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Abstract

Quantum noise constitutes a fundamental obstacle to realizing practical quantum
technologies. To address the pivotal challenge of identifying quantum systems
least affected by noise, we introduce the purest quantum state identification, which
can be used to improve the accuracy of quantum computation and communica-
tion. We formulate a rigorous paradigm for identifying the purest quantum state
among K unknown n-qubit quantum states using total N quantum state copies.
For incoherent strategies, we derive the first adaptive algorithm achieving error
probability exp

(
−Ω

(
NH1

log(K)2n

))
, fundamentally improving quantum property

learning through measurement optimization. By developing a coherent measure-
ment protocol with error bound exp

(
−Ω

(
NH2

log(K)

))
, we demonstrate a significant

separation from incoherent strategies, formally quantifying the power of quantum
memory and coherent measurement. Furthermore, we establish a lower bound
by demonstrating that all strategies with fixed two-outcome incoherent POVM
must suffer error probability exceeding exp

(
−O

(
NH1

2n

))
. This research advances

the characterization of quantum noise through efficient learning frameworks. Our
results establish theoretical foundations for noise-adaptive quantum property learn-
ing while delivering practical protocols for enhancing the reliability of quantum
hardware.

1 Introduction

Quantum computing demonstrates the remarkable potential for solving computational problems that
are intractable for classical systems [1, 2]. However, current quantum systems face two fundamental
constraints that limit their practical applications: (1) the number of available quantum bits (qubits)
in existing devices remains severely limited compared to theoretical requirements [3, 4], and (2)
these qubits exhibit high sensitivity to environmental noise, compromising the reliability of quantum
operations [5]. These fundamental constraints impose substantial barriers to achieving reliable
quantum control and measurement, prerequisites for unlocking practical quantum computational
advantages. Owing to variations in device implementation and environmental factors, the performance
of quantum computation and communication differs markedly among various quantum systems [6].
Thus, identifying the optimal quantum device [5], quantum state, or quantum channel [7] is significant
for the near-term quantum science and technology.

To evaluate the quality of quantum systems, researchers often use the purity of quantum states as
a criterion. In quantum communication, high-accuracy quantum channels are critical to ensuring
the accurate transmission of quantum information [7]. By measuring the purity of the channel’s
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associated state (Choi-state [7]), researchers can evaluate how noise affects the channel. On the
other hand, preparing high-purity quantum states is also the foundation for quantum algorithms. The
majority of quantum algorithms rely on pure quantum states as inputs [1, 8, 9]. Therefore, identifying
high-purity quantum states is essential for accurate quantum computing.

In this paper, we study the problem of purest quantum state identification (PQSI). The learner aims
to identify the purest state among multiple unknown quantum states using N copies across all
states. This issue holds considerable importance from both theoretical and practical perspectives.
By identifying the purest quantum state, it is achievable to distinguish the best quantum system
that is least affected by noise, thus improving the accuracy of quantum computing and quantum
communication in near-term quantum systems.

This paper makes the following key contributions:

Problem Model. To the best of our knowledge, this is the first study dedicated to the best quantum
state identification. In this paper, we focus on the issue of the purest quantum state identification,
i.e., identifying the purest quantum state from a set of available quantum states. In this problem,
while allocating copies to different quantum systems, the learner also needs to select the basis for
quantum measurement, which significantly increases its complexity. Due to the limited number of
qubits in existing quantum devices, these systems may not be able to facilitate large-scale quantum
measurement [10, 11]. Consequently, while coherent (multi-copy) measurement techniques can
more efficiently acquire information about quantum states, research on incoherent (single-copy)
measurement is more practical. We formalize the problem of purest quantum state identification with
incoherent (single-copy) measurement as follows:

Problem 1.1 (Purest quantum state identification (PQSI) with incoherent (single-copy) measurement).
There is a set of K unknown n-qubit quantum states represented as S = {ρ1, . . . , ρK}. The learner
aims to identify the purest quantum state in S using a total of N copies across all states. The problem
protocol at round t ∈ {1, ..., N} is as follows:

• The learner chooses a quantum state σt from the set S and gets a copy of it.

• The learner selects a POVM and uses it to measure σt, after which σt is destroyed.

Upon completing N measurements, the learner selects a quantum state ρ′ ∈ S based on the
measurement outcomes. The objective of the learner is to maximize the probability of identifying the
purest quantum state, i.e., P(ρ′ ∈ argmaxρ∈S Tr(ρ

2)).

In general, when coherent measurements are available, we formalize the problem as follows:

Problem 1.2 (Purest quantum state identification(PQSI) with coherent (multi-copy) measurement).
There is a set of K unknown n-qubit quantum states represented as S = {ρ1, . . . , ρK}. The learner
aims to identify the purest quantum state in S using a total of N copies across all states. Let Nt
denote the number of quantum state copies that remain available in round t and N1 = N . When
Nt > 0, the problem protocol at round t ∈ N+ is as follows:

• The learner decides the number of copies of the quantum state ρi to acquire, denoted as s(i, t),
where s(i, t) ≥ 0 and 1 ≤

∑K
i=1 s(i, t) ≤ Nt. The quantum state constructed from these copies can

be represented as σt = ρ
⊗s(1,t)
1 ⊗ . . .⊗ ρ

⊗s(K,t)
K . Let Nt+1 = Nt −

∑K
i=1 s(i, t).

• The learner selects an entangled POVM and uses it to measure σt, after which σt is destroyed.

Upon completing measurements of all N copies of quantum states, the learner selects a quantum
state ρ′ ∈ S based on the measurement outcomes. The objective of the learner is to maximize the
probability of identifying the purest quantum state P(ρ′ ∈ argmaxρ∈S Tr(ρ

2)).

Algorithms. We develop two distinct algorithms to address this problem in different settings. To
simplify the expression, for i ∈ {1, ...,K}, let ρ(i) be the i-th purest quantum state in S and

∆(i) = Tr
(
ρ2(1)

)
− Tr

(
ρ2(i)

)
be the purity gap between the optimal quantum state and the i-th

purest quantum state. In scenarios where only single-copy measurements are available, we developed
the incoherent measurement based algorithm IM-PQSI. We employ Haar unitary matrices to generate
random measurement basis and to measure quantum states in S. This measurement approach
allows us to evaluate the purity of quantum states by analyzing measurement expectations and
variances. The Haar unitary matrices utilized in IM-PQSI belong to the class of unitary 4-designs,
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which can be efficiently simulated on a quantum computer up to inverse-exponential trace distance
[12, 13, 14, 15, 16]. During the evaluation of quantum state purity, our algorithms dynamically
allocate copies to various quantum states. By assigning more copies to states with higher purity, we
enhance the estimation accuracy of these states, thereby increasing the likelihood of identifying the
purest quantum state. Furthermore, we improve the performance of the algorithm for identifying
the optimal quantum state by balancing the selection of measurement basis with the number of
measurements conducted for each base. The error probability of this algorithm satisfies the following
theorem:
Theorem 1.3 (Informal version of Theorem 4.1). There exists an algorithm that solves the problem of
the purest quantum state identification with incoherent measurement whose error probability satisfies

eN ≤ exp

(
−Ω

(
NH1

log(K)2n

))
, (1)

where H1 = mini∈{2,...,K}
∆(i)

i .

Conversely, when multi-copy measurements are accessible, we developed the coherent measurement
based algorithm CM-PQSI. We use the SWAP test to estimate the purity of quantum states in this
algorithm, and its error probability satisfies the following theorem:
Theorem 1.4 (Informal version of Theorem 6.1). There exists an algorithm that solves the problem
of the purest quantum state identification with coherent measurement whose error probability satisfies

eN ≤ exp

(
−Ω

(
NH2

log(K)

))
, (2)

where H2 = mini∈{2,...,K}
∆2

(i)

i .

By comparing the error probability upper bound of these two algorithms, we can identify the
advantages of quantum memory.

Lower Bound. For incoherent measurements, we utilize the properties of Haar unitary matrices
to formulate a related problem named Purest Random Quantum State Identification (PRQSI). In
this context, the learner is required to consider a specific quantum state distribution constructed
from Haar unitary matrices. We demonstrate that the lower bound of the error probability for
the PRQSI problem is also applicable as the lower bound for the error probability of the PQSI
problem. Furthermore, we show that the measurement outcomes generated by three-fourths of the
Haar unitary matrices are insufficient for the learner to easily differentiate among them, presenting a
challenge in identification. Additionally, we demonstrate that in any PRQSI problem employing a
fixed two-outcome Positive Operator-Valued Measure, the measurement outcomes exhibit a Bernoulli
distribution that is inherently difficult to distinguish. Consequently, we derive the lower bounds for
the error probability of the PRQSI, which are also the lower bounds for the error probability of the
PQSI problem, as follows:
Theorem 1.5 (Informal version of Theorem 5.6). For any algorithm A to solve the purest quantum
state identification using fixed 2-outcome randomly incoherent POVM, there exists a set of quantum
states which makes the error probability of A satisfies

eN ≥ exp

(
−O

(
NH1

2n

))
, (3)

where H1 = mini∈{2,...,K}
∆(i)

i .

2 Related Work

Quantum learning and testing. Quantum learning and testing [17, 18] is a vital area of research
in quantum computing and quantum communication. Extensive investigations have been conducted
to understand the complexities of various measurements. Quantum state tomography [19, 20, 21,
22] involves obtaining complete information about the density matrix of a quantum state through
measurements. While this technique can be employed to tackle the PQSI problem, it incurs significant
sampling costs. For the quantum state certification [23, 24, 25, 26], the target is to determine whether
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a quantum state is close to a specific target quantum state. Our problem can be viewed as identifying
the quantum state that is the farthest from the maximally mixed state. However, this problem is
focused on quantum testing and does not deal with distance estimation.

Hence, these methods are not applicable to the PQSI problem. Another category of problems relates
to inner product estimation between two quantum states [27, 28, 29, 30]. When proving lower
bounds, this category often significantly restricts the quantum states for distinction. The relevant
literature employs two general approaches to establish problem complexity. The first approach
involves constructing counterexamples using Haar unitary matrices [27, 22, 26, 23]. However, the
representation-theoretic structure of Haar unitary matrices is intricate [31], which makes it difficult to
use. The other approach uses Gaussian Orthogonal Ensemble matrices to create counterexamples
[24, 21]. However, when using GOE to prove the lower bound, the distance between quantum states
is in a specific range rather than a fixed number, making it unsuitable for the PQSI problem.

Classical best arm identification. To the best of our knowledge, our work is the first to consider
the best quantum state identification. Among the classical learning tasks, the best arm identification
[32, 33, 34, 35, 36] has been extensively studied and is divided into two categories: fixed budget
[37] and fixed confidence [38]. However, the existing research can only deal with the problem under
specific distributions. These limitations restrict the algorithm’s applicability and leave considerable
room for further research on this issue. In our problem, we must select an appropriate POVM basis
while choosing the quantum state in each round. The quantum state space and the POVM space grow
exponentially with the increase in qubits, which makes this problem significantly more challenging
than solving a classical problem of the best arm identification.

3 Preliminaries and Notations

Quantum State. Let d = 2n denote the dimension of an n-qubit quantum system. An n-qubit
quantum state can be represented by a density matrix ρ ∈ Cd×d, which is Hermitian and trace-1
positive semi-definite. In particular, an n-qubit pure quantum state can be represented by a unit vector
|ψ⟩ ∈ Cd. The purity of a quantum state ρ is Tr(ρ2).

Quantum Measurement. Quantum measurements are usually described by a Positive Operator-
Valued Measure (POVM), which produces probabilistic outcomes. An n-qubit positive operator-
valued measurement M can be represented as a collection of positive semi-definite matrices M =
{Mm}m, where Mm ∈ Cd×d and

∑
mMm = Id. When using M to measure a quantum state

ρ, the probability of outcome m is Tr(Mmρ), and the quantum state ρ is destroyed. When the
coherent measurement method is employed, the learner can perform entanglement measurements
on quantum states ρ1 ⊗ . . . ⊗ ρm. However, this approach necessitates the support of large-scale
quantum devices and quantum memory, which are not feasible with current quantum technologies.
Therefore, researching incoherent measurement methods applicable to near-term quantum devices is
of great significance.

In this study, we aim to identify the purest quantum state from a set of unknown quantum states,
achieving the highest probability through N measurements. For the purpose of simplicity, we will
assume that there exists a unique optimal quantum state that is the purest in the set S, denoted as
µ⋆ = µi⋆ . For i ̸= i⋆, we represent the purity difference between each non-optimal quantum state
and the optimal quantum state using

∆i = Tr
(
ρ2i⋆
)
− Tr

(
ρ2i
)
.

For i ∈ {1, ...,K}, let ρ(i) be the i-th purest quantum state in S, then we have

Tr
(
ρ2i⋆
)
= Tr

(
ρ2(1)

)
> Tr

(
ρ2(2)

)
≥ ... ≥ Tr

(
ρ2(K)

)
,

and
∆(2) ≤ ∆(3) ≤ ... ≤ ∆(K).

Let eN denote the probability that the learner does not choose the purest quantum state in S after
N samples and measurements, i.e., eN = P

(
ρ′ /∈ argmaxρ Tr(ρ

2)
)
. The learner’s objective is to

min eN . We summarize key notations used throughout this paper in Table 1.
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4 Algorithm for PQSI with incoherent measurement

The current era of quantum computing presents limitations in the number of available qubits. This
may hinder the measurement of multiple quantum states operated jointly. In this section, we use
incoherent (single-copy) measurement methods in each round to select the purest quantum state from
the set of quantum states.

The algorithm we designed to solve the PQSI problem with incoherent measurements is shown in
Algorithm 1. In our algorithm, we utilize Haar-random unitary matrices to construct multiple random
measurement bases for probing quantum state copies. For each constructed measurement basis, we
perform m repeated measurements on the same quantum state. Let the i-th measurement outcome be
xi ∈ {0, . . . , d− 1} for a d-outcome POVM. We estimate the quantum state’s purity based on the
empirical probability of obtaining identical outcomes, defined as

g̃ =
1

m(m− 1)

m∑
i=1

∑
j ̸=i

1{xi = xj},

which corresponds to the well-known collision estimator [39, 40] used to estimate the second moment∑d
i=1 p

2
i in classical statistics.

The rationale behind this choice is as follows. The positive operator-valued measurements (POVMs)
adopted in our algorithm have d possible outcomes, where pi denotes the probability of observing
the i-th outcome. The purity of a quantum state is closely related to the quantity

∑d
i=1 p

2
i . Hence,

an essential step in our algorithm is to estimate this second-order statistic accurately. The collision
estimator provides a natural and statistically efficient approach to this task, allowing us to connect the
observed measurement coincidences to the underlying purity of the quantum state. By analyzing the
expectation and variance of g̃, we can further quantify the probability of correctly identifying the
purest quantum state within our framework.

Algorithm 1 includes two random processes. The first process involves the random selection of
Haar unitary matrices to construct measurement bases, while the second process entails the random
acquisition of measurement results using these bases. Balancing the estimation errors introduced by
these two processes is crucial for enhancing the algorithm’s accuracy. When the purity difference
between quantum states is substantial, each measurement base requires fewer instances to distinguish
purity differences among states effectively. Conversely, when the purity difference is minimal, more
measurements are necessary under a single measurement base to gather sufficient information, limiting
the number of measurement bases that can be utilized. Furthermore, when the purity difference
is extremely slight, the choice of measurement basis significantly influences the measurement
outcomes. Performing Θ(d2) measurements under a single measurement base is essential for
adequately differentiating the outcomes between quantum states. Additionally, increasing the number
of measurements under one measurement base will not improve the accuracy of purity estimation.
Given these considerations, we balance the number of measurement bases and the number of
measurements per base to enhance the probability of identifying the optimal quantum state.

In Algorithm 1, we use Haar unitary matrices to construct random measurement bases. Haar unitary
matrices are extensively employed in quantum property testing and learning theory [41, 27, 30].
Achieving exact Haar randomness is challenging; therefore, unitary t-designs are typically used to
approximate Haar unitary matrices. Haar unitary matrices used in Algorithm 1 can be approximated
using unitary 4-designs. As established in [12], unitary t-designs can be efficiently implemented
on quantum computers with exponentially minor approximation errors. This theoretical foundation
ensures the practical feasibility and mathematical validity of employing Haar unitary matrices in our
algorithmic framework.

Then, we give the error probability upper bound of IM-PQSI in the following theorem.
Theorem 4.1. For i ∈ {1, ...,K},∆i ≥ c > 1

d2 , where c is a constant. Set m = ⌈ 1√
c
⌉ in Algorithm

1. The error probability of Algorithm 1 satisfies

eN ≤ K(K − 1)

2
exp

(
−Ω

(√
cNH1

log(K)d

))
, (4)

where H1 = mini∈{2,...,K}
∆(i)

i .
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Algorithm 1 Incoherent measurement based algorithm for solving PQSI problem (IM-PQSI)
Input: Copy access to S = {ρ1, ..., ρK}, sample number N .
Initialization: Set S0 = {ρ1, ..., ρK}, log(K) = 1

2 +
∑K
i=2

1
i , N0 = 0 and Nk =⌈

1
log(K)

N−K
K+1−k

⌉
, for k ∈ {1, ...,K − 1}. Sample ⌊N/m⌋ random unitary matrix U1, ..., U⌊N/m⌋

according to the Haar measure.
for k=1,..., K-1 do

for ρ ∈ Sk−1 and j ∈ {⌊Nk−1

m ⌋+ 1, ..., ⌊Nk

m ⌋} do
Measure m copies of ρ in the basis {U†

j |i⟩⟨i|Uj}
d−1
i=0 and set the outputs as

x(ρ, j, 1), ..., x(ρ, j,m).
Let g̃(ρ, j) = 1

m2

∑d−1
i=0 [

∑m
l=1 1{x(ρ, j, l) = i}]2 − 1

m .
end for
Let w(ρ, k) = 1

⌊Nk
m ⌋

∑⌊Nk
m ⌋

j=1 g̃(ρ, j).

Let Sk = Sk−1 \ argminρ∈Sk−1
w(ρ, k).

end for
Output the quantum state ρ′ in Sk−1.

Proof Sketch. The expectation of w(ρ, k) and g̃ρ,j in Algorithm 1 satisfies E[w(ρ, k)] = E[g̃ρ,j ] =
(m−1)(1+Tr(ρ2))

m(d+1) , and the variance of g̃(ρ, j) satisfies Var(g̃(ρ, j)) = O
(

1
d3 + 1

m2d + 1
md2

)
.

By Bernstein’s inequality and the union bound of error probability, we have en ≤
K(K−1)

2 exp
(
−Ω

(√
cNH1

log(K)d

))
where H1 = mini∈{1,...,K}

∆(i)

i . The proof details are provided
in Appendix B.2.

When the purity gaps between quantum states are very small, the gap parameter H1 becomes
correspondingly small, which naturally results in a looser error bound. This reflects the intrinsic
difficulty of the problem: identifying the quantum state with the highest purity is fundamentally hard
when multiple states have nearly identical purities. Moreover, the system dimension d = 2n grows
exponentially with the number of qubits n, so that 1

d2 tends to zero as n increases. Therefore, in
Theorem 4.1, we assume that for any quantum state ρ ∈ Sρ, Tr(ρ⋆2) − Tr(ρ2) ≥ c > 1

d2 . If this
assumption does not hold, we can instead derive the following conclusion:

Lemma 4.2. Set m = d in Algorithm 1. The probability of error of Algorithm 1 satisfies

eN ≤ K(K − 1)

2
exp

(
−Ω

(
min

(
NH2

log(K)
,

NH1

log(K)d2

)))
, (5)

where H1 = mini∈{2,...,K}
∆(i)

i , and H2 = mini∈{2,...,K}
∆2

(i)

i .

Appendix B.3 provides the proof details of Lemma 4.2.

In the field of quantum learning and testing, research on quantum channels constitutes a critical
aspect. Evaluating the impact of noise on quantum channels can significantly enhance the accuracy
of quantum computing and quantum communication [7]. Introduced a method for assessing the
“unitarity" of a quantum channel by evaluating the purity of a quantum state. Subsequently, we
can utilize the algorithm IM-PQSI to identify the most “unitary" quantum channel from a quantum
channel set. Let u(i) denote the unitarity of the i-th most unitary quantum channel. We have the
following corollary:

Corollary 4.3. There exists an algorithm that solves the problem of the most “unitary" channel
identification with incoherent access whose error probability satisfies:

eN ≤ exp

(
−Ω

(
NHu

log(K)2n

))
, (6)

where Hu = mini∈{2,...,K}
u(1)−u(i)

i .
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5 Lower bound for PQSI with incoherent measurement

In this section, we investigate the lower bound on the error probability for solving the problem of
purest quantum state identification. This problem requires distinguishing between quantum states
with different purity through sampling and measurement. Recent studies [31] indicated that when a
quantum state ρ is rotated by a Haar unitary matrix and measured N times, the output distribution can
be calculated only if ρ is either a pure state or a maximally mixed state. Consequently, the complexity
analysis of testing problems often assumes that one of the quantum states is either a pure state or a
maximally mixed state. This limitation presents significant challenges to our analysis.

To solve this problem, we reduce the problem of identifying the purest quantum state to the problem
of identifying the purest random quantum state. This reduction allows us to retain the problem’s
complexity while enabling us to analyze the complexity by considering only a single problem
instance.

Next, we demonstrate that for any POVM base M, there is a set of unitary matrices U(M) satisfying
that (1) PU∼Haar(U ∈ U(M)) = Ω(1); and (2) when the quantum states rotated by these unitary
matrices, they are difficult to distinguish by the POVM base M.

At last, we only consider all the possible POVM M and their corresponding set of unitary matrix
U(M). By analyzing the sampling distribution for specific POVM M and unitary matrix in U(M),
we reduce the problem into a classical problem for resolution and provide a lower bound for the
purest quantum state identification.

Similar to Definition 7 in [42], we analyze the lower bound of the error probability for any algorithm
solving the purest quantum state identification problem using a 2-outcome randomly incoherent
POVM to evaluate the task’s difficulty.

Definition 5.1 (Randomly fixed incoherent two-outcome POVM). We say an algorithm A with a
randomly fixed incoherent two-outcome POVM, if it proceeds as the following: The algorithm A
samples a POVM M = {M0,M1 = Id −M0} from a well-designed distribution of POVMs DM
and performs the two-outcome single-copy POVM M on the copies of the quantum states.

5.1 Problem reduction

In this subsection, we aim to demonstrate that if there exists a set of random quantum states T (x) =
{τ1(x), . . . , τK(x)} which is difficult to identify the purest one in T , there also exists a corresponding
set of quantum states S = {ρ1, . . . , ρK} where is difficult to identify the purest one in S. In this way,
we only need to construct K random quantum states, which are hard to distinguish. Then, we can
demonstrate the difficulty of the purest quantum state identification problem.

To enhance our discussion, we define the problem of the purest random quantum state identifica-
tion(PRQSI) with incoherent measurement as follows:

Problem 5.2 (Purest random quantum state identification(PRQSI) with incoherent measurement).
Consider a set of K unknown random quantum states, denote as T (U) = {τ1(U), . . . , τK(U)},
where U samples from a fixed distribution D. For each k ∈ [K] and U ∼ D, Tr((τk(U))2) = zk.
In each round t ∈ {1, ..., N}, the learner selects an index kt ∈ [K] and a POVM Mt. The
learner obtains a copy of τkt(U) and uses Mt to measure it. Upon completing N measurements,
the learner selects an index k′ ∈ [K] as the output. The objective of the learner is to maximize
P(k′ ∈ argmaxk∈[K] zk).

As shown in the following lemma, we can reduce the proof of the error probability lower bound for
the PQSI problem into the proof of the lower bound for a specific instance of the PRQSI problem.

Lemma 5.3. If there exists a set of random quantum states T (U) in Problem 5.2 such that any
algorithm AT addressing Problem 5.2 cannot identify the purest random quantum state with an error
probability lower than eN , then for any algorithm A addressing Problem 1.1, there exists a specific
set of quantum states S = {ρ1, . . . , ρK} such that the error probability of algorithm A is not lower
than eN .

Proof Sketch. Suppose that there exists an algorithm A satisfying whose error probability for solving
Problem 1.1 is less than eN . We can prove that the algorithm A can solve the Problem 5.2 with
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the error probability less than eN . Furthermore, we can establish the proof by considering the
contrapositive of this statement. Detailed explanations of the proof are included in Appendix C.1.

According to Lemma 5.3, we will establish the lower bound of the error probability for the problem
PQSI by demonstrating the error probability lower bound for the following problem:

Problem 5.4. Consider the Problem 5.2. For k ∈ [K], let αk =
√

dzk−1
d−1 , and τk(U) =

αkU |0⟩⟨0|U† + 1−αk

d Id, where U ∼ Haar.

Then, In the Problem 5.4, for k ∈ {1, ...,K} and U ∼ Haar, the purity of the quantum state τk(U)
satisfies:

Tr
(
(τk(U))2

)
=

(
1 + (d− 1)αk

d

)2

+ (d− 1)

(
1− αk
d

)2

= zk.

5.2 Random quantum state purity certification

To analyze Problem 5.4, we first study the properties of the measurement results obtained from
conducting N ′ measurements on the sampled quantum states from the quantum state distribution
D = {ρ|ρ = αU |0⟩⟨0|U† + 1−α

d Id}, using a specific POVM M = {M0,M1}, where U ∼ Haar
and α is a constant satisfying 0 ≤ α ≤ 1.

Lemma 5.5. Let a ∈ [0, 1]. Using a specific POVM M = {M0,M1} to measure the random
quantum state in D = {ρ|ρ = αU |0⟩⟨0|U† + 1−α

d Id}. Let M = argminM ′∈{M0,M1} Tr(M
′). We

have

PU∼Haar

[∣∣∣∣pM(M |U)− Tr(M)

d

∣∣∣∣ < 2a
√
Tr(M)

d

]
≥ 3

4
,

and there is a function c(M, U) satisfying pM(M |U)− Tr(M)
d = c(M, U)α.

Proof Sketch. By utilizing the properties of the Haar unitary matrix, we can calculate the variance
of pM(M |U) and prove the probabilistic bounds in the lemma using Chebyshev’s inequality, thus
completing the proof. The proof details are provided in Appendix C.2.

According to Lemma 5.5, for a specific POVM M and unitary matrix U , let UM denote the

set of unitary matrix satisfying that UM =

{
U :

∣∣∣pM(M |U)− Tr(M)
d

∣∣∣ < 2α
√

Tr(M)

d

}
. We have

PU∼Haar(U ∈ UM) ≥ 3
4 . The following analysis will focus on the unitary matrices in UM.

5.3 Error probability lower bound

In this subsection, we will prove the lower bound of error probability for using algorithms to solve
Problem 1.1 and Problem 5.4.

Let M = argminM ′∈{M0,M1} Tr(M
′), then we have Tr(M) ∈ [0, d/2]. In the following theorem,

let Tr(M) > 16 in order to make Tr(M)− 2
√
Tr(M) ≥ 1

2Tr(M).

Theorem 5.6. Let M = argminM ′∈{M0,M1} Tr(M
′) and Tr(M) > 16. For any algorithm A to

solve the purest quantum state identification using fixed 2-outcome randomly incoherent POVM, there
exists a set of quantum states which makes the error probability of A satisfies

eN ≥ exp

(
−O

(
NH1

d

))
, (7)

where H1 = mini∈{2,...,K}
∆(i)

i .

Proof Sketch. Let pAe (M, U) denote the error probability for algorithm A to solve the problem 5.4,
with specific unitary matrix U and POVM M. The error probability of A to solve the problem 5.4
satisfying eAN ≥

∫
M∈DM

∫
U∼Haar

pAe (M, U)1{U ∈ UM}dMdU .
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When the i-th quantum state is measured using M, the measurement result follows a Bernoulli
distribution with parameter Tr(MρU ). From Lemma 5.5 and the definition of c(M, U), we have
Tr(Mρi|U) = c(M, U)αi +

Tr(M)
d .

If c(M, U) > 0, we need to find the Bernoulli distribution with the largest parameter where the
parameter of the i-th Bernoulli distribution is Tr(Mρi|U), and we have Tr(Mρi|U)−Tr(Mρj |U) =

c(M, U)

[√
dzi−1
d−1 −

√
dzj−1
d−1

]
.

Since Tr(M) > 16 and according to the definition of U(M) and M , for U ∈ U we have
Tr(Mρi|U) ∈

[
Tr(M)

2d , 1− Tr(M)
2d

]
, and 1 − Tr(M)

2d ≥ 1
2 . Then, according to the problem of

best arm identification problem with Bernoulli distribution, we can demonstrate that pAe (U,M) ≥
exp

(
−O

(
NH1

d

))
. Then we have eAN ≥ exp

(
−O

(
NH1

d

))
.

For any algorithm AD addressing Problem 5.4 cannot identify the purest random quantum state with
an error probability lower than exp

(
−O

(
NH1

d

))
. According to Lemma 5.3, we can complete the

proof. The proof details are provided in Appendix C.3.

6 PQSI with coherent measurement

In this section, we investigate the problem of purest quantum state identification with coherent
measurement and propose an algorithm to solve the purest quantum state identification with coherent
measurement based on the SWAP test.

The SWAP test is a quantum algorithm designed to assess the similarity between two quantum states.
It offers a method for estimating these states’ fidelity to quantify their closeness. We use the SWAP
test in Figure 1 to estimate the purity of the quantum state ρ in the unknown quantum state set S. The
measurement results in Figure 1 have a probability of 1+Tr(ρ2)

2 for 0 and a probability of 1−Tr(ρ2)
2

for 1. The details of the algorithm are shown in Algorithm 2.

ρ

SWAP
ρ

|0⟩ H • H

Figure 1: The SWAP test circuit.

Algorithm 2 Coherent measurement based algorithm for solving PQSI problem (CM-PQSI)
Input: Copy access to S = {ρ1, . . . , ρK}, sample number N .
Initialization: Set S0 = {ρ1, . . . , ρK}, log(K) = 1

2 +
∑K
i=2

1
i , N0 = 0 and Nk =⌈

1
2log(K)

N−K
K+1−k

⌉
, for k ∈ {1, . . . ,K − 1}.

for i = 1, . . . ,K − 1 do
For all σ ∈ Si−1, use SWAP test as Figure 1 for Nk − Nk−1 rounds, and set the outputs as
x(σ,Nk−1+1), . . . , x(σ,Nk).
For all σ ∈ Si−1, let w(σ, k) = 1

Nk

∑Nk

i=1 x(σ,i).
Let Sk = Sk−1 \ argminρ∈Sk−1

w(ρ, k).
end for
Output the quantum state ρ′ in Sk−1.

Theorem 6.1. The probability of error of Algorithm 2 satisfies

eN ≤ K(K − 1)

2
exp

(
− NH2

8log(K)

)
, (8)
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where H2 = mini∈{2,...,K}
∆2

(i)

i .

Proof Sketch. The outputs of the SWAP test are within the range [0, 1] and are independent. Thus,
we can apply the Hoeffding inequality to complete the proof. Detailed explanations of the proof are
included in Appendix D.

To further clarify the role of coherent measurements, we compare the theoretical performance of the
proposed algorithms both with and without the SWAP test. The essential difference lies in the scaling
behavior of the error probability bounds across different purity-gap regimes.

When the purity gaps satisfy ∆(i) > 1/d2, the lower bound for the algorithm without the SWAP test
is

eN ≤ exp

(
−Ω

(
NH1

logK · 2n

))
, where H1 = min

i∈{2,...,K}

∆(i)

i
. (9)

In contrast, the algorithm with the SWAP test (i.e., using coherent measurements) achieves

eN ≤ exp

(
−Ω

(
NH2

logK

))
, where H2 = min

i∈{2,...,K}

∆2
(i)

i
, (10)

which eliminates the additional 2n factor in the denominator. This implies that the coherent-
measurement-based algorithm can attain the same error probability with only O(1/2n) of the sample
complexity, thereby demonstrating a substantial advantage in this regime.

When the purity gaps are very small (∆(i) ≤ 1/d2), both algorithms yield similar lower bounds of
the form

eN ≤ exp

(
−Ω

(
NH2

logK

))
, (11)

and thus exhibit comparable asymptotic performance. Nevertheless, even in this regime, the algorithm
employing the SWAP test tends to achieve a smaller constant factor in the exponent, resulting in
empirically faster convergence and lower error rates for finite sample sizes. Therefore, the coherent
measurement strategy remains effective in practice, providing improvements in both asymptotic and
finite-sample efficiency.

In summary, the advantage of the SWAP test becomes particularly evident when the purity differences
between quantum states are not vanishingly small. In most realistic scenarios, such tiny gaps can
be regarded as negligible, and the corresponding states can be considered effectively equivalent.
Consequently, for practical tasks that aim to distinguish states with noticeable purity differences,
the coherent measurement strategy via the SWAP test offers a clear improvement in sample effi-
ciency. This observation also highlights the essential role of quantum memory in enabling coherent
measurements.

7 Conclusion and Outlook

In this study, we propose a pivotal problem in quantum testing, termed purest quantum state identifi-
cation (PQSI). This framework applies to various quantum computing and quantum communication
tasks. We develop two distinct algorithms to address this problem under different settings. When
the learner utilizes incoherent (single-copy) measurement, the upper bound on the error probability
of our algorithm is given by exp

(
−Ω

(
NH1

log(K)2n

))
. When the learner is allowed to use coherent

(two-copy) measurement, the upper bound on the error probability is given by exp
(
−Ω

(
NH2

log(K)

))
.

By examining the error probabilities of these two algorithms, we can discern the advantage of the
coherent measurement over the incoherent one. Furthermore, we establish that for any algorithm
utilizing a randomly fixed incoherent two-outcome POVM to solve the PQSI, its error probability
is lower bounded by exp

(
−O

(
NH1

2n

))
. Our results lay the groundwork for further investigations

into the best quantum state identification. We aim to establish a lower bound for PQSI problems
across all POVM bases in future work. Several open questions remain to be addressed, including
identifying the nearest quantum state with minimal trace distance and achieving the best quantum
state identification with fixed confidence.
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Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 1: Description of commonly used-notations

Notation Description
n the qubit number of the quantum state
d d = 2n

S the set of the unknown quantum state
K K = |S|
ρi the i-th quantum state in S
ρ(i) the i-th purest quantum state in S

ρ⋆ = ρi⋆ the purest quantum state in S
∆i ∆i = Tr(ρ2i⋆)− Tr(ρ2i )
∆(i) ∆(i) = Tr(ρ2i⋆)− Tr(ρ2(i))

{|i⟩⟨i|}d−1
i=0 a fixed orthogonal basis in Cd×d

Id d-dimensional identity matrix
U(d) the set of d× d unitary matrix

A Auxiliary tools

A.1 Description of commonly used-notations

A.2 Probability inequalities for sums of bounded random variables

In this paper, we utilize the following inequalities, which are provided for the sake of completeness.
Theorem A.1 (Chebyshev’s Inequality). Let X be any random variable with expected value µ =
E[X] and finite variance Var(X). Then, for any real number ε > 0:

P(|X − µ| ≥ ε) ≤ Var(X)

ε2
. (12)

Theorem A.2 (Hoeffding’s Inequality). If X1, X2, ..., Xn are independent with P(a ≤ Xi ≤ b) = 1
and common mean µ then for any ε > 0

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−2nε2

(b− a)2

)
. (13)

Theorem A.3 (Bernstein’s Inequality). If X1, ..., Xn are independent bounded random variables
such that E[Xi] = 0 for all i ∈ {1, ..., n} and P(|Xi| ≤ c) = 1 then, for any ϵ > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ exp

(
− nε2

2σ2 + 2cϵ/3

)
, (14)

where σ2 = 1
n

∑n
i=1 Var(Xi).

A.3 Properties of Haar unitary matrix

For a locally compact topological group, its Haar measure is a unique nonzero left-invariant measure
(or right-invariant, depending on the formulation) under group operations. The Haar unitary matrix
is the Haar measure on the unitary matrix group and is the concept of drawing unitary matrices
uniformly at random. The formal definition of Haar unitary matrix is as follows:
Definition A.4. The Haar unitary matrix is the unique probability measure µH that is both left and
right invariant over the unitary matrix group, i.e., for all integrable functions f and for all unitary
matrix V , we have:∫

U∼Haar

f(U)dU =

∫
U∼Haar

f(UV )dU =

∫
U∼Haar

f(V U)dU. (15)

For any unit column vector x ∈ Cd, we have

EU∼Haar [f(Ux)] = Eψ∼Cd [f(|ψ⟩)] . (16)

We will use the following lemma to complete our proofs in this paper.
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Lemma A.5 (see Lemma 22 of Ref.[27]). Let A,B,C be Hermitian matrices. Then

Eψ∼Cd⟨ψ|A|ψ⟩ = 1

d
Tr(A), (17)

and

Eψ∼Cd⟨ψ|A|ψ⟩⟨ψ|B|ψ⟩ = 1

d(d+ 1)
(Tr(A)Tr(B) + Tr(AB)), (18)

and

Eψ∼Cd⟨ψ|A|ψ⟩⟨ψ|B|ψ⟩⟨ψ|C|ψ⟩ = 1

d(d+ 1)(d+ 2)
(Tr(A)Tr(B)Tr(C) + Tr(AB)Tr(C)

+ Tr(A)Tr(BC) + Tr(CA)Tr(B) + Tr(ABC)),

(19)

and

Eψ∼Cd⟨ψ|A|ψ⟩⟨ψ|B|ψ⟩⟨ψ|C|ψ⟩⟨ψ|D|ψ⟩ = 1

d(d+ 1)(d+ 2)(d+ 3)

∑
π∈S4

Tr(A⊗B ⊗ C ⊗D · Pd(π)),

(20)
where Pd(π) =

∑d−1
i1,...,ik=0 |iπ−1(1), ..., iπ−1(4)⟩⟨i1, ..., ik| and π is permutation on 4 items.

B Proof of IMPQSI with incoherent measurement

B.1 Proof of property for purity collision

Lemma B.1. The expectation and variance of the purity estimation satisfying

E[g̃] =
m− 1

m

d−1∑
i=0

p2i , (21)

and

Var[g̃] ≤ 2E[g̃]
m2

+
4

m

d−1∑
i=0

p3i . (22)

Proof. The expectation of g̃ satisfying

E[g̃] =E

 1

m2

d−1∑
i=0

 m∑
j=1

1{xj = i}

2
− 1

m

=E

 1

m2

d−1∑
i=0

 m∑
j=1

m∑
k=1

1{xj = i}1{xk = i}

− 1

m

=E

 1

m2

d−1∑
i=0

 m∑
j=1

m∑
k=1

1{xj = i}1{xk = i}

− 1

m

=E

 1

m2

d−1∑
i=0

 m∑
j=1

1{xj = i}+
m∑
j=1

∑
k ̸=j

1{xj = i}1{xk = i}

− 1

m

=
1

m2

d−1∑
i=0

m∑
j=1

E [1{xj = i}] + 1

m2

m∑
j=1

∑
k ̸=j

E[1{xj = i}1{xk = i}]− 1

m

=
m

m2
+
m− 1

m

m∑
j=1

p2j −
1

m
=
m− 1

m

m∑
j=1

p2j .

(23)
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The expectation of g̃2 satisfying

E[g̃2] =E


 1

m2

d−1∑
i=0

 m∑
j=1

1{xj = i}

2

− 1

m


2

=
1

m4
E

 m∑
j1 ̸=j2,l1 ̸=l2

d−1∑
i,k

1{xj1 = i}1{xj2 = i}1{xl1 = k}1{xl2 = k}


=

1

m4

2m(m− 1)E[g̃] +m(m− 1)(m− 2)(m− 3)E[g̃]2 + 4m(m− 1)(m− 2)

n∑
j=1

p3j


≤ 2

m2
E[g̃] + E[g̃]2 +

4

m

d−1∑
i=0

p3i

Then, we have

Var[g̃] = E[g̃2]− E[g̃]2

≤ 1

m2
E[g̃] +

2

m

d−1∑
i=0

p3i .
(24)

B.2 proof of Theorem 4.1

By using the techniques similar to [27], we can prove the following lemma:
Lemma B.2 (See Lemma 16 of [27]). The expectation of w(ρ, k) and g̃ρ,j in Algorithm 1 satisfies

E[w(ρ, k)] = E[g̃ρ,j ] =
(m− 1)(1 + Tr(ρ2))

m(d+ 1)
, (25)

and the variance of g̃(ρ, j) satisfies

Var(g̃(ρ, j)) = O

(
1

d3
+

1

m2d
+

1

md2

)
. (26)

By the definition of w(·, ·) and the definition of ∆(·), we have

P(w(ρ⋆, k) ≤ w(ρ(i), k))

=P
(
(w(ρ(i), k)− w(ρ⋆, k)) ≥

(m− 1)∆(i)

m

)
.

Since w(·, ·) ∈ [0, 1], by Lemma B.2 and Bernstein’s inequality, we have

P
(
(w(ρ(i), k)− w(ρ⋆, k)) ≥

(m− 1)∆(i)

m

)

≤ exp

−
⌊Nk

m ⌋
(

m−1
m(d+1)∆(i)

)2
O( 1

d3 + 1
m2d + 1

md2 ) +
2∆(i)

3(d+1)


≤ exp

(
−Ω

(√
cNk∆(i)

d

))
.

(27)

By a union bound of error probability, we have
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en ≤
K−1∑
k=1

K∑
i=K+1−k

P(w(ρ⋆, k) ≤ w(ρ(i), nk))

≤
K−1∑
k=1

K∑
i=K+1−k

exp

(
−Ω

(√
cNk∆(i)

d

))

≤
K−1∑
k=1

k exp

(
−Ω

(√
cNk∆(K+1−k)

d

))
.

(28)

By definition of Nk, we have
√
cNk∆(K+1−k)

d

=

⌈ √
c

log(K)

N −K

K + 1− k

⌉
∆(K+1−k)

d

=Θ

( √
cN

log(K)
×

∆(K+1−k)

K + 1− k

)
.

(29)

Combining equation (28) and (29), we have

en ≤
K−1∑
k=1

k exp

(
−Ω

( √
cN

log(K)d
×

∆(K+1−k)

K + 1− k

))
≤ K(K − 1)

2
exp

(
−Ω

(√
cNH1

log(K)d

))
where H1 = mini∈{1,...,K}

∆(i)

i .

B.3 proof of Lemma 4.2

Proof. By the definition of w(·, ·) and the definition of ∆(·), we have

P(w(ρ⋆, k) ≤ w(ρ(i), k))

=P
(
(w(ρ(i), k)− w(ρ⋆, k)) ≥

(m− 1)∆(i)

m

)
.

Since w(·, ·) ∈ [0, 1], by Lemma B.2 and Bernstein’s inequality, we have

P
(
(w(ρ(i), k)− w(ρ⋆, k)) ≥

(m− 1)∆(i)

m

)

≤ exp

−
⌊Nk

d ⌋
(

m−1
m(d+1)∆(i)

)2
O( 1

d3 ) +
2∆(i)

3(d+1)


≤ exp

(
−Ω

(
min

(
Nk∆(i)

d2
, Nk∆

2
(i)

)))
.

(30)

By a union bound of error probability, we have

en ≤
K−1∑
k=1

K∑
i=K+1−k

P(w(ρ⋆, k) ≤ w(ρ(i), nk))

≤
K−1∑
k=1

K∑
i=K+1−k

exp

(
−Ω

(
min

(
Nk∆(i)

d2
, Nk∆

2
(i)

)))

≤
K−1∑
k=1

k exp

(
−Ω

(
min

(
Nk∆(K+1−k)

d2
, Nk∆

2
(K+1−k)

)))
.

(31)
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By definition of Nk, and combining equation (31), we have

eN ≤ K(K − 1)

2
exp

(
−Ω

(
min

(
NH2

log(K)
,

NH1

log(K)d2

)))
,

where H1 = mini∈{2,...,K}
∆(i)

i , and H2 = mini∈{2,...,K}
∆2

(i)

i .

C Proof of lower bound

C.1 Proof of Lemma 5.3

Suppose that there exists such an algorithm A satisfying that the error probability of A for solv-
ing Problem 1.1 with the quantum state set Sρ whose error probability is less than eN . Let
pSρ

(x1, y1; ...;xN , yN ; z) denote the probability of the event satisfying

1. for i ∈ 1, ..., N , in the round N , the algorithm A select the xi-th quantum state for
measurement, and its output is yi;

2. the algorithm A output z-th quantum state at the end.

Furthermore, let qSρ(x1, y1; ...;xN , yN ; z) denote the error probability corresponding to
pSρ

(x1, y1; ...;xN , yN ; z).

Since when using A to solve the Problem 1.1, error probability is less than eN . Then for all quantum
state set S = {ρ1, ..., ρK}, we have∫

(x1,y1,...,xN ,yN ,z)

q(x1, y1; ...;xN , yN ; z)dp(x1, y1; ...;xN , yN ; z) ≤ eN . (32)

When the learner use the algorithm A to solve the problem 5.2, its error probability satifying

eDN =

∫
x∼D′

∫
(x1,y1,...,xN ,yN ,z)

qSD(x)
(x1, y1; ...;xN , yN ; z)dpSD(x)

(x1, y1; ...;xN , yN ; z)dx

≤
∫
x∼D′

eNdx

≤ eN .
(33)

then we can prove that if there is an algorithm A can solve the Problem 5.2 with the error probability
less than eN , then it can solve the Problem 1.1 with the error probability less than eN . Furthermore,
we can establish the proof by considering the contrapositive of this statement.

C.2 proof of Lemma 5.5

Without loss of generality, assume that M0 = argminM ′∈{M0,M1} Tr(M
′). According to the

definition of POVM, there exists a unitary matrix V and a diagonal matrix Σ0 = diag(b0, ..., bd−1),
where b0, ..., bd−1 ∈ [0, 1] such that

M0 = V Σ0V
† =

d−1∑
i=0

biV |i⟩⟨i|V †,

M1 = I − V Σ0V
† =

d−1∑
i=0

(1− bi)V |i⟩⟨i|V †.

We have

Tr(M0) = Tr(Σ0) =

d−1∑
i=0

bi,

Tr(M1) = Tr(I − Σ0) = d−
d−1∑
i=0

bi.

(34)
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Let pM(M |U) denote the probability that M “accepts" the quantum state αU |0⟩⟨0|U† + 1−α
d−1 Id.

According to the property of the Haar measure and the identity matrix Id, we have

EU∼Haar

[
p2M(M0|U)

]
=EU∼Haar

[
Tr2

(
M0

(
αU |0⟩⟨0|U† +

1− α

d
Id

))]
=EU∼Haar

[
Tr2

(
d−1∑
i=0

biV |i⟩⟨i|V †
(
αU |0⟩⟨0|U† +

1− α

d
Id

))]

=EU∼Haar

(d−1∑
i=0

bi⟨i|V †
(
αU |0⟩⟨0|U† +

1− α

d
Id)

)
V |i⟩

)2


=EU∼Haar

(d−1∑
i=0

(
αbi⟨i|V †U |0⟩⟨0|U†V |i⟩

)
+

d−1∑
i=0

bi
1− α

d
⟨i|V †IdV |i⟩

)2


=EU∼Haar

(d−1∑
i=0

(
αbi⟨i|U |0⟩⟨0|U†|i⟩

)
+

1− α

d
Tr(M0)

)2


(35)

Let Vi is the matrix satisfying that Vi|i⟩ = |0⟩, then Vi is an unitary matrix and V −1
i = V †

i , we have

EU∼Haar

[
p2M(M0|U)

]
=EU∼Haar

(d−1∑
i=0

(
αbi⟨i|U |0⟩⟨0|U†|i⟩

)
+

1− α

d
Tr(M0)

)2


=EU∼Haar

(d−1∑
i=0

(
αbi⟨0|U |i⟩⟨i|U†|0⟩

)
+

1− α

d
Tr(M0)

)2


=Eψ∼Cd

(d−1∑
i=0

(αbi⟨ψ|i⟩⟨i|ψ⟩) +
1− α

d
Tr(M0)

)2


=Eψ∼Cd

α2
d−1∑
i=0

b2i ⟨ψ|i⟩⟨i|ψ⟩⟨ψ|i⟩⟨i|ψ⟩+ α2
d−1∑
i=0

∑
j ̸=i

bibj⟨ψ|i⟩⟨i|ψ⟩⟨ψ|j⟩⟨j|ψ⟩

+2

d−1∑
i=0

(αbi⟨ψ|i⟩⟨i|ψ⟩)
1− α

d
Tr(M0) +

(
1− α

d

)2

Tr2(M0)

]

(36)

According to the Lemma A.5, we have for i, j ∈ {0, ..., d− 1}, i ̸= j,

Eψ∼Cd⟨ψ|i⟩⟨i|ψ⟩ = 1

d
, (37)

and

Eψ∼Cd⟨ψ|i⟩⟨i|ψ⟩⟨ψ|i⟩⟨i|ψ⟩ = 2

d(d+ 1)
, (38)

and similarly

Eψ∼Cd⟨ψ|i⟩⟨i|ψ⟩⟨ψ|j⟩⟨j|ψ⟩ = 1

d(d+ 1)
. (39)
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According to Equation (36), (37),(38) and (39), we have

EU∼Haar

[
p2M(M0|U)

]
=

2α2

d(d+ 1)

d−1∑
i=0

b2i +
α2

d(d+ 1)

d−1∑
i=0

∑
j ̸=i

bibj +
2α(1− α)

d2
Tr(M0)

d−1∑
i=0

bi +

(
1− α

d

)2

Tr2(M0)

=
α2

d(d+ 1)

d−1∑
i=0

b2i +
α2

d(d+ 1)

(
d−1∑
i=0

bi

)2

+
2α(1− α)

d2
Tr(M0)

d−1∑
i=0

bi +

(
1− α

d

)2

Tr2(M0)

=
α2

d(d+ 1)

d−1∑
i=0

b2i +
α2

d(d+ 1)
Tr2(M0) +

2α(1− α)

d2
Tr2(M0) +

(
1− α

d

)2

Tr2(M0)

=
α2

d(d+ 1)

d−1∑
i=0

b2i +

[
1

d2
− α2

d2(d+ 1)

]
Tr2(M0),

(40)
and

EU∼Haar [pM(M0|U)]

=EU∼Haar

[
Tr

(
M0

(
αU |0⟩⟨0|U† +

1− α

d
Id

))]
=EU∼Haar

[
Tr

(
d−1∑
i=0

biV |i⟩⟨i|V †
(
αU |0⟩⟨0|U† +

1− α

d
Id

))]

=EU∼Haar

[
Tr

(
d−1∑
i=0

biV |i⟩⟨i|V †
(
αU |0⟩⟨0|U† +

1− α

d
Id

))]
=

Tr(M0)

d
.

(41)

Then the variance of pM(M0|U) is given by

Var [pM(M0|U)]

=EU∼Haar

[
p2M(M0|U)

]
− (EU∼Haar [pM(M0|U)])

2

=
α2

d(d+ 1)

d−1∑
i=0

b2i +

[
1

d2
− α2

d2(d+ 1)

]
Tr2(M0)−

Tr2(M0)

d2

=
α2

d(d+ 1)

d−1∑
i=0

b2i −
α2

d2(d+ 1)
Tr2(M0)

=
α2

d2(d+ 1)

[
d

d−1∑
i=0

b2i − Tr2(M0)

]

≤ α2

d2(d+ 1)

[
d

d−1∑
i=0

bi − Tr2(M0)

]

=
α2

d2(d+ 1)

[
dTr(M0)− Tr2(M0)

]
≤ α2

d2(d+ 1)

[
dTr(M0)− Tr2(M0)

]
≤α

2Tr(M0)

d(d+ 1)
.

(42)

From Chebyshev’s Inequality, we have

PU∼Haar

[∣∣∣∣pM(M0|U)− Tr(M0)

d

∣∣∣∣ ≥ 2α
√
Tr(M0)

d

]
<

1

4
. (43)
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And
pM(M0|U)

=Tr

(
d−1∑
i=0

biV |i⟩⟨i|V †
(
αU |0⟩⟨0|U† +

1− α

d
Id

))

=Tr

(
d−1∑
i=0

biV |i⟩⟨i|V †
(
αU |0⟩⟨0|U† +

α

d
Id

))
+Tr

(
d−1∑
i=0

biV |i⟩⟨i|V †
(
1

d
Id

))

=αTr

(
d−1∑
i=0

biV |i⟩⟨i|V †
(
U |0⟩⟨0|U† +

1

d
Id

))
+
M0

d
.

(44)

Let c(M, U) = Tr
(∑d−1

i=0 biV |i⟩⟨i|V † (U |0⟩⟨0|U† + 1
dId
))

, we have

pM(M0|U)− M0

d
= c(M, U)α. (45)

C.3 Proof of Theorem 5.6

We will use the following theorem to complete the proof:
Theorem C.1 (see Theorem 4 of Ref. [32]). Let ν1, ..., νK be Bernoulli distributions with parameters
in [a, 1−a], a ∈ (0, 1/2). For any forecaster, there exists a permutation σ : {1, ...,K} → {1, ...,K}
such that the probability error of the forecaster on the bandit problem defined by ν̃1 = νσ(1), ..., ν̃K =
νσ(K) satisfies

en ≥ exp

(
− (5 + o(1))nH

pa(1− a)

)
, (46)

where H = mini
(E[ν∗]−E[ν(i)])2

i .

Let pAe (M, U) denote the error probability for algorithm A to solve the problem 5.4, with specific
unitary matrix U and POVM M, and M = minM ′∈{M0,M1} Tr(M

′). Then the error probability of
A to solve the problem 5.4 satisfying

eAN =

∫
M∈DM

∫
U∼Haar

pAe (M, U)dMdU

≥
∫
M∈DM

∫
U∼Haar

pAe (M, U)1{U ∈ UM}dMdU.

(47)

The first line corresponds to the deifintion of eAN , the second line corresponds to that pAe (M, U) ≥ 0
and UM is a subset of unitary matrix.

When the i-th quantum state is measured using M, the process in which the output result is accepted
by M follows a Bernoulli distribution with parameter Tr(MρU ). From Lemma 5.5 and the definition
of c(M, U), we have

Tr(Mρi|U) = c(U,M)αi +
Tr(M)

d
. (48)

If c(M, U) > 0, we need to find the Bernoulli distribution with the largest parameter where the
parameter of the i-th Bernoulli distribution is Tr(Mρi|U) = c(M, U)αi +

Tr(M)
d . Then we have

Tr(Mρi|U)− Tr(Mρj |U)

=c(M, U)αi − c(M, U)αj

=c(M, U)

[√
dzi − 1

d− 1
−
√
dzj − 1

d− 1

]
.

(49)

Since Tr(M) > 16, for U ∈ U(M) we have

Tr(Mρi|U) = c(M, U)αi +
Tr(M)

d

≥ −
2
√

Tr(M)

d
+
Tr(M)

d
≥ Tr(M)

2d
.

(50)
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And since M = argminM ′∈{M0,M−1} Tr(M
′), we have Tr(M) ≤ 1

2 , then for U ∈ U we have

Tr(Mρi|U) ∈
[
Tr(M)

2d
, 1− Tr(M)

2d

]
, (51)

and

1− Tr(M)

2d
≥ 1

2
. (52)

According to Theorem C.1 and the definition of UM, for U ∈ UM we have

pAe (M, U) ≥ exp

−O

 N

Ω
(

Tr(M)
d

)(
1− Ω

(
Tr(M)
d

)) min
i

(
Tr(Mρ⋆|U)− Tr(Mρ(i)|U)

)2
i


=exp

−O

Nc2(M, U)

Ω
(

Tr(M)
d

) min
i

(√
dzi⋆ − 1−

√
dz(i) − 1

)2
i(d− 1)


=exp

−O

Nc2(M, U)

Ω
(

Tr(M)
d

) min
i

dzi⋆ − 1 + dz(i) − 1− 2
√
(dzi⋆ − 1)(dz(i) − 1)

i(d− 1)


≥ exp

−O

Nc2(M, U)

Ω
(

Tr(M)
d

) min
i

[dzi⋆ − 1]− [dz(i) − 1]

i(d− 1)


=exp

−O

Nc2(M, U)

Ω
(

Tr(M)
d

) min
i

d∆(i)

i(d− 1)


(53)

According to the definition of UM, for U ∈ UM we have

c(M, U) ∈

(
−
2
√
Tr(M)

d
,
2
√
Tr(M)

d

)
. (54)

According to Equation (53) and Equation (54), we have

pAe (U,M) ≥ exp

−O

Nc2(U,M)

Ω
(

Tr(M)
d

) min
i

d∆(i)

i(d− 1)



≥ exp

−O


N

(√
Tr(M)

d

)2

Ω
(

Tr(M)
d

) min
i

d∆(i)

i(d− 1)




≥ exp

(
−O

(
N

d
min
i

∆(i)

i

))
=exp

(
−O

(
NH1

d

))
.

(55)

Similarly, if c(U,M) <= 0, we have

pAe (U,M) ≥ exp

(
−O

(
NH1

d

))
. (56)
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According to Equation (47), (55), (56) we have

eAN ≥
∫
M∈DM

∫
U∼Haar

pAe (M, U)1{U ∈ UM}dMdU

≥
∫
M∈DM

∫
U∼Haar

exp

(
−O

(
NH1

d

))
1{U ∈ UM}dMdU

≥ exp

(
−O

(
NH1

d

))∫
U∼Haar

1{U ∈ UM}dMdU

≥ exp

(
−O

(
NH1

d

))∫
M∈DM

3

4
dM

≥ exp

(
−O

(
NH1

d

))
.

Then for any algorithm AD addressing Problem 5.4 cannot identify the purest random quantum state
with an error probability lower than exp

(
−O

(
NH1

d

))
. According to Lemma 5.3, we can complete

the proof.

D Proof of Theorem 6.1

By the definition of w(·, ·) and the definition of ∆(·), we have

P(w(ρ⋆, k) ≤ w(ρ(i), k))

=P
(
(w(ρ(i), k)− w(ρ⋆, k)) ≥

∆(i)

2

)
.

Since x(·,·) ∈ [0, 1] and Hoeffding’s inequality, we have

P
(
(w(ρ(i), k)− w(ρ⋆, k)) ≥

∆(i)

2

)
≤ exp

(
−Nk

2

(
∆(i)

2

)2
)

≤ exp

(
−
Nk∆

2
(i)

8

)
.

(57)

By a union bound of error probability, we have

en ≤
K−1∑
k=1

K∑
i=K+1−k

P(w(ρ⋆, k) ≤ w(ρ(i), nk))

≤
K−1∑
k=1

K∑
i=K+1−k

exp

(
−
Nk∆

2
(K+1−k)

8

)

≤
K−1∑
k=1

k exp

(
−
Nk∆

2
(K+1−k)

8

)
.

(58)

By definition of Nk, we have

Nk∆
2
(K+1−k) =

⌈
1

log(K)

N −K

K + 1− k

⌉
∆2

(K+1−k) ≤
N −K

log(K)
×

∆2
(K+1−k)

K + 1− k
. (59)

Combining equation (58) and (59), we have

en ≤
K−1∑
k=1

k exp

(
− N −K

8log(K)
×

∆2
K+1−k

K + 1− k

)
≤ K(K − 1)

2
exp

(
− NH2

8log(K)

)
,
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where H2 = mini∈{1,...,K}
∆2

(i)

i .

E Simulation Results

To empirically validate our theoretical results, we performed numerical simulations on classical
simulators to evaluate the performance of the proposed method under finite-sample conditions. We
considered a collection of 10 randomly generated 6-qubit quantum states of the form

ρi = (1− λi) |ψi⟩⟨ψi|+ λi
Id
d
, (60)

where each |ψi⟩ is a pure state sampled uniformly at random, and the mixing parameter λi is chosen
such that the purity Tr(ρ2i ) = 0.5 + 0.04i. The task is to identify the state with the highest purity
given N = 30,000 copies of the unknown quantum states.

We tested the following three algorithms:

• IM_PQSI: our proposed adaptive algorithm using only incoherent measurements.
• CM_PQSI: a variant incorporating coherent measurements via the SWAP test.
• Unadaptive: a non-adaptive baseline that uniformly allocates samples and uses the same

purity estimator as IM_PQSI.

Each algorithm was run for 100 independent trials. The results are summarized as follows:

• IM_PQSI achieves a 53% success rate, with lower average purity 0.8736 and higher variance
0.001319.

• CM_PQSI achieves perfect success in all 100 runs and consistently selects the state with
purity 0.9.

• Unadaptive achieves a 43% success rate, with lower average purity 0.86192 and higher
variance 0.002145.

These results demonstrate that coherent measurements (via the SWAP test) substantially improve
accuracy, confirming the theoretical prediction of their advantage. Moreover, comparing IM_PQSI
with the Unadaptive algorithm shows that adaptivity enhances performance by allocating more
samples to promising candidates, leading to higher estimation accuracy and success rates.

Due to the computational cost of high-dimensional quantum-state simulation, our experiments are
restricted to small systems (n = 6) and moderate sample budgets (N = 3 × 104). Nevertheless,
the observed behavior aligns well with our theoretical predictions, and we expect the advantages
of adaptive and coherent measurement strategies to become even more pronounced for larger-scale
systems and higher sample budgets.
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