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ABSTRACT

Post-training quantization (PTQ) of large language models (LLMs) has emerged
as a promising technique in reducing the computational cost at inference time.
Uniformly quantizing all weights and activations to 4-bit significantly degrades
performance, due to the high quantization error caused by outliers present in ac-
tivations. To mitigate this issue, we propose ConQuist, a PTQ method leveraging
mixed precision quantization based on the condition number of each layer. The
condition number quantifies the sensitivity of a layer’s output to small perturba-
tions in its activations; hence, layers exhibiting high condition numbers are prone
to high quantization error. ConQuist identifies layers with higher condition num-
bers and allocates them higher precision (e.g., 5-bit), while quantizing the rest to
4-bit. We also provide a theoretical foundation that relates activation sensitivity
to the condition number. Furthermore, we have empirically shown that our pro-
posed ConQuist outperforms uniform PTQ methods, achieving up to 20% lower
perplexity on a variety of benchmarks.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a variety of nat-
ural language processing benchmarks (Hendrycks et al., 2021) and have further expanded their
capabilities to multimodal domains (Huang et al., 2024; Team et al., 2023). In particular, GPT
(Brown et al., 2020) and LLaMA (Touvron et al., 2023) families have notably contributed to the
ongoing advancement of LLM. However, the rapid progress and extensive adoption of LLMs have
substantially increased computational demands and memory requirements. State-of-the-art genera-
tive models, including OPT-175B and LLaMA-65B, typically require hundreds of gigabytes of GPU
memory, often necessitating deployment across extensive multi-GPU infrastructures (Zhang et al.,
2022). Such substantial computational and memory demands present significant challenges for prac-
tical applications, especially in environments with limited resources (Pope et al., 2023; Smith et al.,
2022). The increasing resource burden has thus motivated extensive research into model compres-
sion techniques aimed at maintaining model performance while reducing computational complexity
and memory usage. To mitigate these resource constraints, quantization has emerged as an essential
method, offering effective and efficient compression by discretizing model parameters and activa-
tions into lower-precision formats, thereby significantly decreasing both storage requirements and
inference costs.

Quantization methodologies are generally categorized into Quantization-Aware Training (QAT) and
Post-Training Quantization (PTQ). These two approaches address the challenge of accuracy degra-
dation through fundamentally distinct strategies. QAT integrates quantization directly into the model
training process, simultaneously optimizing both model weights and input activations (Chen et al.,
2024a). Although QAT has shown strong performance across numerous benchmarks, its dependence
on extensive datasets and lengthy training schedules makes it computationally demanding, thereby
limiting its feasibility for practical deployment. In contrast, PTQ provides a substantially more
efficient alternative, as it estimates quantization parameters using only a small calibration dataset,
eliminating the need for retraining the entire model (Yao et al., 2022; Dettmers et al., 2022). PTQ
has emerged as an effective model compression technique, striking a balance between performance
and computational resource usage. PTQ has demonstrated notable success in quantizing the weights
of pre-trained LLMs. however, substantial accuracy degradation remains a significant issue, partic-
ularly in low-bit quantization scenarios (≤ 8-bit) (Frantar et al., 2023).
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Figure 1: Layerwise bit allocation in the OPT-1.3B model, guided by sensitivity score for quantiza-
tion.

In PTQ, uniformly quantizing of all layers to the same bit-width can result in a noticeable drop in
performance, as different layers vary in their sensitivity to quantization. To address this challenge,
recent research has introduced various mixed precision quantization methods aimed at preserving
model performance (Li et al., 2025a; Zhao et al., 2024). Mixed precision quantization for LLMs,
refers to a quantization strategy that assigns varying numerical precisions (bit-widths) to different
parts or layers of LLMs (Ashkboos et al., 2023). Instead of uniformly quantizing the entire model
to the same precision, mixed precision quantization allocates fewer bits (lower precision) to less
sensitive layers, and more bits (higher precision) to layers whose accuracy strongly impacts overall
performance. This approach effectively reduces model size and computational costs while minimiz-
ing accuracy loss.

Despite having several advantages, mixed precision quantization in LLMs faces two major chal-
lenges.

• Ill-conditioning of activations: Recent studies have shown that while weight matrices in
LLMs tend to be high-rank or full-rank, activations often exhibit low-rank structures (Yu &
Wu, 2023) and contain extreme outliers (Xiao et al., 2023). This combination leads to ill-
conditioned activation distributions. Most existing mixed precision approaches primarily
target weight quantization and overlook the complexities and instability introduced by the
ill-conditioning of activations.

• Dependence on second-order information: Many mixed precision methods apply higher
bit-widths to outlier or sensitive columns of weight matrices while keeping the rest at lower
precision. Moreover, layer-wise mixed precision techniques typically require second-order
information, such as the Hessian, to estimate the sensitivity of each layer to quantization
(Dong et al., 2020). Computing such second-order statistics is computationally intensive
and becomes impractical for LLMs due to their massive parameter counts.

To address these challenges, we propose ConQuist, a novel mixed precision quantization technique
that leverages the condition number of layer-wise activations as a sensitivity metric to guide pre-
cision allocation. The condition number reflects how much the output can change in response to
perturbations in the input. In quantization, the condition number of activations refers, the quantiza-
tion error introduced in the weights. Specifically, it measures the amplification of quantization errors
from weights to the layer’s output. For small disturbances, a smaller condition number indicates that
the layer’s output varies less. We have observed that, only a few layers in LLMs have high activation
condition numbers, implying that these layers are more sensitive to weight quantization than others,
see figure 1.

ConQuist identifies layers with higher sensitivity score, characterized by larger condition numbers
and assigns them a slightly higher precision (5-bit), while the remaining, less sensitive layers are
quantized to 4-bit. This strategy keeps most of the model in lower precision, minimizing com-
putational overhead, while selectively providing higher precision to critical weights, resulting in
substantial performance improvements. We provide theoretical justification for using the condition
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number as a sensitivity score, showing that the relative variance of quantization error is bounded by
the condition number of activations. Unlike other sensitivity based methods that depend on second-
order information (such as Hessian), our approach only requires access to activations from each
layer, making it more efficient and scalable.

Integrated with GPTQ (Frantar et al., 2022), ConQuist improves the generalization capabilities of
quantized large language models. Empirical results show that, when quantizing to 4-bit precision
with just 10% of layers at 5-bit, ConQuist achieves similar performance same as full precision on
large models (such as OPT-66B). Furthermore, ConQuist provides significant advantages in lower-
bit regimes, surpassing GPTQ and other baseline methods at 3-bit quantization by significantly
reducing perplexity across various datasets for both GPT and BLOOM model families.

The key contributions of this study are summarised as follows:

• We are the first to apply the condition number as sensitivity metric to the layer-wise quan-
tization of LLMs.

• Based on the condition number, we propose ConQuist, a novel mixed precision quantiza-
tion framework for LLMs. ConQuist utilizes the condition number of layer activations to
rank layers by sensitivity and allocate higher bits to layers with high sensitivity score.

• We present a novel perspective for analyzing performance degradation due to quantization
through the lens of relative quantization output error. We additionally provide mathematical
analysis deriving a theoretical bound that connects the variance of the relative quantization
output error to the condition number of the input activations.

• ConQuist allocates bits to each layer based on the condition number of their activations,
which is computed from a single calibration pass. Consequently, it does not require Hessian
computations or any second-order information.

• Empirically, ConQuist can significantly recover the performance of quantized model and
maintains performace almost same as full precision even on lower bit quantized models.

2 PRELIMINARY

2.1 POST TRAINING QUANTIZATION

Post-training quantization is increasingly recognized as an essential approach for the efficient de-
ployment of large-scale models, substantially boosting inference speed and addressing many lim-
itations of conventional high-precision computation. One of the most effective PTQ technique is
GPTQ, GPTQ (Frantar et al., 2023) extends Optimal Brain Quantization (OBQ) (Frantar & Alis-
tarh, 2022) by utilizing second-order optimization, which enables the derivation of a closed-form
solution that reduces quantization error in theory. Furthermore, Activation-aware Weight Quantiza-
tion (AWQ) (Lin et al., 2024) refines this process by introducing a scaling factor specifically aimed at
minimizing the quantization error of significant weights. Nevertheless, these methods are primarily
limited to weight quantization and do not address the reduction of activation bitwidths, thus missing
out on further potential efficiency gains. SmoothQuant (Xiao et al., 2023) attempts to bridge this
gap by empirically shifting the quantization burden from activations to weights through specialized
transformations. Various technique that focus smoothning of activations helps dealing with outliers
of activations such as ASER (Zhao et al., 2025). ASER proposes a low-rank activation smooth-
ing and error reconstruction algorithm to compensate quantization loss. More recently, ABQ-LLM
(Zeng et al., 2025) presents an arbitrary-bit quantization framework that supports flexible precision
levels with superior inference performance.

3 PROPOSED METHODOLOGY

In this section, we formally introduce our proposed method, ConQuist, Condition Number Aware
Mixed Precision Quantization. The central innovation of ConQuist lies in mixed precision quan-
tization strategy based on the condition number of activations. Unlike traditional mixed precision
quantization approaches, ConQuist begins by considering the entire layers of model and correspond-
ing activation inputs, denoted as X . ConQuist computes condition number of input activations of
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each layer and denote condition number as sensitivity score of that particular layer. The precision
allocation is motivated by the fact that input activation exhibit low rank properties and contains
outliers, leading to ill-conditioning of input activations. Our approach follows the widely adopted
framework utilized in leading PTQ methods (Frantar et al., 2023), wherein each layer is quantized
independently by formulating and solving a local reconstruction problem. This strategy allows for
effective calibration while obviating the need for complete model retraining.

3.1 MATHEMATICAL FORMULATION:

Let a linear layer be represented as Y = XW , where X ∈ Rn×d denotes the input activation matrix
and W ∈ Rd×m represents the full-precision weight matrix. The objective is to obtain a quantized
weight matrix Ŵ that closely approximates the behavior of the original layer by minimizing the
squared Euclidean norm between the outputs of the full-precision and quantized weights:

argmin
Ŵ

∥∥∥XW −XŴ
∥∥∥2
2

(1)

To understand the causes of performance degradation in layer-wise post-training quantization, we
analyze the impact of weight quantization within linear layers. In quantized models, the original
weight matrix W is substituted with its quantized counterpart Ŵ = W +∆W , where ∆W denotes
the quantization error resulting from the discretization process. Substituting this into the linear
operation gives:

Ŷ = XŴ = X(W +∆W ) = XW +X∆W. (2)

Here, XW represents the original output computed with full-precision weights, while the term
X∆W characterizes the output error attributable exclusively to weight quantization. This output
error, denoted ∆Y , can be expressed as:

∆Y = Ŷ − Y = X∆W. (3)

The degradation in model performance due to quantization is caused by the interaction between the
input activations X and the weight quantization ∆W . Importantly, even if the magnitude of ∆W is
constrained, the resulting error ∆Y can still be large if the input activation X amplifies perturbations
due to quantization especially for layers with ill-conditioned activations.

To quantify this effect, the euclidean norm of the output error is bounded as:
∥∆Y ∥2 = ∥X∆W∥2 ≤ ∥X∥2∥∆W∥2, (4)

where ∥X∥2 is the spectral norm (largest singular value) of the input matrix. This highlights that the
sensitivity of the layer to weight quantization is directly influenced by the spectral properties of the
input.

We now establish relationship between model sensitivity to quantization and the condition num-
ber of the input activations. Taking the lower bounds on the spectral norms of the output and its
quantization, as follows:

∥Y ∥2 = ∥XW∥2 ≥ σmin(X)∥W∥2, (5)

where ∥ · ∥2 denotes the spectral norm (i.e., the operator 2-norm), and σmin(W ) is the smallest
singular value of the weight matrix W .

By combining the inequalities (4) and (5), we derive an upper bound on the relative output distortion
due to weight quantization, as:

∥∆Y ∥2
∥Y ∥2

≤ ∥X∥2∥∆W∥2
σmin(X)∥W∥2

= κ(X) · ∥∆W∥2
∥W∥2

, (6)

where κ(X) = ∥X∥2

σmin(X) is the condition number of the input activations. This formulation illustrates
that the impact of quantization-induced perturbations is amplified in layers with poorly conditioned
input activations. In other words, for a fixed quantization error ∥∆W∥2, a higher condition number
of input activations leads to a proportionally larger output error.
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Theorem 1. (Widrow & Kollár, 2008) Let X ∈ Rn×d be the input activation matrix, W ∈ Rd×m

the full-precision weight matrix, and Y = XW ∈ Rn×m the output. Suppose the quantized weights
are given by Ŵ = W + ∆W, where each entry of ∆W is independent and uniformly distributed
on

[
−∆

2 ,
∆
2

]
, with ∆ = R · 21−b for a symmetric uniform b-bit quantizer over the range [−R,R].

Then Total Quantization error has varience

E[∆W 2] = dm
∆2

12
.

Theorem 2 (Bound on Relative Output Error from Weight Quantization). Let X ∈ Rn×d be the
input activation matrix, W ∈ Rd×m the full-precision weight matrix, and Y = XW ∈ Rn×m the
output. Suppose the quantized weights are given by Ŵ = W + ∆W , where W follows uniform
quantization, for a symmetric uniform b-bit quantizer over the range [−R,R]. Then the expected
relative squared output error is bounded as:

E[∥∆Y ∥22]
∥Y ∥22

≤ α

∥W∥22
· κ2(X) · 2−2b,

where κ(X) = σmax(X)
σmin(X) is the spectral condition number of X .

Proof. Let the quantization error matrix be denoted by ∆W = Ŵ−W , and define the corresponding
output error as:

∆Y = Ŷ − Y = X∆W.

By the submultiplicative property of the euclidean norm:

∥∆Y ∥2 = ∥X∆W∥2 ≤ ∥X∥2 · ∥∆W∥2 = σmax(X) · ∥∆W∥2.

Taking expectation over the quantization error:

E[∥∆Y ∥22] ≤ σ2
max(X) · E[∥∆W∥22].

From the uniform quantization model, each entry of ∆W ∈ Rd×m has variance E[∆w2] = ∆2

12 , and
thus:

E[∥∆W∥22] = dm · ∆
2

12
= α · 2−2b, where α =

dm(2R)2

12
.

Hence,
E[∥∆Y ∥22] ≤ σ2

max(X) · α · 2−2b.

To express this as a relative error, we divide by ∥Y ∥22:

E[∥∆Y ∥22]
∥Y ∥22

≤ σ2
max(X) · α · 2−2b

∥Y ∥22
.

Using the assumption ∥Y ∥2 ≥ σmin(X)∥W∥2, we obtain:

∥Y ∥22 ≥ σ2
min(X) · ∥W∥22.

Substituting into the denominator:

E[∥∆Y ∥22]
∥Y ∥22

≤ σ2
max(X)

σ2
min(X)

· α · 2−2b

∥W∥22
= κ2(X) · α

∥W∥22
· 2−2b.

3.2 DISCUSSION

Mathematical formulation and aforementioned theoretical analysis reveals several important insights
for the design and optimization of mixed precision quantization strategies in LLMs:
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• Sensitivity to conditioning.
The relative output error due to quantized weights scales proportionally with the square
of the spectral condition number, κ2(X), of the input activation matrix. This indicates
that layers with high condition numbers, commonly referred to as ill-conditioned are sig-
nificantly more sensitive to quantization error. Even minor perturbations in weights can
result in disproportionately large errors in the output. As a result, conditioning serves as a
fundamental indicator of quantization robustness.

• Limitations of uniform quantization.
The result highlights a critical weakness of conventional uniform quantization: it fails to
account for the structural diversity in layer sensitivity. In deep models with multiple layers,
some layers may be well-conditioned and robust to low-bit quantization, while others may
require higher precision. By treating all layers equally, uniform quantization may either
waste bits on robust layers or severely degrade performance on sensitive ones. Mixed
precision quantization, where bit-widths vary across layers better aligns with the sensitivity
profile of the network and enables more efficient hardware utilization.

• Theoritical motivation for condition number aware bit allocation.
Since the expected output error is bounded by a factor of κ2(X) · 2−2b, it follows that
uniform quantization (i.e., using the same bit-width b for all layers) may be suboptimal,
especially in networks with heterogeneous conditioning across layers. A more effective
strategy is to assign bit-widths adaptively, increasing b for layers with higher κ(X) to
mitigate the risk of high quantization error.

3.3 ALGORITHM

Based on aforementioned findings, we propose ConQuist, a mixed precision quantization strategy
that leverages the condition number of layer-wise activations to guide bit-width allocation across the
network. Let κi denote the condition number of the input activation matrix for the i-th layer, and ni

represent the number of parameters in that layer. The condition number is computed as:

κi =
σmax(Xi)

σmin(Xi)
, (7)

where σmax(Xi) and σmin(Xi) are the largest and smallest singular values of the input activation
matrix Xi, respectively. Further we sort the layers in descending order, according to their activation
condition numbers κi, and allocates bit-widths accordingly. Layers whose condition numbers lies
in top 10% are assigned a higher bit-width, while those with lower sensitivity are quantized using
fewer bits. This strategy ensures that precision is focused on the most sensitive layers, thereby
reducing overall memory consumption without significantly degrading performance. To mitigate
the computational overhead of condition number estimation, we approximate κi by using random
sampling algorithms from the randomized linear algebra literature (Rudelson & Vershynin, 2007;
Mahoney et al., 2011).

4 EXPERIMENTS AND RESULTS

Our experiments are designed to address two core questions:

1. How does selectively increasing precision for the most sensitive layers affect quantized
model behavior?

2. How does the ConQuist method balance memory consumption with the quality of model
predictions?

To answer these, we rank all layers in each model by their computed sensitivity scores and select the
top 10% as the most critical. These layers are quantized using one additional bit compared to the
rest of the network, to improve robustness in regions most prone to quantization error.

4.1 MODELS AND DATASETS

We conduct our study across multiple widely used LLM architectures, including the OPT (125M,
350M, 1.3B, 2.7B, 6.7B, 13B, 30B, 66B) and BLOOM (560M, 1.1B, 1.7B, 3B, 7.1B) families.
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OPT and BLOOM models are quantized and validated using the C4 (Raffel et al., 2020), Penn
Treebank (Marcus et al., 1994), and WikiText2 (Merity et al., 2016) datasets. To demonstrate the
superior performance of our approach, we compare ConQuist against several recent quantization
baseline methods, including GPTQ, AWQ, ZQV2 (Yao et al., 2023), and AgileQ (Shen et al., 2024).
To ensure a fair comparison, we adopt the experimental setup and dataset requirements consistent
with those outlined in GPTQ. All details on experimental setup, calibration datasets are provided
in supplementary material and to ensure reproducibility of the ConQuist, codes are also provided
in supplementary material. We have provided extra experiments, ablation study and more details in
Appendix A.2.

4.2 BASELINES AND METRICS

We compare ConQuist with two reference post-training quantization techniques: GPTQ and stan-
dard round-to-nearest quantization, each tested with 3-bit and 4-bit precision. For our approach,
both “3+ (3.1 bit)” and “4+ (4.1 bit)” configurations are explored, where a minority of layers are as-
signed one extra bit based on sensitivity. Although this method slightly raises storage requirements,
but typically leads to significantly lower perplexity. To ensure a consistent and unbiased assessment,
all quantization settings (including sequence length and number of evaluation samples) mirror those
used in prior GPTQ work. We report perplexity for each model/dataset combination.

Table 1: Perplexity of OPT on the WikiText2 dataset.

OPT Bits (W/A) 125M 1.3B 2.7B 6.7B 13B 30B
FULL 16/16 27.65 14.63 12.47 10.86 10.13 9.56
RTN 4/16 37.28 48.18 16.92 12.1 11.32 10.98
GPTQ 4/16 31.12 15.47 12.87 11.39 10.31 9.63
AWQ 4/16 33.96 16.85 14.61 12.44 11.60 10.75
ZQV2 4/16 36.71 19.38 17.92 11.91 10.67 10.10
AgileQ 8/8 31.52 15.90 13.43 11.43 10.42 9.70
ConQuist 4+/16 29.81 15.13 12.83 11.07 10.19 9.50
GPTQ 3/16 53.85 20.97 16.88 14.86 11.61 10.27
ConQuist 3+/16 40.44 17.34 14.428 11.52 10.66 9.86

Table 2: Perplexity of OPT on the C4 dataset.

OPT Bits (W/A) 125M 1.3B 2.7B 6.7B 13B 30B
FULL 16/16 26.56 16.07 14.34 12.71 12.06 11.44
RTN 4/16 33.91 24.51 18.43 14.36 13.36 13.46
GPTQ 4/16 29.22 16.97 15.00 13.18 12.26 11.57
ZQV2 4/16 30.92 17.93 18.32 13.01 12.07 11.33
AgileQ 8/8 28.43 16.72 14.91 12.70 11.77 11.14
ConQuist 4+/16 26.79 15.25 13.52 11.92 11.30 10.75
GPTQ 3/16 42.41 21.63 18.17 17.14 13.34 12.23
ConQuist 3+/16 34.34 17.79 15.00 12.65 11.75 11.05

4.3 MAIN RESULTS

We present the main results for the OPT and BLOOM model families in Tables 1–4. We demonstrate
the results of OPT and Bloom Family in Table 1-4. In most of the case, we observe that ConQuist
outperforms GPTQ (and correspondingly RTN) at similar model size by a significant margin, espe-
cially on smaller models. This improvement in perplexity results from ConQuist’s ability to allocate
higher precision to ill conditioned layers with high sensitivity thereby reducing quantization induced

7
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output distortion while still achieving compression by using lower precision in well-conditioned
layers. For a model with N parameters, allocating 5 bits to 10% of the weights and 4 bits to the
remaining 90% results in: 0.1 × 5 + 0.9 × 4 = 4.1 bits per parameter, which is a ∼ 2.5% increase
over uniform 4-bit quantization, yet it yields significantly lower perplexity. Similarly, allocating 4
bits to 10% of the weights and 3 bits to the rest results in an average of: 0.1 × 4 + 0.9 × 3 = 3.1
bits per parameter. This corresponds to only a ∼ 3.3% increase over standard 3-bit quantization.

This small overhead can lead to noticeable improvements in model performance as illustrated in
Figure 2. For example, on OPT-30B (C4), ConQuist achieves 10.75 perplexity at 4+ bits, outper-
forming GPTQ (11.57) and RTN (13.46). At 3+ bits, ConQuist reaches 11.05, reducing the gap to
full precision by a larger margin than GPTQ. On BLOOM-7.1B, it improves over GPTQ by more
than 1.3 points at 4 bit and 2 points at 3-bit. In most cases, the perplexity reduction achieved by
ConQuist over GPTQ matches or exceeds the improvement GPTQ offers over RTN. Notably, at 4+
bit precision, ConQuist closes the perplexity gap to full precision by nearly twice the margin com-
pared to GPTQ. For instance, on OPT-1.3B (C4), ConQuist lowers perplexity from 16.97 (GPTQ) to
15.25, surpassing GPTQ by 1.72 points. This improvement is nearly twice the gain GPTQ achieves
over RTN (24.51 → 16.97). These results underscore ConQuist’s precision efficiency, it closes a
larger portion of the gap to full precision (16.07) than prior methods, confirming its superior ability
to preserve model performance under low-bit quantization. Furthermore, we report the performance
of the proposed approach, ConQuist, on the PTB dataset using the OPT and BLOOM model families
in Appendix A.3.

(a) BLOOM on WikiText2 (b) OPT on C4

Figure 2: Perplexity comparison of BLOOM and OPT models quantized with ConQuist.

Table 3: Perplexity of BLOOM on the WikiText2 dataset.

BLOOM Bits (W/A) 560M 1.1B 1.7B 3B 7.1B
FULL 16/16 22.42 17.69 15.39 13.48 11.37
RTN 4/16 25.90 22 16.97 14.76 12.1
GPTQ 4/16 24.03 19.05 16.48 14.2 11.73
ZQV2 4/16 25.31 23.90 16.93 14.65 12.06
AgileQ 8/8 24.01 18.82 16.23 14.05 11.73
ConQuist 4+/16 23.51 20.57 15.81 13.74 11.49
GPTQ 3/16 32.31 25.08 21.11 17.40 13.47
ConQuist 3+/16 27.27 23.65 17.43 14.801 12.08

4.3.1 FURTHER ANALYSIS

To assess the generality of our method, we integrate ConQuist into an alternative quantization frame-
work: SmoothQuant. In its default configuration, SmoothQuant quantizes both weights and activa-
tions to 8 bits. To test compatibility, we apply ConQuist by reducing weight precision to 6 bits for
50% of the layers, guided by sensitivity scores, while keeping activation precision fixed at 8 bits.
This yields an average of 7 bits per weight, corresponding to a 12.5% reduction in weight storage.
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Table 4: Perplexity of BLOOM on the C4 dataset.

BLOOM Bits (W/A) 560M 1.1B 1.7B 3B 7.1B
FULL 16/16 26.60 22.05 19.49 17.49 15.2
RTN 4/16 29.89 24.44 21.26 18.76 16.06
GPTQ 4/16 28.00 23.25 20.55 18.10 15.60
ZQV2 4/16 27.10 25.99 19.47 17.26 14.83
AgileQ 4/16 26.39 21.80 29.18 16.96 14.70
ConQuist 4+/16 25.37 23.63 18.60 16.43 14.28
GPTQ 3/16 35.78 28.83 25.34 21.25 17.67
ConQuist 3+/16 33.04 28.94 21.96 18.68 15.68

As shown in Table 5, this modification leads to a significant reduction in model size with only a
small increase in perplexity. For example, on OPT-13B, perplexity increases from 10.31 to 11.08
despite halving weight precision in half the layers. Similar trends hold across other model sizes.

These results demonstrate that ConQuist can be applied on top of other quantization schemes such as
SmoothQuant, enabling additional compression with minimal impact on performance. This further
confirms the flexibility of our method in finding optimized trade-offs between memory efficiency
and perplexity across different quantization backbones.

Table 5: ConQuist applied to SmoothQuant with 6+ bits quantization for weights

OPT Bits (W/A) 1.3B 2.7B 6.7B 13B
SmoothQuant 8/8 14.77 12.46 10.88 10.31
ConQuist 6+/8 15.17 13.05 11.48 11.08

5 CONCLUSION

In this paper, we present ConQuist, a novel mixed precision quantization framework for large lan-
guage models, utilizing the condition number of layer-wise activations as a sensitivity metric. Con-
Quist systematically identifies and ranks the sensitivity scores of layers according to the condition
number of input activations. ConQuist assigns higher precision only to a small subset of highly
sensitive layers, while quantizing the remaining layers at lower precision. Our empirical results
demonstrate that this targeted approach of ConQuist not only outperforms existing baseline quanti-
zation algorithms but also can be readily incorporated into any post-training quantization method to
achieve mixed precision quantization. ConQuist highlights that significant performance gains can be
attained by judiciously allocating higher bit-widths to a limited number of sensitive layers, thereby
advancing the efficiency and effectiveness of quantized large language models.

6 FUTURE WORK & LIMITATION

We introduce the first quantization method with condition number based relative error bounds, open-
ing promising directions for future advancements. Despite the strong performance of ConQuist, a
few limitations remain. At present, ConQuist uses fixed method as top 10% for condition number
based higher bit assignment, though effective, could be enhanced by adaptive or learnable policies
that respond to model specific sensitivity profiles. Moreover, this work focuses solely on weight
quantization, extending ConQuist to jointly optimize both weights and activations (on smaller bits
e.g. 2 or 3 bits) under the same sensitivity aware strategy presents a promising direction for further
improving compression performance trade-offs.
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A APPENDIX

A.1 RELATED WORK

A.1.1 CONDITION NUMBER

The condition number, a foundational concept in numerical analysis of matrix (Golub & Van Loan,
2013; Turing, 1948), measures how sensitive a function’s output is to small changes in its input. A
matrix with a large condition number is referred to as ill-conditioned, indicating that even minor
input perturbations can lead to substantial changes in the output. This property presents significant
challenges for achieving numerical stability and reliability.

A.1.2 MIXED PRECISION QUANTIZATION

Mixed precision quantization is a technique where different parts of a large language model, such
as weights, activations, or entire layers are assigned varying bit-widths based on their sensitivity or
importance, enabling significant memory and computational efficiency while retaining high model
accuracy. Mixed precision quantization of LLMs is an active area of research. Recently proposed
KVTuner (Li et al., 2025b) studies sensitivity of key-value cache and their role in model quantiza-
tion, KVTuner allocate different bits of key or value, based on their sensitivity. Moreover, ResQ
(Saxena et al., 2024), uses uses low-rank projections for mixed precision mapping across all model
component. MixQ (Chen et al., 2024b) advances bit assignment by making it outlier-aware to fur-
ther boost low-bit quantization robustness. Mixture of Quantization-Aware Experts (MoQAE) (Tao
et al., 2025), uses Uses chunk-based processing for bit allocation. In MoQAE, each chunk is routed
through a lightweight multilayer perceptron (MLP) that selects the most suitable precision of bits,
adapting dynamically per chunk. Exploiting LLM Quantization (Egashira et al., 2024) demonstrates
the superiority of mixed precision over uniform int8 quantization. Collectively, these methods high-
light the rapid progression toward highly adaptive, practical mixed precision quantization for scal-
able and efficient large language model deployment.

A.2 ABLATION STUDY

The ConQuist allocation strategy raises the question of how many layers truly benefit from higher
precision. To answer this, we conduct a controlled experiment where we vary the ratio of layers as-
signed one extra bit, guided by sensitivity scores. All settings maintain the same 4-bit base precision,
and the only change is the proportion of layers boosted to 5 bits. We begin with the 10% allocation
used throughout our main results and progressively increase it to 20% and 30%. As shown in Table
6, the perplexity improves marginally. For example, from 15.25 to 15.20 on OPT-1.3B despite a 3×

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

increase in the number of boosted layers. A similar trend holds across larger models. This result
suggests that most performance gains are concentrated in a small set of highly sensitive layers. Once
those are handled, additional precision offers diminishing returns. This aligns with our sensitivity
analysis (see Figure 1), where only a few layers exhibit significantly higher condition numbers.

Table 6: Ablation study of different bit allocation ratios across layers of OPT models, guided by
sensitivity scores

OPT Bits ratio 1.3B 2.7B 6.7B 13B
4+/16 15.25 13.52 11.92 11.3

ConQuist 4+ (0.2:0.8) 15.23 13.48 11.92 11.28
4+ (0.3:0.7) 15.20 13.47 11.93 11.29

A.3 RESULTS ON PTB DATASETS ON OPT AND BLOOM MODELS

Table 7: Perplexity of OPT on the PTB dataset.

OPT Bits (W/A) 125M 350M 1.3B 2.7B 6.7B 13B 30B 66B
Full 16/16 38.99 31.08 20.29 17.97 15.52 14.04 13.36 12.01
RTN 4/16 53.89 36.79 57.30 31.05 18.84 16.51 15.4 225.66
GPTQ 4/16 45.17 34.52 21.85 19.14 16.56 14.94 14.26 13.81
ConQuist 4+/16 35.15 27.85 17.40 15.39 13.23 12.44 11.88 11.53
GPTQ 3/16 73.19 47.08 32.1 24.81 21.88 16.68 15.36 28.12
ConQuist 3+/16 43.35 32.67 19.43 16.49 13.80 12.77 12.12 12.63

Table 8: Perplexity of BLOOM on the PTB dataset.

BLOOM Bits (W/A) 560M 1.1B 1.7B 3B 7.1B
Full 16/16 43.69 57.96 30 25.34 20.83
RTN 4/16 51.10 66.85 33.58 27.68 22.42
GPTQ 4/16 46.97 62.47 31.84 26.49 21.67
ConQuist 4+/16 42.58 60.87 28.42 23.51 19.6
GPTQ 3/16 70.35 87.04 46.11 34.02 26.14
ConQuist 3+/16 50.01 68.18 31.17 25.08 20.44
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