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Abstract—End-to-end visuomotor policies trained using be-
havior cloning have shown a remarkable ability to generate
complex, multi-modal low-level robot behaviors. However, at
deployment time, these policies still struggle to act reliably when
faced with out-of-distribution (OOD) visuals induced by objects,
backgrounds, or environment changes. Prior works in interactive
imitation learning solicit corrective expert demonstrations under
the OOD conditions—but this can be costly and inefficient. We
observe that task success under OOD conditions does not always
warrant novel robot behaviors. In-distribution (ID) behaviors can
directly be transferred to OOD conditions that share functional
similarities with ID conditions. For example, behaviors trained to
interact with in-distribution (ID) pens can apply to interacting
with a visually-OOD pencil. The key challenge lies in disam-
biguating which ID observations functionally correspond to the
OOD observation for the task at hand. We propose that an expert
can provide this OOD-to-ID functional correspondence. Thus,
instead of collecting new demonstrations and re-training at every
OOD encounter, our method: (1) detects the need for feedback
by checking if current observations are OOD and the most
similar training observations show divergent behaviors, (2) solic-
its functional correspondence feedback to disambiguate between
those behaviors, and (3) intervenes on the OOD observations
with the functionally corresponding ID observations to perform
deployment-time generalization. We validate our method across
diverse real-world robotic manipulation tasks with a Franka
Panda robotic manipulator. Our results show that test-time
functional correspondences can improve the generalization of a
vision-based diffusion policy to OOD objects and environment
conditions with low feedback. More details on our project page:
https://anon-corl2025.github.io/project-page/

I. INTRODUCTION

A central goal in robot learning is to enable robots to
generalize: to successfully perform tasks in environments
they have never seen before. Imagine a robot encountering
a pencil for the first time. With just an RGB image, it should
be able to reason about the scene and delicately place the
object into a nearby cup, as shown in Figure 1. One popular
approach towards this is imitation-based visuomotor policy
learning. However, while internet-scale datasets have powered
generalization breakthroughs in vision and language, robotics
still lacks access to the same data scale [8, 1, 4, 5, 19], and
collecting expert demonstration data remains expensive and
time-consuming. This results in robots failing in unintuitive
ways when faced with out-of-distribution (OOD) environments
(lower left, Figure 1). Nevertheless, even with modest expert
demonstration datasets, recent advances in policy architectures
and training algorithms have enabled robots to learn complex
visuomotor skills—such as grasping thin tools or folding
clothes and operating articulated objects—that work well in-
distribution (ID) [2, 22, 9, 11, 17]. This raises the central ques-

tion of our work: How can we reuse robot behaviors learned
in in-distribution settings to succeed in out-of-distribution
scenarios?

Our key insight is that behavior generalization may not
always require more demonstration data: it may just need a
better correspondence between the training and test condi-
tions. For example, in Figure 1, even though the robot has
never seen pencils before, it has seen similarly-thin pens
and thicker markers (top row). Thus, if it understood that
the pencil is functionally equivalent to the pen in this task,
it could “imagine” that the pencil is a pen and reuse the
pen pickup behavior to successfully complete the task. Based
on this insight, we present Adapting by Analogy (ABA): a
method which establishes functional correspondences between
in-distribution and out-of-distribution scenes to steer a vi-
suomotor policy through OOD conditions. A key aspect of
our method is to leverage expert human knowledge—in the
form of a textual description—to interactively learn high-level
functional correspondences relevant to the task at hand. The
textual description is decoded into a functional correspondence
feature space that matches corresponding semantic segments
of the scene to retrieve ID behaviors that are ”relevant” for
the current OOD scene. To measure whether the functional
correspondence is well-specified, the robot estimates its un-
certainty over the retrieved behavior modes and continues to
ask for correspondence refinement until it is certain in the
mapping.

We instantiate Adapting by Analogy on hardware with a
Franka Research 3 manipulator acting with a diffusion-based
visuomotor policy [2]. By controlling the training and test
environments, we study i) how functional correspondences
can improve the task success rate in increasingly OOD envi-
ronments, ii) if our method seeks expert feedback efficiently,
and iii) we verify how critical functional correspondences
are for OOD generalization. We find that even a relatively
small number of expert-guided functional correspondences
can significantly improve the generalization capabilities of a
visuomotor policy interacting with OOD objects from new
semantic categories.

II. RELATED WORKS

Test-time Policy Interventions. Runtime policy interven-
tions are a policy failure mitigation, where-in the policy’s
execution is intervened and new knowledge is supplied in-
order to help mitigate the failure. For instance, a line of work
directly proposes interventions on the policy’s behavior space,
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Fig. 1: We present Adapting by Analogy, a test-time method that uses functional correspondences between deployment and
training conditions to improve a policy’s performance in OOD conditions.

steering the policy into desired modes either through human
feedback [20], through Q functions optimized on large scale
offline datasets [13], or through predictive modeling [21, 15].
Another line of work proposes intervention directly on the
policy’s observations, with synthesized observations to remedy
known causes of failure [6]. Our work also proposes policy
observations with functionally similar ID observations to gen-
eralize to novel out-of-distribution conditions.

Functional Correspondence for Behavior Transfer. The
ability to transfer behaviors from one set of objects to an
unseen set of objects hold the potential to unlock robot
generalization in the wild. This problem has been studied
through functional correspondences [10]. Prior work have
leveraged functional correspondences to directly transfer be-
haviors across objects from a single demonstration to novel
objects in a one shot manner, or in a zero shot manner by
leveraging an affordance dataset [18, 12, 7]. Here, functional
correspondences are typically established through keypoint
based reasoning. In our work, we establish functional corre-
spondences through a correspondence description provided by
an expert. Furthermore, instead of directly adapting retrieved
behavior, we intervene using the functionally similar training
observation

III. PROBLEM FORMULATION

Environment, Observation, & Action Models. We model
the robot’s environment E ∈ E as broadly consisting of
factors external to the robot such as the objects in the scene,
the background, camera configurations, etc. In a particular
environment E, the robot senses its proprioceptive states
q ∈ Q (e.g., end-effector pose, gripper state) and uses a sensor
σ : Q × E → I to obtain high-dimensional RGB image
observations of the scene. At any time t, let the stacked image-
proprioception observations be, ot ∈ O := I ×Q. Finally, let
a ∈ A be the robot’s action (e.g., end-effector positions and
rotations and gripper action).

Training Data. For training the visuomotor policy, we
assume access to a dataset of observation-action tuples, DID :=
{(oit, ait)}Ni=1, drawn from a set of M environments we treat as
“in distribution”: EID := {E1

ID, E
2
ID, . . . , E

M
ID }. For example,

a training distribution of environments could consist of M
unique objects and their configurations in the environment.

Visuomotor Policy. Let the robot’s policy be a multi-
modal imitative action generation model [2, 11] denoted by
π(at | ot). Here at := at:t+T is a T -step action plan and
ot := ot:t−H is an H-step history of observations. We assume
that the policy network first encodes any observation into a
corresponding latent state, zt = E(ot), via an encoder. Let
zt = E(ot:t−H) be a sequence of latent state embeddings.
The policy is pre-trained via an imitation learning loss on the
in-distribution dataset of observation-action pairs from DID.

OOD-to-ID Generalization via Functional Correspon-
dances. Given a visuomotor policy π(at | ot) pre-trained on
behaviors from in-distribution environments EID, we seek to
generalize the robot’s task performance to out-of-distribution
(OOD) environments, EOOD. Since the general problem of
OOD generalization is an extremely challenging open prob-
lem, in this paper we assume that (1) EID and EOOD differ only
by the objects present in the scene and background color (but
the environment geometry remains the same), (2) the training
observations OID and deployment time observations OOOD are
obtained on the same robot embodiment, and (3) we have
access to the training data, DID.

Our key idea is to identify functional correspondences
between the test-time OOD scene—in which the base policy
would fail to act correctly—and training-time ID scenes, in
which the policy can generate high-quality behaviors. Func-
tional correspondences identify parts of the image observations
with similar affordances for the task at hand. Intuitively,
learned robot behaviors should be transferable across obser-
vations whose affordance maps are aligned, i.e., observations
where regions that have similar affordances overlap. Thus, we



aim to retrieve ID observations whose functional correspon-
dences are aligned with the test-time OOD observation.

Problem Formulation: Expert-Guided Functional Corre-
spondences. The core challenge lies in identifying the func-
tional correspondences across the OOD image observations
and the ID image observations. Humans possess the ability to
infer object affordances, and generalize them to novel objects.
Thus, we propose to leverage experts feedback in the form of
natural language to acquire these functional correspondences
between the OOD and the ID image observations.

Formally, let the functional correspondance map be de-
noted by Φ : I × I × L → P(Ω × Ω). Given two images
i, î ∈ I and a natural language description l ∈ L provided
by the expert, this mapping returns all pairs of functionally
corresponding image segments (ω, ω̂) where ω ∈ Ω are image
segments from image i and ω̂ ∈ Ω̂ are image segments
from image î. Here, P(Ω × Ω) is the powerset of all paired
image segments. Let K be the number of corresponding image
segments. Thus, the functional correspondence map is defined
as:

Φ(i, î, l) := {(ωj , ω̂j) | j ∈ {0, 1, . . . ,K}} (1)

We measure the functional correspondence alignment of
any two images via f : P(Ω × Ω) → R. In this work, we
model f as the total Intersection over Union (IoU) between
functionally corresponding regions of the images returned by
the functional correspondance map, Φ:

f(Φ(i, î, l)) =

K∑
i=0

IoU(ωj , ω̂j) (2)

Finally, given any OOD observation ô = (q̂, î) observed
by the robot at deployment time and an expert language
input l describing the functional correspondences, we re-
trieve the ordered set of in-distribution observations Of =
(o1, o2, . . . , ok) ⊆ OID ranked by their functional alignment
from Eq. (2). For intervention, we use the behaviors extracted
from the top-M observations in Of .

IV. METHOD: ADAPTING BY ANALOGY

A. Detecting Out-of-Distribution Observations

At each timestep, our method first detects if the robot’s
observations ô are anomalous via a fast OOD detector. We
measure the cosine similarity between the encoded obser-
vation ẑ = E(ô) and embeddings of in-distribution ob-
servations z ∈ E(oi), o ∈ OID via IDScore(ô,OID) :=

mino∈OID
E(ô)·E(o)

∥E(ô)∥∥E(o)∥ . If the IDScore is above a threshold
λ, then we deem the observation to be nominal and directly
execute the action â ∼ π(· | ô). Otherwise, we deem the
observation to be OOD, ask the expert for an initial language
instruction l describing relevant functional correspondences,
and use those to intervene on the observation before action
generation.

B. Establishing OOD-to-ID Functional Correspondences

Given an OOD observation ô = (q̂, î) identified via our fast
anomaly detector and the expert’s language description l, we
want to intervene on the policy by reusing learned behaviors
from functionally similar ID observations. This requires com-
puting the functional alignment from Eq. 2 between ô and
every ID observation o ∈ OID. However, implementing this
matching is challenging in practice for two reasons: first, it
is computationally expensive (requiring image segmentation
and IoU computation over all corresponding segments), and
second, matching correspondances between 2D image seg-
ments does not directly reveal correspondences in the high-
dimensional robot state. Thus, we filter the demonstration
dataset DID consisting of N observation-action trajectories τ
to retrieve one observation o ∈ τ per trajectory which contain
similar proprioceptive states q to the test-time robot state q̂.
Mathematically, for a distance threshold λq ∈ R+ and the
current configuration q̂, let the filtered observation dataset
Oq ⊂ OID be:

Oq =

{
o

∣∣∣∣ o = arg min
(o,a)∈τ

(
∥q − q̂∥2 − λq

)
, ∀τ ∈ DID

}
(3)

Using this filtered dataset, we can now compute our func-
tional correspondence map from Eq. 1 via two internal
models: one which converts the expert’s language feedback
l ∈ L into a functional feature set (denoted by ϕl) and
another which semantically segments each ID image i ∈ Oq

and the current OOD image observations î to generate the
set of image masks and semantic labels denoted by Ω̂ and
Ω respectively. We use Grounded Segment Anything [16] for
semantic segmentation.

Next, the expert’s language input l is decoded into a set
of correspondence features ϕl that can be applied to the
semantic segmentations Ω, Ω̂ to return a set of K functionally
corresponding image segments (ωj , ω̂j), j ∈ {0, . . . ,K}. For
example, the ϕl that is decoded from l =“Match pencils
with pens” lifts pixels corresponding to the segmentation
label ‘pencil’ in the OOD image, and pairs it with pixels
corresponding to the label ‘pen’ in the ID images. In this
work, we use a templated l, but future work could explore
the use of LLMs as an interface.

Ultimately, after Φ extracts the set of functionally corre-
sponding image segments, we measure their alignment using
Eq. 2. Each ID observation o ∈ Oq is ranked based on its
functional alignment with the OOD observation ô to obtain
the ordered set of functionally corresponding ID observations
Of ⊆ Oq used during intervention (Sec. IV-D).

C. Refining Functional Correspondences Until Confident

Thus far, we have assumed that the initial expert description
l of functional correspondences was sufficient for the entire
task. However, correspondences may evolve during task ex-
ecution. For example, consider the task of picking up trash
and sorting it into organic and recycling. The functional
correspondence between types of trash (organic and recycling)
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Fig. 2: Adapting by Analogy consists of four key phases. (left) First, we run a fast OOD detector by checking the cosine
similarity between the current observation ô and the training observations. (center, top-left) Given a correspondence description
l, we establish OOD-to-ID functional correspondences to retrieve corresponding ID observations (center, bottom). We refine
the correspondances with the expert as long as there is ambiguity in the predicted behavior mode (center, top-right). Once
finalized, we intervene on the observations and execute the planned actions (right).

does not matter initially when the robot is planning a grasp,
but becomes relevant once the item has been picked up and
needs to be sorted. Thus, our method interactively refines
the functional correspondence description until the robot is
confident in the behavior it has retrieved.

Intuitively, a well-established functional correspondence
will reduce the diversity in robot action plans, focusing on
the “correct” behavior mode. To quantify the relevant behavior
modes before functional alignment, we obtain a set of action
plans Aq := {a ∼ π(· | o) | o ∈ Qq} for all observations with
the same proprioceptive state via a forward pass through the
policy. Behavior mode labels are obtained by fitting nc clusters
to Aq via K-means clustering. Since the current functionally-
aligned observations are a subset Qf ⊆ Qq , we can obtain
labels for all functionally-aligned action plans Af ⊆ Aq and
measure the reduction in behavior modes via the entropy over
the action plan labels. As long as the entropy in the retrieved
actions is high, the robot keeps asking the expert to refine
their functional correspondence description l by showing them
the current observations and their behaviors, then re-doing the
OOD-to-ID matching from Sec. IV-B.

D. Intervening on Observations to Generate Functionally-
Corresponding Behavior

Once the correspondence description l is complete and
the retrieved action mode uncertainty is sufficiently low, the
robot intervenes on its observations to generate functionally
“correct” behavior. Specifically, observations in the final re-
fined Of are ranked based on their functional alignment as
measured by Eq. 2. To smooth out action prediction, we
generate the final executed action plan by interpolating the
embeddings of M -highest ranked corresponding observations:
ẑ := 1

M

∑
o∈Of

E(o) before passing the average embedding
to the policy network.

V. HARDWARE EXPERIMENTS

We conduct a series of experiments in robot hardware
to study: (1) How much does Adapting by Analogy im-
prove the visuomotor policy’s closed-loop performance on

OOD environments induced by novel objects and backgrounds
conditions?, (2) What kind of features (e.g., base policy’s
embedding, DINOv2 [14], or functional correspondences)
maximally help observation interventions?, (3) How efficient
is our method at seeking expert feedback for adaptation in
OOD environments?, (4) When intervention schemes succeed,
are they retrieving functionally-aligned observations?

Real Robot Setup. We use a Franka Research 3 robotic
manipulator equipped with a 3D printed UMI gripper [3]
for our real-world experiments. The RGB image observations
i ∈ I come from a wrist mounted RealSense D435 camera and
a third-person Zed mini 2i camera overlooking the workspace.
The overall robot observation o := (i, q) consists of the con-
catenated images and the robot proprioception. More details
about our setup can be found in the supplementary.

ID Environments & Tasks. We train two visuomotor policies
on two different real-world manipulation tasks. The first task
is sweep-trash, wherein robot must sweep trash towards
different goals, based on whether the trash is organic and
recycling. The next task is object-in-cup, where-in a robot
arm is tasked with picking up a object such as a marker or
a pen and dropping it in a mug. Pens—which are grasped
above their center-of-mass—need to be dropped into the mug
from the bottom, and markers—which are grasped below their
center-of-mass—need to be dropped from the front. We divide
the task in 3 sub-goals (A) grasping the object, (B) picking the
correct behavior mode based on the grasp, and (C) dropping
object into the cup.

Visuomotor Policy Training. We use a diffusion policy [2]
as the base visuomotor policy π(a | o). It takes as input
o and predicts a T-step action plan, where T = 16. For
sweep-trash, the training dataset |DID| = 100 consists of 50
demonstrations cleaning up crumpled paper (recycling trash)
and 50 demonstrations cleaning up M&Ms (organic trash).
For object-in-cup, the policy is trained on |DID| = 200
demonstrations with 100 placing a marker (dropped from the
back) and 100 placing a pen (dropped from the top).



OOD Environments. We test on two in-distribution en-
vironments and five OOD environments for each task. In
addition to pens and markers, we e evaluate sweep trash
with one background variation (workspace covered with black
cloth), and three novel instances of trash (doritos, crumpled
napkin, thumb tacks). For the object-in-cup, we test with in-
distribution objects, one novel background (workspace covered
with black cloth), and three instances of novel objects varying
in shapes and sizes (pencil, battery, jenga block).

Baselines. We compare our method, ABA, with three base-
lines. Vanilla is the base visuomotor policy without any
intervention mechanism. PolicyEmbed intervenes on the ob-
servations with a similar mechanism to ours, but it retrieves
ID observations using cosine similarity in the base policy’s
learned embedding space, E(o) ∈ Z . It does not use any expert
feedback. DINOEmbed also intervenes on the base policy, but
it retrieves ID samples using cosine similarity in the DinoV2
[14] feature space of the OOD and ID observations. We use
this to test if powerful pre-trained vision foundation models
can implicitly capture functional correspondences beyond se-
mantic object categories. We use both the class token features
and the patch features. For ABA, we generate correspondence
features ϕ via decoding l into a pre-templated set of features.
The choices of the features are (1) match ‘ood object semantic
label’ with ‘id object semantic label’, (2) overlap segments
of ‘ood object’ with ‘id object’ (3) Align left/right edge of
segments, (4) align top/base of segments, and (5) “Pass”,
which meant that the expert does not want to refine the set
of correspondence features. All intervention methods perform
matching in the refined set of ID observations based on the
robot’s current proprioception Oq , as described in Sec. IV-B.

Evaluation Procedure. All methods are evaluated via the
same procedure and in the same conditions. For each ID and
OOD environmental condition, we perform 10 rollouts of each
method, placing the object of interest uniformly at random
within a 15 cm horizontal range on the table. With a total of
14 environmental conditions, we collect a total of 140 rollouts
for evaluation.

A. How much does ABA improve the policy’s closed-loop
performance?

In this section, we compare the overall task success rate
of ABA with Vanilla. As shown in Fig. 3, ABA improves the
Vanilla policy even in in-distribution environments by 15% on
the sweep-trash task and 25% on the object-in-cup task. While
the vanilla policy was robust to the novel background for
the sweep-trash task, it completely degraded when faced with
the novel background in the more challenging object-in-cup
task. By reasoning about functional correspondences, ABA
improved over the vanilla policy by 20% on the sweep trash
task and by 90% on the object in cup task, staying robust to
task-irrelevant changes to the background. Finally, we observe
strong OOD generalization with ABA when evaluated under
OOD objects where it improves over the vanilla policy by
76% on both tasks, showcasing that learned behaviors can be

transferred to OOD objects from different semantic categories
by reasoning about functional correspondences.

B. What kind of features maximally help observation interven-
tions?

In this section, we compare how the features used for
retrieving ID observations affect policy performance. For
in-distribution environments, on the sweep trash task both
PolicyEmbed and DINOEmbed perform on par with ABA.
However, ABA outperforms by 15% on the object in cup task.
Similar to ABA, both the DINOEmbed and PolicyEmbed are
also robust to the novel background. Interestingly, DINOEm-
bed’s performance improves under the novel background.
We hypothesize that this is due to the exceptional capabil-
ities of the dino features at dense correspondence matching
across objects within the same semantic category [14]. When
tested on OOD objects, both DINOEmbed and PolicyEmbed
struggle, achieving only 36.67% and 33.34% success rate
respectively on sweep trash. On the object in cup task both
baselines failed to successfully complete the task. Taking a
closer look at the performance with specific OOD objects
revealed common failures at the grasping stage and at picking
the correct behavior mode. More analysis in supplementary.

C. How efficient is ABA at seeking expert feedback in OOD
environments?

Next we study how often does ABA request feedback from
the expert at test-time. Fig. 4 shows the number of times
ABA requested feedback on average across 10 rollouts (with
standard error bars) for both the sweep trash and the object
in cup task, in all the three experiment settings (ID, OOD-Bg,
OOD-Object).

For the sweep-trash task, ABA asks for feedback 3.8±1.66
times for ID crumpled paper. In OOD backgrounds,feedback
requests increased, e.g., to 4.5 ± 1.2 times per rollout for
crumpled paper. ABA requested feedback the most for OOD
objects, with the highest number of requests for doritos with an
average of 5.2± 1.16 times per rollout. Note that each rollout
for sweep trash ran for 80 timesteps, so this corresponds to
asking for feedback 6% of the rollout. For the object-in-
cup task, feedback was requested 2.1 ± 0.7 times for the ID
pen, and 1.3± 1.0 times for the ID marker. Similar to sweep-
trash, the feedback requests increased with OOD backgrounds:
e.g., feedback about the pend was requested 4.3± 1.73 times
per rollout. Finally, amongst the OOD objects, feedback was
requested the most for battery at 3.4± 1.62 times per rollout.
Note that each rollout in the object in cup task ran for 120
timesteps.

VI. CONCLUSION

In this work, we present Adapting by Analogy, a method for
enabling deployment-time generalization of visuomotor poli-
cies by leveraging functional correspondences between out-
of-distribution (OOD) and in-distribution (ID) observations.
Rather than requiring new expert demonstrations for each
novel scenario, our approach uses expert-provided functional
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features—which are interactively refined to represent during
task execution—to repurpose existing ID policy behaviors in
OOD environments. Empirical results across two real-world
manipulation tasks with ten OOD environments demonstrate
that establishing functional correspondences can improve a
diffusion policy’s success rate by 76% to new objects and
backgrounds with minimal human intervention.
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