Informed Tree of Thought: Cost-efficient Problem
Solving with Large Language Models

Sajad Mousavi, Desik Rengarajan’, Ashwin Ramesh Babu, Sahand Ghorbanpour,
Vineet Gundecha, Avisek Naug, Soumyendu Srkar*

Hewlett Packard Enterprise (Hewlett Packard Labs)

{sajad.mousavi, desik.rengarajan, ashwin.ramesh-babu, sahand.ghorbanpour,
vineet.gundecha, avisek.naug, soumyendu.sarkar}@hpe.com

Abstract

This paper introduces Informed Tree of Thought (iToT), a novel framework that
addresses the challenge of improving the reasoning and dynamic re-planning
capabilities of large language models (LLMs) in complex tasks involving external
tools. iToT optimizes decision-making by accounting for tool costs and failures
by integrating tool usage with informed search algorithms. The framework builds
on existing methods like Chain of Thought (CoT) and Tree of Thought (ToT) and
extends to iToT-A * and iToT-D * Lite for refinements and efficient task execution.
Our solution is evaluated on the HotPotQA dataset, where it outperforms several
baselines, including direct prompting and ToT approaches. Through experiments,
iToT demonstrates superior performance in handling complex reasoning tasks by
minimizing tool costs and effectively managing tool interactions. All methods
are implemented using open-source models, ensuring broad accessibility and
reproducibility.

1 Introduction

Language Models (LLMs) are being widely used across various applications, showcasing their
reasoning capabilities in a diverse range of tasks [[Achiam et al.| 2023]]. Recent advancements have
further improved the reasoning and planning abilities of these models. These improvements can be
broadly attributed to two main advancements. (i) Thought Generation and Planning: This approach
involves explicitly prompting the LLM to generate intermediate thoughts, aiding in problem solving
[Wei et al., 2022]]. This technique has been further improved with tree-based approaches, where
multiple branches of thought are explored and evaluated and planning algorithms are used to find a
solution [Yao et al., |2023]. (ii) Tool Augmentation: This approach involves augmenting the LLM
with external information through tool interactions. This approach reduces reliance on the inherent
capabilities of LLMs and provides it more information, thereby enhancing their overall performance
[Yao et al.,[2022, |Zhou et al., [2023|].

While both thought generation and planning, as well as tool augmentation, are important for improving
the reasoning and planning abilities of LLMs, combining these requires some considerations. In many
real-world applications, tool usage can be expensive, and tools may sometimes fail. For example, if an
LLM uses a tool that queries information from a paid external resource, the cost must be considered
during the thought generation and planning process. Further, some of these tools may fail, or return
incomplete information, requiring the LLM to dynamically re-plan, and generate alternate thoughts

*Corresponding author. These authors contributed equally.

Adaptive Foundation Models: Evolving Al for Personalized and Efficient Learning (NeurIPS 2024).

or use other tools. Thus, it is essential to incorporate the costs of tool usage, account for potential
failures, and employ dynamic planning algorithms

In this work, we present informed Tree of Thought (iToT), a new class of algorithms that enhances
the existing Tree of Thought framework (Figure [I] shows an overview and example). Our key
contributions are as follows, (i) we incorporate the use of tools for thought generation, (ii) we
account for the cost of the tools in the planning process, and (iii) we use search algorithms that can
dynamically re-plan during tool failures. Additionally, we implement all of our algorithms using
open-source models to ensure wider outreach.

2 Methodology

Question: The Golden Globe Award winner for best actor from

Environment/Tools "Roseanne" starred along what actress in Gigantic?
External Tools Thought 1: | need to find out who won the Golden Globe Award for
. Tool Calls " "
Tool configs Base LLM ! best actor from "Roseanne.
{DeschiCost, (e.g., Wikipedia, |
e e Internet, APIs, ...)| Action 1: Search[Roseanne Golden Globe Award]

-} rajectory to
continue

Memory —>iToT Agent

d Int | Tool:
: (Obsnefvr::ilit;cl).:yer) : Observation 1: Could not find Roseanne Golden Globe Award.

Similar: ['75th Golden Globe Awards', 'Golden....

Proprietary Vector : |
A '
T DBs.. | | v 7 v 7 ¥
Tool|responses (including fall-u-ré;) i] --------- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
£ RN
gfr:;;n g ealc (S loantic Action 4: Search[Gigantic film]
(@)

Observation 4: Observation 4:
Gigantic is a 2008 independent Could not find Gigantic film.
comedy film directed by Matt Similar: ['Gigantic (film)',

Aselton and starring Paul... J 'Gigantic', '

£ (n)=0.28(g_sca

'Gigantic (song)',.“x

led=0.22, v=0.5)

(g_scaled=0.22, v=0.

Thought 5:

John Goodman starred
alongside Zooey Deschanel in
Gigantic.

Action 5:
Finish[Zooey Deschanel]

(b)

Figure 1: (a) Overview of the iToT (informed Tree of Thought) methods. (b) An example trajectory
from the iToT-D* Lite method on HotPotQA, demonstrating the node expansion strategy based on
node value (V'), cumulative tool cost (Vy), and failure propagation mechanisms. g; refers to the
propagation of the tool costs to previous states. f (n) is refers to the final value V of the state n.

We begin by defining our problem and outlining some basic terminologies based on existing methods
Zhou et al| [2023]]. In LLM reasoning, we receive an input = in natural language and use an
LLM 7 to generate an output or solution y ~ m(x) that fulfills the requirements of z. Both
x = [z[1],z[2],...,z[ls]] and y = [y[1], y[2],. .., y[l,]] are sequences of language tokens, where I,
and [, denote their respective lengths. Most works in LLM reasoning and decision-making aim to
improve the quality of the generated output y. One way to achieve this is by including prompts along
with the input, which offer instructions or examples to the LLM.

Chain of Thought (CoT) prompting [Wei et al.|[2022]] augments a prompt to the input x, explicitly
instructing the LLM to determine the output y through the creation of intermediate steps or thoughts
21,...,2;. These thoughts act as a bridge, helping the LLM tackle complex problems. Each
thought z; ~ m(z;|z, 21, ..., 2;—1) is sampled sequentially, and finally, the LLM samples the output
y ~ w(ylz, z1, ..., z) by considering all the thoughts along with the initial input.

The Tree of Thought (ToT) paradigm [Yao et al.| 2023]] extends CoT by framing the task of
finding a solution y for a prompt x as a search over a tree. Each node in the tree represents a
state s = [z, 21 . . . z;], where the state is a partial solution consisting of the input = and a sequence
of thoughts z; ... z; generated so far. The thoughts are generated similarly to CoT, and a search
algorithm such as depth-first search (DFS) or breadth-first search (BFS) is used to explore the tree

and determine the solution y. ToT also incorporates the value of the state V'(s) in its search algorithm,
where the value is a serves as a heuristic for the search algorithm to determine the order in which
states are explored.

The ReAct framework [Yao et al.,|2022] enhances the process of moving from the input x to an
output y by incorporating external knowledge and tool interactions. These tools can include APIs or
database interactions that provide the LLM with additional knowledge for generating the solution.
In this technique, the LLM sequentially queries for additional information, known as observations,
through tool execution (also referred to as action). The LLM then uses this additional information to
either gather more data through further tool interactions or provide the final solution.

Language Agent Tree Search (LATS) [Zhou et al., [2023]] combines the idea of ReAct and Tree
of Thought, wherein external tools are used to generate each state, and generate a tree. The final
solution y is obtained using Monte Carlo Tree Search (MCTS) over the generated tree.

Incorporating the cost of using tools into the search algorithm is important. This consideration is
crucial because tool use can be expensive and tool failures need to be accounted for. In this work,
we define two classes of search algorithms, (i) Informed search account algorithms for tool cost
in addition to the value of the state V' (s) while performing a search over the tree. (ii) Uninformed
search algorithms do not account for tool information (i.e., costs and response time), but only use the
value of the state as a heuristic to perform the search over the tree.

Existing approaches such as CoT and ReAct generate their outputs from the LLM without considering
alternative paths. Additionally, CoT does not incorporate external information, which can be very
useful in solving complex problems. While the ToT framework does account for alternative paths in
determining the solution, it does not utilize external tools to enhance its outputs. Furthermore, the
search algorithms used in the original works, such as BFS and DFS, are known to be inefficient and
are not designed to incorporate the value of the state. While LATS incorporates both tool use and a
tree search method that considers the value of a state V (), it does not account for tool failures and
the cost of using each tool. Moreover, MCTS is expensive and results in slower run times. These
pitfalls of these existing frameworks are the motivation for our framework, Informed Tree of Thought
(iToT).

3 iToT: Informed Tree of Thought Problem-Solving with LLLM and Tools

We build upon the ToT framework by incorporating tools in generating thoughts and states and using
informed search algorithms that consider tool costs as well as the value of the state to determining
the final solution. To this end, we propose two variants of the Informed Tree of Thought (iToT): (i)
iToT-A*, and (ii) iToT D*-Lite. These algorithms account for tool usage costs and can adapt to
tool failures. Unlike uninformed search algorithms such as BFS, which do not consider tool costs
or dynamic replanning, iToT algorithms are more effective in complex environments. Specifically,
iToT-A* and iToT-D* Lite integrate both cumulative tool costs and adaptive replanning, ensuring
optimal pathfinding even when tool failures occur.

3.1 iToT-A*

iToT-A* uses A* [Hart et al.,[1968] as the search algorithm. It maintains a queue O containing all the
states under assessment, which initially consists of the input prompt x. The algorithm proceeds in
rounds, following these steps in each round:

Step 1: The algorithm pops the state s with the lowest final value Vy(s) from O. The state
s =[x, 21 ...z includes the initial input z and the thoughts z that led to it. If the number of thoughts
leading to state s exceeds the depth limit L, the state is ignored.

Step 2: The LLM 7 is used to sample K subsequent thoughts z;1 for state s to form the set of
frontier states C(s) = {s’ = sU z;41|2i41 ~ m(-|s)}. The generation of these thoughts can involve
external tools, enhancing the thought-generation process.

Step 3: The final value V¢ of each frontier state is updated as follows:
Vi(s') =Vy(s') = V(s') Vs €C(s)
Vo(s') = Vg(s) + Vr(s'ls)

Here, V,(s’) represents the cumulative tool cost of reaching state s’ from z, and Vp(s'|s) is the
tool cost of transitioning from state s to state s’. Similar to ToT, V' (s) serves as a heuristic for the
progress state s’ has made towards solving the problem and is obtained through self-evaluation using
the LLM 7. The value function evaluates a node’s potential to reach the final answer by assessing
the relevance of the thoughts and actions taken in the trajectory, the progress toward answering the
question, and the promise of future steps leading to a solution. It guides the search by prioritizing
nodes that exhibit both relevance and potential for advancing toward the goal.

Step 4: The state s’ is then added to the queue O.

The algorithm repeats Steps 1 — 4 until the LLM finds a solution y to the input z or until it reaches a
round limit R. Algorithm|l|summarizes iToT-A*.

Algorithm 1 iToT-A*

Algorithm 2 iToT-D* Lite

1:

Input: LLM input z, depth limit L, round limit
R, tool cost function V7, Value function V'

1:

Input: LLM input z, depth limit L, round limit
R, tool cost function Vi, Value function V', Tool

2: Initialize O < {z}, Cumulative cost and final failure cost o1
value vectors Vy(s) = Vy(s) =inf Vs 2: Initialize O + {z}, Cumulative cost and final
3:forr=1...Rdo value vectors Vg(s) = Vy(s) =inf Vs
4: s <= argmingc o V5 (8) 3: forr=1...Rdo
5: if s is terminal then 4: s — argmingc Vy(5)
6: return s 5: if s is terminal then
7: end if 6: return s
8: Let 7 be the length of state s = [z, 21, . . ., 2;] 7: end if
9: if i > L then 8: Let 7 be the length of state s = [z, 21, . . . , 2i]
10: continue 9: if ¢ > L then
11: end if 10: continue
12: Generate C(s) = {s' = sU zit1|zig1 ~ 11: endif
7(-]s)} 12: Generate C(s) = {s' = s U zit1|zit1 ~
13: for s’ € C(s) do 7(-|s)}
14: Vy(s') = Vy(s) + Vr(s']s) 13: for s’ € C(s) do
15: Vi(s') = Vy(s') = V(s) 14: if s’ has a tool failure then
16: O+ 0uUs 15: Vo(s') = Vy(s) + 67 + Vr(s'|s)
17: end for 16: PROPAGATE_FROM(s') > See
18: end for Appendix[A]
19: return Null 17: else
18: Vo(s') = Vo(s) + Vi (s']s)
19: end if
200 Vi) = Vy(s)) - V()
21: O+ 0ous
22: end for
23: end for
24: return Null
3.2 iToT-D* Lite

We introduce iToT-D* Lite, which uses the D* Lite [Koenig and Likhachevl [2002] as the search
algorithm over the tree, to account for tool failures and the subsequent re-planning required. This
approach builds upon the iToT-A* framework described in section[3.1] In iToT-D* Lite, when a tool
T fails while generating a state sgi, we add an additional cost d7 to Vg (sgir) to account for it. We
further propagate this cost of failure backward to update the cumulative tool cost V; and the final
value V; of all the states that led to sg,;;. We then add these states back to the queue ©O. We summarize
our algorithm in Algorithm 2]

4 Experiments

The goal of our experiments is to evaluate the reasoning and dynamic re-planning abilities of the
proposed methods. We compare the performance of iToT-A* and iToT-D* Lite with the following
baselines. (i) Base LLM: direct prompting of the LLM 7 to solve the task z, (ii) Base LLM (Few

shot): provides some examples of the task as context to (i) (iii) CoT: Chain of Thought [Wei et al.|
2022 implemented using (i) (iv) ToT-DFS: [Yao et al.| 2023]] A variant of ToT where the base LLM
7 can access tools, and using DFS as the search algorithm without the value function V, (v) ToT-Best
First Search: A variant of ToT where the base LLM 7 can access tools, and using a Best First Search
algorithm which incorporates the value function V.

To ensure a fair comparison, we implement all the approaches using the open source
1llama3.1:405b-instruct-q5_K_M model [Llama Team), 2024| as the base LLM 7 using the
Ollama Python Library.

We benchmark all approaches on the HotPotQA dataset [Yao et al.l 2022], designed to test the
reasoning abilities of LLMs through multi-hop question answering. For the approaches that can use
tools (iToT-A*, iToT-D* Lite, and ToT-Best First Search), we equip them with the following tools
(i) Search[entity]: searches and retrieve a passage for the requested entity’s Wikipedia page, (ii)
Lookup[string]: looks up the string and returns the next sentence from retrieved passage, and (iii)
Finish[answer]: ends the task with the answer. We don’t explicitly simulate tool failures. Instead,
we regard a tool as having failed if it cannot complete its task or if the base LLM makes an API call
to an invalid tool. For example, if the search tool’s API returns "could not find" for the requested
item, we treat this as a tool failure. Similar to [[Yao et al.| [2022]], we use a version of HotPotQA
that provides feedback on the answer’s correctness, which we use to evaluate the performance of all
approaches. We evaluate all of the approaches using 100 questions from the HotPotQA dataset.

For all the the approaches being evaluated, we use depth limit of 7, a maximum of R = 30 rounds,
and generate ' = 5 new thoughts at each state. We provide details on the prompts used in Appendix
Bl

In Table E], we summarize the Exact Match (EM) performance on HotPotQA. Informed search
methods like iToT-A* and iToT-D* outperform uninformed methods like DFS, Best first search, and
basic CoT-based approaches where achieving the highest EM score of 0.62, benefiting from their
abilities to balance exploration, exploitation, and tool costs. D* Lite typically excels in dynamic
environments with frequent tool failures, and its equivalent performance here is likely due to the
limited tool failures in our experiments. However, it still outperforms others and shows robustness
against occasional failures. We also attempted to run LATS (CoT + ReAct), but it was too slow to
complete.

Method HotpotQA (EM)t
Base LM 0.42
Base LM (Few shot) 0.44
Base LM (CoT) (Wei et al.|[2022]) 0.47
ToT DFS (CoT + ReAct) (Yao et al.| [2023]]) 0.46
ToT Best First Search (CoT + ReAct) 0.59
iToT A* Search (CoT + ReAct) 0.62
iToT-D* Lite Search (CoT + ReAct) 0.62

Table 1: Exact Match (EM) scores on the HotpotQA dataset for various prompt methods.

5 Conclusion and Future work

In this paper, we introduced iToT, a framework for enhancing LLM-based problem-solving by
integrating informed search strategies that consider tool usage costs and dynamically re-plan in
response to failures. Our experiments on HotPotQA demonstrated the effectiveness of iToT-A* and
iToT-D* Lite, with iToT-A* achieving the highest performance. While iToT-D* Lite shows promise,
particularly in dynamic environments, further research is needed to fully explore its potential across
varying levels of tool failures.

We plan to extend iToT to more complex, real-world scenarios with higher tool failure rates and
dynamic information updates, aiming to further validate its robustness and adaptability.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107, 1968.

Sven Koenig and Maxim Likhachev. D¥* lite. In Eighteenth national conference on Artificial
intelligence, pages 476-483, 2002.

MetaAl Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

Appendix

A Algorithm

Algorithm 3 Support Functions for Algorithm 2]

1: function PROPAGATE_FROM(S)
2: while PARENT(s) # None and V,(PARENT(s)) < V,(s) do

3 V4(PARENT(S)) <— V4 (PARENT(S)) +07

4 V¢ (PARENT(s)) = V4 (PARENT(5)) + V},(PARENT(S))
5: O < OU PARENT(S)

6: S < PARENT(S)

7 end while

8: end function

9: function PARENT(S)
10: if s is Empty then

11: return None

12: else

13: parent < s[: —1] > pop the last thought from s
14: return parent

15: end if

16: end function

B Prompts

Prompt to generate the set C(s) of K frontier states using state s.

Prompt to get the value of a state s using the function V'(s).

10

	Introduction
	Methodology
	iToT: Informed Tree of Thought Problem-Solving with LLM and Tools
	iToT-A*
	iToT-D* Lite

	Experiments
	Conclusion and Future work
	Algorithm
	Prompts

