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ABSTRACT

Out-of-distribution (OOD) detection aims to identify samples that deviate from
in-distribution (ID). One popular pipeline addresses this by introducing negative
labels distant from ID classes and detecting OOD based on their distance to these
labels. However, such labels may present poor activation on OOD samples, failing
to capture the OOD characteristics. To address this, we propose an Adaptive and
Activated Negative labels guided approach (AANeg), which dynamically evaluates
activation levels across the corpus dataset and selects words with high activation
responses as negative labels. Specifically, AANeg identifies high-confidence test
images online and accumulates their assignment probabilities over the corpus to
construct a label activation metric. Such a metric leverages historical test samples
to adaptively align with the test distribution, enabling the selection of distribution-
adaptive activated negative labels. By further exploring the activation information
within the current testing batch, we introduce a more fine-grained, batch-adaptive
variant. To fully utilize label activation knowledge, we propose an activation-
aware score function that emphasizes negative labels with stronger activations,
boosting performance and enhancing its robustness to the label number. Our
approach is zero-shot, training-free, test-efficient, highly scalable, and grounded in
theoretical justification. Notably, on the large-scale ImageNet benchmark, AANeg
significantly reduces the FPR95 from 17.5% to 9.8%. Codes will be released.

1 INTRODUCTION

In open environments, artificial intelligence (AI) models inevitably encounter out-of-distribution
(OOD) data, i.e., samples outside predefined categories. Existing vision models often misclassify
these OOD samples as known categories (Nguyen et al., 2015), posing significant safety issues.
Therefore, accurately detecting OOD samples is critical for deploying safe AI models.

Traditional OOD detection methods in the image domain primarily rely on visual features (Hendrycks
& Gimpel, 2016; Lee et al., 2018; Liu et al., 2020). Recently, with the rapid development of vision-
language models, leveraging textual knowledge to enhance OOD detection has gained increasing
attention (Ming et al., 2022a; Wang et al., 2023; Esmaeilpour et al., 2022). Among these, NegLabel
(Jiang et al., 2024) mines thousands of negative labels by identifying words with large cosine
distances from in-distribution (ID) labels and detects OOD images by selecting those with higher
cosine similarity to negative labels. Although NegLabel achieves impressive results, many negative
labels present poor activation on a certain OOD test set, as shown in Fig. 1a. This limits their
effectiveness and introduces noise, as these labels are closer to ID data and fail to capture the
characteristics of OOD images effectively. Removing these less activated labels benefits the detection
of OOD samples, as illustrated in Fig. 1b, highlighting their negative impact. This motivates us to
explore negative labels with stronger activation on OOD samples to enhance OOD detection.

To this end, we propose an Adaptive and Activated Negative labels guided approach (AANeg) for
OOD detection. At the core of AANeg is an activation metric that quantifies how “active” a particular
class is across a dataset, measured by the average classification probability of a label across the
associated images, as defined in Eq. 5. Using this metric, we dynamically evaluate the activation of
each class in the corpus set across ID and OOD datasets, approximated using high-confidence positive

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Negative Labels Sorted by Act( ood)

0

2

4
Ac

tiv
at

io
n 

Sc
or

es

×10 3

Act( ood)
Act( id)

(a) Act(Xood) Vs. Act(Xid)

0 2000 4000 6000 8000 10000
Negative Labels Sorted by Act( ood) Act( id)

0

2

4

Ac
t(

oo
d)

Ac
t(

id
)

×10 3

20

25

30

35

40

FP
R9

5

Act( ood) Act( id)
FPR95

(b) Actd Vs. FPR95

Figure 1: Activation analyses with negative labels mined in (Jiang et al., 2024). (a) Negative labels on
a specific OOD dataset exhibit a long-tailed activation score distribution. Some labels activate more
strongly on the ID dataset than on OOD, potentially misleading OOD detection. (2) A small subset of
negative labels strongly activates on OOD, enabling effective detection. Most labels respond similarly
across ID and OOD, slightly harming detection, while some activate higher on ID, significantly
degrading performance. The FPR95 results are obtained with negative labels of top activations via
Eq. 4. These analyses use ground truth labels from ImageNet (ID) and Places (OOD) datasets.

and negative test images. This activation information captures the overall characteristics of the
test distribution, enabling the selection of distribution-adaptive activated labels, which present high
activation on negative images and low activation on positive images. Additionally, we explore the
activation information within the current testing batch, resulting in a more fine-grained, batch-adaptive
variant. To ensure stability at the beginning of testing, we initialize the activation scores using ID
labels and noise images as positive and negative samples, respectively. Furthermore, considering the
varying importance of different negative labels, as validated by their activation levels, we introduce
an activation-aware scoring function for OOD detection that emphasizes labels with higher activation.
This score function not only boosts the OOD detection performance but also enhances its robustness
to the label number.

Extensive experiments are conducted to validate the effectiveness of our proposed methods. On the
large-scale ImageNet dataset, our method reduces the FPR95 of the activation-agnostic NegLabel
(Jiang et al., 2024) by 15.6% and outperforms the current leading approach (Chen et al., 2024) by
7.7%. Unlike existing methods (Jiang et al., 2024; Zhang & Zhang, 2024), which typically introduce
thousands of negative labels to cover activated labels but inevitably include less activated ones, our
method specifically targets activated labels, achieving superior performance with a significantly
reduced number of labels. Moreover, our approach is zero-shot, training-free, and test-efficient,
demonstrating high scalability to different model backbones and robustness to near-OOD, full-
spectrum OOD, and medical OOD settings. Theoretical analysis further explains its effectiveness.
We summarize our contributions as follows:

• We introduce an activation metric to quantify how “active” a particular class is across a
dataset and reveal that current methods employ less-activated negative labels for OOD
datasets, which hinders the distinction of OOD samples. This motivates us to explore
activated negative labels to enhance OOD detection.

• To this end, we explore activated negative labels by dynamically estimating the activation
scores across the entire corpus dataset. We introduce distribution-adaptive and batch-
adaptive variants and a novel activation-aware scoring function to fully utilize the mined
activation knowledge. Theoretical analysis is conducted to explain its effectiveness.

• We conduct extensive experiments to validate the proposed components. Our AANeg
outperforms the leading method by 7.7% in FPR95 on the large-scale ImageNet benchmark.
Our approach is zero-shot, training-free, test-efficient, and presents high scalability to
different backbones and diverse task settings.
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2 RELATED WORK

OOD Detection aims to identify test samples with undefined semantic concepts, thereby enhancing
the reliability of models in open environments. Classical OOD detection methods typically explore
knowledge exclusively from the visual domain and can be roughly categorized into score-based
(Hendrycks & Gimpel, 2016; Lee et al., 2018; Liang et al., 2017; Liu et al., 2020; Wang et al., 2021;
Huang & Li, 2021; Wang et al., 2022; Wei et al., 2022; Sun et al., 2021), distance-based (Tack et al.,
2020; Tao et al., 2023; Sun et al., 2022; Du et al., 2022a; Ming et al., 2022b; Sehwag et al., 2021), and
generative-based (Ryu et al., 2018; Kong & Ramanan, 2021) approaches. Among these, score-based
methods are the most popular, including score functions based on prediction confidence (Hendrycks
& Gimpel, 2016; Liang et al., 2017; Sun et al., 2021; Wang et al., 2022; Wei et al., 2022), additional
discriminators (Kong & Ramanan, 2021), and energy score (Liu et al., 2020; Wang et al., 2021).

Recently, with the rise of vision-language models (Radford et al., 2021; Jia et al., 2021; Zhai et al.,
2023), enhancing visual OOD detection by leveraging text knowledge has gained increasing attention.
ZOC (Esmaeilpour et al., 2022) pioneered this direction by generating potential OOD labels with a
learned captioner. Adapting the text branch with prompt tuning is a popular approach, where methods
such as LoCoOp (Miyai et al., 2024), LAPT (Zhang et al., 2024b), CLIPN (Wang et al., 2023), and
LSN (Nie et al., 2024) introduce negative training samples via background features, image generation,
additional training sets, and local croppings, respectively. Beyond single-text modality fine-tuning,
multi-modal fine-tuning has been explored in (Kim & Hwang, 2025) by jointly tuning both the text
and visual branches.

Unlike these tuning-based methods, which typically require labeled training data, some approaches
focus on training-free zero-shot pipelines. For instance, MCM (Ming et al., 2022a) detects OOD
samples by analyzing the similarity distribution between test images and ID labels. EOE (Cao et al.,
2024), NegLabel (Jiang et al., 2024), and CSP (Chen et al., 2024) further advance this by introducing
negative labels and utilizing the similarity between test images and ID/negative labels to enhance
OOD detection. While these methods achieve good results, we reveal that many of these negative
labels present poor activation on OOD images, hindering the accurate detection of OOD samples,
as shown in Fig. 1. To address this issue, we explore more activated negative labels and design a
corresponding activation-aware score function, significantly reducing the FPR95 on the ImageNet
dataset from 25.4%, achieved by the NegLabel, to 9.8%.

Test Time Adaptation enables models to dynamically update during testing to adapt to changes
in test data (Liang et al., 2023), which has been recently introduced into OOD detection. Some
methods (Gao et al., 2023; Yang et al., 2023b; Fan et al., 2024) require test-time optimization,
which, although achieving certain performance improvements, significantly reduces testing speed.
Recently, some methods (Zhang & Zhang, 2024; Yang et al., 2025) have also sought to avoid test-time
optimization, achieving rapid adaptation to the environment. For example, OODD (Yang et al., 2025)
caches high-confidence positive/negative samples in a dictionary and detects OOD samples based on
the cosine similarity between the test samples and the cached features. The most similar method is
AdaNeg (Zhang & Zhang, 2024), which also introduces adaptive negative proxies. The difference is
that AdaNeg primarily revises the activated negative labels while retaining these less-activated ones.
In contrast, we reduce the influence of less-activated labels through a novel activation-guided label
mining strategy and a corresponding activation-aware score, significantly boosting OOD detection.

3 METHODS

3.1 PRELIMINARIES

OOD Detection. Consider X as the image domain and Y+ = {y1, . . . , yC} as the set of ID class
labels, where Y+ consists of textual elements such as Y+ = {cat, dog, . . . , bird}, and C is the total
number of classes. Let xin and xood represent random variables corresponding to ID and OOD
samples from X , respectively. The marginal distributions for ID and OOD samples are denoted
by Pin

x and Pood
x . In standard classification tasks, it is assumed that a test image x belongs to the

ID distribution and is associated with a specific ID label, i.e., x ∈ Pin
x and y ∈ Y+, where y is

the label of x. However, in open environments, AI systems often encounter data from unknown
classes, characterized by x ∈ Pood

x and y /∈ Y+. These OOD samples are typically misclassified as
the known ID categories (Scheirer et al., 2012; Nguyen et al., 2015), potentially resulting in unsafe
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decisions. To tackle such issues, OOD detection aims to reliably classify ID samples into their
respective categories while rejecting OOD samples as non-ID. Classification among ID categories is
done using a C-way classifier, following conventional methods (Krizhevsky et al., 2012; He et al.,
2016). Meanwhile, OOD detection employs a scoring function S (Lee et al., 2018; Liang et al., 2017;
Liu et al., 2020) to distinguish between ID and OOD inputs:

Gγ(x) =

{
ID, if S(x) ≥ γ;

OOD, otherwise,
(1)

where Gγ is the OOD detector with a threshold γ ∈ R and S(x) is a scoring function assigning
higher scores to samples likely belonging to ID classes.

CLIP and NegLabel. For an ID test image x belonging to the label space Y+, we extract its image
feature vector v = fimg(x) ∈ RD and the text feature ti = ftxt(ρ(yi)) ∈ RD using pre-trained
CLIP encoders, where D denotes the feature dimension. The functions fimg(·) and ftxt(·) represent
images and text encoders, respectively. The function ρ(·) serves as a text prompt mechanism, typically
defined as ‘a photo of a <label>,’ where ‘<label>’ corresponds to the actual class name such as
‘cat’ or ‘dog’. Both v and ti are normalized using L2 normalization along the dimension D. The
zero-shot classification probabilities are then computed with the similarity between v and ti:

pid
i =

exp(vti/τ)∑C
j=1 exp(vtj/τ)

, (2)

where τ > 0 is the temperature scaling factor.

The CLIP model has been recently extended to OOD detection (Ming et al., 2022a; Jiang et al., 2024;
Zhang et al., 2024b). Specifically, Jiang et al. (Jiang et al., 2024) introduce negative class labels
Y− = {ỹ1, . . . , ỹM} by mining text labels distant from ID classes Y+ within an extensive corpus
dataset Ycor = {ŷ1, . . . , ŷN}:

Y− = Top({di}Ni=1,Ycor,M) (3)
where di measures the cosine distance between ŷi and ID label set Y+. M and N respectively denote
the number of selected negative classes and all classes in the corpus dataset, and N ≥ M . The
operation TOP (A,B,M) retrieves the indices of the top-M largest elements in set A and uses them
to select the corresponding elements from set B. Sets Y− and Y+ are disjoint, i.e., Y− ∩ Y+ = ∅.
Then, the ID images can be detected as those with higher similarity to ID labels and lower similarity
to negative ones, leading to the following score function:

Snl(v) =

C∑
i=1

exp(vti/τ)∑C
j=1 exp(vtj/τ) +

∑M
j=1 exp(vt̃j/τ)

, (4)

where t̃i = ftxt(ρ(ỹi)) ∈ RD is the text feature of mined negative label ỹi.

3.2 MOTIVATION: LABEL ACTIVATION ANALYSES

Although the negative labels described above perform well, they have a significant limitation that
hinders their effectiveness. Specifically, the negative labels in Eq. 3 are derived solely from ID labels,
without considering the test distribution in real-world applications. Consequently, many negative
labels exhibit very low activation scores for a specific OOD test set and hinder the OOD detection,
as shown in Fig. 1. To better understand this, we first introduce the concept of the activation score,
which measures the average probability assignment of class ŷi on a dataset X :

Act(X , ŷi) =
1

|X |
∑
x∈X

exp(vt̂i/τ)∑C
j=1 exp(vtj/τ) +

∑N
j=1 exp(vt̂j/τ)

, (5)

where t̂i = ftxt(ρ(ŷi)) ∈ RD. The Act(X , ŷi) reflects the average similarity between the class ŷi
and images in the dataset X . A higher Act(X , ŷi) indicates greater similarity between the samples
in X and class ŷi, and vice versa. An ideal negative label ŷi should exhibit higher activation scores
on OOD dataset (e.g., higher Act(Xood, ŷi)) and lower activation scores on ID dataset (e.g., lower
Act(Xid, ŷi)). However, as shown in Fig. 1a, although most negative labels derived in Eq. 3 exhibit
low activation scores on the ID dataset, many simultaneously exhibit low activation scores on the
OOD dataset—sometimes even lower than those observed on the ID dataset. These negative labels,
which demonstrate lower activation scores on OOD samples, adversely impact OOD detection, as
evidenced in Fig. 1b.
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Figure 2: Overall framework of AANeg. We dynamically explore adaptive and activated negative
labels from the corpus dataset, where the activation information is measured based on the similarity
between texts and the mined positive/negative images. The activation-aware score is illustrated as a
simplified example of Eq. 15 with M = 2 and C = 2.

3.3 OUR APPROACH

Distribution-adaptive Activated Labels. The above analyses on label activation motivate us to
explore negative labels with higher activation on the OOD dataset and lower activation on the ID
dataset, e.g., to find the negative labels that present high activation scores for OOD detection:

Y− = Top({Actd(ŷi)}Ni=1,Ycor,M), (6)
where Actd(ŷi) = Act(Xood, ŷi)−Act(Xid, ŷi). (7)

However, in open environments, OOD data is generally unknown and may even change dynamically,
making it difficult to obtain in advance. To address these problems, we propose a test-time adaptation
strategy to dynamically evaluate the activation levels of candidate labels online, thereby selecting the
most effective negative labels. Specifically, we approximate the activation score in Eq. 7 with cached
positive and negative images:

Âctd(ŷi) = Act(Xneg, ŷi)−Act(Xpos, ŷi), (8)

where Xneg and Xpos are fixed-length first-in-first-out (FIFO) queues that are dynamically updated
with high-confidence positive and negative samples, respectively:

Xpos = QueueUpdate(Xpos, v ∈ B | Saa(v) ≥ γ + (1− γ)g , L),

Xneg = QueueUpdate(Xneg,v ∈ B | Saa(v) < γ − γg, L),
(9)

where γ ∈ [0, 1] is the threshold distinguishing ID and OOD samples, g ∈ [0, 1] is the gap used to
filter high-confidence samples, B indicates the test image batch, and L is the capacity of the queue.
Saa is our proposed activation-aware score function, as defined in Eq. 15. We construct Xpos/neg

with image features v, equivalent to vanilla images and more compact. This FIFO queue design
ensures that the activation score remains responsive to environmental changes by focusing on the
most recent high-confidence samples. It effectively filters outdated information, allowing the model
to adapt dynamically and maintain robust performance in evolving scenarios.

To ensure a stable start for our method during testing, we respectively initialize Xpos and Xneg with
features of ID labels and noise images:

Xpos = Sampling({ti}Ci=1, L)

Xneg = {fimg(x
noise
i )}Li=1,

(10)

where xnoise
i is the image with random Gaussian noises and Sampling(A,L) represents the operation

of randomly selecting L elements from set A. We initialize the positive image set Xpos using ID label

5
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features, considering the alignment between text and image features in the shared feature space. This
initialization helps construct the initial activated labels and the corresponding Saa score function,
providing a solid foundation for subsequent updates.

Batch-Adaptive Activated Labels. The above method enhances OOD detection by utilizing ac-
tivation information from historical test samples. However, in addition to historical samples, the
activation information in the current testing batch is also critical, as it captures the self-characteristics
of test instances, especially under scenarios with temporal shifts. To address this, we propose a more
fine-grained, batch-adaptive variant by incorporating the activation information within the current
testing batch:

X b
pos = {v ∈ B | Saa(v) ≥ γ + (1− γ)g} ,

X b
neg = {v ∈ B | Saa(v) < γ − γg} ,

(11)

where X b
pos and X b

neg represent the possible positive and negative samples in the testing batch B. We
then define the batch-adaptive activation score as:

Âctb(ŷi) = Actb(Xneg, ŷi)−Actb(Xpos, ŷi), (12)

where

Actb(Xpos, ŷi) =

{
αAct(Xpos, ŷi) + (1− α)Act(X b

pos, ŷi) if |X b
pos| > 0

Act(Xpos, ŷi) if |X b
pos| = 0

(13)

Actb(Xneg, ŷi) =

{
αAct(Xneg, ŷi) + (1− α)Act(X b

neg, ŷi) if |X b
neg| > 0

Act(Xneg, ŷi) if |X b
neg| = 0

(14)

where α ∈ [0, 1] balances activation information from historical samples and the current batch, and
| · | measures the set size.

Activation-aware Score. Considering that the activation scores of different negative labels vary, i.e.,
their importance differs, we introduce for OOD detection the following score to implicitly assign
higher weights to those with higher activation scores:

Saa(v) =
1

M

M∑
m=1

C∑
i=1

exp(vti/τ)∑C
j=1 exp(vtj/τ) +

∑m
j=1 exp(vt̃j/τ)

. (15)

Recalling that the activated labels are selected based on ranked activation scores in Eq. 6, the ranking
ensures that Âctb(ỹi) ≥ Âctb(ỹj) if i < j. This guarantees that labels with stronger activation (e.g.,
t̃j with smaller j) dominate the score, as their contributions are amplified by their repeated occurrence
in the denominator. We find that this method not only improves OOD detection performance but
also significantly enhances its robustness to the number of negative labels, as verified in Fig. 3a. We
also observe that Equations (15) and (9) exhibit a mutual enhancement: the positive/negative images
selected by Eq. (9) enable more accurate estimation of label activation information, providing more
effective negative labels for the score calculation in Eq. (15). In turn, the improved OOD detection
capability of Eq. (15) further facilitates the distinguishing of positive and negative samples in Eq. (9),
as analyzed in Tab. A14. The overall framework is shown in Fig. 2 and summarized in Algorithm A1.

Theoretical Insight. We follow (Jiang et al., 2024) to conduct the theoretical analysis from the
perspective of multi-label classification and model the partial derivative of FPRλ with respect to the
number M of negative labels as:

∂FPRλ

∂M
=

1

2
· ∂erf(z)

∂z
· ∂z
∂M

=
e−z2

2
√
2π

· p1 − p2√
Mp2(1− p2)

, (16)

where p1 = P (sim(xid, ỹi) ≥ ψ|f,xid, ỹi) indicates the average probability of classifying the ID
image xid as the negative label ỹi, sim(xid, ỹi) represents the similarity between xid and ỹi, and
ψ is a threshold. p2 is similarly defined with the OOD image xood. erf(z) = 2√

π

∫ z

0
e−t2dt is the

error function and z =
√

p1(1−p1)
p2(1−p2)

erf−1(2λ− 1) +
√
M(p1−p2)√
2p2(1−p2)

. As shown in Eq. 16, to reduce the

FPRλ by increasing the number M of negative labels, a prerequisite is that p1 − p2 < 0, suggesting
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Table 1: OOD detection results with ImageNet-1k, where a VITB/16 CLIP encoder is adopted.

OOD datasets

Methods INaturalist Sun Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Methods requiring training (or fine-tuning)
ZOC (Esmaeilpour et al., 2022) 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
LSN (Nie et al., 2024) 95.83 21.56 94.35 26.32 91.25 34.48 90.42 38.54 92.96 30.22
CLIPN (Wang et al., 2023) 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10
LoCoOp (Miyai et al., 2024) 96.86 16.05 95.07 23.44 91.98 32.87 90.19 42.28 93.52 28.66
NegPrompt (Li et al., 2024) 98.73 6.32 95.55 22.89 93.34 27.60 91.60 35.21 94.81 23.01
CMA (Kim & Hwang, 2025) 99.62 1.65 96.36 16.84 93.11 27.65 91.64 33.58 95.13 19.93

Zero-Shot Training-free Methods
MCM (Ming et al., 2022a) 94.59 32.20 92.25 38.80 90.31 46.20 86.12 58.50 90.82 43.93
CoVer (Zhang et al., 2024a) 95.98 22.55 93.42 32.85 90.27 40.71 90.14 43.39 92.45 34.88
Lee et al. (Lee et al., 2025) 96.89 23.84 93.69 30.11 93.17 29.86 88.47 47.35 93.05 32.79
EOE (Cao et al., 2024) 97.52 12.29 95.73 20.04 92.95 30.16 85.64 57.53 92.96 30.09
NegLabel (Jiang et al., 2024) 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
AdaNeg (Zhang & Zhang, 2024) 99.71 0.59 97.44 9.50 94.55 34.34 94.93 31.27 96.66 18.92
OODD (Yang et al., 2025) 99.79 0.85 97.17 12.94 92.51 30.68 94.51 30.67 96.00 18.79
CSP (Chen et al., 2024) 99.60 1.54 96.66 13.66 92.90 29.32 93.86 25.52 95.76 17.51
AANeg (Ours) 99.84 0.42 99.07 3.53 95.87 21.90 97.11 13.38 97.97 9.81

that sim(xid, ỹi) < sim(xood, ỹi) holds on average. In other words, the negative label ỹi should
have higher similarity with the OOD samples and lower similarity with the ID samples.

There is a close relationship between the theoretical objective in Eq. 16 and our algorithm imple-
mentation in Eq. 7. Specifically, Act(Xood, ŷi) measures the activation level of candidate label ŷi
on the OOD dataset by averaging the normalized similarity between ŷi and OOD images; similarly,
Act(Xid, ŷi) reflects the normalized similarity between ŷi and ID images. According to Eq. 6,
we select the ideal negative labels {ỹi}Mi=1 that exhibit higher activation with OOD samples while
maintaining lower activation with ID samples, explicitly ensuring p1 − p2 < 0 in Eq. 16.

4 EXPERIMENTS

4.1 SETUP

Datasets. We primarily conducted experiments using ImageNet-1k (Deng et al., 2009) as the ID
dataset. We adopted four OOD datasets (Van Horn et al., 2018; Xiao et al., 2010; Zhou et al., 2017;
Cimpoi et al., 2014) following common practice (Huang & Li, 2021; Ming et al., 2022a; Jiang et al.,
2024) and also performed experiments under the OpenOOD setting (Zhang et al., 2023; Yang et al.,
2022). Additionally, we validated our method under the full-spectrum setting (Yang et al., 2023a),
with a smaller ID dataset of CIFAR (Krizhevsky et al., 2009), and with medical images (Vayá et al.,
2020; Zhang et al., 2023). More details are provided in Appendix A6.2.

Implementation Details. We employ the visual encoder of VITB/16, pretrained with CLIP (Radford
et al., 2021), and additionally investigate other backbone architectures in Tab. A12. Following the
design of NegLabel, we use the text prompt “The nice ¡label¿” and set the temperature parameter τ to
0.01. In our method, we set the number of negative labels to M = 1000 in Eq. 15, the gap g = 0.2,
and L = 300 in Eq. 9, and α = 0.95 in Eq. 12. As shown in Fig. A4b, an automatically determined
threshold γ generally performs comparably to manually searched ones. We adopt the evaluation
metrics of FPR95, AUROC, and ID ACC, following standard protocols (Huang & Li, 2021; Ming
et al., 2022a; Jiang et al., 2024). All experiments are conducted with an NVIDIA H100 GPU.

4.2 MAIN RESULTS

ImageNet Results. As shown in Tab. 1, our AANeg significantly outperforms existing training-free
methods and even surpasses techniques that require additional training. Detailed discussions are
provided in Sec. A6.3 and complete comparisons are presented in Tab. A6.

ImageNet Results with OpenOOD Setup. As shown in Tab. 2, AANeg surpasses existing zero-
shot training-free methods and achieves performance comparable to training-required competitors.
Notably, it outperforms the close competitors (Jiang et al., 2024; Zhang & Zhang, 2024), especially
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Table 2: OOD detection results under the OpenOOD setting, where ImageNet-1k is adopted as ID
dataset. Full results are available in Tab. A7.

Methods FPR95 ↓ AUROC ↑ ACC ↑
Near-OOD Far-OOD Near-OOD Far-OOD ID

Methods requiring training (or fine-tuning)
AugMix (Hendrycks et al., 2019b) + ReAct (Sun et al., 2021) – – 79.94 93.70 77.63
SCALE (Xu et al., 2023) – – 81.36 96.53 76.18
AugMix (Hendrycks et al., 2019b) + ASH (Djurisic et al., 2022) – – 82.16 96.05 77.63
LAPT (Zhang et al., 2024b) 58.94 24.86 82.63 94.26 67.86
CMA (Kim & Hwang, 2025) 56.25 15.29 84.46 96.47 82.64

Zero-shot Training-free Methods
MCM (Ming et al., 2022a) 79.02 68.54 60.11 84.77 66.28
NegLabel (Jiang et al., 2024) 69.45 23.73 75.18 94.85 66.82
AdaNeg (Zhang & Zhang, 2024) 67.51 17.31 76.70 96.43 67.13
AANeg (Ours) 60.06 17.21 84.53 96.43 66.82

Table 3: Full-spectrum OOD detection results under the OpenOOD setting, where ImageNet-1k,
ImageNet-C, ImageNet-R, ImageNet-V2 are used as ID datasets. Full results are shown in Tab. A8.

Methods FPR95 ↓ AUROC ↑
Near-OOD Far-OOD Near-OOD Far-OOD

Methods requiring training (or fine-tuning)
AugMix (Hendrycks et al., 2019b) + SHE (Zhang et al., 2022) 84.45 60.26 69.66 83.06
LSA (Lu et al., 2023) 70.56 48.06 78.22 86.85
ISH + SCALE (Xu et al., 2023) – – 68.04 89.46
LAPT (Zhang et al., 2024b) 71.18 33.07 74.77 92.14

Zero-shot Training-free Methods
MCM (Ming et al., 2022a) 85.37 69.87 58.97 77.11
NegLabel (Jiang et al., 2024) 76.25 33.30 72.77 92.02
AANeg (Ours) 68.71 22.48 78.90 94.35

in the challenging near-ood setting, demonstrating the effectiveness of activated negative labels. Our
method also preserves ID classification accuracy by freezing the pre-trained CLIP model.

Full-spectrum OOD Detection. As shown in Tab. 3, our method not only demonstrates high
distinguishability against semantic shifts but also exhibits strong robustness to covariate shifts.

More results on CIFAR and medical datasets are provided in Tab. A9 and Tab. A11, respectively.

4.3 ANALYSES AND DISCUSSIONS

Ablation. As shown in Tab. 4, adopting adaptive and activated negative labels significantly outper-
forms NegLabel, which uses fixed and activation-agnostic labels, verifying the importance of label
activation. Additionally, incorporating current batch information brings a slight improvement and
adopting activation-aware score consistently leads to an advantage.
Label Number and Saa. As illustrated in Fig. 3a, introducing adaptive and activated negative
labels consistently outperforms NegLabel, validating the importance of label activation. Specifically,
when the number of negative labels M is small, the selected labels present higher activation scores,
significantly reducing the OOD detection error. As M increases, less-activated labels are gradually

Table 4: Ablation analyses, where results are reported with ImageNet ID dataset under the OpenOOD
setup. “Dis-adapt”, “Batch-adapt”, and “AAScore” represent the distribution-adaptive activated score
in Eq. 8, batch-adaptive variant in Eq. 11, and activation-aware score in Eq. 15, respectively.

Dis-adapt Batch-adapt AAScore Near-OOD FPR95 ↓ Far-OOD FPR95 ↓
NegLabel Baseline 69.45 23.73

! 61.57 17.52
! 60.85 17.25

! ! 60.59 17.27
! ! 60.06 17.21
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Figure 3: Analyses on (a) number M of selected negative labels, (b) selection criterion of negative
labels, and (c) α values under OpenOOD setting.

Table 5: Time complexity analyses. ‘Training’ measures the training time, and ‘Param.’ presents the
number of learnable parameters. ‘FPS’ reflects the inference speed with a batch size of 256.

Methods Backbones Training FPS ↑ Param. FPR95 ↓
ZOC (Esmaeilpour et al., 2022)

VITB/16

>24h 287 336M 85.19
LoCoOp (Miyai et al., 2024) 9h 625 8K 28.66
MCM (Ming et al., 2022a) – 625 – 43.93
NegLabel (Jiang et al., 2024) – 592 – 25.40
AdaNeg (Zhang & Zhang, 2024) – 476 – 18.92
AANeg (Ours) – 527 – 9.81

AANeg (Ours) ResNet50 – 790 – 10.37

included, resulting in a gradual performance decline, consistent with the theoretical analysis in
Sec. 3.3. Using the same score function Snl, our AANet (w/o Saa) consistently outperforms NegLabel
across different numbers of negative labels, fairly validating the advantage of our label selection
strategy. Additionally, AANet consistently outperforms AANet (w/o Saa), particularly when the
number of negative labels is large. This confirms that incorporating label activation information into
the score function enhances its robustness to the number of negative labels.
Negative Label Selection Criterion. As shown in Fig. 3b, mining negative labels with the acti-
vation information of negative samples significantly outperforms using positive information alone.
Combining both positive and negative information yields the best results.
α Analyses. As shown in Fig. 3c, reducing the α values from 1.0 to 0.95 brings certain improvements,
validating the effectiveness of batch knowledge. However, further decreasing the α value leads to
overfitting to batch information, which in turn harms OOD identification. α = 0.95 achieves a good
balance between distribution and batch information and is adopted as the default setting.
Complexity Analyses. As shown in Table 5, our approach achieves superior performance with
moderate test speed. We also observe that our method can achieve strong results even with smaller
backbones (e.g., ResNet50), offering advantages in both speed and accuracy.
More analyses and discussions on the queue length L, threshold γ, and gap g in Eq. 9, different
VLM backbones, various corpus datasets, batch size, activation metric, sample order, robustness to
temporal shift, limitations, and visualization of activated labels are provided in Appendix A6.6.

5 CONCLUSION

In this paper, we proposed a novel OOD detection method that dynamically explored adaptive and
activated negative labels during the test stage. We also designed an activation-aware score function to
fully utilize the mined activation knowledge. Our approach was zero-shot, training-free, test-efficient,
and grounded in theoretical justification. Additionally, it demonstrated high scalability to different
model backbones and robustness to near-OOD, full-spectrum OOD, and medical OOD settings. We
hope this work draws attention to the label activation information in the OOD detection community.
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. All datasets used in
our experiments are publicly available. The methods and hyperparameter settings are thoroughly
described in Section 4.1 and analyzed in Sections 4.3 and A6.6. Additionally, we will release all
source code, scripts, and configuration files necessary to reproduce our results after the review process,
ensuring that the experiments can be replicated easily.
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A6 APPENDIX

A6.1 PSEUDO CODE

The pseudo code are illustrated in Algorithm A1.

Algorithm A1 Adaptive and Activated Negative Labels for OOD Detection

Require: ID labels Y+, an external corpus dataset Ycor and a test set Xtest

1: Constructing the FIFO queues Xpos and Xneg , and initializing them with Eq. 10.
2: for Image batch B ∈ Xtest do
3: Collecting positive set X b

pos and negative set X b
neg in batch B using Eq. 11

4: Calculating the batch-adaptive activation score Âctb(yi) using Eq. 12
5: Selecting the adaptive and activated negative labels Y− using Eq. 6
6: Generating the OOD detection score Saa using Eq. 15
7: Updating the FIFO queues using Eq. 9
8: end for
9: Return Collected final scores {Saa}

A6.2 DATASET

We perform extensive experiments using the large-scale ImageNet-1k dataset (Deng et al., 2009) as
the ID dataset. In line with previous works (Huang & Li, 2021; Ming et al., 2022a; Jiang et al., 2024),
we evaluate the method on four OOD datasets, including iNaturalist (Van Horn et al., 2018), SUN
(Xiao et al., 2010), Places (Zhou et al., 2017), and Textures (Cimpoi et al., 2014). Additionally, we
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Table A6: Complete OOD detection results with ImageNet-1k, where a VITB/16 CLIP encoder is
adopted.

OOD datasets

Methods INaturalist Sun Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Methods requiring training (or fine-tuning)
MSP (Hendrycks & Gimpel, 2016) 87.44 58.36 79.73 73.72 79.67 74.41 79.69 71.93 81.63 69.61
ODIN (Liang et al., 2017) 94.65 30.22 87.17 54.04 85.54 55.06 87.85 51.67 88.80 47.75
Energy (Liu et al., 2020) 95.33 26.12 92.66 35.97 91.41 39.87 86.76 57.61 91.54 39.89
GradNorm (Huang et al., 2021) 72.56 81.50 72.86 82.00 73.70 80.41 70.26 79.36 72.35 80.82
ViM (Wang et al., 2022) 93.16 32.19 87.19 54.01 83.75 60.67 87.18 53.94 87.82 50.20
KNN (Sun et al., 2022) 94.52 29.17 92.67 35.62 91.02 39.61 85.67 64.35 90.97 42.19
VOS (Du et al., 2022b) 94.62 28.99 92.57 36.88 91.23 38.39 86.33 61.02 91.19 41.32
NPOS (Tao et al., 2023) 96.19 16.58 90.44 43.77 89.44 45.27 88.80 46.12 91.22 37.93
ZOC (Esmaeilpour et al., 2022) 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
LSN (Nie et al., 2024) 95.83 21.56 94.35 26.32 91.25 34.48 90.42 38.54 92.96 30.22
CLIPN (Wang et al., 2023) 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10
LoCoOp (Miyai et al., 2024) 96.86 16.05 95.07 23.44 91.98 32.87 90.19 42.28 93.52 28.66
LAPT (Zhang et al., 2024b) 99.63 1.16 96.01 19.12 92.01 33.01 91.06 40.32 94.68 23.40
NegPrompt (Li et al., 2024) 98.73 6.32 95.55 22.89 93.34 27.60 91.60 35.21 94.81 23.01
CMA (Kim & Hwang, 2025) 99.62 1.65 96.36 16.84 93.11 27.65 91.64 33.58 95.13 19.93

Zero-Shot Training-free Methods
MCM (Ming et al., 2022a) 94.59 32.20 92.25 38.80 90.31 46.20 86.12 58.50 90.82 43.93
CoVer (Zhang et al., 2024a) 95.98 22.55 93.42 32.85 90.27 40.71 90.14 43.39 92.45 34.88
Lee et al. (Lee et al., 2025) 96.89 23.84 93.69 30.11 93.17 29.86 88.47 47.35 93.05 32.79
EOE (Cao et al., 2024) 97.52 12.29 95.73 20.04 92.95 30.16 85.64 57.53 92.96 30.09
NegLabel (Jiang et al., 2024) 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
CLIPScope (Fu et al., 2024) 99.61 1.29 96.77 15.56 93.54 28.45 91.41 38.37 95.30 20.88
AdaNeg (Zhang & Zhang, 2024) 99.71 0.59 97.44 9.50 94.55 34.34 94.93 31.27 96.66 18.92
OODD (Yang et al., 2025) 99.79 0.85 97.17 12.94 92.51 30.68 94.51 30.67 96.00 18.79
CSP (Chen et al., 2024) 99.60 1.54 96.66 13.66 92.90 29.32 93.86 25.52 95.76 17.51
AANeg (Ours) 99.84 0.42 99.07 3.53 95.87 21.90 97.11 13.38 97.97 9.81

Table A7: Detailed OOD detection results on the OpenOOD benchmark, where ImageNet-1k is
adopted as ID dataset.

Near/Far-OOD OOD Datasets FPR95 ↓ AUROC ↑

Near-OOD
SSB-hard (Vaze et al., 2021) 62.51 83.96
NINCO (Bitterwolf et al., 2023) 57.61 85.10
Mean 60.06 84.53

Far-OOD

iNaturalist (Van Horn et al., 2018) 0.47 99.83
Textures (Cimpoi et al., 2014) 11.22 97.53
OpenImage-O (Wang et al., 2022) 39.95 91.92
Mean 17.21 96.43

validate our approach on the OpenOOD benchmark (Zhang et al., 2023; Yang et al., 2022), where
OOD datasets are categorized into near-OOD (e.g., SSB-hard (Vaze et al., 2021), NINCO (Bitterwolf
et al., 2023)) and far-OOD (e.g., iNaturalist (Van Horn et al., 2018), Textures (Cimpoi et al., 2014),
OpenImage-O (Wang et al., 2022)) based on their similarity to the ImageNet dataset. Besides
the traditional OOD detection with semantic-shift, we also study a more practical full-spectrum
OOD detection setting (Yang et al., 2023a), where the model is additionally challenged by the
robustness to covariate shifts. Following (Zhang et al., 2023), we adopt ImageNet-C (Hendrycks &
Dietterich, 2019), ImageNet-R (Hendrycks et al., 2021), and ImageNet-V2 (Recht et al., 2019) as the
covariate-shifted test data in the full-spectrum setting.

A6.3 DETAILED RESULTS ON IMAGENET DATASET

We compare against traditional methods (Hendrycks & Gimpel, 2016; Liang et al., 2017; Liu et al.,
2020; Huang et al., 2021; Wang et al., 2022; Sun et al., 2022; Du et al., 2022b; Tao et al., 2023) by
fine-tuning CLIP-encoders with labeled training samples, as described in (Jiang et al., 2024), and
report results of (Nie et al., 2024; Miyai et al., 2024; Jiang et al., 2024; Li et al., 2024; Bai et al.,
2023; Zhang et al., 2024b; Li et al., 2024; Kim & Hwang, 2025; Chen et al., 2024; Yang et al., 2025)
based on their original papers.
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Table A8: Detailed full-spectrum OOD detection results on the OpenOOD benchmark, where
ImageNet-1k, ImageNet-C, ImageNet-R, ImageNet-V2 are used as ID datasets.

Near/Far-OOD OOD Datasets FPR95 ↓ AUROC ↑

Near-OOD
SSB-hard (Vaze et al., 2021) 70.50 79.29
NINCO (Bitterwolf et al., 2023) 66.92 78.51
Mean 68.71 78.90

Far-OOD

iNaturalist (Van Horn et al., 2018) 1.70 99.58
Textures (Cimpoi et al., 2014) 19.68 94.81
OpenImage-O (Wang et al., 2022) 46.07 88.66
Mean 22.48 94.35

Table A9: OOD detection results with CIFAR10/100 on the OpenOOD benchmark. Full results are
provided in Tables A10.

Methods FPR95 ↓ AUROC ↑
Near-OOD Far-OOD Near-OOD Far-OOD

Methods requiring training (or fine-tuning)
PixMix (Hendrycks et al., 2022) + KNN (Sun et al., 2022) – – 93.10 95.94
OE (Hendrycks et al., 2018) + MSP (Hendrycks & Gimpel, 2016) – – 94.82 96.00
PixMix (Hendrycks et al., 2022) + RotPred (Hendrycks et al., 2019a) – – 94.86 98.18

Zero-shot Training-free Methods
MCM (Ming et al., 2022a) 30.86 17.99 91.92 95.54
NegLabel (Jiang et al., 2024) 28.75 6.60 94.58 98.39
AdaNeg (Zhang & Zhang, 2024) 20.40 2.79 94.78 99.26
AANeg (Ours) 19.31 2.43 94.91 99.26

(a) Results with ID dataset of CIFAR10

Methods FPR95 ↓ AUROC ↑
Near-OOD Far-OOD Near-OOD Far-OOD

Methods requiring training (or fine-tuning)
GEN (Liu et al., 2023) – – 81.31 79.68
VOS (Du et al., 2022c) + EBO (Liu et al., 2020) – – 80.93 81.32
SCALE (Xu et al., 2023) – – 80.99 81.42
OE (Hendrycks et al., 2018) + MSP (Hendrycks & Gimpel, 2016) – – 88.30 81.41

Zero-shot Training-free Methods
MCM (Ming et al., 2022a) 75.20 59.32 71.00 76.00
NegLabel (Jiang et al., 2024) 71.44 40.92 70.58 89.68
AdaNeg (Zhang & Zhang, 2024) 59.07 29.35 84.62 95.25
AANeg (Ours) 57.74 24.55 85.06 95.41

(b) Results with ID dataset of CIFAR100.

The detailed OOD detection results with OOD datasets of INaturalist/Sun/Places/Textures are illus-
trated in Tab. A6.

The detailed OOD detection results and full-spectrum OOD detection results under the OpenOOD
setting are presented in Tab. A7 and Tab. A8, respectively.

A6.4 RESULTS ON CIFAR10/100

Besides ImageNet, we also assess our method on the smaller CIFAR10/100 datasets (Krizhevsky
et al., 2009) under the OpenOOD framework. Specifically, with CIFAR10/100 as the ID datasets, we
utilize near-OOD datasets such as CIFAR100/10 and TIN (Le & Yang, 2015), and far-OOD datasets
including MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Texture (Cimpoi et al., 2014), and
Places365 (Zhou et al., 2017). As illustrated in Tab. A9, our advantage still holds.

A6.5 RESULTS WITH MEDICAL IMAGES

We also validate our AANeg method with medical images following the OpenOOD setup (Zhang
et al., 2023). Specifically, we use BIMCV as the ID dataset, where the task is to distinguish COVID-
19 patients from healthy individuals using chest X-ray images (Vayá et al., 2020). The OOD dataset is
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Table A10: Detailed OOD detection results on the OpenOOD benchmark.

Near/Far-OOD Datasets FPR95 ↓ AUROC ↑

Near-OOD
CIFAR100 (Krizhevsky et al., 2009) 33.63 91.17
TIN (Le & Yang, 2015) 4.99 98.65
Mean 19.31 94.91

Far-OOD

MNIST (Deng, 2012) 0.13 99.96
SVHN (Netzer et al., 2011) 0.04 99.97
Texture (Cimpoi et al., 2014) 0.04 99.86
Places365 (Zhou et al., 2017) 9.51 97.25
Mean 2.43 99.26
(a) Detailed results with ID dataset of CIFAR10.

Near/Far-OOD Datasets FPR95 ↓ AUROC ↑

Near-OOD
CIFAR10 (Krizhevsky et al., 2009) 56.32 80.47
TIN (Le & Yang, 2015) 59.16 89.65
Mean 57.74 85.06

Far-OOD

MNIST (Deng, 2012) 0.54 99.81
SVHN (Netzer et al., 2011) 5.81 98.53
Texture (Cimpoi et al., 2014) 31.36 95.36
Places365 (Zhou et al., 2017) 60.49 90.94
Mean 24.55 95.41

(b) Detailed results with ID dataset of CIFAR100.

Table A11: OOD detection results with medical images following the OpenOOD setting.

OOD datasets

Methods CT-SCAN X-Ray-Bone Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

NegLabel (Jiang et al., 2024) 63.53 100.0 99.68 0.56 81.61 50.28
AdaNeg (Zhang & Zhang, 2024) 93.48 100.0 99.99 0.11 96.74 50.06
AANeg (Ours) 93.94 39.06 100.0 0.0 96.97 19.53

constructed using the CT-SCAN and X-Ray-Bone datasets. The CT-SCAN dataset includes computed
tomography (CT) images of COVID-19 patients and healthy individuals, while the X-Ray-Bone
dataset contains X-ray images of hands. As shown in Tab. A11, our method significantly outperforms
existing competitors.
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Figure A4: Analyses on (a) the queue length L, (b) threshold γ, and (c) gap value g in Eq. 9 under
the OpenOOD setup.
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A6.6 MORE ANALYSES

Queue length. We formulate Xpos/neg as fixed-length FIFO queues, where the queue length L
determines the number of cached samples in dynamic environments. As shown in Fig. A4a,
appropriately increasing the queue length can reduce error, and performance saturates when the queue
length exceeds 300. Therefore, we set the queue length to 300 by default.

γ values. As shown in Fig. A4b, the optimal threshold γ differs between near-OOD and far-OOD
scenarios because the distance between OOD samples and ID samples varies significantly. Instead of
manually searching for the best γ, we adopt an automated approach to set it dynamically. This is
achieved by modeling the score Saa of all historical samples as a bimodal distribution of two clusters
(e.g., ID Vs. OOD) and identifying the threshold that minimizes the intra-cluster variations of the
two clusters (Li et al., 2023):

min
γ

var(O+
his) + var(O−

his) (A6.1)

where O+
his = {Saa(v) | Saa(v) ≥ γ, v ∈ Xhis} , (A6.2)

O−
his = {Saa(v) | Saa(v) < γ, v ∈ Xhis} , (A6.3)

where var(A) measures the variation of the score set A, and Xhis is also a FIFO queue that stores the
most recent 20, 000 test samples, initialized with positive and negative samples as defined in Eq. 10.
This dynamic thresholding typically achieves results comparable to those with manually searched γ
and is adopted as the default setting.

g values. As shown in Fig. A4c, an appropriately small gap g helps reduce the detection error in the
Far OOD setting, whereas the Near OOD setting benefits from a smaller value of g. By default, we
set g = 0.2 for all experiments.

VLM Backbones. As shown in Tab. A12, our AANet achieves excellent results across various VLM
backbones, where a stronger backbone generally leads to better performance. Interestingly, unlike
NegLabel, which heavily relies on a strong backbone to achieve high results, our method works well
even with a smaller ResNet-50 backbone, demonstrating its effectiveness and practicality.

Table A12: OOD detection results of AANeg with different VLMs backbones, where ImageNet-1K
is used as the ID dataset.

OOD datasets

Backbone INaturalist Sun Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50
NegLabel (Jiang et al., 2024) 99.24 2.88 94.54 26.51 89.72 42.60 88.40 50.80 92.97 30.70
AANeg (Ours) 99.73 0.99 99.04 4.00 95.97 23.76 97.01 12.71 97.88 10.37

VITB/32
NegLabel (Jiang et al., 2024) 99.11 3.73 95.27 22.48 91.72 34.94 88.57 50.51 93.67 27.92
AANeg (Ours) 99.76 0.87 99.24 3.09 96.07 20.97 96.50 16.28 97.89 10.30

VITB/16
NegLabel (Jiang et al., 2024) 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
AANeg (Ours) 99.84 0.42 99.07 3.53 95.87 21.90 97.11 13.38 97.97 9.81

VITL/14
NegLabel (Jiang et al., 2024) 99.53 1.77 95.63 22.33 93.01 32.22 89.71 42.92 94.47 24.81
AANeg (Ours) 99.88 0.29 99.15 3.42 96.11 20.79 97.12 13.57 98.07 9.52

Table A13: OOD detection results with different corpus datasets on the OpenOOD benchmark, where
ImageNet-1k is adopted as ID dataset.

Corpus Datasets FPR95 ↓ AUROC ↑
Near-OOD Far-OOD Near-OOD Far-OOD

Vanilla WordNet 60.52 17.34 83.24 95.92
Part-of-speech-tagging 60.36 17.24 83.74 96.15
WordNet-subset Filtered by NegLabel 60.06 17.21 84.53 96.43

Corpus Datasets. The corpus dataset provides candidates for activated labels, and its diversity is
a prerequisite for selecting effective activated labels. We construct the corpus dataset by selecting
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Figure A5: Analyses on (a) size of corpus dataset, (b) the batch size, and (c) activation metric under
the OpenOOD setup.

nouns and adjectives from WordNet 1 and Part-of-Speech-Tags 2, removing duplicate words within
the ID set. This results in corpus datasets containing 140.5K and 270.2K words, respectively. For a
fair comparison, we also adopt the WordNet subset filtered by NegLabel as the corpus dataset, which
contains 70K adjectives and nouns.

As illustrated in Tab. A13, different corpus datasets lead to similarly good results, demonstrating the
robustness of our method to the choice of corpus dataset. Beyond comparing different corpus datasets,
we also analyze the sensitivity of our method to the size of the corpus dataset by randomly sampling
smaller subsets from the Part-of-Speech-Tags dataset. As shown in Fig. A5a, using an appropriately
large-sized corpus dataset generally results in better performance, with results saturating when the
corpus dataset exceeds 100K. For fair comparison, we adopt the WordNet subset filtered by NegLabel
as the corpus dataset by default.

Batch Size. Our method leverages batch information to obtain batch-adaptive activated labels; thus, it
is necessary to explore its sensitivity to batch size. As shown in Fig. A5b, a larger batch size generally
performs better. Particularly, in the case of batch size = 1, it approaches the distribution-adaptive
variants and still significantly outperforms the NegLabel competitor.

Activation Metric. The activation metric we use is the cosine similarity normalized by a softmax
function, as shown in Eq. 5. One may wonder whether directly using vanilla cosine similarity, i.e.,
modifying Eq. 5 to Act(X , ŷi) = 1

|X |
∑

x∈X fimg(x)ftxt(ρ(ŷi)), could also work. As shown in
Fig. A5c, using the normalized similarity leads to a significant advantage. This is likely because
unnormalized similarity has a lower discriminative capacity. For example, same-class similarities
often cluster around 0.3, while different-class similarities typically cluster around 0.1 (Ming et al.,
2022a), making it difficult to distinguish activated labels effectively.

Statistical Significance. We control the input sequence using a random seed and report OOD
detection results on the ImageNet-1k dataset with three random seeds as follows: AUROC: 97.97±
0.01 and FPR95: 9.81± 0.01. These results validate the robustness of our method to variations in
the input sequence.

Mutual Enhancement. In our method, improving the accuracy of the activation score in Eq. 8
helps select more effective negative labels in Eq. 6, thereby enhancing the OOD detection capability
of the activation-aware score in Eq. 15. Similarly, the improved OOD detection capability of the
activation-aware score contributes to selecting more accurate negative and positive images in Eq. 9,
which in turn enhances the estimation of the activation score in Eq. 8. Overall, there exists a mutual
enhancement relationship between the estimation of the activation score and the activation-aware
OOD score function. Such a relationship is evidenced in Tab. A14, where we remove this mutual
enhancement by fixing Saa in Eq. 9 using activated labels estimated via the initialized Xpos/neg in
Eq. 10. This leads to a significant performance drop.

1https://wordnet.princeton.edu/
2https://www.kaggle.com/datasets/ruchi798/part-of-speech-tagging
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Table A14: Analyses on the mutual enhancement between the estimation of activation information
and the activation-aware OOD score function.

Methods FPR95 ↓
Near-OOD Far-OOD

W/o mutual enhancement 63.00 19.04
With mutual enhancement (Ours) 60.06 17.21

Table A15: OOD detection results under the temporal shifts, where ImageNet-1k ID dataset and a
VITB/16 CLIP encoder are adopted.

OOD datasets

Methods INaturalist Sun Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

NegLabel (Jiang et al., 2024) 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40

AANeg under Temporal Shifts
I-S-P-T 99.84 0.45 98.77 4.75 95.93 22.16 96.67 14.91 97.80 10.56
S-P-T-I 99.83 0.46 99.04 3.65 95.92 21.37 96.70 15.09 97.87 10.14
P-T-I-S 99.84 0.45 98.73 5.28 95.87 21.67 96.66 15.33 97.87 11.68
T-I-S-P 99.83 0.47 98.77 4.69 95.94 21.30 97.04 13.51 97.89 9.99

Temporal Shift. Since our method dynamically explores activated negative labels in a test-time adap-
tation manner, it is crucial to investigate its stability under temporal shifts, where OOD environments
evolve over time. Specifically, we use ImageNet as the ID dataset and assume that OOD datasets
change sequentially over time (e.g., I-S-P-T represents OOD datasets transitioning from INaturalist
to Sun to Places to Textures). In implementation, we do not re-initialize the queue Xpos/neg for each
OOD dataset. As shown in Tab. A15, our method consistently maintains a large advantage over the
NegLabel baseline, validating its robustness to temporal shifts.

Sample Order. In our experiments, ID and OOD samples are randomly shuffled during testing,
corresponding to the “Random Shuffled” scenario. To analyze the impact of sample order, we have
conducted additional experiments. Specifically, we consider two extreme cases: “ID First” (all
ID samples are tested before any OOD samples) and “OOD First” (all OOD samples are tested
before any ID samples). As shown in Tab. A16, while performance does drop under these extreme
settings compared to the “Random Shuffled” scenario, our method still significantly outperforms the
NegLabel baseline. This demonstrates the robustness and effectiveness of our method, even when the
order of test samples is highly imbalanced.

Table A16: FPR95 (↓) with different orders of ID and OOD samples. .

Order of Test Samples INaturalist SUN Places Textures Average

NegLabel (Baseline) 1.91 20.53 35.59 43.56 25.40

ID First 2.97 8.35 29.63 24.91 16.47
OOD First 2.74 9.06 36.00 19.14 16.73
Random Shuffled 0.42 3.53 21.90 13.38 9.81

Limitations. The limitation of our method lies in the assumption that the corpus dataset covers words
related to the OOD distribution and that the pre-trained text encoder understands these words. This
assumption may not hold in certain domains. For example, WordNet primarily contains everyday
vocabulary and lacks sufficient medical terms, while the vanilla CLIP model has limited understanding
of medical images. As a result, improvements in medical OOD detection can be restricted. This
limitation suggests that domain-specific tasks may require a tailored corpus dataset and pre-trained
models, which is left for future investigation.

Use of Large Language Model. We utilize language models to enhance English writing by improving
logical coherence, checking word usage, and identifying typos.

Visualization of Activated Labels. We visualize the activated labels under different OOD datasets
and activation criteria in Fig. A6. We observe that the selected activated labels indeed exhibit a

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

ID: ImageNet

OOD: INaturalist

Ranked Corpus Dataset

ID: ImageNet

OOD: Textures

Ranked Corpus Dataset

Labels𝑨𝒄𝒕$ 𝒅
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…
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siberian crab-0.00042
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Labels𝑨𝒄𝒕$ 𝒅

grating0.0022

polka dot0.0018

pothole0.0015

…

dwarf birch-0.00061

capuchin-0.00066

iditarod-0.00072

(a) Ranked corpus dataset in far-ood setting

ID: ImageNet

OOD: SSB-hard

Ranked Corpus Dataset

ID: ImageNet

OOD: Ninco

Ranked Corpus Dataset

Labels𝑨𝒄𝒕$ 𝒅
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……
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Labels𝑨𝒄𝒕$ 𝒅

cephalopod0.0041

fire extinguisher0.0033

caecilian0.0025

……

dwarf birch-0.00065
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(b) Ranked corpus dataset in near-ood setting

ID: ImageNet

OOD: Textures

Ranked Corpus Dataset

Labels𝑨𝒄𝒕$ 𝒅

grating0.0022

polka dot0.0018

pothole0.0015

……

dwarf birch-0.00061

capuchin-0.00066

iditarod-0.00072

Ranked Corpus Dataset

Labels𝑨𝒄𝒕(𝝌𝒏𝒆𝒈)

grating0.0022

polka dot0.0018

pothole0.0015

……

churchill downs7.6×10%&

locomotive7.5×10%&

dwarf-white trillium7.0×10%&

Ranked Corpus Dataset

Labels−𝑨𝒄𝒕(𝝌𝒑𝒐𝒔)

saxifrage−1.3×10%&

anthony dollar−1.6×10%&

habenaria−1.8×10%&

……

square-tailed-0.00062

capuchin-0.00066

iditarod-0.00072

(c) Ranked corpus dataset with different ranking criteria

Figure A6: Visualization of the ranked corpus dataset with (a) far-ood setting, (b) near-ood setting,
and (c) different ranking criteria.

high degree of similarity with the OOD dataset. For example, when the OOD dataset is Textures,
the labels with high activation scores are ‘grating’ and ‘polka dot’, which align well with the visual
characteristics of the Textures dataset, as shown in Fig. A6a. Furthermore, we find that the highly
activated scores selected usingAct(Xneg) and Âctd are quite similar, which explains the effectiveness
of Act(Xneg) as a criterion, as demonstrated in Fig. 3b. In contrast, the activated labels selected
using only positive images do not show a clear relationship with the target OOD dataset, which
corresponds to its lower results in Fig. 3b..
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