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ABSTRACT

Offline reinforcement learning (RL) has attracted a great deal of attention recently
as an approach to utilizing past experience to learn a policy. Recent studies have
reported the challenges of offline RL, such as estimating the values of actions that
are out of the data distribution. To mitigate the issues of offline RL, we propose
an algorithm that leverages a mixture of deterministic policies. With our frame-
work, the state-action space is divided by learning discrete latent variables, and
sub-policies corresponding to each region are trained. The proposed algorithm,
which we call Value-Weighted Variational Auto-Encoder (V2AE), is derived by
considering the variational lower bound of the offline RL objective function. The
aim of this work is to shed light on the importance of the policy structure in offline
RL. We show empirically that the use of the proposed mixture policy can reduce
the accumulation of the critic loss in offline RL, which was reported in previous
studies. Experimental results also indicate that introducing the policy structure
improves the performance on tasks with D4RL benchmarking datasets.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has had remarkable success in a variety of
applications. Many of its successes have been achieved in online learning settings where the RL
agent interacts with the environment during the learning process. However, such interactions are
often time consuming and computationally expensive. The desirability of reducing the number of
interactions in RL has motivated an active interest in offline RL (Levine et al., 2020), also known as
batch RL (Lange et al., 2012). In offline RL, the goal is to learn the optimal policy from a prepared
dataset collected through an arbitrary and unknown process. Prior work on offline RL has focused on
how to avoid estimating the Q-values of action that are out of the data distribution (Fujimoto et al.,
2019; Fujimoto & Gu, 2021). While previous studies often address this issue in terms of the regu-
larization of critics (Kumar et al., 2020; An et al., 2021; Kostrikov et al., 2021; 2022), we propose to
mitigate the issue from the perspective of the policy structure. Our hypothesis is that evaluation of
the out-of-distribution actions can be avoided by dividing the state-action space, which is potentially
achieved by learning discrete latent variables of the state-action space. When the data distribution
is multimodal, as shown in Figure 1(a), fitting a policy modeled with a unimodal distribution such
as a Gaussian distribution may lead to interpolation between separate modes, which will result in
the value estimation of actions that are out of the data distribution (Figure 1(b)). To avoid this, we
employ a mixture of deterministic policies (Figure 1(c)). We divide the state-action space and learn
sub-policies for each region. Ideally, this approach will enable us to avoid interpolating separate
modes of the data distribution.

In this study, we propose to train a mixture policy by learning discrete latent representations, which
can be interpreted as dividing the state-action space and learning sub-policies that correspond to
each region. We derive the proposed algorithm by considering the variational lower bound of the
offline RL objective function. We refer to the proposed algorithm as Value-Weighted Variational
Auto-Encoder (V2AE). The main contribution of this study is an offline RL algorithm that trains
a mixture policy by learning discrete latent variables. We also propose a regularization technique
for a mixture policy based on the mutual information. We empirically show that the proposed reg-
ularization technique improves the performance of the proposed algorithm. A previous study in
(Brandfonbrener et al., 2021) reports the accumulation of the critic loss values during the training
phase, which was considered the result of generating out-of-distribution actions. We show empiri-
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Figure 1: Schematic illustration of the proposed approach. (a) In offline RL, the distribution of sam-
ples is often multimodal; (b) Fitting a unimodal distribution to such samples can lead to estimating
the action out of the data distribution; (c) In the proposed approach, the latent discrete variable of
the state-action space is learned, and a deterministic policy is learned for each region.

cally that the use of the proposed mixture policy can reduce the accumulation of the approximation
error in offline RL. In experiments with benchmark tasks in D4RL (Fu et al., 2020), the proposed
algorithms proved to be competitive with the popular offline RL methods. While the experimen-
tal result shows the promising performance , we aim to shed light on the importance of the policy
structure as inductive bias in offline RL, rather than claim the state-of-the-art performance.

2 RELATED WORK

Recent studies have shown that regularization is the crucial component for offline RL (Fujimoto
et al., 2019; Kumar et al., 2020; Levine et al., 2020; Kostrikov et al., 2021). For example, Kostrikov
et al. (2021) proposed a regularization based on Fischer divergence, and Fujimoto & Gu (2021)
showed that simply adding a behavior cloning term to the objective function in TD3 can achieve
state-of-the-art performance on D4RL benchmark tasks (Fu et al., 2020). Other research has inves-
tigated the structure of the critic, proposing the use of an ensemble of critics (An et al., 2021) or
offering a one-step offline RL approach (Brandfonbrener et al., 2021; Goo & Niekum, 2021). Previ-
ous studies (Fujimoto et al., 2019; Fujimoto & Gu, 2021) have indicated that the source of the value
approximation error is “extrapolation error” that occurs when the value of state-action pairs that are
not contained in a given dataset is estimated. Our hypothesis is that such “extrapolation error” can
be mitigated by dividing the state-action space, which is potentially achieved by learning discrete
latent variables. We investigate the effect of incorporating the policy structure as inductive bias in
offline RL, which has not been fully investigated.

Learning the discrete latent variable in the context of RL is closely related to a mixture policy, where
a policy is represented as a combination of a finite number of sub-policies. In a mixture policy, one
of the sub-policies is activated for a given state, and the module that determines which sub-policy
to use is often called the gating policy (Daniel et al., 2016). Because of the two-layered structure,
a mixture policy is also called a hierarchical policy (Daniel et al., 2016). Although we do not con-
sider temporal abstraction in this study, we note that a well-known hierarchical RL framework with
temporal abstraction is the option critic (Bacon et al., 2017). Since we consider policies without tem-
poral abstraction, we use the term “mixture policy,” following the terminology in Wulfmeier et al.
(2021). Previous studies have demonstrated the advantages of mixture policies in online RL (Osa
et al., 2019; Zhang & Whiteson, 2019; Wulfmeier et al., 2020; 2021; Akrour et al., 2021). In these
existing methods, sub-policies are often trained to cover separate modes of the Q-function, which is
similar to our idea. While existing methods have leveraged the latent variable in offline RL (Zhou
et al., 2020; Chen et al., 2021b; 2022), the latent variable is continuous in these methods. As indi-
cated by studies on latent representations (Kingma & Welling, 2014; Dupont, 2018; Brown et al.,
2020), we think that the use of the discrete latent variable should be investigated in offline RL.

3 PROBLEM FORMULATION

Reinforcement Learning Consider a reinforcement learning problem under a Markov decision
process (MDP) defined by a tuple (S,A,P, r, γ, d), where S is the state space,A is the action space,
P(st+1|st,at) is the transition probability density, r(s,a) is the reward function, γ is the discount
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factor, and d(s0) is the probability density of the initial state. A policy π(a|s) : S × A 7→ R is
defined as the conditional probability density over actions given states. The goal of RL is to identify
a policy that maximizes the expected return E[R0|π], where the return is the sum of discounted
rewards over time given by Rt =

∑T
k=t γ

k−tr(sk,ak). The Q-function, Qπ(s,a), is defined as
the expected return when starting from state s and taking action a, then following policy π under a
given MDP (Sutton & Barto, 2018).

In offline RL, it is assumed that the learning agent is given a fixed dataset,D = {(si,ai, ri)}Ni=1, that
consists of states, actions, and rewards collected by an unknown behavior policy. The goal of offline
RL is to obtain a policy that maximizes the expected return using D, without online interactions
with an environment during the learning process.

Objective function We formulate the problem of offline RL as follows. Given a dataset D =
{(si,ai, ri)}Ni=1 obtained through the interactions between a behavior policy β(a|s) and the en-
vironment, our goal is to obtain a policy π that maximizes the expected return. In the process of
training a policy in offline RL, the expected return is evaluated with respect to the states stored in
the given dataset. Thus, the objective function is given by

J(π) = Es∼D,a∼π [f
π(s,a)] , (1)

where fπ is a function that quantifies the performance of policy π. In RL, there are several
choices for fπ as indicated in Schulman et al. (2016). TD3 employed the action-value function
as fπ(s,a) = Qπ(s,a), and A2C employed the advantage-function as fπ(s,a) = Aπ(s,a) (Mnih
et al., 2016). Other previous studies employ shaping with the exponential function as fπ(s,a) =
exp

(
Qπ(s,a)

)
(Peters & Schaal, 2007) or fπ(s,a) = exp

(
Aπ(s,a)

)
(Neumann & Peters, 2008;

Wang et al., 2018). Without loss of generality, we assume that the objective function is given by
equation 1. We derive the proposed algorithm by considering the lower bound of the objective
function of offline RL in equation 1.

Mixture policy In this study, we consider a mixture of policy given by

π(a|s) =
∑
z∈Z

πgate(z|s)πsub(a|s, z), (2)

where z is a discrete latent variable, πgate(z|s) is the gating policy that determines the value of the
latent variable, and πsub(a|s, z) is the sub-policy that determines the action for given s and z. We
assume that a sub-policy πsub(a|s, z) is deterministic; the sub-policy determines the action for given
s and z in a deterministic manner as a = µθ(s, z), where µθ(s, z) is parameterized with a vector
θ. Additionally, we assume that the gating policy πgate(z|s) determines the latent variable as

z = argmax
z′

Qw(s,µθ(s, z
′)), (3)

where Qw(s,a) is the estimated Q-function parameterized with a vector w. This gating policy is
applicable to the objective functions such as fπ(s,a) = exp (Qπ(s,a)), fπ(s,a) = Aπ(s,a), and
fπ(s,a) = exp (Aπ(s,a)). Please refer to Appendix A for details.

4 TRAINING A MIXTURE POLICY BY MAXIMIZING THE VARIATIONAL LOWER
BOUND

We consider a training procedure based on policy iteration (Sutton & Barto, 2018), where the critic
and the policy are iteratively improved. In this section, we describe the policy update procedure in
the proposed method.

To derive the update rule for the policy parameter θ, we first consider the lower bound of the objec-
tive function log J(π) in equation 1. We assume that fπ(s,a) in equation 1 is approximated with
f̂π
w(s,a), which is parameterized with a vector w. In a manner similar to Dayan & Hinton (1997);

Kober & Peters (2011), when f̂π
w(s,a) > 0 for any s and a, we can determine the lower bound of
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log J(π) using Jensen’s inequality as follows:

log J(π) ≈ log

∫
dβ(s)πθ(a|s)f̂π

w(s,a)dsda (4)

= log

∫
dβ(s)β(a|s)πθ(a|s)

β(a|s)
f̂π
w(s,a)dsda ≥

∫
dβ(s)β(a|s) log πθ(a|s)

β(a|s)
f̂π
w(s,a)dsda (5)

= E(s,a)∼D

[
log πθ(a|s)f̂π

w(s,a)
]
− E(s,a)∼D

[
log β(a|s)f̂π

w(s,a)
]
, (6)

where β(a|s) is the behavior policy, which is used for collecting the given dataset, and dβ(s)
is the stationary distribution over the state induced by executing the behavior policy β(a|s). The
second term in equation 6 is independent of the policy parameter θ. Thus, we can maximize the
lower bound of J(π) by maximizing

∑N
i=1 log πθ(ai|si)f̂π

w(si,ai). When we employ fπ(s,a) =
exp (Aπ(s,a)) and the policy is Gaussian, the resulting algorithm is equivalent to AWAC (Nair
et al., 2020). To employ a mixture policy with a discrete latent variable, we further analyze the
objective function in equation 6. As in Kingma & Welling (2014); Sohn et al. (2015), we can obtain
a variant of the variational lower bound of the conditional log-likelihood:

log πθ(ai|si) ≥ −DKL(qϕ(z|si,ai)||p(z|si)) + Ez∼p(z|si,ai) [log πθ(ai|si, z)]
= ℓcvae(si,ai;θ,ϕ), (7)

where qϕ(z|s,a) is the approximate posterior distribution parameterized with a vector ϕ, and
p(z|s) is the true posterior distribution. The derivation of equation 7 is provided in Appendix B.
Although it is often assumed in prior studies (Fujimoto et al., 2019) that z is statistically independent
of s, i.e., p(z|s) = p(z), in our framework p(z|s) should represent the behavior of the gating policy
πθ(z|s). Recognizing the challenge of representing exactly the gating policy πθ(z|s) in equation 3,
we approximate it with the softmax distribution given by

p(z|s) =
exp

(
Qw(s,µθ(s, z))

)∑
z∈Z exp

(
Qw(s,µθ(s, z))

) . (8)

Since we employ double-clipped Q-learning as in Fujimoto et al. (2018), we compute
Qw
(
s,µθ(s, z)

)
= minj=1,2 Qwj

(
s,µθ(s, z)

)
in our implementation. The second term in equa-

tion 7 is approximated as the mean squared error, as in the standard implementation of VAE. Based
on equation 6 and equation 7, we obtain the objective function for training a mixture policy as

LML(θ,ϕ) =

N∑
i=1

fπ(si,ai)ℓcvae(si,ai;θ,ϕ). (9)

This objective can be regarded as the weighted maximum likelihood (Kober & Peters, 2011) for
a mixture policy. Our objective function can be viewed as reconstructing the state-action action
pairs with adaptive weights, as in Peters & Schaal (2007); Nair et al. (2020). Therefore, the policy
samples actions within the support and does not evaluate out-of-distribution actions. The primary
difference between the proposed method and the existing methods (Peters & Schaal, 2007; Nair
et al., 2020) is that the use of a mixture of policies conditioned on discrete latent variables in our ap-
proach can be regarded as dividing the state-action space. For example, in AWAC (Nair et al., 2020),
a unimodal policy is used to reconstruct all of the “good” actions in the given dataset. However, in
the context of offline RL, the given dataset may contain samples collected by diverse behaviors, and
enforcing the policy to cover all the modes in the dataset can degrade the resulting performance. In
our approach, the policy πθ(a|s, z) is encouraged to mimic the state-action pairs which are assigned
to the same values of z, without mimicking the actions which are assigned the different values of z.

In addition, we also propose a regularization technique for a mixture policy based on the mutual in-
formation (MI) between z and the state action pair (s,a), which we denote by I(z; s,a). As shown
by Barber & Agakov (2003), the variational lower bound of I(z; s,a) is given by E[log gψ(z|s,a)],
where gψ(z|s,a) is an auxiliary distribution to approximate the posterior distribution p(z|s,a).
Thus, the final objective function is given by

L(θ,ϕ,ψ) = LML(θ,ϕ) + λ

N∑
i=1

Ez∼p(z) log gψ(z|si,µθ(si, z)). (10)

The MI-based regularization using the second term in equation 10 encourages the diversity of
the behaviors encoded in the sub-policy π(a|s, z). We empirically show that this regularization
improves the performance of the proposed method in Section 7.
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Algorithm 1 Value-Weighted Variational Auto-Encoder (V2AE)
Initialize the actor µθ, critic Qwj

for j = 1, 2, and the posterior qϕ(z|s,a)
for t = 1 to T do

Sample a minibatch {(si,ai, s
′
i, ri)}Mi=1 from D

for each element (si,ai, s
′
i, ri) do

Compute the value of the latent variable for s′: z′ = argmaxz̃′ Qw(s
′,µθ′(s′, z̃′))

Compute the target value: yi = r + γminj=1,2 Qwj (s,µθ′(s′, z′))
end for
Update the critic by minimizing

∑M
i=1

∥∥yi −Qwj
(si,ai)

∥∥2 for j = 1, 2
if t mod dinterval = 0 then

Update the actor and the posterior by maximizing equation 9
(optionally) Update the actor by maximizing

∑M
i=1 Ez∼p(z) log gψ(z|si,µθ(si, z))

end if
end for

5 TRAINING THE CRITIC FOR A MIXTURE OF DETERMINISTIC POLICIES

To derive the objective function for training the critic for the mixture of deterministic policies using
the gating policy in equation 3, we consider the following operator:

TzQz = r(s,a) + γEs′
[
max
z′

Qz(s
′,µ(s′, z′))

]
. (11)

We refer to the operator Tz as the latent-max-Q operator. Following Ghasemipour et al. (2021), we
prove the following theorems.
Theorem 5.1. In the tabular setting, Tz is a contraction operator in the L∞ norm. Hence, with
repeated applications of the Tz , any initial Q function converges to a unique fixed point.

The proof of Theorem 5.1 is provided in the Appendix C.
Theorem 5.2. Let Qz denote the unique fixed point achieved in Theorem 5.1, and let πz denote
the policy that chooses the latent variable as z = argmaxz′ Q(s,µ(s, z′)) and outputs the action
given by µ(s, z) in a deterministic manner. Then Qz is the Q-value function corresponding to πz .

Proof. (Theorem 5.2) Rearranging equation 11 with z′ = argmaxQz(s
′,µ(s′, z′)), we obtain

TzQz = r(s,a) + γEs′Ea′∼πz [Qz(s
′,a′)] . (12)

Since by definition Qz is the unique fixed point of Tz , we have our result.

These theorems show that the latent-max-Q operator Tz retains the contraction and fixed-point ex-
istence properties. Based on these results, we estimate the Q-function by applying the latent-max-Q
operator. In our implementation, we employed double-clipped Q-learning (Fujimoto et al., 2018).
Thus, given a dataset D, the critic is trained by minimizing

L(wj) =
∑

(si,ai,s′i,ri)∈D

∥∥Qwj
(si,ai)− yi

∥∥2 (13)

for j = 1, 2, where the target value yi is computed as

yi = ri + γmax
z′∈Z

min
j=1,2

Qwj
(s′,µθ′(s′i, z

′)). (14)

6 PRACTICAL IMPLEMENTATION

The proposed Value-Weighted Variational Auto-Encoder (V2AE) algorithm is summarized in Al-
gorithm 1. As in TD3 (Fujimoto et al., 2018), the actor is updated once every after dinterval updates
of the critics. In our implementation, we set dinterval = 2. For modeling the discrete latent variable,
we use the Gumbel-softmax trick (Jang et al., 2017; Maddison et al., 2017). We also use the state
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(a) Task setting and
data samples.
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tained by TD3+BC.
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(d) Behavior ob-
tained by V2AE.

(e) Visualization of
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V2AE.

Figure 2: Performance on a simple task with multimodal data distribution.

Table 1: Algorithm setup in the experiment.

TD3+BC AWAC V2AE
Critic training double-clipped Q-learning double-clipped Q-learning double-clipped Q-learning
Policy type monolithic & deterministic monolithic & stochastic mixture & deterministic
Regularization BC term none none
State normalized normalized normalized

normalization used in TD3+BC (Fujimoto & Gu, 2021). In preliminary experiments, we found that
when fπ(s,a) = exp (bAπ (s,a)) in equation 9, the scaling factor b has non-trivial effects on per-
formance and the best value of b is different for each task. To avoid changing the scaling parameter
for each task, we used the normalization of the advantage function as

fπ(s,a) = exp

(
α
(
Aπ (s,a)−max(s̃,ã)∈Dbatch A

π (s̃, ã)
)

max(s̃,ã)∈Dbatch A
π (s̃, ã)−min(s̃,ã)∈Dbatch A

π (s̃, ã)

)
, (15)

whereDbatch is a mini-batch sampled from the given datasetD and α is a constant; we set α = 10 for
Mujoco tasks in our experiments. For other hyperparameter details, please refer to the Appendix L.

7 EXPERIMENTS

We investigated the effect of the policy structure on the resulting performance and the training error
of the critics. In the first experiment, we performed a comparative assessment of TD3+BC (Fujimoto
& Gu, 2021), AWAC (Nair et al., 2020) and V2AE on a toy problem, where the distribution of sam-
ples in a given dataset is multimodal. We also conducted a quantitative comparison between the pro-
posed methods and baseline methods with D4RL benchmark tasks (Fu et al., 2020). In the following
section, we refer to the proposed method based on the objective in equation 9 as V2AE and a variant
of the proposed method with the MI-based regularization in equation 10 as infoV2AE. In both the
toy problem and the D4RL tasks, we used the author-provided implementations of TD3+BC, and
our implementation of V2AE and AWAC are based on the author-implementation of TD3+BC.

7.1 MULTIMODAL DATA DISTRIBUTION ON TOY TASK

To show the effect of the multimodal data distribution in a given dataset, we evaluated the perfor-
mance of TD3+BC, AWAC, and V2AE on a toy task shown in Figure 2. The differences between the
compared methods are summarized in Table 1. In our implementation of AWAC and V2AE, we used
the state normalization and double-clipped Q-learning as in TD3+BC and the normalization of the
advantage function described in Section 6. The difference between AWAC and V2AE indicates the
effect of the policy representation. In this toy task, the agent is represented as a point mass, the state
is the position of the point mass in two-dimensional space, and the action is the small displacement
of the point mass. There are two goals in this task, which are indicated by red circles in Figure 2. A
blue circle indicates the start position in Figure 2, and there are three obstacles, which are indicated
by black solid circles. In this task, the reward is sparse: When the agent reaches one of the goals,
the agent receives the reward 1.0, and the episode ends. If the agent makes a contact with one of the
obstacles, the agent receives the reward -1.0, and the episode ends. In the given dataset, trajectories
to the two goals are provided, and there is no information on which goal the agent is heading.

Table 2: Performance on the toy task.

TD3+BC AWAC V2AE
-0.2± 0.4 0.33± 0.44 1.0±0.0

The score is summarized in Table 2. Among the evaluated
methods, only V2AE successfully solved the task. The
policy obtained by TD3+BC did not reach the goal in a
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Table 3: Results on mujoco tasks using D4RL-v2 datasets and AntMaze tasks. Average normalized
scores over the last 10 test episodes and five seeds are shown. HC = HalfCheetah, HP = Hopper,
WK = Walker2d.

TD3+BC CQL easyBCQ AWAC V2AE infoV2AE
(re-run) (re-run) (re-run) (ours) (ours) (ours)

E
xp

er
t HC 96.3±0.9 22.0±9.6 95.2± 1.8 94.8± 0.2 97.0± 1.0 95.6± 2.0

HP 109.9±2.5 105.8±3.8 70.4± 8.0 109.8± 2.9 93.6± 15.1 107.5± 2.9
WK 110.2±0.4 108.9±0.4 103.6± 23.0 111.0± 0.2 111.4± 0.3 112.1± 0.4

M
ed

.-E HC 89.4±7.2 38.4±8.4 92.2±0.9 92.7± 0.8 91.1± 3.4 91.4± 2.5
HP 95.5±9.4 88.4±15.9 14.6± 3.4 98.6± 10.7 78.4± 19.0 94.5±14.9
WK 110.2±0.3 109.2±1.9 111.9± 0.6 109.2± 0.3 109.9± 0.4 110.1± 0.7

M
ed

.-R HC 44.7±0.4 46.9±0.3 41.3± 0.8 40.9± 0.6 45.2± 0.8 46.7± 0.6
HP 73.8±18.9 95.5±1.7 86.4± 18.9 38.2± 9.4 89.2± 8.1 98.5± 2.0
WK 64.5±17.0 77.5±3.1 65.1± 18.5 65.0± 15.7 82.1± 3.8 86.7± 3.2

M
ed

. HC 48.2±0.3 48.2±0.4 42.7± 1.8 44.3± 0.2 47.5± 0.4 48.6± 0.4
HP 61.0±4.2 77.4±4.0 79.1± 8.7 57.5± 3.0 71.2± 6.5 86.4± 7.6
WK 84.7±1.3 81.5±2.5 83.2± 0.8 81.0± 2.5 79.4± 4.7 85.0± 0.8

R
an

d. HC 11.5±0.6 24.1±1.5 9.1± 0.6 3.2± 1.3 15.8± 1.6 16.3± 1.2
HP 8.7±0.3 2.2±1.9 7.6± 0.8 7.3± 0.9 12.0± 10.0 20.4± 9.8
WK 1.4±1.9 4.3±7.9 6.0± 1.3 3.1± 1.0 2.5± 2.6 2.3± 2.0
Total 1010.0 930.3 908.5 956.5 1026.5 1102.1

A
nt

m
az

e

umaze 92.8± 2.7 73.0±4.9 0.0±0.0 49.8± 6.2 83.6 ±4.5 88.4 ± 3.6
umaze-d. 45.0± 22.2 43.8±4.4 9.6± 12.2 53.8± 13.0 43.2± 7.8 52.8±7.9
med.-p. 0.0± 0.0 9.0±6.4 0.0± 0.0 0.0± 0.0 77.0± 5.1 48.6±25.3
med.-d. 0.0± 0.0 3.8±4.2 0.0± 0.0 0.0± 0.0 56.8± 27.2 59.2±29.4
large-p. 0.0± 0.0 0.0±0.0 0.0± 0.0 0.0± 0.0 1.0± 1.3 5.2 ± 8.4
large-d. 0.0± 0.0 0.0±0.4 0.0± 0.0 0.0± 0.0 4.8± 9.6 6.6 ± 5.2
Total 137.8 129.6 9.6 103.6 266.4 260.8

stable manner as shown in Figure 2(b). Similarly, as shown in Figure 2(c), the policy learned by
AWAC often slows down around the point (0, 0) and fails to reach the goal. This behavior implies
that AWAC attempted to average over multiple modes of the distribution. By contrast, the policy
learned by V2AE successfully reaches one of the goals. As the main difference between AWAC
and V2AE is the policy architecture, this result shows that the unimodal policy distribution fails to
deal with the mutimodal data distribution, while a mixture policy employed in V2AE successfully
dealt with it. The activation of the sub-policies is visualized in Figure 2(e). The color indicates
the value of the discrete latent variable given by the gating policy z∗ = argmaxz Qw(s,µ(s, z)).
Figure 2(d) shows that different sub-policies are activated for different regions, which indicates that
V2AE appropriately divided the state-action space.

7.2 D4RL BENCHMARK TASKS

We evaluated the performance of the proposed method on the benchmarking tasks in D4RL. As base-
line methods, we used TD3+BC, CQL (Kumar et al., 2020), AWAC, and easyBCQ (Brandfonbrener
et al., 2021). EasyBCQ is a one-step RL version of Batch Constraint Q-learning (Fujimoto et al.,
2019). All the baseline methods use double-clipped Q-learning for the critic in this experiment. For
easyBCQ, the state normalization and double-clipped Q-learning are used in our implementation.
The implementation of AWAC and V2AE was identical to those in the previous experiment, and
the difference between AWAC and V2AE indicates the effect of the policy representation. In our
evaluation, |Z| = 8 was used for V2AE and infoV2AE. The effect of the dimensionality of the
discrete latent variable is shown in Appendix D. In this study, we evaluated the baseline methods
with antmaze-v0, Kitchen, Adroit, and mujoco-v2 tasks. For completeness, we provide the results
with the mujoco-v0 datasets in Appendix E.

Performance scores Comparisons with the baseline methods are shown in Tables 3 and 4. The
bold text indicates the best performance; the underlined text indicates the tasks for which V2AE
outperformed AWAC. In mujoco-v2 tasks, we can see that the performance of V2AE is compa-
rable/superior to the state-of-the-art methods on mujoco-v2 tasks. Regarding the comparison be-
tween V2AE and AWAC, the performance of V2AE matched or exceeded that of AWAC except
the Hopper-expert and Hopper-medium-expert tasks. This result also confirms that the use of a
mixture policy is beneficial for these tasks, although the benefits of using a mixture policy should
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Table 4: Results on Kitchen and Adroit tasks using the average normalized scores over the last 10
test episodes and five seeds.

TD3+BC CQL(ρ) easyBCQ AWAC V2AE infoV2AE
(re-run) (paper) (re-run) (ours) (ours) (ours)

K
itc

he
n complete 3.5 ± 7.0 31.3 17.0 ± 8.9 48.0± 14.4 59.0± 12.5 49.5± 16.2

mixed 0.0 ± 0.0 52.4 10.0 ± 5.7 55.0± 6.9 51.0± 9.8 39.5± 10.3
partial 0.0 ± 0.0 50.1 12.0 ± 11.4 38.0± 8.3 38.5 ±6.0 31.0± 4.6
Total 3.5 ± 7.0 133.8 39.0 ± 26.0 141.0 ± 29.6 148.5 ± 28.3 120± 31.1

H
um

an

pen 0.8 ± 8.0 55.8 68.7 ± 8.4 65.3± 20.4 86.1± 8.8 94.8± 16.5
hammer 0.9 ± 0.8 2.1 2.3 ± 2.4 1.7± 0.5 1.2± 0.2 2.4± 0.9
door -0.3 ± 0.0 9.1 3.4 ± 4.1 6.0± 4.2 1.3± 1.5 4.2± 3.1
relocate -0.3 ± 0.0 0.0 0.2 ± 0.3 0.0±0.0 0.0± 0.1 0.1± 0.0
Total 1.1 ± 8.8 67.0 74.6 ± 15.2 73.0 ± 25.1 88.6 ± 10.6 97.3 ± 20.5

C
lo

ne
d

pen 0.5 ± 7.0 40.3 59.9 ±29.7 17.7± 14.9 36.0± 17.7 46.4± 16.7
hammer 0.2 ± 0.0 5.7 0.4 ± 0.0 0.4± 0.0 0.8± 0.6 1.2±0.3
door -0.3 ± 0.0 3.5 0.0 ± 0.0 1.0± 1.2 0.0 ±0.0 0.8 ± 0.8
relocate -0.3 ± 0.0 -0.1 -0.3 ± 0.0 -0.2± 0.0 -0.2± 0.0 -0.2 ± 0.0
Total 0.1 ± 7.0 42.4 60.0 ± 29.7 18.9 ± 16.1 36.1 ± 18.3 48.2 ± 15.8

be task-dependent. Remarkably, our implementation of AWAC showed significantly better perfor-
mance than that reported by Nair et al. (2020) because we employed the double-clipped Q-learning
and state normalization. We provide the comparison between the original results of AWAC and ours
in Appendix F. In addition, infoV2AE, which employs the MI-based regularization, outperformed
V2AE on various tasks, and infoV2AE showed the best performance in terms of the sum of the over-
all scores on mujoco-v2. This result shows that encouraging the diversity of the sub-policies using
the proposed MI-based regularization is effective for V2AE. The advantage of V2AE and infoV2AE
over baseline methods is apparent for Antmaze tasks, which involve dealing with long horizons and
require “stitching” together sub-trajectories in a given dataset (Fu et al., 2020). TD3+BC, CQL,
easyBCQ, and AWAC did not work well on Antmaze tasks, and this result indicates that techniques
used in these algorithm are not effective for such tasks. As the difference between V2AE and AWAC
indicates the effect of different policy representations, the results indicate that the use of the mixture
policy improves the performance to deal with tasks that require stitching together sub-trajectories
in a given dataset. A comparison with additional baseline methods is provided in Appendix G. The
effect of the scaling parameter α in V2AE and infoV2AE is reported in Appendix H.

Critic loss function To investigate the effect of the policy structure on the critic loss function,
we compare the value of the critic loss function between AWAC and V2AE. In addition, to see
the differences between the discrete and continuous latent variables, we also evaluated a variant of
V2AE with the continuous latent variables, which we refer to as cV2AE. The normalized scores and
the value of the critic loss function during training are shown in Figure 3. The value of the critic
loss given by equation 13 is plotted for every 5,000 updates. The shaded area that indicates the
error bar of the critic loss is removed for cV2AE on walker2d-medium-expert-v2 because the critic
loss of cV2AE exploded. Previous studies indicated that the value of the critic loss can accumulate
over iterations (Brandfonbrener et al., 2021). Figure 3 shows the accumulation of the critic loss in
AWAC on the mujoco-v2 tasks. Importantly, in V2AE, the value of the critic loss is clearly lower,
and the performance of the policy is better than that in AWAC. Brandfonbrener et al. (2021) showed
that the accumulation of the critic loss can be reduced by introducing regularization. Since the
difference between AWAC and V2AE is the policy representation, our results indicate that the use
of the mixture policy can also mitigate the accumulation of the critic loss in offline RL. This result
suggests the importance of incorporating inductive bias in the policy structure. However, it is worth
noting that the reduction of the critic loss given by equation 13 does not necessarily lead to the
improved performance of the policy. In halfcheetah-medium-expert-v2, although the critic loss was
significantly lower in V2AE than that in AWAC, there was no significant difference in performance
between V2AE and AWAC. Recently, Fujimoto et al. (2022) indicated that a lower value of the
critic loss given by equation 13 does not necessarily lead to better performance, and the observation
in Fujimoto et al. (2022) fits with what we observed in our experiments. Regarding the use of the
continuous latent variable, while cV2AE often achieves lower values of the critic loss than AWAC,
the critic loss of cV2AE occasionally explodes. A possible explanation for these results may be that
learning the continuous latent variable provides flexibility to a policy representation but separate
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Figure 3: Critic loss and normalized score during the training.

z = 5z = 6z = 0z = 5

0 20 40 60 80 100

Figure 4: Visualization of the activation of sub-policies in the pen-human-v0 task. The top row
shows the state at the 20th, 40th, 60th, and 80th time steps; the graphs in the middle row show the
action-values of each of the sub-policies at each state.

modes of the objective function are still interpolated in the learned latent space, which results in
generating out-of-distribution samples. The performance of cV2AE on mujoco-v2 tasks is reported
in Appendix I, and more detailed results on the critic loss are provided in Appendix J.

Qualitative evaluation of the learned latent variable The activation of sub-policies in V2AE
on the pen-human-v0 task is shown in Figure 4. In Figure 4, the top row shows the state at the
20th, 40th, 60th, and 80th time steps; the graphs in the middle row of the figure show the action-
values of each of the sub-policies at each state, Qw(s,µ(s, z)). A previous study on the option
framework (Smith et al., 2018) reported that in the existing method only a few options are activated
and that the remainder of the options do not learn meaningful behaviors. In contrast, the results
in Figure 4 show that the value of each of the sub-policies Qw(s,µ(s, z)) changes over time, and
various sub-policies are activated during the execution. A figure showing the activation of sub-
policies in different episodes is provided in Appendix K.

8 CONCLUSION

We have proposed an algorithm, which we call Value-Weighted Variational Auto-Encoder (V2AE),
for training a mixture policy in offline RL. The V2AE algorithm can be interpreted as an approach
that divides the state-action space by learning the discrete latent variable and learns the correspond-
ing sub-policies in each region. Our experimental results show that the use of the mixture policy
can mitigate the issue of critic error accumulation in offline RL. In addition, the experimental results
also indicate that the use of the mixture policy significantly improves the performance of an offline
RL algorithm. We believe that our work represents an important step toward leveraging the policy
structure in offline RL.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the results, we will provide the codes by posting a comment directed
to the reviewers and area chairs and putting a link to an anonymous repository after the discussion
forums are opened. We also summarized how to implement the proposed method and its variants in
Section 6. More detailed descriptions of the implementation can be found in Appendix L. We used
open-sourced benchmark tasks in D4RL to ensure reproducibility.
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A APPLICABILITY OF THE GATING POLICY

In the proposed algorithm, we employ the gating policy that determines the value of the latent
variable as follows:

z = argmax
z′

Qw(s,µθ(s, z
′)), (16)

where µθ(s, z′) represents the deterministic sub-policy, and Qw(s,a) is the approximated Q-
function. While this gating policy looks specific to the case where Qπ(s,a) is maximized, this
gating policy is applicable to other objective function such as Aπ(s,a), exp(Qπ(s,a)), and
exp(Aπ(s,a)). The advantage function is defined as Aπ(s,a) = Qπ(s,a) − V π(s). As the
state value function V π(s) is independent from the action, we can obtain the following equation:

argmax
a

Qπ(s,a) = argmax
a

(Qπ(s,a)− V π(s)) (17)

= argmax
a

Aπ(s,a). (18)

Thus, we can rewrite the gating policy as

z = argmax
z′

Qw(s,µθ(s, z
′)) (19)

= argmax
z′

Aw(s,µθ(s, z
′)). (20)

Similarly, the exponential function exp(·) is the monotonically increasing function. Thus, the ex-
trema of Qπ(s,a) is also the extrema of exp(Qπ(s,a)). Thus, we can also rewrite the gating policy
as

z = argmax
z′

Qw(s,µθ(s, z
′)) (21)

= argmax
z′

exp (Qw(s,µθ(s, z
′))) (22)

= argmax
z′

Aw(s,µθ(s, z
′)) (23)

= argmax
z′

exp (Aw(s,µθ(s, z
′))) . (24)

As the latent variable is discrete, we can analytically compute argmaxz′ Qw(s,µθ(s, z
′)). As we

used this gating policy, the gating policy is deterministic in our implementation.

B DERIVATION OF THE VARIATIONAL LOWER BOUND

We employed the variational lower bound in equation 7 to derive the objective function for the
proposed method. We provide the detailed derivation, which was omitted in the main manuscript
due to the page limitation. We denote by p(·) the true distribution induced by the policy πθ(a|s),
and the distribution that approximates the true distribution is denoted by q(·). The KL divergence
between q(x) and p(x) is defined as

DKL

(
q(x)||p(x)

)
=

∫
q(x) log

q(x)

p(x)
dz. (25)

Based on the above notation, the log-likelihood log πθ(ai|si) can be written as follows:

log πθ(ai|si) =
∫

qϕ(z|si,ai) log πθ(ai|si)dz (26)

=

∫
qϕ(z|si,ai)

(
log π(ai|si, z) + log p(z|si)− log p(z|si,ai)

)
dz (27)

=

∫
qϕ(z|si,ai) log

q(z|si,ai)

p(z|si,ai)
dz −

∫
q(z|si,ai) log

q(z|si,ai)

p(z|si)
dz (28)

+

∫
q(z|si,ai) log πθ(ai|si, z)dz (29)

= DKL

(
q(z|si,ai)||p(z|si,ai)

)
−DKL(q(z|si,ai)||p(z|si))

+ Ez∼q(z|si,ai)) [log πθ(ai|si, z)] . (30)
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Table 5: Effect of the dimensionality of the discrete latent variable on Adroit tasks.
infoV2AE infoV2AE infoV2AE infoV2AE
|Z| = 4 |Z| = 8 |Z| = 16 |Z| = 32

pen-human-v0 75.7 ± 18.9 94.8 ± 16.5 75.0 ± 17.5 86.7 ± 12.4
kitchen-complete-v0 30.0 ± 13.5 35.5 ± 29.7 49.5 ± 16.2 42.5 ± 20.8
walker2d-expert-v2 99.7±17.9 112.1±0.4 108.8±6.8 106.4±10.2
walker2d-medium-expert-v2 89.1±25.7 110.1±0.7 96.0±17.0 109.9±0.6
walker2d-medium-replay-v2 81.6±4.5 86.7±3.2 85.4±3.7 86.3±3.1
walker2d-medium-v2 81.8±2.5 85.0±0.8 69.9±28.3 84.3±1.0

In the first line, we consider the marginalization over z. As log π(a|s) is independent from the latent
variable z, the equality in the first line holds. As DKL

(
q(z|s,a)||p(z|s,a)

)
> 0, we can obtain a

variant of the variational lower bound of the conditional log-likelihood:

log πθ(ai|si) ≥ −DKL(qϕ(z|si,ai)||p(z|si)) + Ez∼q(z|si,ai)) [log πθ(ai|si, z)] . (31)

C PROOF OF THE CONTRACTION OF THE LATENT-MAX-Q OPERATOR

We consider the operator Tz , which is given by

TzQ(s,a) = Es′
[
r(s,a) + γmax

z
Q(s′,µ(s′, z′))

]
. (32)

To prove the contraction of Tz , we use the infinity norm given by

∥Q1 −Q2∥∞ = max
s∈S,a∈A

|Q1(s,a)−Q2(s,a)| , (33)

where Q1 and Q2 are different estimates of the Q-function. We consider the infinity norm of the
difference between these two estimates, Q1 and Q2, after applying the operator Tz:

∥TzQ1 − TzQ2∥∞ (34)

=
∣∣∣Es′ [r(s,a) + γmax

z′
Q1(s

′,µ(s′, z′))
]
− Es′

[
r(s,a) + γmax

z′
Q2(s

′,µ(s′, z′))
]∣∣∣ (35)

=
∣∣∣γEs′ [max

z′
Q1(s

′,µ(s′, z′))
]
− γEs′

[
max
z′

Q2(s
′,µ(s′, z′))

]∣∣∣ (36)

= γ
∣∣∣Es′ [max

z′
Q1(s

′,µ(s′, z′))
]
− Es′

[
max
z′

Q2(s
′,µ(s′, z′))

]∣∣∣ (37)

= γ
∣∣∣Es′ [max

z′
Q1(s

′,µ(s′, z′))−max
z′

Q2(s
′,µ(s′, z′))

]∣∣∣ (38)

≤ γ |Es′ ∥Q1 −Q2∥∞| (39)
≤ γ ∥Q1 −Q2∥∞ . (40)

The above relationship shows the contraction of the operator Tz .

D EFFECT OF THE DIMENSIONALITY OF THE DISCRETE LATENT VARIABLE

In our evaluation, we first evaluated the effect of the dimensionality of the discrete latent variable.
The results are shown in Table 5. As |Z| = 8 consistently showed satisfactory performance, |Z| = 8
was used in the subsequent evaluations.

As shown, infoV2AE with |Z| = 8 demonstrated the best performance, while the performance with
|Z| = 16 and |Z| = 32 is comparable. These results show that the performance of the policy
is not so sensitive to the dimensionality of the latent varialbe. However, the performance with
|Z| = 4 is relatively weak, and it indicates that the policy may not be expressive enough when the
dimensionality of the latent varialbe is too small.
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Table 6: Results on Mujoco tasks using D4RL-v0 datasets. The average normalized scores after 1
million time steps over the last 10 test episodes and five seeds are shown. HC = HalfCheetah, HP =
Hopper, WK = Walker2d, Med.-E = Mediaum-Expert, Med.-R = Medium-Replay, Med.=Medium,
and Rand.=Random. The bold text indicates the best performance; the underlined text indicates the
tasks for which V2AE outperformed AWAC. |Z| = 8 for V2AE.

TD3+BC CQL easyBCQ AWAC V2AE
(re-run) (re-run) (ours) (ours) (ours)

E
xp

er
t HC 104.9 ± 2.9 95.9±8.9 101.8± 0.8 107.3± 0.3 103.9± 1.9

HP 112.1 ± 0.3 112.4±0.4 108.4 ± 1.8 112.0± 0.2 112.2± 0.2
WK 105.8 ± 2.1 87.8 ± 31.1 83.1 ± 19.3 104.4± 3.2 105.5± 3.7

M
ed

.-E HC 102.3 ± 3.8 23.8 ± 12.4 41.2± 1.8 101.7± 4.9 83.9± 20.4
HP 111.9 ± 0.1 112.3 ± 1.0 103.7 ± 13.5 111.9± 0.1 112.2± 0.1
WK 96.7 ± 21.7 100.6 ± 11.2 93.4 ± 10.2 101.7± 7.3 103.3± 2.5

M
ed

.-R HC 43.4 ± 0.3 45.3 ± 0.4 45.2± 1.4 40.7± 0.3 42.6± 0.4
HP 33.5 ± 3.9 29.8 ± 2.8 32.2 ± 2.0 27.7± 1.3 32.0± 4.8
WK 14.1 ± 4.0 16.7 ± 4.0 16.8 ± 1.6 13.9± 2.0 17.3± 2.4

M
ed

. HC 43.7 ± 0.4 40.7±0.6 43.5± 0.6 40.0± 0.4 41.9± 0.3
HP 99.8 ± 0.3 47.0±26.0 37.4 ± 10.0 30.2± 0.3 57.9± 25.6
WK 81.4 ± 1.0 69.3±24.1 78.5 ± 0.7 53.8± 9.9 62.0± 13.4

R
an

d. HC 13.0 ± 0.4 28.5± 1.7 8.4± 0.5 2.5± 0.3 17.1± 1.2
HP 11.0 ± 0.1 10.7±0.1 11.6 ± 0.2 10.6± 0.1 11.5± 0.5
WK 1.3 ± 1.2 1.5±3.2 5.2 ± 0.2 3.2± 1.7 2.0± 2.5

E PERFORMANCE ON D4RL-V0 DATASETS

As reported in (Fujimoto & Gu, 2021), there is a non-negligible difference when using the D4RL-
v2 and D4RL-v0 datasets. Having presented our results using D4RL-v2 datasets in the main
manuscript, we here show the results using D4RL-v0 datasets in Table 6. For CQL, we show the
results obtained by re-running the codes given in the website1. We performed the experiments with
our implementations of easyBCQ and AWAC. The results were mixed, and it is difficult to identify
the best algorithm for the MuJoCo tasks with the D4RL-v0 datasets. However, we can see that the
performance of V2AE was comparable to the state-of-the-art methods on the MuJoCo tasks with the
D4RL-v0 datasets. Especially, compared to the baseline methods, the performance of V2AE con-
sistently matched or exceeded the performance of the other methods on datasets containing expert
demonstrations, e.g., *-expert and *-medium-expert.

F PERFORMANCE OF AWAC

We used two techniques in our implementation of AWAC, which are not used in the original pa-
per of AWAC (Nair et al., 2020): 1) state normalization proposed in (Fujimoto & Gu, 2021) and
2) normalization of the advantage function in equation 15. We provide the comparison between
the performance of our implementation of AWAC and the performance reported in the original pa-
per (Nair et al., 2020). Our experiments show that our implementation significantly outperformed
the results reported in the original paper of AWAC.

G COMPARISON WITH ADDITIONAL BASELINES

We provide comparison with additional baselines on mujoco-v2 tasks in D4RL in Table 8. We
show the results of MAPLE, which is a recent model-based offline algorithm using latent represen-
tations (Chen et al., 2021b). In addition, we show the results of Decision Transformer (Chen et al.,
2021a), as a representative of transformer-based methods. We also included Implicit Q-learning
(IQL), which employs expectile regression for learning the Q-function Kostrikov et al. (2022). While
these methods are well-known and state-of-the-art, we omit them in the main manuscript due to the
page limitation, and we focused on methods that use double-clipped Q-learning for the critic in the

1https://github.com/aviralkumar2907/CQL
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Table 7: Comparison of AWAC implementations on Mujoco tasks using D4RL-v0 datasets. The
average normalized scores after 1 million time steps over the last 10 test episodes and five seeds are
shown. The bold text indicates the tasks for which the performance of our implemnetation of AWAC
exceeded the that of AWAC reported in the original paper (Nair et al., 2020). HC = HalfCheetah,
HP = Hopper, WK = Walker2d.

AWAC AWAC
(paper) (ours)

E
xp

er
t HC 78.5 107.3± 0.3

HP 85.2 112.0± 0.2
WK 57.0 104.4± 3.2

M
ed

.-E HC 36.8 101.7± 4.9
HP 80.9 111.9± 0.1
WK 42.7 101.7± 7.3

M
ed

.-R HC - 40.7± 0.3
HP - 27.7± 1.3
WK - 13.9± 2.0

M
ed

. HC 37.4 40.0± 0.4
HP 72.0 30.2± 0.3
WK 30.1 53.8± 9.9

R
an

d. HC 2.2 2.5± 0.3
HP 9.6 10.6± 0.1
WK 5.1 3.2± 1.7

Table 8: Results on MuJoCo tasks using D4RL-v2 datasets. Average normalized scores over the last
10 test episodes and five seeds are shown. HC = HalfCheetah, HP = Hopper, WK = Walker2d. The
gray text indicates the performance lower than that of V2AE/infoV2AE. The bold text indicates the
best performance.

MAPLE Decision IQL V2AE infoV2AE
Transformer

(paper) (paper) (paper) (ours) (ours)

M
ed

.-E HC 63.5 ± 6.5 86.8 ± 1.3 86.7 91.1± 3.4 91.4± 2.5
HP 42.5 ± 4.1 107.6 ± 1.8 91.5 78.4± 19.0 94.5±14.9
WK 73.8 ± 8.0 108.1 ± 0.2 109.6 109.9± 0.4 110.1± 0.7

M
ed

.-R HC 59.0 ± 0.6 36.6 ± 0.8 44.2 45.2± 0.8 46.7± 0.6
HP 87.5 ± 10.8 82.7 ± 7.0 94.7 89.2± 8.1 98.5± 2.0
WK 76.7 ± 3.8 66.6 ± 3.0 73.9 82.1± 3.8 86.7± 3.2

M
ed

. HC 50.4 ± 1.9 42.6 ± 0.1 47.4 47.5± 0.4 48.6± 0.4
HP 21.1 ± 1.2 67.6 ± 1.0 66.3 71.2± 6.5 86.4± 7.6
WK 56.3 ± 10.6 74.0 ± 1.4 78.3 79.4± 4.7 85.0± 0.8

main manuscript. For each baseline methods, we adapted the results reported in the original paper.
V2AE and infoV2AE show performance consistently better than or comparable to these baseline
methods, although our implementation of V2AE and infoV2AE do not employ techniques such as
ensemble of critics. This result indicates the significant effect on the policy structure in offline RL.

G.1 COMPARISON WITH AWAC USING A GAUSSIAN MIXTURE POLICY

We also provide the comparison with AWAC with a Gaussian mixture policy in Table 9. Overall,
the use of the Gaussian mixture policy does not improve the performance of AWAC. A recent study
by Chen et al. (2022) indicates that the use of the Gaussian mixture policy does not improve the
performance of AWAC. When a Gaussian mixture policy is employed, a Gaussian component that
covers a large part of the state space often appears, and it governs the resulting performance. This
behavior is also often observed in the context of the option critic for online RL (see Smith et al.
(2018)). If that happens, we cannot exploit the discrete latent variable.

By contrast, we employed a mixture of deterministic policies, not a mixture of the Gaussian policies.
Unlike a Gaussian policy, a deterministic policy can be seen as a distribution given by the dirac-delta
function, which is the limit of the Gaussian as the standard deviation goes zero. When we use the
mixture of deterministic policies, we will not have a component that covers the large state space.
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Table 9: Comparison with AWAC with a Gaussian mixture policy (mixAWAC) using D4RL-v2
datasets. Average normalized scores over the last 10 test episodes and five seeds are shown. The
bold text indicates the best performance.

mixAWAC AWAC V2AE infoV2AE

E
xp

er
t HalfCheetah 94.0±0.5 94.8± 0.2 97.0± 1.0 95.6± 2.0

Hopper 111.8±0.8 109.8± 2.9 93.6± 15.1 107.5± 2.9
Walker2d 110.5±0.3 111.0± 0.2 111.4± 0.3 112.1± 0.4

M
ed

.-E HalfCheetah 92.1±0.6 92.7± 0.8 91.1± 3.4 91.4± 2.5
Hopper 102.0±17.5 98.6± 10.7 78.4± 19.0 94.5±14.9
Walker2d 109.1±0.3 109.2± 0.3 109.9± 0.4 110.1± 0.7

M
ed

.-R HalfCheetah 41.5±0.4 40.9± 0.6 45.2± 0.8 46.7± 0.6
Hopper 41.2±4.7 38.2± 9.4 89.2± 8.1 98.5± 2.0
Walker2d 67.7±8.8 65.0± 15.7 82.1± 3.8 86.7± 3.2

M
ed

. HalfCheetah 45.1±0.3 44.3± 0.2 47.5± 0.4 48.6± 0.4
Hopper 57.2±3.9 57.5± 3.0 71.2± 6.5 86.4± 7.6
Walker2d 78.7 ± 4.8 81.0± 2.5 79.4± 4.7 85.0± 0.8

R
an

d. HalfCheetah 2.2±0.0 3.2± 1.3 15.8± 1.6 16.3± 1.2
Hopper 8.2±0.2 7.3± 0.9 12.0± 10.0 20.4± 9.8
Walker2d 4.9±1.1 3.1± 1.0 2.5± 2.6 2.3± 2.0

A
nt

m
az

e

umaze-v0 57.4±6.2 49.8±6.2 83.6±4.5 88.4±3.6
umaze-diverse-v0 46.8±6.9 53.8±13.0 43.2± 7.8 52.8±7.9
medium-play-v0 0.0± 0.0 0.0±0.0 77.0±5.1 48.6±25.3
medium-diverse-v0 0.0± 0.0 0.0±0.0 56.8±27.2 59.2±29.4
large-play-v0 0.0± 0.0 0.0± 0.0 1.0±1.3 5.2± 8.4
large-diverse-v0 0.0± 0.0 0.0± 0.0 4.8±9.6 6.6± 5.2

The use of the mixture of deterministic policies allows us to distribute each component separately,
and we can exploit the benefit of the discrete latent variable. In addition, we also leverage the vari-
ational lower bound to incorporate the prior distribution of the latent variable, which enables us to
obtain meaningful latent representations. These are the reasons why our methods clearly outper-
formed AWAC, while simply using the Gaussian mixture policy does not improve the performance
of AWAC.

G.2 COMPARISON WITH LAPO

Recently, Chen et al. (2022) proposed an algorithm, Latent-variable Advantage-weighted Policy
Optimization (LAPO), which leverage the continuous latent space for policy learning. As the
approach is related to our method V2AE, we provide the detailed comparison in this section.
We found that the authors’ implementation of LAPO in https://github.com/pcchenxi/
LAPO-offlienRL includes techniques to improve the performance, such as action normalization
and clipping of the target value for the state-value function. Such techniques are compatible with
V2AE and our baseline methods, but they are not incorporated in our experiments. For this reason,
we first evaluated LAPO without these techniques, which we refer to as LAPO-.

The results are reported in Table 10. Overall, V2AE and infoV2AE outperformed LAPO on mujoco-
v2 tasks and Antmaze-v0 tasks. While our method V2AE leverages the discrete latent space, LAPO
uses the continuous latent space. In this sense, LAPO is closer to cV2AE, which is a variant of V2AE
that uses the continuous latent space. In the main manuscript, we showed that the critic loss value
often explodes during the training of cV2AE. Similarly, the critic log value increases rapidly at the
beginning of the training in LAPO, as shown in Figure 5. While the critic log value often decreases
at the end of the training of LAPO, the critic loss value is still higher than that of V2AE. As the
performance of the policy is better in V2AE in these tasks, the surge of the critic loss value indicates
the generation of the out-of-distribution actions during the training in LAPO. These results support
our observations in the main manuscript and indicate that the use of the discrete latent variable is
effective to reduce the generation of the out-of-distribution actions.

G.3 COMPARISON WITH IQL AND LAPO ON ANTMAZE

As the Antmaze tasks are considered as challenging tasks on offline RL, we provide detailed results
on the Antmaze tasks in this section. As we found that a few techniques used in LAPO are essential
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Table 10: Comparison with AWAC with a Gaussian mixture policy (mixAWAC) using D4RL-v2
datasets. Average normalized scores over the last 10 test episodes and five seeds are shown. The
bold text indicates the best performance.

LAPO- V2AE infoV2AE

E
xp

er
t HalfCheetah 94.9±0.2 97.0± 1.0 95.6± 2.0

Hopper 111.4±0.6 93.6± 15.1 107.5± 2.9
Walker2d 111.1±0.2 111.4± 0.3 112.1± 0.4

M
ed

.-E HalfCheetah 94.2±0.4 91.1± 3.4 91.4± 2.5
Hopper 110.9±1.0 78.4± 19.0 94.5±14.9
Walker2d 110.4±0.1 109.9± 0.4 110.1± 0.7

M
ed

.-R HalfCheetah 40.7±1.9 45.2± 0.8 46.7± 0.6
Hopper 52.6±11.3 89.2± 8.1 98.5± 2.0
Walker2d 60.1±11.7 82.1± 3.8 86.7± 3.2

M
ed

. HalfCheetah 45.5±0.2 47.5± 0.4 48.6± 0.4
Hopper 51.8±3.6 71.2± 6.5 86.4± 7.6
Walker2d 77.7±3.5 79.4± 4.7 85.0± 0.8

R
an

d. HalfCheetah 2.3±0.3 15.8± 1.6 16.3± 1.2
Hopper 21.8±11.3 12.0± 10.0 20.4± 9.8
Walker2d 5.6±3.1 2.5± 2.6 2.3± 2.0

A
nt

m
az

e

umaze-v0 76.4±3.3 83.6±4.5 88.4±3.6
umaze-diverse-v0 56.6±8.6 43.2± 7.8 52.8±7.9
medium-play-v0 0.8±1.6 77.0±5.1 48.6±25.3
medium-diverse-v0 0.0±0.0 56.8±27.2 59.2±29.4
large-play-v0 0.0±0.0 1.0±1.3 5.2± 8.4
large-diverse-v0 0.0±0.0 4.8±9.6 6.6± 5.2
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Figure 5: Critic loss and normalized score during training on mujoco-v2 locomotion tasks.

to reproduce the results in Chen et al. (2022), we also evaluated variants of V2AE, which incorporate
such techniques. In methods named like ”xx lapo”, the techniques used in LAPO Chen et al. (2022)
are incorporated. We summarized the techniques/differences as below:

• computation of the target value as Qtarget = 0.7min(Q1, Q2) + 0.3max(Q1, Q2)

• target value clipping vtarget = min(max(vtarget, vmin), vmax)

• reward scaling r ← r × 100

• network architecture: three hidden layers with 256 units, learning rate: 2e-4

For target value clipping, vmin and vmax are computed as vmin = minD r · 1
1−γ and vmax = maxD r ·

1
1−γ , respectively. In LAPO-, IQL, V2AE, infoV2AE, we used the reward r ← r− 1, following the
protocol used in the original IQL paper. While action normalization is used in LAPO, we found that
the action normalization does not improve the performance of IQL and V2AE. Therefore, action
normalization is used only in LAPO in our results. In the table below, LAPO- shows LAPO without
these techniques, although the network architecture is the same as the original LAPO. “IQL (re-
run)” indicates the results of re-running IQL in our code base, which fairly reproduced the results
reported in the original IQL paper. “V2AE” shows the result reported in our main manuscript.
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Table 11: Comparison with IQL on Antmaze tasks. Average normalized scores over the last 100 test
episodes and five seeds are shown. The bold text indicates the best performance.

IQL IQL lapo V2AE V2AE lapo infoV2AE infoV2AE lapo
(re-run)

umaze-v0 87.4±4.5 87.2±2.8 83.6 ±4.5 92.8±2.1 88.4±3.6 89.4±5.1
umaze-diverse-v0 64.6±5.6 54.0±13.4 43.2± 7.8 32.6±25.8 52.8±7.9 34.8±18.0
medium-play-v0 74.6±3.1 64.0±9.5 77.0± 5.1 63.0±13.0 48.6±25.3 62.6±6.8
medium-diverse-v0 73.8±7.1 54.8±8.6 56.8± 27.2 75.0±8.5 59.2±29.4 82.8±4.4
large-play-v0 39.0±7.2 20.4±11.0 1.0± 1.3 42.2±23.0 5.2±8.4 47.4±14.5
large-diverse-v0 48.0±9.0 17.0±4.2 4.8± 9.6 56.6±4.5 6.6±5.2 38.0±4.8

Table 12: Comparison with LAPO on Antmaze tasks. Average normalized scores over the last 100
test episodes and five seeds are shown. The bold text indicates the best performance.

LAPO- LAPO V2AE V2AE lapo infoV2AE infoV2AE lapo
(re-run)

umaze-v0 76.4±3.3 97.8±1.3 83.6 ±4.5 92.8±2.1 88.4±3.6 89.4±5.1
umaze-diverse-v0 56.6±8.6 52.4±20.5 43.2± 7.8 32.6±25.8 52.8±7.9 34.8±18.0
medium-play-v0 0.8±1.6 64.2±5.3 77.0± 5.1 63.0±13.0 48.6±25.3 62.6±6.8
medium-diverse-v0 0.0±0.0 69.4±12.8 56.8± 27.2 75.0±8.5 59.2±29.4 82.8±4.4
large-play-v0 0.0±0.0 12.4±16.9 1.0± 1.3 42.2±23.0 5.2±8.4 47.4±14.5
large-diverse-v0 0.0±0.0 18.2±16.1 4.8± 9.6 56.6±4.5 6.6±5.2 38.0±4.8

In Tables 11 and 12, we reported the results across five different seeds with 100 test episodes after
1 million updates. Regarding LAPO, we could not reproduce the results reported in the paper,
which may be due to the difference of the experiment procedure. In the original paper (Chen et al.,
2022), the methods are evaluated across three random seeds with 10 test episodes. When using the
techniques used in LAPO, the overall performance of V2AE and infoV2AE was better than that of
LAPO. While LAPO nicely showed how to leverage the latent space for offline RL, LAPO does not
utilize the discrete latent space. The difference in performance between LAPO and our methods
shows the benefit of leveraging the discrete latent variable.

Regarding IQL, we could fairly reproduce the performance reported in Kostrikov et al. (2022). In-
terestingly, the techniques used in LAPO did not improve the performance of IQL. When using the
techniques used in LAPO, the overall performance of V2AE and infoV2AE was better or compa-
rable to IQL. This result shows that incorporating the policy structure can achieve the performance
achieved by using the state-of-the-art algorithm for the critic.

H EFFECT OF THE SCALING PARAMETER

To investigate the effect of the value of α in equation 15, we evaluated the performance of V2AE and
infoV2AE with α = 5.0 and α = 10.0. The results are shown in Table 13. Except hopper-medium-
expert-v2, results with α = 10.0 are better than those with α = 5.0. In the main manuscript, we
report the result of α = 5.0 for infoV2AE on hopper-medium-expert-v2, α = 10.0 for the rest of
the mujoco-v2 tasks.

I PERFORMANCE OF CV2AE

We provide the performance of cV2AE, which is a variant of V2AE with the continuous latent
variable, on mujoco-v2 tasks in Table 14. cV2AE outperformed AWAC in terms of the sum of the
score across the tasks. However, overall performance is lower than V2AE and infoV2AE. In cV2AE,
a policy is more flexible and expressive than a Gaussian policy, which resulted in performance better
than AWAC. Meanwhile, the continuous latent space still interpolates the separate modes of the
multimodal distribution in cV2AE, and it will result in generating the out-of-distribution actions
in offline RL. We think that is the reason why V2AE with the discrete latent variable outperforms
cV2AE with the continuous latent variable.
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Table 13: Results on mujoco tasks using D4RL-v2 datasets with different values of α in equation 15.
Average normalized scores over the last 10 test episodes and five seeds are shown. HC = HalfChee-
tah, HP = Hopper, WK = Walker2d.

V2AE V2AE infoV2AE infoV2AE
α = 5.0 α = 10.0 α = 5.0 α = 10.0

E
xp

er
t HC 95.9±1.0 97.0± 1.0 95.8±0.8 95.6± 2.0

HP 99.6±7.5 93.6± 15.1 105.9±12.1 107.5± 2.9
WK 111.3±0.1 111.4± 0.3 106.1±10.0 112.1± 0.4

M
ed

.-E HC 92.1±1.8 91.1± 3.4 92.1 ± 1.1 91.4± 2.5
HP 74.6±19.3 78.4± 19.0 94.5±14.9 61.7± 29.2
WK 109.3±0.5 109.9± 0.4 109.1±0.5 110.1± 0.7

M
ed

.-R HC 44.9±0.2 45.2± 0.8 44.7±0.5 46.7± 0.6
HP 83.5±17.7 89.2± 8.1 83.2±17.2 98.5± 2.0
WK 78.6±8.9 82.1± 3.8 77.8±3.5 86.7± 3.2

M
ed

. HC 46.4± 0.4 47.5± 0.4 46.5±0.3 48.6± 0.4
HP 67.0±4.0 71.2± 6.5 66.2±5.5 86.4± 7.6
WK 81.2±2.9 79.4± 4.7 81.6±2.0 85.0± 0.8

R
an

d. HC 14.8±2.1 15.8± 1.6 12.2±1.1 16.3± 1.2
HP 12.2±9.5 12.0± 10.0 15.7±10.0 20.4± 9.8
WK 1.9±2.2 2.5± 2.6 2.3±1.8 2.3± 2.0
Total 1013.3 1026.5 1033.7 1069.3

Table 14: Results on mujoco tasks using D4RL-v2 datasets and AntMaze tasks. Average normalized
scores over the last 10 test episodes and five seeds are shown. HC = HalfCheetah, HP = Hopper,
WK = Walker2d.

AWAC cV2AE V2AE infoV2AE

E
xp

er
t HC 94.8± 0.2 95.8±0.8 97.0± 1.0 95.6± 2.0

HP 109.8± 2.9 109.2±2.4 93.6± 15.1 107.5± 2.9
WK 111.0± 0.2 102.1±12.7 111.4± 0.3 112.1± 0.4

M
ed

.-E HC 92.7± 0.8 92.4±3.4 91.1± 3.4 91.4± 2.5
HP 98.6± 10.7 59.8±22.8 78.4± 19.0 94.5±14.9
WK 109.2± 0.3 73.4±45.6 109.9± 0.4 110.1± 0.7

M
ed

.-R HC 40.9± 0.6 44.3±0.3 45.2± 0.8 46.7± 0.6
HP 38.2± 9.4 98.9±2.3 89.2± 8.1 98.5± 2.0
WK 65.0± 15.7 87.6±1.6 82.1± 3.8 86.7± 3.2

M
ed

. HC 44.3± 0.2 47.2±0.1 47.5± 0.4 48.6± 0.4
HP 57.5± 3.0 75.0±5.8 71.2± 6.5 86.4± 7.6
WK 81.0± 2.5 83.8±1.2 79.4± 4.7 85.0± 0.8

R
an

d. HC 3.2± 1.3 20.6±0.6 15.8± 1.6 16.3± 1.2
HP 7.3± 0.9 16.4±8.9 12.0± 10.0 20.4± 9.8
WK 3.1± 1.0 -0.2±0.1 2.5± 2.6 2.3± 2.0
Total 956.5 1009.0 1026.5 1102.1

J THE CRITIC LOSS AND NORMALIZED SCORE IN MUJOCO TASKS

We show the critic loss and the normalized scores for MuJoCo tasks in Figures 6–8. The critic
loss in V2AE is comparable to or lower than that of AWAC in MuJoCo tasks. However, there are
exceptions, such as hopper-expert-v2 and hopper-medium-expert-v2, where the critic loss surges
in V2AE but not in AWAC. Thus, it is necessary to be aware that the use of the mixture policy
may compound the accumulation of the critic error in some rare cases, while the use of the mixture
policy often mitigates the accumulation of the critic error for many tasks. Regarding the use of
the continuous latent variable, while cV2AE often achieves the lower values of the critic loss than
AWAC, the critic loss of cV2AE occasionally explodes. A possible explanation for these results
may be that learning the continuous latent variable can provide flexibility to a policy representation
but separate modes of the objective function is still interpolated in the learned latent space, which
results in generating out-of-distribution samples.
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Figure 6: Critic loss and normalized score during training on HalfCheetah tasks.
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Figure 7: Critic loss and normalized score during training on hopper tasks.

K ADDITIONAL RESULTS FOR THE ACTIVATION OF THE
LATENT-CONDITIONED POLICY

Figure 9 shows the activation of sub-policies in V2AE on the pen-human-v0 task in three episodes.
Here, we used the same policy trained with 10,000 updates. As shown, the target orientation of
the object is different in each episode, and different sub-policies are activated to achieve the given
goals. The sub-policy corresponding to z = 7 (yellow) is often activated during 20-40 steps. We

0.25 0.50 0.75 1.00
Time steps (1e6)

0.0

0.5

1.0

No
rm

al
ize

d 
sc

or
e

walker2d-medium-v2

AWAC
cV2AE
V2AE

0.25 0.50 0.75 1.00
Time steps (1e6)

0.0

0.5

1.0

No
rm

al
ize

d 
sc

or
e

walker2d-medium-replay-v2

AWAC
cV2AE
V2AE

0.25 0.50 0.75 1.00
Time steps (1e6)

0.5

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
sc

or
e

walker2d-medium-expert-v2

AWAC
cV2AE
V2AE

0.25 0.50 0.75 1.00
Time steps (1e6)

0.5

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
sc

or
e

walker2d-expert-v2

AWAC
cV2AE
V2AE

0.25 0.50 0.75 1.00
Time steps (1e6)

0

100

Cr
iti

c 
lo

ss

walker2d-medium-v2

0.25 0.50 0.75 1.00
Time steps (1e6)

0

20

40

60

Cr
iti

c 
lo

ss

walker2d-medium-replay-v2

0.25 0.50 0.75 1.00
Time steps (1e6)

0.5

0.0

0.5

1.0

Cr
iti

c 
lo

ss

1e12walker2d-medium-expert-v2

0.25 0.50 0.75 1.00
Time steps (1e6)

0

500

1000

Cr
iti

c 
lo

ss

walker2d-expert-v2

Figure 8: Critic loss and normalized score during training on walker2d tasks.
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think that the sub-policy corresponding to z = 7 is effective for changing the orientation of the pen
in this task. On the contrary, the sub-policies corresponding to z = 0, 1, 2 are not activated in many
episodes. We think that these sub-policies correspond to the state-action pairs with low Q-values. In
Offline RL, a given dataset often contains the mixed quality of the behavior, and it is not effective
to reproduce all the behavior. Rather, the behaviors correspond to the low scores should be ignored.
We think that the proposed algorithm can implicitly achieve this by dividing the state-action space
and investigate the quality of the sub-policies corresponding to each region. This qualitative result
supports the claim that the different behaviors are encoded in each of the sub-policies.

A visualization of the state-action pairs and the corresponding value of the latent variable on the
kitchen-complete-v0 task is provided in Figure 10. We also show the histogram of the activated
sub-policies in Figure 11 and the activation of sub-policies in a successful episode on the kitchen-
complete-v0 task in Figure 12.

L HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Computational resource and license The experiments were run with Amazon Web Service and
workstations with NVIDIA RTX 3090 GPU and Intel Core i9-10980XE CPU at 3.0GHz. We used
the physics simulator MuJoCo (Todorov et al., 2012) under the institutional license, and later we
switched to the Apache license.

Software The software versions used in the experiments are listed below:

• Python 3.8
• Pytorch 1.10.0
• Gym 0.21.0
• MuJoCo 2.1.0
• mujoco-py 2.1.2.14

We used the author implementations for TD3+BC2, CQL, and EDAC3. For mujoco-v2 and Antmaze
tasks, we used the updated CQL implementation4. For mujoco-v0, Kitchen and Adroit tasks, we
used the original CQL implementation5. For a fair comparison with V2AE, we implemented easy-
BCQ and AWAC ourselves. For easyBCQ, we used the hyperparameters used in the author-provided
implementation6. We implemented V2AE and AWAC based on the the author-provided implemen-
tation of TD3. In our implementation of easyBCQ and AWAC, double-clipped Q-learning was
employed. To minimize the difference between V2AE and AWAC, we also used a delayed update
of the policy in both V2AE and AWAC. For simplicity, we did not use a regularization technique
for the actor such as the dropout layer used in (Kostrikov et al., 2022), although the use of such
techniques should further improve performance. In our implementation of V2AE, the value of z is
a part of the input to the actor network. Thus, the different behaviors corresponding to the different
values of z are represented by the same actor network.

Computation of the advantage function In V2AE, a policy is deterministic, as both the gating
policy π(z|s) and sub-policy π(a|s, z) are deterministic. Thus, the state-value function is given by

V π(s) = max
z

Qπ(s,µ(s, z)). (41)

Therefore, the advantage function is given by
Aπ(s,a) = Qπ(s,a)− V π(s) = Qπ(s,a)−max

z
Qπ(s,µ(s, z)). (42)

In the update of the policy, we used the target actor in the second term in equation 42. Thus, in our
implementation, the advantage function is approximated with

A(s,a;w,θ′) = Q(s,a;w)−max
z

Q(s,µθ′(s, z);w). (43)
2https://github.com/sfujim/TD3_BC
3https://github.com/snu-mllab/EDAC
4https://github.com/young-geng/CQL
5https://github.com/aviralkumar2907/CQL
6https://github.com/davidbrandfonbrener/onestep-rl
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Figure 9: Visualization of activation of sub-policies in the pen-human-v0 task. The top row shows
the state at the 20th, 40th, 60th, and 80th time steps; the graphs in the middle row show the action-
values of each of the sub-policies at each state.

Target smoothing in V2AE In V2AE, a policy is given by a mixture of deterministic sub-policies,
where a sub-policy is selected in a deterministic manner, as in equation 3. Thus, the mixture policy
in our framework is deterministic. As reported by Fujimoto & Gu (2021), the use of a deterministic
policy may lead to an overfitting of the critic to the narrow peaks. Since our policy is deterministic,
we also employed a technique called target policy smoothing used in TD3. Thus, the target value in
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Figure 10: Visualization of state-action pairs in the kitchen-
complete-v0 task in D4RL. The color indicates the values of the
latent variable.
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Figure 11: Histogram of the
activated latent variables on
kitchen-complete-v0 in 10
episodes.
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Figure 12: Visualization of the activation of sub-policies in a successful episode in the kitchen-
complete-v0 task. The top row shows the state at the 40th, 100th, 160th, and 180th time steps; the
graphs in the middle row show the action-values of each of the sub-policies at each state.

equation 14 is modified as

yi = ri + γmax
z′∈Z

min
j=1,2

Qw′
j
(s′,µθ′(s′, z′) + ϵclip), (44)

where ϵclip is given by

ϵclip = min(max(ϵ,−c), c) where ϵ ∼ N (0, σ), (45)

and the constant c defines the range of the noise.

Mutual-information-based regularization To implement the MI-based regularization, we intro-
duced another network to represent gψ(z|s,a) in addition to a network that represent the posterior
distribution qϕ(z|s,a). When maximizing the objective LML in equation 9, both the actor µθ(s, z)
and the auxiliary distribution gψ(z|s,a) are updated, but the posterior distribution qϕ(z|s,a) is
frozen. When maximizing

∑N
i=1 Ez∼p(z) log gψ(z|si,µθ(si, z)), both the actor µθ(s, z) and the

posterior distribution qϕ(z|s,a) are updated, but the auxiliary distribution gψ(z|s,a) is frozen. For
maximizing log gψ(z|si,µθ(si, z)), the latent variable is sampled from the prior distribution, i.e.
the uniform distribution in this case, and maximization of log gψ(z|si,µθ(si, z)) is approximated
as minimizing the squared difference ||z− ẑ||2, where ẑ is the output of the network that represents
gψ(z|s,a).
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Figure 13: Connection between qϕ(z|s,a), µθ(s, z), and gψ(z|s,a) during the training.

Implementation of a variant of V2AE with the continuous latent variable We refer to a vari-
ant of V2AE with the continuous latent variable as cV2AE in this paper. The differences from
our main algorithm V2AE, which employs the discrete latent variable, are the reparametrization
of sampling the latent variable, the KL divergence term in the loss function, and how to compute
z∗ = argmaxz Qw(s,µ(s, z)). We assume that the prior distribution p(z) and posterior distribu-
tion p(z|s,a) is Gaussian, and we used the reparameterization as in the standard VAE as

z = µz + ϵ · σz, (46)
where µz and σz are the mean and the standard deviation of the posterior distribution p(z|s,a). As
the latent variable z is continuous, we cannot compute the softmax distribution in equation 8 given
by

p(z|s) =
exp

(
Qw(s,µθ(s, z))

)∑
z∈Z exp

(
Qw(s,µθ(s, z))

) . (47)

Thus, we assumed that p(z|s) as the Gaussian distribution as in previous studies (Fujimoto et al.,
2019), and the KL divergence term in the objective function in equation 7 is computed as in the
standard VAE (Kingma & Welling, 2014). When the latent variable z is continuous, we cannot
explicitly compute z∗ = argmaxz Qw(s,µ(s, z)). Thus, we approximated it as follows: we gen-
erate N samples as zi ∼ N (0, 1) for i = 0, . . . , N and determine ẑ∗ = argmaxzi Qw(s,µ(s, zi)).
In our implementation, the continuous latent variable z is two-dimensional, and N = 100. When
the dimensionality of z is higher, the approximation of z∗ = argmaxz Qw(s,µ(s, z)) gets more
coarse. We found that the performance is significantly lower when the dimensionality of z is more
than two.

Number of updates In kitchen-complete-v0, pen-human-v0, hammer-human-v0, door-human-v0,
and relocate-human-v0, the number of samples contained in the dataset is significantly smaller than
those for other datasets. While the datasets for MuJoCo tasks contained approximately 1 million
samples, the numbers of samples in the Adroit-human tasks and the kitchen-complete-v0 were as
follows: kitchen-complete-v0: 3679 samples; pen-human-v0: 4950 samples; hammer-human-v0:
11264 samples; door-human-v0: 6703 samples; and relocate-human-v0: 9906 samples. Thus, in
kitchen-complete-v0, pen-human-v0, hammer-human-v0, door-human-v0, and relocate-human-v0,
we updated the policy 10,000 times, while for the other tasks we updated the policy 1 million times.
The above-mentioned number of policy updates was applied to all methods except easyBCQ, which
is a one-step offline RL algorithm. For easyBCQ, the behavior policy was trained 500,000 times
and the critics were trained 2 million times, except for *-human-v0 tasks in Adroit tasks, where the
behavior policy was trained 50,000 times, and the critics were trained 200,000 times.

Hyperparameters Tables 15–19 provide the hyperparameters used in the experiments.
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Table 15: Hyperparameters of V2AE&infoV2AE.

Hyperparameter Value

Hyperparameters

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Posterior learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
Posterior hidden dim 256
Posterior hidden layers 2
Posterior activation function ReLU

V2AE Score scaling α 5.0 (kitchen, human, Antmaze)
10.0 (mujoco-v2, mujoco-v1)

learning rate of the posterior for infomax 3e-6 (Kitchen, Adroit)
5e-7 (mujoco-v2)

infoV2AE 5e-7 (Antmaze)
Score scaling α 5.0 (Antmaze, hopper-medium-expert)

10.0 (others)

Table 16: Hyperparameters of AWAC.

Hyperparameter Value

Hyperparameters

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 1024
Discount factor 0.99
Target update rate 5e-3
Policy update frequency 2
Score scaling α 10.0

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU
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Table 17: Hyperparameters of TD3+BC. The default hyperparameters in the TD3+BC GitHub are
used.

Hyperparameter Value

TD3 Hyperparameters

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture

Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC Hyperparameters α 2.5

Table 18: Hyperparameters of CQL. The default hyperparameters in the CQL GitHub are used.

Hyperparameter Value

SAC Hyperparameters

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-5
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Target entropy -1·Action Dim
Entropy in Q target False

Architecture

Critic hidden dim 256
Critic hidden layers 3
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 3
Actor activation function ReLU

CQL Hyperparameters

Lagrange False
α 10
Pre-training steps 40e3
Num sampled actions (during eval) 10
Num sampled actions (logsumexp) 10

Table 19: Hyperparameters of easyBCQ. The default hyperparameters in the easyBCQ in the author-
provided codes in GitHub are used.

Hyperparameter Value

easyBCQ Hyperparameters

Optimizer Adam
Critic learning rate 1e-4
Behavior policy learning rate 1e-4
Mini-batch size 512
Discount factor 0.99
Target update rate 5e-3
number of action samples 100

Architecture

Critic hidden dim 1024
Critic hidden layers 2
Critic activation function ReLU
Behavior policy hidden dim 1024
Behavior policy hidden layers 2
Behavior policy activation function ReLU
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