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ABSTRACT

Emotion-cause pair extraction (ECPE) aims to identify all emotion and cause
clauses in documents, forming the ECPs. Although existing methods have
achieved some success, they face issues such as overlooking the impact of
emotion experiencers, failing to leverage specific domain knowledge, and tend-
ing to spurious correlations. To address these issues, we transform the ECPE
task into a multi-step reasoning problem and propose the Emotion-Experience-
Event-Cause (EEEC) framework. We introduce an experiencer identification
task to understand the source of emotions and enhance the association between
emotion and cause clauses. In addition, by combining both prior knowledge
and induced reasoning, EEEC guides a large-scale language model (LLM) to
perform the emotion-reason pair extraction task efficiently. Experimental re-
sults demonstrate that EEEC achieves performance close to current state-of-
the-art supervised fine-tuning methods. The data and code are released at
https://anonymous.4open.science/r/EEEC-EB80/

1 INTRODUCTION

With the proliferation of social media data, sentiment analysis has emerged as a highly regarded
research area. Emotion Cause Analysis (ECA), as a significant branch, is devoted to exploring
deeply the underlying motivations and causes when individuals express emotions. By thoroughly
examining the logic and factors influencing emotions, it can enhance the capability of intelligent
systems to comprehend and respond to human emotions.

Depending on the task’s specific setting, ECA tasks can be split into Emotion-Cause Extraction
(ECE) and Emotion-Cause Pair Extraction (ECPE). The objective of the ECE task is to extract the
cause underlying the emotion in a given document with the expression of the emotion Lee et al.
(2010); Gui et al. (2016; 2017); Li et al. (2018); Xia et al. (2019); Ding et al. (2019). ECPE aims to
simultaneously extract all the potential emotions and the associated causes from a given document
Xia & Ding (2019). However, the former needs to manually annotate the emotion, which not only
consumes a lot of human resources but also limits its wide application in real-world scenarios.
We focus on the ECPE task, as shown in Figure 1, the document has 18th clauses, and C7 shows
the emotion ”sadness” caused by C6. C18 expresses a feeling of ”sadness,” which relates to C17.
Therefore, the goal is to extract all emotion cause pairs (ECPs):{(C7, C6), (C18, C17)}.

The essence of the ECPE task hinges on uncovering the relationship between emotion and cause
clauses. Intuitively, the specific position relationship between clauses is the distinctive feature for
mining the causal relationship between emotion clauses and cause clauses. Consequently, much
of the research directly utilizes the relative positions between clauses as features for ECPE task,
such as: Ding et al. (2020b); Fan et al. (2020b); Yuan et al. (2020); Cheng et al. (2020); Ding et al.
(2020a); Fan et al. (2020a); Wei et al. (2020); Sun et al. (2021); Fan et al. (2021); Singh et al. (2021);
Huang et al. (2023); Li et al. (2024). Nevertheless, this approach is only applicable to data that is
sensitive to positional features, and the method has poor generalization ability.

Except relying on the prior rules, some studies employ the correlations between clauses Xia &
Ding (2019); Wu et al. (2020); Chen et al. (2022b;a;b); Feng et al. (2023); Chen & Mao (2023);
Li et al. (2023a); Chen et al. (2020b); Liu et al. (2022) to achieve ECPE. In addition, other studies
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Output: Emotion-Cause Pairs (ECPs)
{(C18, C17), (C7, C6)}

C1:徐先生的妻子35岁左右 (Mr. Xu's wife is about 35 years old)

C2:漂亮又性感 (She is beautiful and sexy)

C3:夫妻俩结婚虽然有七八年了 (Although the couple has been married for seven or eight years)

C4:儿子都6岁了 (Their son is already 6 years old)

C5:但夫妻俩感情一直不错 (But the couple‘s relationship has always been good)

C6:老公一门心思看世界杯 (The husband is completely focused on watching the World Cup)  _cause
C7:妻子自然心里不高兴了 (Naturally, his wife is not happy about it) _emotion
C8:但也没办法 (But there’s nothing she can do)

C9:看完球后他叫醒妻子 (After watching the game, he wakes up his wife)

C10:不料太激动了周一凌晨3点多 (Unexpectedly, he was too excited, it was after 3 o‘clock on Monday morning)

C11:荷兰队2∶1赢了墨西哥队 (The Netherlands team won 2:1 against the Mexican team)

C12:挺近世界杯八强 (They are close to the World Cup quarterfinals)

C13:作为荷兰队的铁杆球迷 (As a die-hard fan of the Netherlands team)

C14:徐先生激动坏了 (Mr. Xu was very excited)

C15:回到房间 (He returns to the room)

C16:看看妻子熟睡的脸 (Looks at his wife’s sleeping face)

C17:他突然意识到最近太冷落妻子了 (He suddenly realizes that he has been neglecting his wife recently) _cause
C18:有些过意不去 (He feels somewhat guilty) _emotion

Input: A Document

Figure 1: An example of the ECPE task. Experiencers are underlined and highlighted, and different
colors are used to distinguish different experiencers; emotion and cause refer to the emotion and
cause clauses, respectively, and the arrows indicate the cause clauses corresponding to the emotion.
In addition, the green highlighted parts represent clauses related to the experiencer.

attempted to integrate emotion type labels Chen et al. (2020a); Tang et al. (2020); Song et al. (2023),
emotion keywords Bao et al. (2022a), explicit semantic information of clauses Zhou et al. (2022),
commonsense Li et al. (2023b); Gu et al. (2024) to handle the ECPE task. However, these supervised
learning tasks require large amounts of labelled data for training.

Recently, the rise of large language models (LLMs), such as ChatGPT 1 and LLaMA Touvron et al.
(2023), has demonstrated remarkable performance in multiple NLP tasks under zero-shot or few-
shot scenarios, even without updating parameters. Given their powerful semantic understanding and
reasoning capabilities, some studies Wang et al. (2023); Wu et al. (2024) have attempted to utilize
LLMs to implement ECPE tasks.

Although these approaches have achieved good performance, they still have several shortcomings.
(1) Ignore the influence of the experiencer on the ECPE task. Experiencers are the person or
sentient entity who experiences or feels the emotions Ghazi et al. (2015). (2) Neglect of domain-
specific knowledge. Emotional clauses, in general, are characterized by specific cue words in the
clauses that can serve as a priori domain knowledge for the model. (3) Exist the spurious corre-
lations. The existing approaches mainly concentrate on modeling the whole document, which will
inevitably consider redundant information, leading to spurious correlations. As shown in Figure 1,
the document has two experiencers: ”Mr.Xu” and ”His wife”. ”His wife” is the experiencer for C7,
while ”Mr.Xu” is the experiencer for C18 and C17. Both experiencers correspond to the emotion
type ”sadness.” Given the specific definition of the experiencer, we know that each experiencer may
express one or more emotions. Additionally, it is worth noting that experiencers are directly associ-
ated with emotion and cause clauses, thus determining the practical scope of emotional and causal
clauses. In this case, C2, C3, C4, C5, C11, C12 and C13 will not be candidates for emotion and
cause clauses.

In order to tackle these issues, we crafted an Emotion-Experiencer-Event-Cause multi-step chain
(EEEC) framework, which can incorporate prior domain knowledge and leverage the association be-
tween experiencers and clauses. The framework aims to guide the model, focusing on task-relevant
details and mitigating other information interference. In specifically, we decompose the ECPE task

1https://chat.openai.com/
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into five parts: Knowledge-Guided Emotion Recognization, Emotion Classification & Experiencer
Recognization, Event Extraction, Analysis, and Validate. Each step involves a prompt interacting
with a LLM, and the output of each step serves as part of the prompt for the next step. The first step
incorporates prompts that fuse prior knowledge from the emotion analysis domain. And the entire
framework operates in a pipeline manner.

Overall, our contributions can be summarized as follows:

• We propose an Emotion-Experience-Event-Cause (EEEC) framework by decomposing the
ECPE task into a multi-step reasoning problem. Each step is an elaborated sub-problem for
the task.

• To reduce the cascade error generated by emotion extraction for the ECPE task, we intro-
duced prior knowledge from the domain of sentiment analysis in the prompt template to
improve the accuracy of the emotion extraction sub-task.

• We emphasize and integrate the critical step of experiencer identification, which allows the
framework to more accurately parse and understand the sources and impacts of sentiment,
contributing to the filtering of candidate cause clauses.

2 RELATED WORK

Xia & Ding (2019) initially presented the Emotion-Cause Pair Extraction (ECPE) task, which aims
to extract emotion clauses (EC) and cause clauses (CC) from unannotated documents simultane-
ously. They designed a 2-step pipeline framework that can extract EE and CE sequentially. How-
ever, it is prone to cascading errors. Subsequently, a considerable number of end-to-end methods
have emerged. These end-to-end methods can be classified into: method for enumerating and fil-
tering all clause pairs Chen et al. (2020b); Ding et al. (2020b); Wei et al. (2020); Chen et al. (2022b);
Wu et al. (2022); Hu et al. (2023). For example, Chen et al. (2020b) construct a relationship graph of
all candidate clause pairs and encode the candidate pairs using a graph model to extract ECPs. Ding
et al. (2020b) propose an emotion/cause-oriented sliding window mechanism for filtering the can-
didate clauses. Wei et al. (2020) consider all candidate clause pairs and then perform the ECPE in
a ranking manner. Chen et al. (2022b) employs KL divergence to constrain the candidate pair score
matrix and align multi-task features to extract ECPs. Wu et al. (2022) transform the ECPE task as
a clause-pairs tagging task for any two clause pairs in a document. Hu et al. (2023) treat all clauses
as filtering targets and extract the ECPs using genuine and fake pair supervision mechanisms. Se-
quence labeling was another popular ECPE method, pairing clauses according to elaborate labels.
Yuan et al. (2020) construct a labeling scheme based on the distances between emotion clauses and
cause clauses to achieve end-to-end ECPE. Chen et al. (2020a) encode the sentiment categories and
clause types into tags so that ECPs of different emotion types can be easily distinguished.

Moreover, some researchers introduced additional knowledge for modelling the context of ECPE
tasks. Several researchers noticed that explicit semantic information or question answering (QA)-
based queries could improve the performance of ECPE tasks. For example, Nguyen & Nguyen
(2023) cast the Emotion-Cause Pair Extraction task to the question answering problem. Chang et al.
(2022) proposed a two-stage MRC framework through the questing-answering formulation. Zhou
et al. (2022) design a Multi-turn MRC framework (MM-R) with Rethink mechanism. Cheng et al.
(2023) propose a dual-MRC framework to extract ECPs in a dual-direction way. This framework
extracts ECPs by querying two directions and then uses a combination strategy to merge the results
obtained from the two directions. Others are devoted to introducing additional knowledge for mod-
elling the context of ECPE tasks. Turcan et al. (2021) achieves emotion classification and emotion
cause tagging by combining common sense knowledge with multi-task learning through adaptive
knowledge modelling. Bao et al. (2022b) perceive textual semantics through fine-grained seman-
tics introduced by keywords and coarse-grained semantic features between clauses. Zheng et al.
(2022) proposed a prompt learning based Emotion-Cause Pair Extraction approach. This method
transforms the three sub-tasks of ECPE into three sub-objectives and realizes the extraction of mul-
tiple sub-tasks by constructing special prompts. Chen et al. (2022b) aligned features and tasks to
model interactions between specific emotion-cause features and tasks explicitly. Chen et al. (2023)
proposed a novel two-stage model to handle the ECPE task and incorporate reinforcement learn-
ing (RL) to tackle the cascading error issue. Li et al. (2023b) proposed an Experiencer-Driven
and Knowledge-Aware Graph Model (EDKA-GM) to enhance the impact of experiencer features
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in ECPE tasks. They leveraged ATOMIC’s semantic correlations to construct inter-clause rela-
tionships, enriching the task’s contextual understanding. Gu et al. (2024) suggested an Emotion
knowledge-aware Prompt-tuning for Emotion-Cause Pair Extraction (EmoPrompt-ECPE), which
achieves the integration of the three subtasks of ECPE by utilizing additional sentiment knowledge
and mining the implicit knowledge of cause clauses. Zong et al. (2024) categorize clauses into four
distinct types and introduce a knowledge-based multi-classification subtask.

Unlike the above approaches, Wang et al. (2023) pioneered the exploration of the ECPE task in a
zero-shot scenario, enabling the model to identify one of the most evident ECPs through multi-step
reasoning. Additionally, Wu et al. (2024) custom-designed a Decomposition of Emotional Cause
Chaining (DECC) framework, which decomposes the ECPE task into four steps: recognizing, locat-
ing, analyzing, and summarizing. However, the existing ChatGPT-based methods have yet to yield
satisfactory results. Therefore, we aim to enhance the chain-of-thought framework by incorporating
additional knowledge.

3 APPROACH

3.1 MOTIVATION

For the benchmark dataset Xia & Ding (2019), the average clause length is 14.77, with a maximum
of 4 ECPs per document. Given documents containing d clauses, previous approaches extract ECPs
from all possible (|d| ∗ |d|) candidate pairs(up to 4 ECPs). Identifying a few valid pairs from nu-
merous candidates is highly challenging. However, if we can preliminarily identify which clauses
are more likely to be emotion clauses and filter the relevant cause clauses based on the experiencers
in the emotion clauses, we can narrow down the potential ECPs more effectively. This means we
can get the true ECPs with a higher probability, therefore, the complexity is reduced compared to
|d| ∗ |d| of the search space.

Nevertheless, if the initial emotion clause detection is wrong, it may lead to cascading errors in sub-
sequent steps. To mitigate this issue, we incorporate word-level sentiment domain knowledge into
the emotion extraction module to compensate for the shortcomings of emotion instruction prompts.
Additionally, introducing an emotional score threshold to filter and select clauses with strong emo-
tional expressions can improve the accuracy of the emotion extraction module. Moreover, the expe-
riencer serves as a crucial link between emotion clauses and cause clauses, guiding the identification
of relevant contexts. By fully leveraging experiencer information, we can more accurately correlate
emotions with their causes, thereby enhancing the model’s overall performance.

3.2 TASK DEFINITION

For the ECPE task, the input is a document D = {c1, c2, · · · , c|d|}, which contains multiple clauses,
each clause ci = {w1, w2, · · · , wn} consists n words. The output is all potential emotion-cause
pairs (ECPs) P = {· · · , (ce, cc), · · · }, where ce is an emotion clause and cc represents the corre-
sponding cause clause. It is worth noting that each document contains at least one ECP, and each
emotion clause can have multiple cause clauses.

3.3 EEEC ARCHITECTURE

We designed an emotion-experiencer-event-cause framework for the ECPE task, a multi-step chain-
of-thinking reasoning framework guided by emotion domain knowledge. We aim to leverage LLM’s
comprehension ability without increasing the training cost and optimize LLM’s output with elabo-
rate prompt steps. Figure 2 illustrates the overall architecture. EEEC consists of three key phases:
Knowledge-guided Emotion Extraction, experiencer and event extraction, and cause extraction.

3.4 KNOWLEDGE-GUIDED EMOTION EXTRACTION

Previous research primarily focused on learning clause embeddings and often ignored the impor-
tance of specific words in emotional expression. People typically use specific words to express
emotions, providing a direct and effective shortcut to extract emotion clauses. Therefore, we pro-
pose identifying emotion clauses by determining specific emotion words in the clauses. Specifically,
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Document
C1. Life is better than death is what Wu often thinks after suffering from cancer
(生不如死是老吴患癌后常有的想法) _emo: disgust
C2. Due to extensive bone metastases (由于大面积骨转移) _cau
C3. Wu struggled with severe pain every day (老吴每天都在剧痛里挣扎) _cau
C4. From October 2012 to now (从2012年10月到现在)
C5. Wu has been battling advanced lung cancer for 30 months
(老吴已经和晚期肺癌搏斗了30个月) _cau
C6. this length of time (这个时间长度)
C7. this length of time is nearly 10 times longer than the initial death sentence given
to him by the doctors (比医生最初给他的死亡判决已经超出了近10倍) _cau
C8. Doctor Wang Jin of the Shenzhen Hospice was also surprised
(深圳宁养院的医生王劲也感到惊诧) _emo: surprise

Step 1: Knowledge-guided Emotion Extraction
Prompt: Please extract emotions referred from the given
context (the clauses with an abs of the initial sentiment score
greater than 5.0 and containing a distinct sentiment word)

Knowledge-guided Emotion Extraction

e1: pain and despair (生不如死)
e2: helpless (无奈)
e3: surprise (惊诧)

Emotion Keywords & abs(initial 
sentiment score) >5

ec1: Life is better than death is what Wu often thinks after suffering from cancer 

(生不如死是老吴患癌后常有的想法) 

ec2: Doctor Wang Jin of the Shenzhen Hospice was also surprised 

(深圳宁养院的医生王劲也感到惊诧) 

Emotion Clauses

Step 4: Analysis
Prompt: Based on these emotion clauses, experiencer and the related 
clauses, analysis why each one happen, step by step.

Cause Extraction

Step : Validate
Prompt: Based on the given content, consider the feelings and situation of
the experiencer, validate whether the relation between emotion and cause is
reasonable and self-consistent, and select high-confidence ECPs.

-8.1
-0.3
-3.9
1.3
-1.0

0.5
0.1

-11.0

Initial 
Sentiment Score

Experiencer & Event Extraction

Step 2: Experiencer Extraction
Prompt: Please Identify the experiencer in 
the emotion clause.

ec1à Wu (老吴) 
ec2à Wang jin (王劲)

Experiencer

Step 3: Event Extraction
Prompt: Please extract all the clauses 
related to the experiencer, including scenario, 
context, event, behavior.

Wu (老吴) à c1, c2, c3,
c5
Wang jin (王劲) à c7, 
c8

Event

Figure 2: Overview of the proposed EEEC architecture. Experiencers are underlined and high-
lighted, and different colors are used to distinguish different experiencers; emotion and cause refer
to the emotion and cause clauses, respectively, and the arrows indicate the cause clauses corre-
sponding to the emotion. In addition, the green highlighted parts represent clauses related to the
experiencer.

we design the knowledge-guided emotion extraction module, which uses the clauses’s initial sen-
timent scores computed by the sentiment analysis tool as a priori knowledge to guide the LLM to
identify all potential emotion clauses with explicit sentiment expressions and keywords.

Figure 3: Example for sentiment score learning. c5 is an emotional clause and c4 is a causal clause.

3.4.1 SENTIMENT SCORE LEARNING

For the benchmark datasets in the ECPE task, we have observed that emotion clauses usually con-
tain specific clue words that clearly express emotions. As illustrated in Figure 3, C5 represents the
emotion clause, C4 denotes the corresponding cause clause, and the other clauses are neither emo-
tion nor cause clause. The yellow-highlighted words primarily determine the clause type, and they
convey a more pronounced emotional tone than other terms. To quantify the emotional intensity of
each clause, we introduced the Pysenti2 to calculate the sentiment score for each clause.

Pysenti is a rule-based sentiment polarity analysis method that integrates several sentiment lexicons,
including HowNet, the Tsinghua University Li Jun sentiment lexicon, the BosonNLP3, and a lexicon
of negation words. It can also provide sentiment scores for common words. In calculating the
sentiment score of a clause, sji denotes the j-th word’s sentiment score of clause i. The sentiment
score of the entire clause i-th is the sum of the sentiment scores of all the words in the clause, as

2Chinese Sentiment Classification Tool for Python: https://github.com/shibing624/pysenti/blob/master/README.md
3http://static.bosonnlp.com/dev/resource
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shown in the formula:

si =

n∑
j=1

sij . (1)

It is worth noting that relying solely on specific sentiment lexicons for emotion polarity analysis can
lead to biases. As shown in Figure 3, C1 is not an emotion clause, but it contains many positive words
such as ”successful career,” ”small,” and ”married,” which result in an overall higher sentiment score
for the clause. In contrast, the actual emotion clause, C5, contains the emotional word ”helpless,”
which has a higher sentiment score. However, the other words in the clause have more dispersed
scores, failing to form a similarly emotional solid polarity. To address this, we aim to enhance the
sentiment score of emotion clauses by strengthening the use of domain-specific emotional keywords
for more accurate sentiment analysis. We collected sentiment keywords from the existing benchmark
dataset and assigned values of 10 and −10 according to their positive or negative polarity.

In the case of Figure 3, we segment the input text by the Pysenti, then traverse the sentiment lexicon
to identify the sentiment polarity of each word, including positive, neutral, and negative sentiments.
Pysenti also considers the sentence structure (e.g., conjunctions, negatives, adverbs, punctuation,
etc.), assigning weights to the sentiment polarity of each word and then finally obtaining the clause’s
sentiment score by weighted summation.

3.4.2 EMOTION RECOGNIZING AND FILTERING

Step 1. Emotion Recognizing and Filtering: For emotion extraction, we adopt a step-by-step
filtering strategy that combines the clause’s initial sentiment score with keyword analysis to identify
emotional clauses. The Algorithm 1 are as follows:

Algorithm 1 Emotion Clause Recognizing and Filtering
Input: D = {c1, c2, · · · , c|d|}, clause’s initial sentiment score
Output: Set KC, Set EC

1: Initialize emotion clause set EC = ∅.
2: Initialize emotion clause set KC = ∅.
3: for ecah clause ci ∈ D do
4: Get initial sentiment score S(ci) from Input.
5: if |S(ci)| > emothreshold then
6: Identify prominent emotional keywords K(ci) using LLM.
7: if KC ̸= ∅ then
8: Mark ci as an emotion clause.
9: Add ci to set EC.

10: Add K(ci) to set KC.
11: end if
12: end if
13: end for
14: return Set KC, Set EC

We set an emotional score threshold to filter the clauses with strong emotional expressions. The
threshold helps the model focus on sentences with higher sentiment intensity, avoiding the inter-
ference of weak or ambiguous emotions and ensuring that the extracted emotion clauses are more
salient and representative. This reduces noise and provides more reliable emotional cues for subse-
quent analysis steps.

3.5 EXPERIENCER AND EVENT EXTRACTION

The experiencer is the direct expresser or recipient of the emotion, and the emotion and cause clause
for the same sentiment usually refer to the same experiencer. The cause clause typically describes
the background or event. Accurate identification of the experiencer and related events is crucial for
subsequent cause extraction. Determining the experiencer and events can significantly narrow the
search space for cause clauses.
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Step 2. Experiencer Extraction: Given potential emotion clauses, the LLM is prompted to analyze
the experiencer of each sentiment clause and classify each emotion clause according to the following
emotion categories: E = { Happiness, Sadness, Anger, Disgust, Surprise, Fear}.

Step 3. Event Extraction: Based on the identified experiencers, consider the interactions between
different experiencers and prompt the LLM analyze and summarize the context, background, events
and behaviors clauses associated with them in a step-by-step manner.

3.6 CAUSE EXTRACTION

Identifying cause clauses directly from the above results may lead to disastrous results, given the
complexity of the ECPE task and the uncontrollability of the LLM model. Additionally, every part
of the reasoning process could be considered a cause. At the same time, only a few are actual
cause clauses, making it relatively difficult to obtain the final ECPs directly. Furthermore, ensuring
consistency in the results is challenging due to the unpredictability of zero-shot outputs. To address
these issues, we have designed the following two steps:

Step 4. Analysis: In this step, based on the above analysis, consider the chronological order and
logical correlation between clauses, the cause that directly or indirectly lead to the emotion clauses
are analyzed step by step, making sure that the cause clauses are directly related to the emotion
clauses and do not contain additional speculative content. It is worth noting that the emotion clauses
themselves may also be cause clauses.

Step 5. Validate: At this stage, we combine the results from previous multi-step reasoning with a
comprehensive understanding of the document to verify whether the relationship between emotion
and cause clauses is reasonable and coherent. Specifically, Based on the multiple potential cause
clauses found in Step 4, the most direct causes are prioritized, excluding speculative clauses or
providing only background or contextual information. Finally, these high-confidence emotion-cause
pairs are selected and output in the format [emotion clause number, cause clause number].

4 EXPERIMENT

4.1 DATASET AND EVALUATION METRICS

We evaluate our approach on three public datasets: (1) The Chinese benchmark dataset published by
Ding et al. (2019) consists of Sina City News. (2) The English dataset NTCIR-13 workshop Singh
et al. (2021) consists mainly of English novels. (3) The rebalanced Chinese ECPE dataset Ding &
Kejriwal (2020) is constructed by resampling Chinese benchmark dataset. In addition, Our approach
does not rely on training data, so we used the same dataset split as previous works and performed
experiments directly on the test set.

Similar to previous work, we evaluate the ECPE task using precision (P), recall (R), and F1 score
as performance metrics. However, assessing ECPE tasks can be challenging due to the inherent
uncertainty associated with generative models Han et al. (2023). LLMs typically generate reasonable
responses that are correct with human review but may not match the ground truth word-for-word
Wadhwa et al. (2023). For example, if the factual cause sentence is “My money was stolen by
a thief,” an LLM might generate “The thief took the author’s money, which likely triggered the
author’s emotions.” While the semantic content of the LLM’s output matches the target, the literal
wording may differ, and such output should be considered correct. For this, we also used the manual
evaluation designed Wang et al. (2023).

4.2 BASELINES

We select the following representative methods for comparison, covering approaches from tradi-
tional 2-Step frameworks to the latest prompt learning and large language model (LLM)-based meth-
ods. ECPE-2Steps: the initial two-step framework. EDSECPE Li et al. (2024): a select-then-extract
learning framework for ECPE. RL-TSM Chen et al. (2023): fusion reinforcement learning two-stage
ECPE approach. MV-SHIF Yang et al. (2024): treats the ECPE task as a textual entailment problem,
modelling the relationship between emotion and cause through inference. EoCP Hu et al. (2024):
uses a closed-loop structure detection approach to redefine the structure of ECPs. ECPE-2D Ding
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Table 1: The main results compare our EEEC model with the existing three benchmark dataset
benchmark methods. The best results are marked in bold.

Chinese Dataset English Dataset Rebalanced CN Dataset
Approach P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

ECPE-2Step Ding et al. (2019) 67.21 57.05 61.28 46.94 41.02 43.67
EDSECPE Li et al. (2024) 75.60 67.18 71.14 - - - - - -

RL-TSM Chen et al. (2023) 76.04 75.84 75.90 - - - - - -
MV-SHIF Yang et al. (2024) 85.00 80.70 82.80 68.40 67.30 67.90

EoCP Hu et al. (2024) 79.20 76.94 78.42 - - - - - -
ECPE-2D Ding et al. (2020a) 72.92 65.44 68.89 60.49 43.84 50.73 47.22 37.38 41.73
IA-ECPE Huang et al. (2023) 69.80 60.56 64.78 60.14 43.03 50.05
E2EECPE Song et al. (2020) 64.78 61.05 62.80 50.02 37.16 42.63

MTST-ECPE Fan et al. (2021) 77.46 71.99 74.63 52.37 43.54 47.47 51.99 40.34 44.93
UTOS Cheng et al. (2021) 73.89 70.62 72.03 55.69 48.03 51.53 42.76 28.95 34.14

ECPE-MLL Ding et al. (2020b) 77.00 72.35 74.52 52.96 45.30 51.21 61.53 36.39 45.57
BMST Liu et al. (2023) 78.01 75.49 76.67 - - - - - -

PairGCN Chen et al. (2020b) 67.42 76.65 71.64 41.51 68.53 51.63
RankCP Wei et al. (2020) 71.19 76.30 73.60 44.00 45.35 44.63 43.22 39.16 41.22

MGSAG Bao et al. (2022a) 77.43 73.21 75.21 - - - - - -
EDKA-GM Li et al. (2023b) 79.1 76.08 77.56 - - - - - -
MGGA Chen & Mao (2023) 72.95 71.02 71.89 60.56 48.95 54.04
GAT-ECPE Zhu et al. (2024) 72.65 77.52 74.92 - - - - - -
A2Net Chen et al. (2022b) 75.03 77.80 76.34 - - - - - -

JCB Feng et al. (2023) 79.10 75.84 77.37 - - - - - -
MMN Shang et al. (2023) 76.11 73.96 75.02 - - - - - -

MM-ECPE Fu & Li (2024) 77.48 76.35 76.91 - - - - - -
KMGP Zong et al. (2024) 74.25 62.08 67.30 - - - - - -
DQAN Sun et al. (2021) 77.32 63.70 69.79 80.58 43.24 56.28
MM-R Zhou et al. (2022) 82.18 79.27 80.62 60.55 46.88 52.08

CD-MRC Cheng et al. (2023) 82.49 78.00 80.13 60.65 46.21 52.43
CFC-ECPE Mai et al. (2024) 82.49 81.25 81.87 61.44 53.12 56.85

UECA-Prompt Zheng et al. (2022) 71.82 77.99 74.70 - - - 46.30 53.22 49.37
EmoPrompt-ECPE Gu et al. (2024) 93.15 92.19 92.39 79.71 80.02 79.20 - - -

GPT3.5 prompt(0-shot) Wang et al. (2023) 40.74 67.54 50.82 42.11 39.34 40.68 40.72 38.14 39.39
GPT3.5 DECC(0-shot) Wu et al. (2024) 61.54 49.76 55.03 34.60 59.84 43.84 45.82 49.15 47.42

GPT3.5 DECC(4-shot) 61.23 81.56 69.95 46.89 54.42 50.35 50.00 79.45 61.38
GPT-4o mini EEEC(0-shot) 66.74 77.63 71.75 43.15 63.96 58.42 60.53 73.32 66.31

et al. (2020a), EPO-ECPE Hu et al. (2023), IA-ECPE Huang et al. (2023), and E2EECPE Song
et al. (2020) transform the ECPE task into a link prediction task. MTST-ECPE Fan et al. (2021),
UTOS Cheng et al. (2021), BMST Liu et al. (2023), convert the ECPE task into sequence labelling
or multi-label classification problems. Graph-based methods have become another important direc-
tion of development. PairGCN Chen et al. (2020b), RankCP Wei et al. (2020), MGSAG Bao et al.
(2022a), EDKA-GM Li et al. (2023b), MGGA Chen & Mao (2023), GAT-ECPE Zhu et al. (2024),
and other graph-based methods. A2Net Chen et al. (2022b), RSN Chen et al. (2022a), JCB Feng
et al. (2023), MMN Shang et al. (2023), MM-ECPE Fu & Li (2024), KMGP Zong et al. (2024) and
other inter-task interaction-based learning methods. Question-answering (QA) or machine reading
comprehension (MRC)-based models, like DQAN Sun et al. (2021), Guided-QA Nguyen & Nguyen
(2023), MM-R Zhou et al. (2022), CD-MRC Cheng et al. (2023), and CFC-ECPE Mai et al. (2024).
UECA-Prompt Zheng et al. (2022) and EmpPrompt-ECPE Gu et al. (2024) introduce prompt-based
learning, guiding the model to extract and pair emotion components with specific prompts. Reason-
ing methods, such as DECC Wu et al. (2024), GPT3.5-promptWang et al. (2023), use ChatGPT as a
baseline framework.

4.3 RESULTS AND ANALYSIS

4.3.1 ZERO-SHOT RESULT

In the experiments, we used GPT-4o mini as the baseline model to evaluate the proposed EEEC
across three benchmark datasets: Chinese Ding et al. (2019), English Singh et al. (2021), and the
balanced Ding & Kejriwal (2020) dataset. The results are shown in Table 1. For the Chinese dataset,
our EEEC framework outperformed existing large language model (LLM) methods, achieving the
best results. Notably, in the zero-shot setting, EEEC demonstrated significant improvements over
the four-shot DECC in both P and F1 score, with P increasing by 5.51 and F1 by 1.8. This im-
provement can be attributed to incorporating prior sentiment knowledge in Step 1, which better
guided the model in extracting emotion clauses. Additionally, the experiencer identification in Step
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3 helped narrow the search space for cause clauses. Compared to fully-supervised fine-tuning meth-
ods, we found that the zero-shot EEEC outperformed the select-then-extract framework EDSECPE,
with a 0.61 improvement in F1. EEEC also showed clear advantages over end-to-end methods like
ECPE-3D, IA-ECPE, and E2EECPE, with F1 improvements of 2.86, 6.97, and 8.95, respectively.
Compared to the graph-based PairGCN method, EEEC achieved a higher F1 by 0.11. Despite these
strong performances, EEEC still falls short of most fully-supervised fine-tuning methods.

In contrast to its performance on the Chinese dataset, EEEC outperforms most fully-supervised fine-
tuning methods on the English benchmark dataset, surpassing even the leading LLM-based DECC
model. Specifically, EEEC achieves an F1 score improvement of 8.07 compared to DECC. This
improvement is primarily due to DECC’s reliance on emotion keywords when extracting emotion
clauses, which inevitably leads to omissions. Furthermore, DECC’s approach to extracting cause
clauses focuses solely on deriving them from emotion clauses, overlooking the critical relation-
ships between experiencers, emotion clauses, and cause clauses. In contrast, EEEC more effectively
captures the role of experiencers and integrates contextual information, resulting in a substantial
performance boost.

4.3.2 DE-BIAS RESULT

In the Chinese benchmark dataset, 80% of the cause clauses are either emotion clauses themselves
or located in adjacent clauses, resulting in a significant positional bias. Therefore, we conducted
evaluations on the rebalanced dataset. The results are shown in Table 1, where all previous methods
based on fully supervised fine-tuning show a significant performance degradation on the rebalanced
dataset. In contrast, EEEC’s F1 score decreases significantly less than that of the other models in
the zero-shot setting. Furthermore, EEEC in the zero-shot setting outperforms the state-of-the-art
methods on this rebalanced dataset.

We analyzed this phenomenon: previous methods often exploit positional bias to extract emotion-
cause pairs, which can overfit this bias, resulting in false correlations and neglecting the semantic
features of the text, which leads to significant performance degradation. In contrast, the EEEC
method relies entirely on the LLM’s inherent understanding and reasoning abilities, making it less
sensitive to the positional distribution within the dataset. Additionally, we leverage prior sentiment
knowledge to guide the LLM, enabling it to identify emotions more accurately.

4.3.3 PERFORMANCE ON MULTIPLE PAIRS

In addition, we compared the results of extracting emotion-cause pairs from documents with multi-
ple pairs. Specifically, we divided each test set into two groups: one group containing only a single
Emotion-Cause Pair (ECP) and the other group containing two or more ECPs. The comparison re-
sults are shown in Table 2. Our model EEEC performs exceptionally well in multi-pair extraction
scenarios, achieving an F1 score that surpasses the previous best model DEEC by 4.8. This im-
provement indicates that the guidance of prior emotional knowledge and incorporating experiencer
features are efficient for complex emotional reasoning. However, it fails to achieve optimal perfor-
mance in terms of P. This is primarily due to the complex structure and semantic relationships in
documents containing multiple pairs. While introducing prior emotional knowledge helps the model
extract potential emotion clauses, it inevitably draws attention to the implicit emotion clauses within
the document, leading to the extraction of more invalid pairs.

Table 2: Results on multi-pair extraction scenarios. The best results are marked in bold.

Methods P(%) R(%) F1(%)
UTOS 55.45 46.76 50.35
RankCP 75.08 43.90 55.31
ECPE-MLL 70.45 47.76 56.88
UECA-Prompt 69.52 54.66 61.14
UECA-Prompt (m2m) 73.92 56.30 63.45
GPT3.5 DECC (4-shot) 63.93 73.39 68.34
GPT4o mini EEEC 73.57 72.83 73.14
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5 ABLATION STUDY

5.1 DIFFERENT COMPONENTS

To evaluate each step’s impact on the EEEC model’s performance, we conducted experiments on
variations of the EEEC where each step was removed. Specifically, there are three variations related
to the removal of Step 1: w/o step1-para (this variation ignores the prior emotional knowledge of the
clauses), w/o step1-keyword (this variation does not treat emotional keywords in the clauses as crit-
ical features), and w/o step1 (this variation directly identifies emotion clauses from the document).
Table 3 shows the experimental results. When prior emotional knowledge is ignored, the F1 score
drops more significantly than when emotional keywords are disregarded, indicating that emotional
knowledge helps the LLM explore the possibility of clauses being emotion clauses. Removing the
emotion clause identification step leads to a significant performance drop, as providing excessively
noisy clauses to subsequent steps without any constraints introduces confusion. Removing the ex-
periencer identification step results in unrelated clauses being considered candidate cause clauses,
which may lead to inaccurate cause analysis and reduced precision. On the other hand, removing
the step of identifying experiencer-related contexts, backgrounds, events, and behaviour clauses has
a minor impact on performance. This step primarily helps summarize the experiencer’s story to aid
the model in understanding the document’s main content in a more targeted manner. Eliminating
the cause analysis step sharply declines performance. An end-to-end approach to extracting cause
clauses directly from the document overlooks the LLM’s reasoning capabilities. However, removing
the verification and summary steps has minimal impact on performance.

Table 3: Ablation study on Chinese dataset.

Methods P(%) R(%) F1(%)

EEEC 66.74 77.63 71.75
w/o step1-para 38.38 58.24 45.91
w/o step1-keyword 41.53 53.84 46.87
w/o step1-keyword&para 34.89 49.18 40.74
w/o step2-experiencer 57.38 62.32 59.21
w/o step3-event 59.29 64.84 62.11
w/o step4-analysis 61.82 57.46 58.63
w/o step5-validate 65.87 78.24 70.64

6 CONCLUSION

Considering that previous works ignore the influence of experiencer, a priori emotion knowledge on
emotion-cause on extraction task (ECPE), and the problem of spurious correlations caused by po-
sitional bias overfitting, this paper proposes the Emotion-Experience-Event-Cause multi-step chain
(EEEC) framework. By decomposing the ECPE task into multiple sub-tasks, with each solution
depending on the previous step, EEEC leverages the reasoning capabilities of large language models
(LLMs) through well-designed prompts and chain-of-thought decomposition, addressing the limi-
tations of fully supervised fine-tuning methods. To obtain experiencer information, we introduced
a sub-task for experiencer identification, capturing the relationship between experiencers, emotion
clauses, and cause clauses. Furthermore, we designed sub-tasks to extract experiencer-related con-
texts and events, reducing the search space for cause clauses. To accurately extract emotion clauses,
the framework introduces a priori sentiment knowledge to guide LLM to recognize emotion clauses
more effectively. Experiments conducted on three benchmark datasets demonstrate the effectiveness
and robustness of the EEEC framework. Especially in complex multi-pair ECPE tasks, EEEC signif-
icantly outperforms state-of-the-art methods. More importantly, EEEC maintains high performance
in zero-times learning scenarios, demonstrating its strong inference capability and adaptability to
different language datasets. Future work will focus on developing more efficient LLM-based mod-
els and improving performance by extracting complex emotion-cause relationships.
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Zong (eds.), Proceedings of the 28th International Conference on Computational Linguistics,
COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pp. 198–207. International
Committee on Computational Linguistics, 2020b. doi: 10.18653/V1/2020.COLING-MAIN.17.
URL https://doi.org/10.18653/v1/2020.coling-main.17.

Zifeng Cheng, Zhiwei Jiang, Yafeng Yin, Hua Yu, and Qing Gu. A symmetric local search
network for emotion-cause pair extraction. In Donia Scott, Núria Bel, and Chengqing Zong
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A APPENDIX

A.1 DATASET STATISTICS

A.2 IMPLEMENTATION DETAILS

Consistent with the approach reported by Wang et al. (2023) and Wu et al. (2024), we generated
all ChatGPT outputs using the official API, with default hyperparameters such as temperature and
top-k sampling. The experimental results represent the average of five random runs on the test set.
Additionally, we conducted a manual evaluation involving five annotators. For each instance, the
result was correct only when three or more annotators agreed that the LLM-generated answer was
correct.
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Table 4: Here are the statistics for the three benchmark dataset used for Emotion-Cause Pair Extrac-
tion.

Statistics Chinese Dataset English Dataset Rebalanced Dataset
Range Number Percentage (%) Number Percentage (%) Number Percentage (%)

Documents 1945 100 2843 100 756 100
One pair in documents 1746 89.77 2537 89.24 715 94.58
Two pairs in documents 177 9.10 256 9.00 40 5.29

More than two pairs 22 1.13 50 1.76 1 0.17
Total pairs 2167 100 3215 100 780 100

distance is equal to 0 511 23.6 1640 51.01 169 21.67
distance is equal to 1 1342 61.9 825 25.66 331 42.44
distance is equal to 2 224 10.3 328 10.21 196 25.13
distance is equal to 3 50 2.3 156 4.85 43 5.51

distance is large than 3 40 1.9 266 8.27 41 5.25

A.3 CASE STUDY

In some cases, the EEEC framework is erroneous, mainly in the following situations: One: Ex-
tracting implicit sentiment expressions in documents. As shown in Figure 4, we can find from
the analysis process given by LLM that leaving is not a typical emotion word when performing
emotion word verification in step 2, but judging from the context, clause 6 implies the emotion of
sadness. Two: Tendency to extract deeper emotional causes. As seen in Figure 5, during the cause
extraction process, EEEC goes beyond extracting superficial information such as ”Deng Guangtai’s
story” and instead identifies the more profound emotional significance behind the story—”family
affection”—demonstrating its strength in emotional reasoning.
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Figure 4: The case of extracting implicit sentiment expressions in documents.
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Figure 5: The case of extracting deeper emotional causes.
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