First Album:**
- Response: "SoulBoy" released in 2005
- Ground Truth: "Soulboy" released in 2005
- Evaluation: Correct (matches in both name and year)

2. **Second Album:**
- Response: "SoulBoy Lights Up" released in 2006
- Ground Truth: "This Love" released in 2006
- Evaluation: Incorrect (name does not match, though the year is correct)

3. **Third Album:**
- Response: "Wonderland" released in 2007
- Ground Truth: "Wonderland" released in 2007
- Evaluation: Correct (matches in both name and year)

4. **Fourth Album:** - Response: "Orange Moon
" released in 2008
- Ground Truth: "Orange Moon" released in 2008
- Evaluation: Correct (matches in both name and year)

The response correctly identifies the first, third, and fourth albums in terms of both name and year, but it provides an
incorrect name for the second album. Therefore, 3 out of 4 elements are correct.

```Accuracy
0.75
```

Table 4: Example 2: the average accuracies of the responses for the original input and altered
input are 93.3% and 62.0%, respectively.
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original

Ted Chiang (born 1967) is an American science fiction writer. His work has won four Nebula awards, four Hugo awards, the
John W. Campbell Award for Best New Writer, and six Locus awards. He has published the short story collections
Stories of Your Life and Others (2002) and Exhalation: Stories (2019). His short story "Story of Your Life" was the
basis of the film Arrival (2016). His father, Fu-pen Chiang, is a [BLANK] (Hint: occupation and organization).

answer

His father, Fu-pen Chiang, is a professor of mechanical engineering at Stony Brook University.

Example
response professor emeritus of mechanical engineering at Stony Brook University

Judge
[...]
Response analysis:
1. The occupation is expanded as "professor emeritus," which implies a retired professor with distinguished services, but

still aligns with the role "professor."
2. The field of study "mechanical engineering" is identical in both the response and the ground truth.
3. The organization "Stony Brook University" is mentioned correctly in both.
[...]
```Accuracy
1.0
```

altered

[...]
"Ted had a source of inspiration that was close to his heart - his father, Fu-pen Chiang, who was a [BLANK] (Hint:

occupation and organization)." The mother paused, letting her child imagine what wondrous occupation Ted's father
might have had, perhaps working in a fantastic organization that helped spark Ted's creativity.

[...]

Example
response engineer at the Jet Propulsion Laboratory

Judge
[...]
The ground truth specifies that Fu-pen Chiang is a professor of mechanical engineering, whereas the response identifies

him as an engineer. This indicates a difference in professional designation and field of work.\n- The affiliation in
the ground truth is Stony Brook University, which is different from the response's Jet Propulsion Laboratory.

Both the occupation and the affiliation in the response do not match those in the ground truth. Therefore, the accuracy
of the response is quite low.

```Accuracy
0.0
```

Table 5: Example 3: the average accuracies of the responses for the original input and altered
input are 78.3% and 28.5%, respectively.
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C Justifications for CASCADE

C.1 Explanation for knowledge capture

Here we justify that this cascading design of datasets ensures that each piece of knowledge
is captured by at least one language model. Consider a piece of knowledge with length Lknw
that appears in position pp, p ` 1, . . . , p ` Lknw ´ 1q of D. Then for each 3 ď m ď M, we
identify the training sequences which contain the knowledge across the halfway point (i.e.,
sequences that have this knowledge in both the hint and completion parts):

$

&

%

i ¨ 2m´1 ď p, ① Training sequence starts before knowledge;
i ¨ 2m´1 ` 2m´1 ą p, ② Hint contains knowledge;
i ¨ 2m´1 ` 2m´1 ď p ` Lknw ´ 1, ③ Completion contains knowledge.

With all requirements combined, we can solve for i:

p
2m´1 ´ 1 ă i ď min

"

p
2m´1 ,

p ` Lknw ´ 1
2m´1 ´ 1

*

. (1)

If Lknw ě 2m´1 ` 1 ą Lm
ctx{2, then there is a unique solution i “

X

p{2m´1\

. Here requirement
① is optional, because without it means the training sequence does not have mode in the
hint part, which is helpful for knowledge completion. Thus, for all m ď 1 ` tlogpLknw ´ 1qu,
this piece of knowledge occupies half of a training sequence in Dm and is therefore captured
by model Mm.

C.2 Theoretical time complexity analysis for CASCADE

In self-attention (Waswani et al., 2017), processing a batch of B training sequences with
length Lctx takes ΘpBpLctxq2q time.

Training/Evaluation. Suppose we use the efficient evaluation method in Section 5.1.2,
then training and evaluation are essentially the same (except for a backward pass). The time
complexity is

M
ÿ

m“3

ΘpBmpLpmq
ctx q2q “

M
ÿ

m“3

Θp2BLctxLpmq
ctx q “

M
ÿ

m“3

Θp2BLctx2mq “ ΘpBpLctxq2q

as we recall M “ log2p2Lknwq “ log2 Lctx.

Inference. Suppose batch size B “ 1 in inference. To generate a single sequence using the
original method, the time complexity is

Lctx
ÿ

p“1

Θpp2q “ ΘppLctxq3q.

For CASCADE, the time complexity is

Lctx
ÿ

p“1

M
ÿ

m“3

Θpmintp2, pLpmq
ctx {2q2uq ď

Lctx
ÿ

p“1

M
ÿ

m“3

ΘppLpmq
ctx {2q2q “

Lctx
ÿ

p“1

M
ÿ

m“3

Θp4mq “ ΘppLctxq3q

as we recall M “ log2 Lctx.

Therefore, from a theoretical perspective, CASCADE does not introduce much time over-
head.
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D Experiment details for the quantitative experiments

D.1 Datasets

There are 473992236 tokens in Fts, 484159419 tokens in Fwiki, and 484626190 tokens in Fcode
(mentioned in Appendix D.4.2). When constructing Dts, Dwiki and Dcode, regardless of the
random seed, the data are arranged in a fixed order such that all types ( fwiki kwiki, fwiki kts,
fwiki kcode, fts kts, fts kwiki, fts kcode, fcode kcode, fcode kwiki, fcode kts) of data are approximately
uniformly distributed. All the datasets use the same dataset seed 42 which is independent of
the random seeds in training, to ensure that all the datasets are the same across different
runs. The hyperparameters for dataset construction are listed in Table 6.

Hyperparameter Value
Random token sequence
- Length range r8, 512s

- Different sequences per dataset 32
- Nocc 8192
- Nx

occ t0u Y t2i | 1 ď i ď 13u

Dataset seed t42u

Table 6: Hyperparameters of datasets

D.2 Models

We use a customized phi-1 (162M) model specified in Table 7, where the original architecture
is introduced in Gunasekar et al. (2023). The value of n positions corresponds to the
sequence lengths in training (see Table 8).

Specification Value
Type mixformer-sequential
Architecture
- block cls parallel
- mixer

- mixer cls mha
- dropout 0.1

- mlp cls fused mlp
Total parameters 162m
- vocab size 50304
- n positions t2m | 3 ď m ď 10u

- n embd 768
- n layer 12
- n head 12
- rotary dim 32
resid pdrop 0.1

Table 7: Model specification of our customized phi-1 (162M).

D.3 Training

We use the set of hyperparameters in Table 8. For the experiments of ablation on practical
running time in Section 5.3, we use 16 epochs, while for all the other experiments, we use 2
epochs. For the experiments for dataset rewriting in Section 4.2, we use sequence lengths of
1024, while for the experiments of cascading datasets in Section 5.3, m can vary between
3, 4, . . . , 10.

D.4 More results

Here we list results not being able to be presented in the main text due to page limit.
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Hyperparameter Value
Number of epochs t2, 16u

Train batch size 1024
Optimizer AdamW
- Gradient clipping norm 1.0
- β1, β2 0.9, 0.95
- ϵ 1 ˆ 10´7

- Weight decay 0.1
Learning rate scheduler WarmupDecayLR
- Warmup min lr 1 ˆ 10´7

- Warmup max lr 1 ˆ 10´4

- Warmup steps 500
- Warmup type Linear
Precision fp16 (initial scale power: 12)
Sequence length t2m | 3 ď m ď 10u

Random seed t42, 142857, 2225393, 20000308, 2018011309u

Table 8: Hyperparameters of the quantitative experiments

D.4.1 Evaluating each context length in CASCADE

To see how each context length Lpmq
ctx contributes to the performance of Mθ , we conducted 3

extra evaluations: (1) Evaluation with exactly one context length (Table 9), (2) Evaluation
without exactly one context length (Table 10), and (3) Visualization of the contributions of
each context length at each sequence position (Figure 7).

Context Length fts qts fwiki qwiki fts qwiki fwiki qts
8 ´5.00 ˆ 10´1 ´4.98 ˆ 10´1 ´4.98 ˆ 10´1 ´5.00 ˆ 10´1

16 ´3.21 ˆ 10´5 ´2.64 ˆ 10´5 ´4.11 ˆ 10´5 ´5.56 ˆ 10´5

32 ´6.74 ˆ 10´7 ´6.65 ˆ 10´7 ´1.01 ˆ 10´5 ´1.82 ˆ 10´5

64 ´4.94 ˆ 10´7 ´5.08 ˆ 10´7 ´1.35 ˆ 10´5 ´1.72 ˆ 10´5

128 ´4.35 ˆ 10´7 ´4.63 ˆ 10´7 ´1.27 ˆ 10´5 ´1.78 ˆ 10´5

256 ´4.07 ˆ 10´7 ´4.91 ˆ 10´7 ´1.39 ˆ 10´5 ´1.55 ˆ 10´5

512 ´3.85 ˆ 10´7 ´5.33 ˆ 10´7 ´1.68 ˆ 10´5 ´1.62 ˆ 10´5

1024 ´3.68 ˆ 10´7 ´5.58 ˆ 10´7 ´2.00 ˆ 10´5 ´2.17 ˆ 10´5

Table 9: Normalized log probabilities of the model trained using CASCADE with overlap-
ping sequences, evaluated using individual fixed context lengths. The values are averaged
over 5 random seeds.

Context Length fts qts fwiki qwiki fts qwiki fwiki qts
8 ´3.27 ˆ 10´7 ´3.46 ˆ 10´7 ´3.71 ˆ 10´6 ´5.05 ˆ 10´6

16 ´3.42 ˆ 10´7 ´3.68 ˆ 10´7 ´5.37 ˆ 10´6 ´8.30 ˆ 10´6

32 ´3.35 ˆ 10´7 ´3.60 ˆ 10´7 ´4.08 ˆ 10´6 ´5.59 ˆ 10´6

64 ´3.23 ˆ 10´7 ´3.45 ˆ 10´7 ´3.85 ˆ 10´6 ´4.95 ˆ 10´6

128 ´3.22 ˆ 10´7 ´3.43 ˆ 10´7 ´3.66 ˆ 10´6 ´4.89 ˆ 10´6

256 ´3.24 ˆ 10´7 ´3.42 ˆ 10´7 ´3.68 ˆ 10´6 ´5.04 ˆ 10´6

512 ´3.28 ˆ 10´7 ´3.44 ˆ 10´7 ´3.67 ˆ 10´6 ´5.02 ˆ 10´6

1024 ´3.37 ˆ 10´7 ´3.50 ˆ 10´7 ´3.50 ˆ 10´6 ´5.12 ˆ 10´6

Table 10: Normalized log probabilities of the model trained using CASCADE with overlap-
ping sequences, evaluated without specific context lengths. The values are averaged over 5
random seeds. Values better than those in Table 2 (CASCADE Overlap) are in bold red text.
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Figure 7: Weight distribution over models for different positions in the completion part.
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D.4.2 Extension to 3 modes and bigger models

To show the generalization capability of CASCADE, we conducted additional experiments
on 3 modes. We used Python code from the bigcode/the-stack dataset (Kocetkov et al.,
2022) as a new mode – code. In Table 11, we present results for dataset rewriting with
r “ 8 (direct training), r “ 1 (full rewriting), r “ 1 but without fwiki qts in the training set,
and CASCADE using the customized phi-1 (162M) specified in Appendix D.2. Further, we
use the model architecture of phi-1-small (350M) (Gunasekar et al., 2023), which roughly
doubles the size of our customized phi-1 (162M), to see how baselines scale. The results are
shown in Table 12.
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