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ABSTRACT

Out-of-distribution (OOD) detection aims to identify samples that deviate from
in-distribution (ID). One popular pipeline addresses this by introducing negative
labels distant from ID classes and detecting OOD based on their distance to these
labels. However, such labels may present poor activation on OOD samples, failing
to capture the OOD characteristics. To address this, we propose an Adaptive and
Activated Negative labels guided approach (AANeg), which dynamically evaluates
activation levels across the corpus dataset and selects words with high activation
responses as negative labels. Specifically, AANeg identifies high-confidence test
images online and accumulates their assignment probabilities over the corpus to
construct a label activation metric. Such a metric leverages historical test samples
to adaptively align with the test distribution, enabling the selection of distribution-
adaptive activated negative labels. By further exploring the activation information
within the current testing batch, we introduce a more fine-grained, batch-adaptive
variant. To fully utilize label activation knowledge, we propose an activation-
aware score function that emphasizes negative labels with stronger activations,
boosting performance and enhancing its robustness to the label number. Our
approach is zero-shot, training-free, test-efficient, highly scalable, and grounded in
theoretical justification. Notably, on the large-scale ImageNet benchmark, AANeg
significantly reduces the FPR95 from 17.5% to 9.8%. Codes will be released.

1 INTRODUCTION

In open environments, artificial intelligence (AI) models inevitably encounter out-of-distribution
(OOD) data, i.e., samples outside predefined categories. Existing vision models often misclassify
these OOD samples as known categories (Nguyen et al., | 2015), posing significant safety issues.
Therefore, accurately detecting OOD samples is critical for deploying safe AI models.

Traditional OOD detection methods in the image domain primarily rely on visual features (Hendrycks
& Gimpel, 2016} |Lee et al., 2018; |Liu et al., [2020). Recently, with the rapid development of vision-
language models, leveraging textual knowledge to enhance OOD detection has gained increasing
attention (Ming et al.||2022a; |Wang et al.| 2023} [Esmaeilpour et al.| 2022)). Among these, NegLabel
(Jiang et al., 2024) mines thousands of negative labels by identifying words with large cosine
distances from in-distribution (ID) labels and detects OOD images by selecting those with higher
cosine similarity to negative labels. Although NegLabel achieves impressive results, many negative
labels present poor activation on a certain OOD test set, as shown in Fig. This limits their
effectiveness and introduces noise, as these labels are closer to ID data and fail to capture the
characteristics of OOD images effectively. Removing these less activated labels benefits the detection
of OOD samples, as illustrated in Fig. highlighting their negative impact. This motivates us to
explore negative labels with stronger activation on OOD samples to enhance OOD detection.

To this end, we propose an Adaptive and Activated Negative labels guided approach (AANeg) for
OOD detection. At the core of AANeg is an activation metric that quantifies how “active” a particular
class is across a dataset, measured by the average classification probability of a label across the
associated images, as defined in Eq. [5] Using this metric, we dynamically evaluate the activation of
each class in the corpus set across ID and OOD datasets, approximated using high-confidence positive
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Figure 1: Activation analyses with negative labels mined in (Jiang et al.,[2024). (a) Negative labels on
a specific OOD dataset exhibit a long-tailed activation score distribution. Some labels activate more
strongly on the ID dataset than on OOD, potentially misleading OOD detection. (2) A small subset of
negative labels strongly activates on OOD, enabling effective detection. Most labels respond similarly
across ID and OOD, slightly harming detection, while some activate higher on ID, significantly
degrading performance. The FPRO95 results are obtained with negative labels of top activations via
Eq. E} These analyses use ground truth labels from ImageNet (ID) and Places (OOD) datasets.

and negative test images. This activation information captures the overall characteristics of the
test distribution, enabling the selection of distribution-adaptive activated labels, which present high
activation on negative images and low activation on positive images. Additionally, we explore the
activation information within the current testing batch, resulting in a more fine-grained, batch-adaptive
variant. To ensure stability at the beginning of testing, we initialize the activation scores using ID
labels and noise images as positive and negative samples, respectively. Furthermore, considering the
varying importance of different negative labels, as validated by their activation levels, we introduce
an activation-aware scoring function for OOD detection that emphasizes labels with higher activation.
This score function not only boosts the OOD detection performance but also enhances its robustness
to the label number.

Extensive experiments are conducted to validate the effectiveness of our proposed methods. On the
large-scale ImageNet dataset, our method reduces the FPR9S5 of the activation-agnostic NeglLabel
(Jiang et al.| 2024) by 15.6% and outperforms the current leading approach (Chen et al., [2024) by
7.7%. Unlike existing methods (Jiang et al., 2024; |Zhang & Zhang| 2024), which typically introduce
thousands of negative labels to cover activated labels but inevitably include less activated ones, our
method specifically targets activated labels, achieving superior performance with a significantly
reduced number of labels. Moreover, our approach is zero-shot, training-free, and test-efficient,
demonstrating high scalability to different model backbones and robustness to near-OOD, full-
spectrum OOD, and medical OOD settings. Theoretical analysis further explains its effectiveness.
We summarize our contributions as follows:

* We introduce an activation metric to quantify how “active” a particular class is across a
dataset and reveal that current methods employ less-activated negative labels for OOD
datasets, which hinders the distinction of OOD samples. This motivates us to explore
activated negative labels to enhance OOD detection.

* To this end, we explore activated negative labels by dynamically estimating the activation
scores across the entire corpus dataset. We introduce distribution-adaptive and batch-
adaptive variants and a novel activation-aware scoring function to fully utilize the mined
activation knowledge. Theoretical analysis is conducted to explain its effectiveness.

* We conduct extensive experiments to validate the proposed components. Our AANeg
outperforms the leading method by 7.7% in FPR95 on the large-scale ImageNet benchmark.
Our approach is zero-shot, training-free, test-efficient, and presents high scalability to
different backbones and diverse task settings.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

OOD Detection aims to identify test samples with undefined semantic concepts, thereby enhancing
the reliability of models in open environments. Classical OOD detection methods typically explore
knowledge exclusively from the visual domain and can be roughly categorized into score-based
(Hendrycks & Gimpel, [2016} [Lee et al.,[2018} [Liang et al.,|2017; [Liu et al., [2020; Wang et al., 2021}
Huang & Li,[2021; /Wang et al.| [2022; |Wei et al.} 2022} |Sun et al., [2021)), distance-based (Tack et al.,
2020; [Tao et al., 2023 |Sun et al., 2022;|Du et al., | 2022a; Ming et al., [2022b};|Sehwag et al., 2021}, and
generative-based (Ryu et al., |2018; [Kong & Ramanan| [2021) approaches. Among these, score-based
methods are the most popular, including score functions based on prediction confidence (Hendrycks
& Gimpel, 20165 Liang et al., 2017} [Sun et al.; 2021} [Wang et al., 2022} |Wei et al.,|2022), additional
discriminators (Kong & Ramanan, [2021)), and energy score (Liu et al.||2020; Wang et al., 2021)).

Recently, with the rise of vision-language models (Radford et al.| 2021} Jia et al., [2021}; [Zhai et al.,
2023)), enhancing visual OOD detection by leveraging text knowledge has gained increasing attention.
Z0C (Esmaeilpour et al., 2022)) pioneered this direction by generating potential OOD labels with a
learned captioner. Adapting the text branch with prompt tuning is a popular approach, where methods
such as LoCoOp (Miyali et al.,2024), LAPT (Zhang et al.,[2024b)), CLIPN (Wang et al.| 2023), and
LSN (Nie et al., 2024) introduce negative training samples via background features, image generation,
additional training sets, and local croppings, respectively. Beyond single-text modality fine-tuning,
multi-modal fine-tuning has been explored in (Kim & Hwang||2025) by jointly tuning both the text
and visual branches.

Unlike these tuning-based methods, which typically require labeled training data, some approaches
focus on training-free zero-shot pipelines. For instance, MCM (Ming et al.l [2022a) detects OOD
samples by analyzing the similarity distribution between test images and ID labels. EOE (Cao et al.,
2024)), NegLabel (Jiang et al.|[2024), and CSP (Chen et al.,2024) further advance this by introducing
negative labels and utilizing the similarity between test images and ID/negative labels to enhance
OOD detection. While these methods achieve good results, we reveal that many of these negative
labels present poor activation on OOD images, hindering the accurate detection of OOD samples,
as shown in Fig. [T] To address this issue, we explore more activated negative labels and design a
corresponding activation-aware score function, significantly reducing the FPR95 on the ImageNet
dataset from 25.4%, achieved by the NegLabel, to 9.8%.

Test Time Adaptation enables models to dynamically update during testing to adapt to changes
in test data (Liang et al.| 2023), which has been recently introduced into OOD detection. Some
methods (Gao et al., 2023} [Yang et al., 2023b} |[Fan et al.l 2024) require test-time optimization,
which, although achieving certain performance improvements, significantly reduces testing speed.
Recently, some methods (Zhang & Zhang| [2024; Yang et al., 2025) have also sought to avoid test-time
optimization, achieving rapid adaptation to the environment. For example, OODD (Yang et al.l 2025)
caches high-confidence positive/negative samples in a dictionary and detects OOD samples based on
the cosine similarity between the test samples and the cached features. The most similar method is
AdaNeg (Zhang & Zhang| [2024), which also introduces adaptive negative proxies. The difference is
that AdaNeg primarily revises the activated negative labels while retaining these less-activated ones.
In contrast, we reduce the influence of less-activated labels through a novel activation-guided label
mining strategy and a corresponding activation-aware score, significantly boosting OOD detection.

3 METHODS

3.1 PRELIMINARIES

OOD Detection. Consider X as the image domain and Y = {y1,...,yc} as the set of ID class
labels, where Y1 consists of textual elements such as YT = {cat,dog, ..., bird}, and C is the total
number of classes. Let '™ and x°°? represent random variables corresponding to ID and OOD
samples from X, respectively. The marginal distributions for ID and OOD samples are denoted
by Pi" and P2°?. In standard classification tasks, it is assumed that a test image « belongs to the
ID distribution and is associated with a specific ID label, i.e., z € Pi* and y € YT, where y is
the label of . However, in open environments, Al systems often encounter data from unknown
classes, characterized by € P2°% and y ¢ Y*. These OOD samples are typically misclassified as
the known ID categories (Scheirer et al.,|2012; Nguyen et al., 2015), potentially resulting in unsafe
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decisions. To tackle such issues, OOD detection aims to reliably classify ID samples into their
respective categories while rejecting OOD samples as non-ID. Classification among ID categories is
done using a C'-way classifier, following conventional methods (Krizhevsky et al.,[2012; |He et al.,
2016). Meanwhile, OOD detection employs a scoring function S (Lee et al., 2018} |Liang et al., 2017}
Liu et al., [2020) to distinguish between ID and OOD inputs:

_ [ID, if S(x) > ;
G'Y(w) o {OOD, otherwise,

where G, is the OOD detector with a threshold v € R and S(x) is a scoring function assigning
higher scores to samples likely belonging to ID classes.

ey

CLIP and NegLabel. For an ID test image « belonging to the label space Y'*, we extract its image
feature vector v = fimg(x) € RP and the text feature t; = fi¢(p(y;)) € R using pre-trained
CLIP encoders, where D denotes the feature dimension. The functions f;,,(-) and fi(-) represent
images and text encoders, respectively. The function p(-) serves as a text prompt mechanism, typically
defined as ‘a photo of a <label>,” where ‘<label>’ corresponds to the actual class name such as
‘cat’ or ‘dog’. Both v and ¢; are normalized using Ly normalization along the dimension D. The
zero-shot classification probabilities are then computed with the similarity between v and ¢;:

exp(vt;/T)

C )
> j—1exp(vt;/T)
where 7 > 0 is the temperature scaling factor.

The CLIP model has been recently extended to OOD detection (Ming et al.,2022a; Jiang et al., 2024;
Zhang et al.l [2024b). Specifically, Jiang et al. (Jiang et al.,|2024) introduce negative class labels
Y~ ={%1,...,yn} by mining text labels distant from ID classes ) within an extensive corpus
dataset Y°" = {y1,...,yn }:

plt = 2

Y™ =Top({di}iL,, Y, M) 3)
where d; measures the cosine distance between 7; and ID label set 7. M and N respectively denote
the number of selected negative classes and all classes in the corpus dataset, and N > M. The
operation TOP(A, B, M) retrieves the indices of the top-M largest elements in set A and uses them
to select the corresponding elements from set B. Sets )~ and V7T are disjoint, i.e., Y~ N Y+ = 0.
Then, the ID images can be detected as those with higher similarity to ID labels and lower similarity
to negative ones, leading to the following score function:

< exp(vt;/7)
Su(v) = . @)

c M =~
i=1 2uj=1 exp(vt;/7) + Zj:l exp(vt;/T)
where t; = frat(p(7:)) € RP is the text feature of mined negative label 7j;.

3.2 MOTIVATION: LABEL ACTIVATION ANALYSES

Although the negative labels described above perform well, they have a significant limitation that
hinders their effectiveness. Specifically, the negative labels in Eq. [3]are derived solely from ID labels,
without considering the test distribution in real-world applications. Consequently, many negative
labels exhibit very low activation scores for a specific OOD test set and hinder the OOD detection,
as shown in Fig. E} To better understand this, we first introduce the concept of the activation score,
which measures the average probability assignment of class 7j; on a dataset X

Act(X, ;) = ﬁ 3 xp(wts/7) ®)

S 5L exp(vty 1) + 5 exp(vi/7)

where t; = frat(p(U:)) € RP. The Act(X,7;) reflects the average similarity between the class 7;
and images in the dataset X'. A higher Act(X,y;) indicates greater similarity between the samples
in X’ and class ¥;, and vice versa. An ideal negative label 7; should exhibit higher activation scores
on OOD dataset (e.g., higher Act(X,04,¥;)) and lower activation scores on ID dataset (e.g., lower
Act(X;q,7;)). However, as shown in Fig. although most negative labels derived in Eq. [3|exhibit
low activation scores on the ID dataset, many simultaneously exhibit low activation scores on the
OOD dataset—sometimes even lower than those observed on the ID dataset. These negative labels,
which demonstrate lower activation scores on OOD samples, adversely impact OOD detection, as
evidenced in Fig.
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Figure 2: Overall framework of AANeg. We dynamically explore adaptive and activated negative
labels from the corpus dataset, where the activation information is measured based on the similarity
between texts and the mined positive/negative images. The activation-aware score is illustrated as a
simplified example of Eq. E]With M =2and C = 2.

3.3 OUR APPROACH

Distribution-adaptive Activated Labels. The above analyses on label activation motivate us to
explore negative labels with higher activation on the OOD dataset and lower activation on the ID
dataset, e.g., to find the negative labels that present high activation scores for OOD detection:

V™ = Top({Acta(Gi) }Ly, YO, M), ©)
where Actq(y;) = Act(Xood, Yi) — Act(Xia, Ui)- @)

However, in open environments, OOD data is generally unknown and may even change dynamically,
making it difficult to obtain in advance. To address these problems, we propose a test-time adaptation
strategy to dynamically evaluate the activation levels of candidate labels online, thereby selecting the
most effective negative labels. Specifically, we approximate the activation score in Eq. [/|with cached
positive and negative images:

Act (i) = Act(Xneg, Ti) — Act(Xpos, Ti), 8)

where X4 and X, are fixed-length first-in-first-out (FIFO) queues that are dynamically updated
with high-confidence positive and negative samples, respectively:

Xpos = QueueUpdate(Xpos, v € B | Saa(v) > v+ (1 —7)g, L),

9
Xpeg = QueueUpdate(Xyeq, v € B | Spa(v) < v —79, L), ©)

where v € [0, 1] is the threshold distinguishing ID and OOD samples, g € [0, 1] is the gap used to
filter high-confidence samples, 5 indicates the test image batch, and L is the capacity of the queue.
Saa 18 our proposed activation-aware score function, as defined in Eq. We construct X}55/neg
with image features v, equivalent to vanilla images and more compact. This FIFO queue design
ensures that the activation score remains responsive to environmental changes by focusing on the
most recent high-confidence samples. It effectively filters outdated information, allowing the model
to adapt dynamically and maintain robust performance in evolving scenarios.

To ensure a stable start for our method during testing, we respectively initialize &},; and X}, with
features of ID labels and noise images:

Xpos = Sampling({ti}iczl, L)
Xneg = {fimg(mfilm.se) iLzla

where £7°1¢ is the image with random Gaussian noises and Sampling( A4, L) represents the operation
of randomly selecting L elements from set A. We initialize the positive image set X}, using ID label

(10)
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features, considering the alignment between text and image features in the shared feature space. This
initialization helps construct the initial activated labels and the corresponding .S, score function,
providing a solid foundation for subsequent updates.

Batch-Adaptive Activated Labels. The above method enhances OOD detection by utilizing ac-
tivation information from historical test samples. However, in addition to historical samples, the
activation information in the current testing batch is also critical, as it captures the self-characteristics
of test instances, especially under scenarios with temporal shifts. To address this, we propose a more
fine-grained, batch-adaptive variant by incorporating the activation information within the current
testing batch:

pos*{v€B|Saa(v)Zpy+(17’y)g}a (]1)
neg_{v€B|Saa(v)<’7_'yg}a

where X;’ and X, o represent the possible positive and negative samples in the testing batch B. We

then deﬁne the batch-adaptive activation score as:
Zc\tb(@\z) ACtb( neg» yz) ACtb( PpOS yz) (12)
where
. aAct(Xpos, i) + (1 — ) Act(XL, ., T:) if | X% .| >0
ACtb 0s,Ti) = { pos> pos> pos (13)
( b ) ACt( posvyz) lfl pos| =0
QAct(Xneg, Ui) + (1 — ) Act(XL, . Ui) if |X).,| >0
Acty(Xneg: Yi) = { I e ”eg (14)
( g ) ACt( neg» yz) lf | neg' - 0

where « € [0, 1] balances activation information from historical samples and the current batch, and
| - | measures the set size.

Activation-aware Score. Considering that the activation scores of different negative labels vary, i.e.,
their importance differs, we introduce for OOD detection the following score to implicitly assign
higher weights to those with higher activation scores:

exp(vt;/T)
Sua(v) = 77 Z Z (15)

m=1 i= 1 j=1 eXp(’Ut]/T) + Z] 1 eXp(’Ut /T)

Recalling that the actlvated labels are selected based on ranked activation scores in Eq.[6] the ranking
ensures that Act, (yi) > Actb(yj) if i < j. This guarantees that labels with stronger activation (e.g.,

t; with smaller j) dominate the score, as their contributions are amplified by their repeated occurrence
in the denominator. We find that this method not only improves OOD detection performance but
also significantly enhances its robustness to the number of negative labels, as verified in Fig. [3a] We
also observe that Equations and (9) exhibit a mutual enhancement: the positive/negative images
selected by Eq. (9) enable more accurate estimation of label activation information, providing more
effective negative labels for the score calculation in Eq. (I5). In turn, the improved OOD detection
capability of Eq. further facilitates the distinguishing of positive and negative samples in Eq. (9),
as analyzed in Tab. The overall framework is shown in Fig. [2]and summarized in Algorithm|[AT]

Theoretical Insight. We follow (Jiang et al., |2024) to conduct the theoretical analysis from the
perspective of multi-label classification and model the partial derivative of F'P Ry with respect to the
number M of negative labels as:

OFPRy 1 derf(z) 0z e  pi—p
OM 2 0z OM — 2v/2r Mpy(1—pa)’

where p; = P(sim(x;q,7;) > w| fs@;4,7;) indicates the average probability of classifying the ID
image x;4 as the negative label y;, sim(x;q, y;) represents the similarity between x;q and y;, and

(16)

1 is a threshold. ps is similarly defined with the OOD image ®,0q. erf(z) = T fo et dt is the
error function and z = pl(} p1) yerf~ e —1)+ VMp1-p2) A shown in Eq. |16} to reduce the
Pz Pz 2p2(17p2)

F PR, by increasing the number M of negative labels, a prerequisite is that p; — ps < 0, suggesting
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Table 1: OOD detection results with ImageNet-1k, where a VITB/16 CLIP encoder is adopted.

OOD datasets
INaturalist Sun Places Textures Average

Meth:
ethods AUROCT FPR95] AUROCT FPRO5| AUROCT FPRO5| AUROCT FPRO5| AUROCT FPRO5]

Methods requiring training (or fine-tuning)
ZOC (Esmaeilpour et al.,|2022) 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19

LSN (Nie et al.}[2024) 95.83 21.56 94.35 26.32 91.25 34.48 90.42 38.54 92.96 30.22
CLIPN (Wang et al.|[2023) 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10
LoCoOp (Miyai et al.|[2024) 96.86 16.05 95.07 23.44 91.98 32.87 90.19  42.28 93.52 28.66
NegPrompt (Li et al.[|2024) 98.73 6.32 95.55 22.89 93.34 27.60  91.60 35.21 94.81 23.01
CMA (Kim & Hwang, [2025) 99.62 1.65 96.36 16.84 93.11 27.65 91.64 33.58 95.13 19.93
Zero-Shot Training-free Methods

MCM (Ming et al.}[2022a) 94.59 3220 9225 38.80  90.31 46.20 86.12 5850  90.82  43.93
CoVer (Zhang et al.|[2024a) 95.98 22.55 93.42 32.85 90.27 40.71 90.14  43.39 92.45 34.88
Lee et al. (Lee et al.|[2025) 96.89 23.84 93.69 30.11 93.17 29.86 88.47 47.35 93.05 32.79
EOE (Cao et al.;|2024) 97.52 12.29 95.73 20.04 92.95 30.16 85.64 57.53 92.96 30.09
NegLabel (Jiang et al.|[2024) 99.49 1.91 95.49 20.53 91.64 35.59 90.22  43.56 94.21 25.40
AdaNeg (Zhang & Zhang[[2024)  99.71 0.59 97.44 9.50 94.55 34.34 94.93 31.27 96.66 18.92
OODD (Yang et al.;|2025) 99.79 0.85 97.17 12.94 92.51 30.68 94.51 30.67 96.00 18.79
CSP (Chen et al.|[2024) 99.60 1.54 96.66 13.66 92.90 29.32 93.86 25.52 95.76 17.51
AANeg (Ours) 99.84  0.42 99.07 3.53 95.87 2190 97.11 13.38 97.97 9.81

that sim(x;q, ;) < sim (@04, ¥;) holds on average. In other words, the negative label 7; should
have higher similarity with the OOD samples and lower similarity with the ID samples.

There is a close relationship between the theoretical objective in Eq. [16|and our algorithm imple-
mentation in Eq. [7| Specifically, Act(X,oq,y;) measures the activation level of candidate label y;
on the OOD dataset by averaging the normalized similarity between 7; and OOD images; similarly,
Act(X;q,7;) reflects the normalized similarity between y; and ID images. According to Eq. @
we select the ideal negative labels {y; };2, that exhibit higher activation with OOD samples while
maintaining lower activation with ID samples, explicitly ensuring p; — p2 < 0 in Eq. [16]

4 EXPERIMENTS

4.1 SETUP

Datasets. We primarily conducted experiments using ImageNet-1k (Deng et al., [2009) as the ID
dataset. We adopted four OOD datasets (Van Horn et al., |2018; Xiao et al.,[2010; Zhou et al., 2017}
Cimpoi et al.|[2014) following common practice (Huang & Li| [2021; Ming et al.,2022a; Jiang et al.,
2024])) and also performed experiments under the OpenOQOD setting (Zhang et al.,|2023};|Yang et al.,
2022). Additionally, we validated our method under the full-spectrum setting (Yang et al., 2023al),
with a smaller ID dataset of CIFAR (Krizhevsky et al., 2009), and with medical images (Vaya et al.,
2020; |Zhang et al., [2023)). More details are provided in Appendix

Implementation Details. We employ the visual encoder of VITB/16, pretrained with CLIP (Radford
et al.,[2021), and additionally investigate other backbone architectures in Tab. [AT2] Following the
design of NegLabel, we use the text prompt “The nice jlabel;” and set the temperature parameter 7 to
0.01. In our method, we set the number of negative labels to A/ = 1000 in Eq. [T5] the gap g = 0.2,
and L = 300 in Eq.[9] and o = 0.95 in Eq. [12] As shown in Fig. an automatically determined
threshold v generally performs comparably to manually searched ones. We adopt the evaluation
metrics of FPR95, AUROC, and ID ACC, following standard protocols (Huang & Lil, 2021; Ming
et al.,[2022a; Jiang et al., [2024)). All experiments are conducted with an NVIDIA H100 GPU.

4.2 MAIN RESULTS

ImageNet Results. As shown in Tab. [T} our AANeg significantly outperforms existing training-free
methods and even surpasses techniques that require additional training. Detailed discussions are
provided in Sec. and complete comparisons are presented in Tab.

ImageNet Results with OpenOOD Setup. As shown in Tab.[2] AANeg surpasses existing zero-
shot training-free methods and achieves performance comparable to training-required competitors.
Notably, it outperforms the close competitors (Jiang et al., 2024} [Zhang & Zhang} 2024), especially
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Table 2: OOD detection results under the OpenOOD setting, where ImageNet-1k is adopted as ID
dataset. Full results are available in Tab.

FPRY5 |, | AUROC * | acct

Methods [ NearOOD  Far-OOD | Near-OOD  Far-OOD | ID

Methods requiring training (or fine-tuning)

AugMix (Hendrycks et al.}[2019b) + ReAct (Sun et al.|[2021) - 79.94 93.70 77.63
SCALE (Xu et al.|[2023) - 81.36 96.53 76.18
AugMix (Hendrycks et al.}[2019b) + ASH (Djurisic et al.,|2022) - - 82.16 96.05 77.63
LAPT (Zhang et al.,|2024b) 58.94 24.86 82.63 94.26 67.86
CMA (Kim & Hwang|[2025) 56.25 15.29 84.46 96.47 82.64
Zero-shot Training-free Methods
MCM (Ming et al.| 2022a) 79.02 68.54 60.11 84.77 66.28
NegLabel (Jiang et al.;|2024) 69.45 23.73 75.18 94.85 66.82
AdaNeg (Zhang & Zhang, [2024) 67.51 17.31 76.70 96.43 67.13
AANeg (Ours) 60.06 17.21 84.53 96.43 66.82

Table 3: Full-spectrum OOD detection results under the OpenOOD setting, where ImageNet- 1k,
ImageNet-C, ImageNet-R, ImageNet-V2 are used as ID datasets. Full results are shown in Tab.

] FPRYS | AUROC 1
Methods [ NearrOOD _ Far-OOD % Near-OOD _ Far-OOD
Methods requiring training (or fine-tuning)
AugMix (Hendrycks et al.|2019b) + SHE (Zhang et al.|[2022) 84.45 60.26 69.66 83.06
LSA (Lu et al.[[2023) 70.56 48.06 78.22 86.85
ISH + SCALE (Xu et al.|[2023) - - 68.04 89.46
LAPT (Zhang et al.|[2024b) 71.18 33.07 74.77 92.14
Zero-shot Training-free Methods
MCM (Ming et al.|[2022a) 85.37 69.87 58.97 77.11
NegLabel (Jiang et al.|[2024) 76.25 33.30 72.77 92.02
AANeg (Ours) 68.71 22.48 78.90 94.35

in the challenging near-ood setting, demonstrating the effectiveness of activated negative labels. Our
method also preserves ID classification accuracy by freezing the pre-trained CLIP model.

Full-spectrum OOD Detection. As shown in Tab. [3] our method not only demonstrates high
distinguishability against semantic shifts but also exhibits strong robustness to covariate shifts.

More results on CIFAR and medical datasets are provided in Tab. [A9]and Tab. respectively.

4.3 ANALYSES AND DISCUSSIONS

Ablation. As shown in Tab. {] adopting adaptive and activated negative labels significantly outper-
forms NegLabel, which uses fixed and activation-agnostic labels, verifying the importance of label
activation. Additionally, incorporating current batch information brings a slight improvement and
adopting activation-aware score consistently leads to an advantage.

Label Number and S,,. As illustrated in Fig. [3a] introducing adaptive and activated negative
labels consistently outperforms NegLabel, validating the importance of label activation. Specifically,
when the number of negative labels M is small, the selected labels present higher activation scores,
significantly reducing the OOD detection error. As M increases, less-activated labels are gradually

Table 4: Ablation analyses, where results are reported with ImageNet ID dataset under the OpenOOD
setup. “Dis-adapt”, “Batch-adapt”, and “AAScore” represent the distribution-adaptive activated score
in Eq. [8] batch-adaptive variant in Eq. [T1] and activation-aware score in Eq. [T3] respectively.

Dis-adapt  Batch-adapt AAScore ‘ Near-OOD FPR95 |  Far-OOD FPR95 |

NeglLabel Baseline 69.45 23.73

v 61.57 17.52
v 60.85 17.25

v v 60.59 17.27
v v 60.06 17.21
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Figure 3: Analyses on (a) number M of selected negative labels, (b) selection criterion of negative
labels, and (c) « values under OpenOOD setting.

Table 5: Time complexity analyses. ‘Training’ measures the training time, and ‘Param.” presents the
number of learnable parameters. ‘FPS’ reflects the inference speed with a batch size of 256.

Methods | Backbones | Training FPS+ Param. FPRY5 |
ZOC (Esmaeilpour et al.l 2022) >24h 287 336M 85.19
LoCoOp (Miyai et al.,|[2024)) 9h 625 8K 28.66
MCM (Ming et al.| [2022al) - 625 - 43.93
NegLabel (Jiang et al, 2024) VITB/16 - 592 - 25.40
AdaNeg (Zhang & Zhang| [2024) - 476 - 18.92
AANeg (Ours) - 527 - 9.81
AANeg (Ours) | ResNet50 | = 790 = 10.37

included, resulting in a gradual performance decline, consistent with the theoretical analysis in
Sec. @ Using the same score function S,,;, our AANet (w/o S,,) consistently outperforms NegLabel
across different numbers of negative labels, fairly validating the advantage of our label selection
strategy. Additionally, AANet consistently outperforms AANet (w/o S,,), particularly when the
number of negative labels is large. This confirms that incorporating label activation information into
the score function enhances its robustness to the number of negative labels.

Negative Label Selection Criterion. As shown in Fig. [3b] mining negative labels with the acti-
vation information of negative samples significantly outperforms using positive information alone.
Combining both positive and negative information yields the best results.

o Analyses. As shown in Fig. [3c| reducing the « values from 1.0 to 0.95 brings certain improvements,
validating the effectiveness of batch knowledge. However, further decreasing the o value leads to
overfitting to batch information, which in turn harms OOD identification. o = 0.95 achieves a good
balance between distribution and batch information and is adopted as the default setting.

Complexity Analyses. As shown in Table [5] our approach achieves superior performance with
moderate test speed. We also observe that our method can achieve strong results even with smaller
backbones (e.g., ResNet50), offering advantages in both speed and accuracy.

More analyses and discussions on the queue length L, threshold v, and gap g in Eq. 0] different
VLM backbones, various corpus datasets, batch size, activation metric, sample order, robustness to
temporal shift, limitations, and visualization of activated labels are provided in Appendix [A6.6]

5 CONCLUSION

In this paper, we proposed a novel OOD detection method that dynamically explored adaptive and
activated negative labels during the test stage. We also designed an activation-aware score function to
fully utilize the mined activation knowledge. Our approach was zero-shot, training-free, test-efficient,
and grounded in theoretical justification. Additionally, it demonstrated high scalability to different
model backbones and robustness to near-OOD, full-spectrum OOD, and medical OOD settings. We
hope this work draws attention to the label activation information in the OOD detection community.
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. All datasets used in
our experiments are publicly available. The methods and hyperparameter settings are thoroughly
described in Section .| and analyzed in Sections [4.3|and [A6.6] Additionally, we will release all
source code, scripts, and configuration files necessary to reproduce our results after the review process,
ensuring that the experiments can be replicated easily.

REFERENCES

Yichen Bai, Zongbo Han, Changqing Zhang, Bing Cao, Xiaoheng Jiang, and Qinghua Hu. Id-like
prompt learning for few-shot out-of-distribution detection. arXiv preprint arXiv:2311.15243, 2023.

Julian Bitterwolf, Maximilian Mueller, and Matthias Hein. In or out? fixing imagenet out-of-
distribution detection evaluation. In ICML, 2023. URL https://proceedings.mlr.
press/v202/bitterwolf23a.htmll

Chentao Cao, Zhun Zhong, Zhanke Zhou, Yang Liu, Tongliang Liu, and Bo Han. Envisioning
outlier exposure by large language models for out-of-distribution detection. arXiv preprint
arXiv:2406.00806, 2024.

Mengyuan Chen, Junyu Gao, and Changsheng Xu. Conjugated semantic pool improves ood detection
with pre-trained vision-language models. arXiv preprint arXiv:2410.08611, 2024.

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3606-3613, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141-142, 2012.

Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
shaping for out-of-distribution detection. arXiv preprint arXiv:2209.09858, 2022.

Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for detecting
out-of-distribution objects. Advances in Neural Information Processing Systems, 35:20434-20449,
2022a.

Xuefeng Du, Xin Wang, Gabriel Gozum, and Yixuan Li. Unknown-aware object detection: Learning
what you don’t know from videos in the wild. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13678—13688, 2022b.

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual
outlier synthesis. arXiv preprint arXiv:2202.01197, 2022c.

Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot out-of-distribution detection
based on the pre-trained model clip. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 6568-6576, 2022.

Ke Fan, Tong Liu, Xingyu Qiu, Yikai Wang, Lian Huai, Zeyu Shangguan, Shuang Gou, Fengjian Liu,
Yugian Fu, Yanwei Fu, et al. Test-time linear out-of-distribution detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23752-23761, 2024.

Hao Fu, Naman Patel, Prashanth Krishnamurthy, and Farshad Khorrami. Clipscope: Enhancing
zero-shot ood detection with bayesian scoring. arXiv preprint arXiv:2405.14737, 2024.

Zhitong Gao, Shipeng Yan, and Xuming He. Atta: Anomaly-aware test-time adaptation for out-of-
distribution detection in segmentation. Advances in Neural Information Processing Systems, 36:
45150-45171, 2023.

10


https://proceedings.mlr.press/v202/bitterwolf23a.html
https://proceedings.mlr.press/v202/bitterwolf23a.html

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning
can improve model robustness and uncertainty. Advances in neural information processing systems,
32,2019a.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019b.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340-8349, 2021.

Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, and Jacob Steinhardt.
Pixmix: Dreamlike pictures comprehensively improve safety measures. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16783-16792, 2022.

Rui Huang and Yixuan Li. Mos: Towards scaling out-of-distribution detection for large semantic
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 8710-8719, 2021.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional
shifts in the wild. Advances in Neural Information Processing Systems, 34:677-689, 2021.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In International conference on machine learning, pp. 4904-4916. PMLR,
2021.

Xue Jiang, Feng Liu, Zhen Fang, Hong Chen, Tongliang Liu, Feng Zheng, and Bo Han. Negative
label guided OOD detection with pretrained vision-language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=xUOl1HXz4an.

Jeonghyeon Kim and Sangheum Hwang. Enhanced ood detection through cross-modal alignment of
multi-modal representations. CVPR, 2025.

Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 813-822, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

11


https://openreview.net/forum?id=xUO1HXz4an
https://openreview.net/forum?id=xUO1HXz4an

Under review as a conference paper at ICLR 2026

Yuxiao Lee, Xiaofeng Cao, Jingcai Guo, Wei Ye, Qing Guo, and Yi Chang. Concept matching
with agent for out-of-distribution detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 4562-4570, 2025.

Tiangi Li, Guansong Pang, Xiao Bai, Wenjun Miao, and Jin Zheng. Learning transferable nega-
tive prompts for out-of-distribution detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 17584—17594, 2024.

Yushu Li, Xun Xu, Yongyi Su, and Kui Jia. On the robustness of open-world test-time training:
Self-training with dynamic prototype expansion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 11836—-11846, 2023.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distribu-
tion shifts. arXiv preprint arXiv:2303.15361, 2023.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464-21475, 2020.

Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
out-of-distribution detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2394623955, 2023.

Fan Lu, Kai Zhu, Kecheng Zheng, Wei Zhai, and Yang Cao. Likelihood-aware semantic alignment
for full-spectrum out-of-distribution detection. arXiv preprint arXiv:2312.01732, 2023.

Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-
distribution detection with vision-language representations. Advances in Neural Information
Processing Systems, 35:35087-35102, 2022a.

Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. How to exploit hyperspherical embeddings for
out-of-distribution detection? arXiv preprint arXiv:2203.04450, 2022b.

Atsuyuki Miyai, Qing Yu, Go Irie, and Kiyoharu Aizawa. Locoop: Few-shot out-of-distribution
detection via prompt learning. Advances in Neural Information Processing Systems, 36, 2024.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 7. Granada, Spain, 2011.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 427-436, 2015.

Jun Nie, Yonggang Zhang, Zhen Fang, Tongliang Liu, Bo Han, and Xinmei Tian. Out-of-distribution
detection with negative prompts. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.

8748-8763. PMLR, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389-5400. PMLR,
2019.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Geunbae Lee. Out-of-domain detection based

on generative adversarial network. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 714-718, 2018.

12



Under review as a conference paper at ICLR 2026

Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E Boult. Toward
open set recognition. IEEE transactions on pattern analysis and machine intelligence, 35(7):
1757-1772, 2012.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. arXiv preprint arXiv:2103.12051, 2021.

Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
Advances in Neural Information Processing Systems, 34:144—157, 2021.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In International Conference on Machine Learning, pp. 20827-20840. PMLR, 2022.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. Advances in neural information processing systems,
33:11839-11852, 2020.

Leitian Tao, Xuefeng Du, Xiaojin Zhu, and Yixuan Li. Non-parametric outlier synthesis. arXiv
preprint arXiv:2303.02966, 2023.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769-8778,
2018.

Maria De La Iglesia Vaya, Jose Manuel Saborit, Joaquim Angel Montell, Antonio Pertusa, Aurelia
Bustos, Miguel Cazorla, Joaquin Galant, Xavier Barber, Domingo Orozco-Beltran, Francisco
Garcia-Garcfa, et al. Bimcv covid-19+: a large annotated dataset of rx and ct images from covid-19
patients. arXiv preprint arXiv:2006.01174, 2020.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need? arXiv preprint arXiv:2110.06207, 2021.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4921-4930, 2022.

Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
clip to say no. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1802-1812, 2023.

Yezhen Wang, Bo Li, Tong Che, Kaiyang Zhou, Ziwei Liu, and Dongsheng Li. Energy-based
open-world uncertainty modeling for confidence calibration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9302-9311, 2021.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural network
overconfidence with logit normalization. In International Conference on Machine Learning, pp.
23631-23644. PMLR, 2022.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485-3492. IEEE, 2010.

Kai Xu, Rongyu Chen, Gianni Franchi, and Angela Yao. Scaling for training time and post-hoc
out-of-distribution detection enhancement. arXiv preprint arXiv:2310.00227, 2023.

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan
Hendrycks, Yixuan Li, and Ziwei Liu. Openood: Benchmarking generalized out-of-distribution
detection. 2022.

Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. Interna-
tional Journal of Computer Vision, pp. 1-16, 2023a.

13



Under review as a conference paper at ICLR 2026

Puning Yang, Jian Liang, Jie Cao, and Ran He. Auto: Adaptive outlier optimization for online
test-time ood detection. arXiv preprint arXiv:2303.12267, 2023b.

Yifeng Yang, Lin Zhu, Zewen Sun, Hengyu Liu, Qinying Gu, and Nanyang Ye. Oodd: Test-time
out-of-distribution detection with dynamic dictionary. CVPR, 2025.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975-11986, 2023.

Boxuan Zhang, Jianing Zhu, Zengmao Wang, Tongliang Liu, Bo Du, and Bo Han. What if the input is
expanded in ood detection? Advances in Neural Information Processing Systems, 37:21289-21329,
2024a.

Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai
Li. Openood v1.5: Enhanced benchmark for out-of-distribution detection. arXiv preprint
arXiv:2306.09301, 2023.

Jinsong Zhang, Qiang Fu, Xu Chen, Lun Du, Zelin Li, Gang Wang, Shi Han, Dongmei Zhang, et al.
Out-of-distribution detection based on in-distribution data patterns memorization with modern
hopfield energy. In The Eleventh International Conference on Learning Representations, 2022.

Yabin Zhang and Lei Zhang. Adaneg: Adaptive negative proxy guided ood detection with vision-
language models. Advances in Neural Information Processing Systems, 37:38744-38768, 2024.

Yabin Zhang, Wenjie Zhu, Chenhang He, and Lei Zhang. Lapt: Label-driven automated prompt
tuning for ood detection with vision-language models. In European conference on computer vision,

pp- 271-288. Springer, 2024b.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. /EEE transactions on pattern analysis and machine
intelligence, 40(6):1452—-1464, 2017.

A6 APPENDIX

A6.1 PSEUDO CODE

The pseudo code are illustrated in Algorithm

Algorithm A1 Adaptive and Activated Negative Labels for OOD Detection

Require: ID labels VT, an external corpus dataset ))°°" and a test set X
1: Constructing the FIFO queues X},; and X}, , and initializing them with Eq. [10]
2: for Image batch B € X5 do

3:  Collecting positive set X;os and negative set Xfl’eg in batch B using Eq.
4:  Calculating the batch-adaptive activation score Zc\tb(yi) using Eq.

5. Selecting the adaptive and activated negative labels ))~ using Eq. [6)

6:  Generating the OOD detection score S, using Eq.

7:  Updating the FIFO queues using Eq. [9]

8: end for
9: Return Collected final scores {Sq, }

A6.2 DATASET

We perform extensive experiments using the large-scale ImageNet-1k dataset (Deng et al., 2009) as
the ID dataset. In line with previous works (Huang & Li, [2021; Ming et al.,|2022a; Jiang et al.| 2024)),
we evaluate the method on four OOD datasets, including iNaturalist (Van Horn et al.| 2018)), SUN
(Xiao et al., |2010), Places (Zhou et al.,[2017), and Textures (Cimpoi et al., 2014). Additionally, we

14
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Table A6: Complete OOD detection results with ImageNet-1k, where a VITB/16 CLIP encoder is
adopted.

OOD datasets
INaturalist Sun Places Textures Average

Methods
s AUROCT FPR95] AUROCT FPRO5) AUROCT FPR95] AUROCT FPR95] AUROCT FPR95]

Methods requiring training (or fine-tuning)
MSP (Hendrycks & Gimpel|2016) ~ 87.44 5836  79.73 7372  79.67 7441 79.69  71.93 81.63  69.61

ODIN (Liang et al. 7 94.65 30.22 87.17 54.04 85.54 55.06 87.85 51.67 88.80 47.75
Energy (Liu et al. 95.33 26.12 92.66 35.97 91.41 39.87 86.76 57.61 91.54 39.89
GradNorm (Huang et al.}[2021) 72.56 81.50 72.86 82.00 73.70 80.41 70.26 79.36 72.35 80.82
ViM (Wang et al.| 93.16 32.19 87.19 54.01 83.75 60.67 87.18 53.94 87.82 50.20
KNN (Sun et al.| 2022 94.52 29.17 92.67 35.62 91.02 39.61 85.67 64.35 90.97 42.19
VOS (Du et al.} |2 94.62 28.99 92.57 36.88 91.23 38.39 86.33 61.02 91.19 41.32
NPO 1| 2023) 96.19 16.58 90.44 43.77 89.44 45.27 88.80 46.12 91.22 37.93
ZOC ( 42022) 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
LSN (Nie et al.}[2024) 95.83 21.56 94.35 26.32 91.25 34.48 90.42 38.54 92.96 30.22
CLIPN (Wang et al}[2023) 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10
LoCoOp 'WlT 96.86 16.05 95.07 23.44 91.98 32.87 90.19 42.28 93.52 28.66
LAPT |m|m 99.63 1.16 96.01 19.12 92.01 33.01 91.06 40.32 94.68 23.40
NegPrompt 98.73 6.32 95.55 22.89 93.34 27.60 91.60 35.21 94.81 23.01
CMA (Kim & H 202 99.62 1.65 96.36 16.84 93.11 27.65 91.64 33.58 95.13 19.93

Zero-Shot Training-free Methods

94.59 3220 9225 38.80  90.31 46.20 86.12 58.50  90.82 4393
95.98 22.55 93.42 32.85 90.27 40.71 90.14  43.39 92.45 34.88
96.89 23.84 93.69 30.11 93.17 29.86 88.47 47.35 93.05 32.79
97.52 12.29 95.73 20.04 92.95 30.16 85.64 57.53 92.96 30.09
99.49 1.91 95.49 20.53 91.64 35.59 90.22  43.56 94.21 25.40
99.61 1.29 96.77 15.56 93.54 28.45 91.41 38.37 95.30 20.88
99.71 0.59 97.44 9.50 94.55 34.34 94.93 31.27 96.66 18.92
99.79  0.85 97.17 12.94 92.51 30.68 94.51 30.67 96.00 18.79
99.60 1.54 96.66 13.66 92.90 29.32 93.86 25.52 95.76 17.51
99.84 042 99.07  3.53 9587 2190 97.11 13.38 9797 9.81

Table A7: Detailed OOD detection results on the OpenOOD benchmark, where ImageNet-1k is
adopted as ID dataset.

Near/Far-OOD  OOD Datasets | FPR95 | | AUROC 1
SSB-hard (Vaze et al.,[2021] 62.51 83.96

Near-OOD NINCO (Bitterwolf et al., 2023) 57.61 85.10
Mean 60.06 84.53
iNaturalist (Van Horn et al. |201 8) 0.47 99.83

Far-OOD Textures (Cimpoi et al. |,|20 11.22 97.53
Openlmage-O (Wang et al., 022) 39.95 91.92
Mean 17.21 96.43

validate our approach on the OpenOOD benchmark (Zhang et al., 2023}, [Yang et al.,[2022)), where
OOD datasets are categorized into near-OOD (e.g., SSB-hard (Vaze et al., [2021), NINCO (Bitterwolf
[2023)) and far-OOD (e.g., iNaturalist (Van Horn et al.| 2018), Textures (Cimpoi et al., 2014),
Openlmage-O (Wang et al [2022)) based on their similarity to the ImageNet dataset. Besides
the traditional OOD detection with semantic-shift, we also study a more practical full-spectrum
OOD detection setting (Yang et all, [2023a)), where the model is additionally challenged by the
robustness to covariate shifts. Following (Zhang et al.},[2023)), we adopt ImageNet-C (Hendrycks &

2019), ImageNet-R (Hendrycks et al., 2021), and ImageNet-V2 (Recht et al.| 2019) as the
covariate-shifted test data in the full-spectrum setting.

A6.3 DETAILED RESULTS ON IMAGENET DATASET

We compare against traditional methods (Hendrycks & Gimpel, Liang et al, Liu et al,
[2020; [Huang et al.l 2021 [Wang et al.} [2022; [Sun et al.,[2022}; Du et al.,2022b; [Tao et al.,2023) by
fine-tuning CLIP-encoders with labeled training samples, as described in (Jiang et al.,|2024)), and
report results of 2024 Miyai et all [2024; Jiang et al., [2024; [Li et al., [2024; Bai et al.|
[2023}; [Zhang et al., [2024b; [Li et al., 2024} Kim & Hwang| 2025} (Chen et al | [2024} Yang et al., 2025)

based on their original papers.
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Table A8: Detailed full-spectrum OOD detection results on the OpenOOD benchmark, where
ImageNet-1k, ImageNet-C, ImageNet-R, ImageNet-V2 are used as ID datasets.

Near/Far-OOD  OOD Datasets | FPR95 | | AUROC
SSB-hard (Vaze et al.,[2021) 70.50 79.29

Near-OOD NINCO (Bitterwolf et al.,[2023) 66.92 78.51
Mean 68.71 78.90
iNaturalist (Van Horn et al.,|[2018) 1.70 99.58
Textures (Cimpoi et al.,|[2014) 19.68 94 .81

Far-OOD Openlmage-O (Wang et al|2022) | 46.07 88.66
Mean 22.48 94.35

Table A9: OOD detection results with CIFAR10/100 on the OpenOOD benchmark. Full results are

provided in Tables

FPRYS | | AUROC 1

Methods | Near-OOD  Far-OOD | Near-OOD  Far-OOD

Methods requiring training (or fine-tuning)

PixMix (Hendrycks et al.}[2022) + KNN (Sun et al., 2022) - - 93.10 95.94
OE (Hendrycks et al.}|2018) + MSP (Hendrycks & Gimpel, 2016) - - 94.82 96.00
PixMix (Hendrycks et al.|[2022) + RotPred (Hendrycks et al.}|2019a) - - 94.86 98.18
Zero-shot Training-free Methods
MCM (Ming et al.| [2022a) 30.86 17.99 91.92 95.54
NegLabel (Jiang et al.|[2024) 28.75 6.60 94.58 98.39
AdaNeg (Zhang & Zhang, [2024) 20.40 2.79 94.78 99.26
AANeg (Ours) 19.31 2.43 94.91 99.26
(a) Results with ID dataset of CIFAR10
Methods FPRYS | AUROC 1

| Near-OOD  Far-OOD | Near-OOD  Far-OOD

Methods requiring training (or fine-tuning)

GEN (Liu et al.,|2023) - - 81.31 79.68
VOS (Du et al.|[2022¢) + EBO (Liu et al.| 2020) - - 80.93 81.32
SCALE (Xu et al.|[2023) - - 80.99 81.42
OE (Hendrycks et al.|[2018) + MSP (Hendrycks & Gimpel, [2016) - - 88.30 81.41
Zero-shot Training-free Methods
MCM (Ming et al.|2022a)) 75.20 59.32 71.00 76.00
NegLabel (Jiang et al.[|2024) 71.44 40.92 70.58 89.68
AdaNeg (Zhang & Zhang|[2024) 59.07 29.35 84.62 95.25
AANeg (Ours) 57.74 24.55 85.06 95.41

(b) Results with ID dataset of CIFAR100.

The detailed OOD detection results with OOD datasets of INaturalist/Sun/Places/Textures are illus-
trated in Tab.

The detailed OOD detection results and full-spectrum OOD detection results under the OpenOOD
setting are presented in Tab. [A7]and Tab. [A8] respectively.

A6.4 RESULTS ON CIFAR10/100

Besides ImageNet, we also assess our method on the smaller CIFAR10/100 datasets (Krizhevsky
et al.} 2009) under the OpenOOD framework. Specifically, with CIFAR10/100 as the ID datasets, we
utilize near-OOD datasets such as CIFAR100/10 and TIN (Le & Yang} 2015), and far-OOD datasets
including MNIST (Dengl [2012)), SVHN (Netzer et al.| [2011), Texture (Cimpoi et al., 2014), and
Places365 (Zhou et al.| 2017). As illustrated in Tab. our advantage still holds.

A6.5 RESULTS WITH MEDICAL IMAGES
We also validate our AANeg method with medical images following the OpenOOD setup (Zhang

et al.| [2023). Specifically, we use BIMCYV as the ID dataset, where the task is to distinguish COVID-
19 patients from healthy individuals using chest X-ray images (Vaya et al.,|2020). The OOD dataset is
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Table A10: Detailed OOD detection results on the OpenOOD benchmark.

Near/Far-OOD  Datasets | FPR95 | | AUROC 1
CIFAR100 (Krizhevsky et al.,[2009) 33.63 91.17

Near-OOD TIN (Le & Yang, 2015) 4.99 98.65
Mean 19.31 94.91
MNIST (Deng, 2012) 0.13 99.96
SVHN (Netzer et al.,[2011) 0.04 99.97

Far-OOD Texture (Cimpoi et al.,[2014) 0.04 99.86
Places365 (Zhou et al.||2017) 9.51 97.25
Mean 2.43 99.26
(a) Detailed results with ID dataset of CIFAR10.

Near/Far-OOD  Datasets | FPR95 | | AUROC 1
CIFAR10 (Krizhevsky et al.,2009) 56.32 80.47

Near-OOD TIN (Le & Yang|[2015) 59.16 89.65
Mean 57.74 85.06
MNIST (Deng, 2012) 0.54 99.81
SVHN (Netzer et al.,[2011)) 5.81 98.53

Far-OOD Texture (Cimpoi et al.,[2014) 31.36 95.36
Places365 (Zhou et al., |2017) 60.49 90.94
Mean 24.55 95.41

(b) Detailed results with ID dataset of CIFAR100.

Table A11: OOD detection results with medical images following the OpenOOD setting.

OOD datasets
Methods CT-SCAN X-Ray-Bone Average
NegLabel (Jiang et al.,|2024) 63.53 100.0 99.68 0.56 81.61 50.28
AdaNeg (Zhang & Zhang, [2024) 93.48 100.0 99.99 0.11 96.74 50.06
AANeg (Ours) 93.94 39.06 100.0 0.0 96.97 19.53

constructed using the CT-SCAN and X-Ray-Bone datasets. The CT-SCAN dataset includes computed
tomography (CT) images of COVID-19 patients and healthy individuals, while the X-Ray-Bone
dataset contains X-ray images of hands. As shown in Tab. [ATT] our method significantly outperforms
existing competitors.

68 70 }18.8
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Figure A4: Analyses on (a) the queue length L, (b) threshold ~, and (c) gap value g in Eq. |§|under
the OpenOOQOD setup.
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A6.6 MORE ANALYSES

Queue length. We formulate X}, /¢4 as fixed-length FIFO queues, where the queue length L
determines the number of cached samples in dynamic environments. As shown in Fig.
appropriately increasing the queue length can reduce error, and performance saturates when the queue
length exceeds 300. Therefore, we set the queue length to 300 by default.

7 values. As shown in Fig. [A4b] the optimal threshold ~ differs between near-OOD and far-OOD
scenarios because the distance between OOD samples and ID samples varies significantly. Instead of
manually searching for the best v, we adopt an automated approach to set it dynamically. This is
achieved by modeling the score S, of all historical samples as a bimodal distribution of two clusters
(e.g., ID Vs. OOD) and identifying the threshold that minimizes the intra-cluster variations of the
two clusters (L1 et al., [2023)):

min  var(O,) + var(O,;,) (A6.1)

5
where O = {Sua(v) | Sua(v) > 7, v € Xhis}, (A6.2)
Okgs = {Saa(v) | Saa(v) <7 vE& Xhis}a (A63)

where var(A) measures the variation of the score set A, and X} is also a FIFO queue that stores the
most recent 20, 000 test samples, initialized with positive and negative samples as defined in Eq.
This dynamic thresholding typically achieves results comparable to those with manually searched v
and is adopted as the default setting.

g values. As shown in Fig. an appropriately small gap g helps reduce the detection error in the
Far OOD setting, whereas the Near OOD setting benefits from a smaller value of g. By default, we
set g = 0.2 for all experiments.

VLM Backbones. As shown in Tab. our AANet achieves excellent results across various VLM
backbones, where a stronger backbone generally leads to better performance. Interestingly, unlike
NegLabel, which heavily relies on a strong backbone to achieve high results, our method works well
even with a smaller ResNet-50 backbone, demonstrating its effectiveness and practicality.

Table A12: OOD detection results of AANeg with different VLMSs backbones, where ImageNet-1K
is used as the ID dataset.

OOD datasets
Backbone INaturalist Sun Places Textures Average
AUROCT FPR95] AUROCT FPRO5] AUROCT FPR95] AUROCT FPRO5) AUROCT FPRY5|

ResNet50

NegLabel (Jiang et al.|[2024) ~ 99.24  2.88 94.54  26.51 89.72 42,60 8840 5080 9297 30.70

AANeg (Ours) 99.73  0.99 99.04  4.00 9597 2376 97.01 1271 97.88 10.37
VITB/32

NegLabel (Jiang et al.||2024) 99.11 3.73 95.27 22.48 91.72 34.94 88.57 50.51 93.67 27.92

AANeg (Ours) 99.76  0.87 99.24  3.09 96.07 2097  96.50 16.28  97.89 10.30
VITB/16

NegLabel (Jiang et al.|[2024) ~ 99.49 1.91 9549 2053  91.64 3559 9022 4356 9421 25.40

AANeg (Ours) 99.84 042 99.07  3.53 9587 2190 97.11 1338 9797 981
VITL/14

NegLabel (Jiang et al.|[2024) ~ 99.53 1.77 95.63 2233 93.01 3222 89.71 4292 94.47 24.81

AANeg (Ours) 99.88  0.29 99.15 342 96.11 2079  97.12 13.57 98.07 9.52

Table A13: OOD detection results with different corpus datasets on the OpenOOD benchmark, where
ImageNet-1k is adopted as ID dataset.

Corpus Datasets FPROS | I AUROC 1 ‘
| Near-OOD  Far-OOD | Near-OOD  Far-OOD
Vanilla WordNet 60.52 17.34 83.24 95.92
Part-of-speech-tagging 60.36 17.24 83.74 96.15
WordNet-subset Filtered by NegLabel 60.06 17.21 84.53 96.43

Corpus Datasets. The corpus dataset provides candidates for activated labels, and its diversity is
a prerequisite for selecting effective activated labels. We construct the corpus dataset by selecting
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Figure AS: Analyses on (a) size of corpus dataset, (b) the batch size, and (c) activation metric under
the OpenOOD setup.

nouns and adjectives from WordNetlHand Part-of-Speech-Tags EL removing duplicate words within
the ID set. This results in corpus datasets containing 140.5K and 270.2K words, respectively. For a
fair comparison, we also adopt the WordNet subset filtered by NegLabel as the corpus dataset, which
contains 70K adjectives and nouns.

As illustrated in Tab.[AT3] different corpus datasets lead to similarly good results, demonstrating the
robustness of our method to the choice of corpus dataset. Beyond comparing different corpus datasets,
we also analyze the sensitivity of our method to the size of the corpus dataset by randomly sampling
smaller subsets from the Part-of-Speech-Tags dataset. As shown in Fig. [A5a] using an appropriately
large-sized corpus dataset generally results in better performance, with results saturating when the
corpus dataset exceeds 100K. For fair comparison, we adopt the WordNet subset filtered by NegLabel
as the corpus dataset by default.

Batch Size. Our method leverages batch information to obtain batch-adaptive activated labels; thus, it
is necessary to explore its sensitivity to batch size. As shown in Fig. [A5b] a larger batch size generally
performs better. Particularly, in the case of batch size = 1, it approaches the distribution-adaptive
variants and still significantly outperforms the NegLabel competitor.

Activation Metric. The activation metric we use is the cosine similarity normalized by a softmax
function, as shown in Eq. [5} One may wonder whether directly using vanilla cosine similarity, i.e.,
modifying Eq. to Act(X,y;) = ﬁ > wex fimg(®) frzt(p(¥i)), could also work. As shown in
Fig. [A5d] using the normalized similarity leads to a significant advantage. This is likely because
unnormalized similarity has a lower discriminative capacity. For example, same-class similarities
often cluster around 0.3, while different-class similarities typically cluster around 0.1 (Ming et al.,
2022a)), making it difficult to distinguish activated labels effectively.

Statistical Significance. We control the input sequence using a random seed and report OOD
detection results on the ImageNet- 1k dataset with three random seeds as follows: AUROC: 97.97 +
0.01 and FPR95: 9.81 £ 0.01. These results validate the robustness of our method to variations in
the input sequence.

Mutual Enhancement. In our method, improving the accuracy of the activation score in Eq. [§]
helps select more effective negative labels in Eq. [6] thereby enhancing the OOD detection capability
of the activation-aware score in Eq. [[3] Similarly, the improved OOD detection capability of the
activation-aware score contributes to selecting more accurate negative and positive images in Eq. [9]
which in turn enhances the estimation of the activation score in Eq. @ Overall, there exists a mutual
enhancement relationship between the estimation of the activation score and the activation-aware
OOD score function. Such a relationship is evidenced in Tab. [AT4] where we remove this mutual
enhancement by fixing S, in Eq. |§|using activated labels estimated via the initialized X5 /pneg in
Eq.[T0] This leads to a significant performance drop.

"nttps://wordnet .princeton.edu/
https://www.kaggle.com/datasets/ruchi798/part-of-speech-tagging
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Table A14: Analyses on the mutual enhancement between the estimation of activation information
and the activation-aware OOD score function.

FPRYS |
Methods | Near-OOD  Far-OOD
W/o mutual enhancement 63.00 19.04
With mutual enhancement (Ours) 60.06 17.21

Table A15: OOD detection results under the temporal shifts, where ImageNet-1k ID dataset and a
VITB/16 CLIP encoder are adopted.

OOD datasets
INaturalist Sun Places Textures Average

Methods AUROCT FPROS] AUROCT FPRO5] AUROCT FPR95) AUROCT FPROS] AUROCT FPROS]
NegLabel (Jiang et al.||2024) 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
AANeg under Temporal Shifts
I-S-P-T 99.84 0.45 98.77 4.75 95.93 22.16 96.67 14.91 97.80 10.56
S-P-T-1 99.83 0.46 99.04 3.65 95.92 21.37 96.70 15.09 97.87 10.14
P-T-1-S 99.84 0.45 98.73 5.28 95.87 21.67 96.66 15.33 97.87 11.68
T-I-S-P 99.83 0.47 98.77 4.69 95.94 21.30 97.04 13.51 97.89 9.99

Temporal Shift. Since our method dynamically explores activated negative labels in a test-time adap-
tation manner, it is crucial to investigate its stability under temporal shifts, where OOD environments
evolve over time. Specifically, we use ImageNet as the ID dataset and assume that OOD datasets
change sequentially over time (e.g., I-S-P-T represents OOD datasets transitioning from INaturalist
to Sun to Places to Textures). In implementation, we do not re-initialize the queue &, /7,4 for each
OOD dataset. As shown in Tab. [AT5] our method consistently maintains a large advantage over the
NegLabel baseline, validating its robustness to temporal shifts.

Sample Order. In our experiments, ID and OOD samples are randomly shuffled during testing,
corresponding to the “Random Shuffled” scenario. To analyze the impact of sample order, we have
conducted additional experiments. Specifically, we consider two extreme cases: “ID First” (all
ID samples are tested before any OOD samples) and “OOD First” (all OOD samples are tested
before any ID samples). As shown in Tab. while performance does drop under these extreme
settings compared to the “Random Shuffled” scenario, our method still significantly outperforms the
NegLabel baseline. This demonstrates the robustness and effectiveness of our method, even when the
order of test samples is highly imbalanced.

Table A16: FPR95 (]) with different orders of ID and OOD samples. .

Order of Test Samples | INaturalist SUN  Places Textures | Average

NegLabel (Baseline) | 1.91 20.53 35.59 4356 | 25.40
ID First 297 835 29.63 2491 16.47
OOD First 2.74 9.06  36.00 19.14 16.73
Random Shuffled 0.42 353 2190 13.38 9.81

Limitations. The limitation of our method lies in the assumption that the corpus dataset covers words
related to the OOD distribution and that the pre-trained text encoder understands these words. This
assumption may not hold in certain domains. For example, WordNet primarily contains everyday
vocabulary and lacks sufficient medical terms, while the vanilla CLIP model has limited understanding
of medical images. As a result, improvements in medical OOD detection can be restricted. This
limitation suggests that domain-specific tasks may require a tailored corpus dataset and pre-trained
models, which is left for future investigation.

Use of Large Language Model. We utilize language models to enhance English writing by improving
logical coherence, checking word usage, and identifying typos.

Visualization of Activated Labels. We visualize the activated labels under different OOD datasets
and activation criteria in Fig. We observe that the selected activated labels indeed exhibit a
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Ranked Corpus Dataset Ranked Corpus Dataset

Act; Labels

0.0049 blue-eyed grass
0.0034 poison oak

Act; Labels

0.0018 polka dot
0.0015 pothole

-0.00041 scaly-tailed
-0.00042 siberian crab
-0.00046 iditarod

-0.00061 dwarf birch
-0.00066 capuchin
-0.00072 iditarod

ID: ImageNEt

(a) Ranked corpus dataset in far-ood setting

Ranked Corpus Dataset Ranked Corpus Dataset
Act;  Labels
0.0025 square-tailed
0.0023 nyala

Act;  Labels

0.0033 fire extinguisher
0.0025 caecilian

-0.00068 capuchin
-0.00086 chelonian

-0.00065 dwarf birch
-0.00067 capuchin

-0.00092 nonvenomous -0.00077 iditarod

ID: ImageNet

ID: ImageNet

(b) Ranked corpus dataset in near-ood setting

Ranked Corpus Dataset Ranked Corpus Dataset Ranked Corpus Dataset
Acty Labels Act(Xneg) Labels —Act(Xpos) Labels
0.0018 polka dot 0.0018 polka dot —1.6x10~% anthony dollar
0.0015 pothole 0.0015 pothole —1.8x107% habenaria
-0.00061 dwarf birch 7.6%1078 churchill downs -0.00062 square-tailed
-0.00066 capuchin 7.5%x1078 locomotive -0.00066 capuchin
-0.00072 iditarod 7.0x10~8 dwarf-white trillium  -0.00072 iditarod

ID: ImaeNet

(c) Ranked corpus dataset with different ranking criteria

Figure A6: Visualization of the ranked corpus dataset with (a) far-ood setting, (b) near-ood setting,
and (c) different ranking criteria.

high degree of similarity with the OOD dataset. For example, when the OOD dataset is Textures,
the labels with high activation scores are ‘grating’ and ‘polka dot’, which align well with the visual
characteristics of the Textures dataset, as shown in Fig. [A6a] Furthermore, we find that the highly
activated scores selected using Act(X),e,4) and Actd are quite similar, which explains the effectiveness
of Act(X,eq) as a criterion, as demonstrated in Fig. . In contrast, the activated labels selected
using only positive images do not show a clear relationship with the target OOD dataset, which
corresponds to its lower results in Fig. [3].
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