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Abstract

Reinforcement Learning from Human Feed-001
back and its variants excel in aligning with hu-002
man intentions to generate helpful, harmless,003
and honest responses. However, most of them004
rely on costly human-annotated pairwise com-005
parisons for supervised alignment, which is not006
suitable for list-level scenarios, such as commu-007
nity question answering. Additionally, human008
preferences are influenced by multiple intrin-009
sic factors in responses, leading to decision-010
making inconsistencies. Therefore, we pro-011
pose Self-supervised Attribute-aware dynamic012
preference ranking, called SeAdpraİt quanti-013
fies preference differences between responses014
based on Attribute-Perceptual Distance Factors015
(APDF) and dynamically determines the list-016
wise alignment order. Furthermore, it achieves017
fine-grained preference difference learning and018
enables precise alignment with the optimal one.019
We specifically constructed a challenging code020
preference dataset named StaCoCoQA, and in-021
troduced more cost-effective and scalable pref-022
erence evaluation metrics: PrefHit and PrefRe-023
call. Extensive experimental results show that024
SeAdpra exhibits superior performance and025
generalizability on both StaCoCoQA and pref-026
erence datasets from eight popular domains1.027

1 Introduction028

Community Question Answering (CoQA) (Romeo029

et al., 2018; Wu et al., 2018) seeks to generate re-030

sponses that are semantically accurate and match031

the preferences of community members. Currently,032

Reinforcement Learning from Human (or AI) Feed-033

back (RLHF/RLAIF) (Christiano et al., 2017; Bai034

et al., 2022) has enabled precise control of large035

language models (LLMs) for generating human-036

like responses (Stiennon et al., 2020; Ouyang et al.,037

2022). However, applying them to CoQA remains038

underexplored. Moreover, human preferences do039

1Our dataset and project codes are accessible
https://anonymous.4open.science/r/SeAdpra-D8E0
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Figure 1: Which response should the LLMs align with?
In the code community, each response has different
attributes such as semantics, popularity, and timeliness,
leading to potentially different optimal responses.

not always follow a singular, value-based hierar- 040

chy. Various factors can influence decision-making 041

and may exhibit inconsistencies (Tversky, 1969; 042

Yang et al., 2025), which undoubtedly presents a 043

challenge for aligning LLMs with CoQA. 044

Existing methods are limited to pairwise compar- 045

ison (one chosen and one rejected), such as reward 046

model-based RLHF (Ouyang et al., 2022), offline 047

supervised Direct Preference Optimization (DPO) 048

(Rafailov et al., 2024), as well as other variants like 049

SLiC (Zhao et al., 2023) and pseudo-list RRHF 050

(Yuan et al., 2024) that adopt pairwise hinge loss. 051

However, a real-world prompt may have multiple 052

high-quality responses (Cui et al., 2023). For ex- 053

ample, in the coding community, the optimal one 054

may vary with thier different attributes, such as se- 055

mantics, popularity, and timeliness, as illustrated in 056

Figure 1. Recently, some alignment methods have 057

attempted to rank multiple preferred candidates. 058

PRO (Song et al., 2024) introduces a list-level max- 059

imum likelihood estimation loss to shift towards 060

preference ranking but overlooks the attributes of 061

responses. LiPO (Liu et al., 2024) directly opti- 062

mizes list-based ranking preferences and begins to 063

address response labels, but has not yet addressed 064
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the integration of multiple labels. Moreover, these065

supervised learning methods depend on human or066

AI annotations of preference pairs or lists to specify067

the best responses for alignment. However, pref-068

erence data are relatively scarce and expensive to069

collect in practice (Casper et al., 2023).070

To overcome the above challenges, we propose071

three-stage SeAdpra, a Self-supervised attribute-072

aware dynamic preference ranking framework.073

1) First, the Multi-Attribute Perception quanti-074

fies preference-level differences through Attribute-075

Perceptual Distance Factors (APDF), enabling the076

integration of multiple attributes for self-supervised077

dynamic ranking. 2) Second, the Perception Align-078

ment can quickly adapt to domain knowledge by079

precisely aligning with the optimal. 3) Third, the080

Perceptual Comparison performs multi-turn fine-081

grained list-wise preference difference contrastive082

learning. In each round, it maximizes the reward083

for the optimal and minimizes the penalty for the re-084

maining based on self-generated preference ranks.085

For enhancing the cost-efficiency and domain086

applicability of the preference evaluation scheme,087

we propose new metrics that follow the ’CSTC’ cri-088

terion (details in Appendix A.2), as an alternative089

to the costly win rate (Dudík et al., 2015), namely090

PrefHit and PrefRecall. They can accommodate the091

expansion of benchmarks. Aiming to validate the092

effectiveness of SeAdpra in specific domains, we093

have constructed a programming CoQA preference094

dataset, called StaCoCoQA, which contains over095

60,738 programming directories and 9,978,474 en-096

tries. Our main contributions are as follows:097

• We introduce the Attribute Perceptual Distance098

Factor (APDF) to gauge the in preference-level099

gaps of multiple responses, replacing the binary100

judgment of preferred versus non-preferred. We101

propose an self-supervised dynamic preference102

ranking framework that achieves label-free list-103

wise preference alignment.104

• We present the StaCoCoQA, a large-scale, high-105

quality, real-time (as of May 2024) dataset for106

preference alignment in programming CoQA,107

and develop two new alignment metrics abided108

by the ’CSTC’ criterion.109

• We conducted extensive experiments on eight110

hot public datasets and StaCoCoQA, providing a111

reference benchmark. The experimental results112

demonstrate that SeAdpra excels in alignment113

while maintaining safety.114
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Figure 2: Showcasing the top-15 primary programming
language categories in StaCoCoQA.

2 Method 115

2.1 Problem Definition 116

Our goal is to align an LLM with user preferences 117

in CoQA using our Unsupervised Attribute-aware 118

Dynamic Preference Ranking strategy. The train- 119

ing dataset is denoted as D = {Qi, Ri}Ni=1. For a 120

given question Q, it corresponds to a series of re- 121

sponses R = {R1, . . . , RM}, where each response 122

Ri = (C,A), with C representing the content and 123

A representing the scalable attributes. The size L of 124

the scalable attribute A = {A1, . . . , AL} is deter- 125

mined by community characteristics. For example, 126

in the code community, L = 3 and A = {S, P, T}. 127

Here, S represents the semantic similarity between 128

C and Q; P represents the popularity of R, and T 129

represents the creation time of each response. 130

2.2 Multi-attribute Perception 131

2.2.1 Attribute-Perceptual Distance Factor 132

The existing alignment optimization objectives 133

(Rafailov et al., 2024; Song et al., 2024) do not take 134

into account the attributes of the candidates, which 135

can differentiate their preferences. Therefore, there 136

is a need to explore optimization methods that can 137

effectively incorporate these attributes. In this con- 138

text, LambdARank (Wang et al., 2018; Jagerman 139

et al., 2022) introduces Lambda weights λij , which 140

scale the gradient of each pair of scores based on 141

the labels of the pairs to optimize a metric-driven 142

loss function and effectively incorporating label 143

information into the optimization process. 144

Inspired by the λij , the Attribute-Perceptual Dis- 145

tance Factor δi,j is designed to quantify the pref- 146

erence difference between two candidates i and j 147

in the optimization objective. It not only considers 148

the positional relationship of candidates in prefer- 149
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Figure 3: The overall framework of SeAdpra , which includes: (Part1) Multi-attribute Perception for quantifying
preference, containing the Construction of Multi-APDF Matrix and Self-supervised dynamic ranking; (Part2)
Perceptual Alignment for aligning the optimal ranks objective; (Part3) Perceptual Comparison on all candidates for
learning on-chain preference difference.
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Figure 4: Implementation Workflow of Perceptual Com-
parison. In each round, the reward of the current positive
is maximized, and the penalty for the remaining nega-
tive is minimized sequentially.

ence ranks but also incorporates their label values150

through the gain function, and expressed as:151

δi,j = (G(i)−G(j))× (T (i)− T (j)) (1)152
153

T (i) = 1/log(li + 1) (2)154

where li and lj are the ranking positions of response155

i and j, respectively. The gain function G(·) varies156

with different intrinsic attributes.157

2.2.2 Construction of the Multi-APDF Matrix158

Given the response R = {R1, . . . , RM} to ques-159

tion Q, the construction of the Multi-APDF matrix160

is a dot-product fusion of L Single-APDF matrix.161

Based on the characteristics of the code community162

shown in Figure 1, the main attributes that influ-163

ence user preferences are semantics (text content),164

popularity, and creation time.165

Semantic-APDF matrix ∆Se = {δSeij |i, j ∈166

M}, we define GSe(i) = 2φ(i)−1, where φ(i) =167

cos(EQ, ECi). Here, EQ ∈ Rq×d and ECi ∈168

Rr×d represent the semantic vectors of the ques-169

tion Q and the text content Ci of response Ri,170

encoded by prompt-based LLMs (BehnamGhader171

et al., 2024). Here, q is the length of the ques-172

tion, r is the length of the text content, and d is the173

dimension of the LLM’s embedding space.174

Popularity-APDF matrix ∆Po = {δPoij |i, j ∈175

M}, to mitigate the bias caused by the accumula-176

tion of popularity over time, we apply time decay177

to P based on T , denoted as P̃ . To avoid bias 178

caused by extreme values and excessive numerical 179

differences, we set GPo(i) = lg(P̃i + 1). 180

Multi-APDF matrix on the scalable attribute 181

A = {A1, . . . , AL} is represented generally as: 182

∆M =
∏L

k=1∆Ak
(3) 183

where ∆Ak
is the APDF matrix corresponding to 184

attribute Ak. Similarly, The code Multi-APDF ma- 185

trix ∆code
M ∈ RM×M is represented as follows: 186

∆code
M = ∆Se ·∆Po (4) 187

2.2.3 Self-supervision Dynamic Ranking 188

To avoid relying on manually labeled alignment 189

targets, we propose the Self-supervised Dynamic 190

Ranking based on the Multi-APDF Matrix. It itera- 191

tively selects the most significant pair-wise distance 192

(Multi-APDF δM ) and ranks the candidates accord- 193

ing to the semantic ranks, which ensures that the 194

ranking not only reflects pair-wise perceptual dif- 195

ferences but also adheres to semantic priorities. Its 196

implementation details are provided in the Algo- 197

rithm 1. The DR represents the set of candidates’ 198

positions after dynamic ranking: 199

DR = {i1, i2, . . . , iM} (5) 200

2.3 Perceptual Alignment 201

Since the most effective learning for domain knowl- 202

edge method is SFT (Stiennon et al., 2020), and the 203

most direct one in alignment is also to perform SFT 204

on a high-quality preference dataset (Rafailov et al., 205

2024), we align the optimal response by treating 206

the first response in dynamic ranking as the target 207

for SFT for the question Q. The first optimization 208

objective is represented as follows: 209

LPa = − 1

|Rb|

|Rb|∑
j=1

logP (Rb(j)|Q,Rb(< j)) (6) 210

where RDR(0) denotes as Rb. The DR(i) is the i-th 211

element, and Rb(j) is the j-th token. 212
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2.4 Perceptual Comparison213

In terms of many list-wise loss functions, the soft-214

max cross-entropy loss in ListNet (Cao et al., 2007)215

uses double summation to emphasize comparisons216

between different samples, making it suitable for217

ranking loss. Therefore, we adopt it as the basis for218

the second optimization objective and conduct a219

total of M−1 iterative comparisons. To deepen the220

impact of preference differences, for each iteration,221

we maximize the reward for positive and minimize222

the penalty for remains negative sequentially.223

Maximizing the reward is achieved by find-224

ing all maximum value in the mapped row of the225

alignment target in all Single-APDF matrix, and226

then multiplying the values together. For the m-th227

comparison, it is represented as follows:228

W r
m =

∏L
k=1max(∆Ak

(DR(m), ·)) (7)229

where ∆Ak
(i, j) refers to the element at the i-th230

row and j-th column of ∆Ak
, and · represents all231

elements in the row or column.232

Minimizing the penalty involves differentiating233

the penalty strengths based on preference levels,234

where a slight penalty is applied to RDR(i) and a235

stronger penalty is applied to RDR(i+1). This ap-236

proach contrasts with the existing method, which237

applies the same penalty to all negative examples,238

and ensures that the penalty for responses ranked239

higher in the self-supervised ranking DR is min-240

imized. For the negative Ri, its penalty is repre-241

sented as follows:242

W p
i = sort(∆M (DR(m), ·))(i) (8)243

where sort(·) is the function that sorts in an as-244

cending order. ∆M (i, j) is the i-th row and the245

j-th APDF in the Multi-APDF matrix.246

To achieve on-chain ranking and fine-grained247

distinction among all responses, unlike traditional248

optimization methods that sequentially remove the249

optimal response, all responses participate in each250

iteration. Moreover, the corresponding penalties or251

rewards for the responses change throughout the252

iterations. The second optimization objective is253

represented as:254

LPc = −
M−1∑
m=1

log

(
τr(b)∑M

i ̸=b τp(i) + τr(b)

)
(9)255

256
τr(b) = exp(πs(Q,Rb)) ∗W r

m (10)257
258

τp(i) = exp(πs(Q,Ri)) ∗W p
i (11)259

260

πs(Q,Ri) =
1

t

∑t
k=1 logP (rk|Q, r<k) (12) 261

Here, DR(m) denotes as b. the πs(·) represents a 262

policy network that replaces the reward in RLHF 263

with language modeling logits. The labeled re- 264

sponse R, composed of t tokens, is denoted as 265

Ri = {r1, . . . , rt}. Finally, SeAdpra enables 266

LLMs to be trained by the following objective: 267

Loss = LPc + αLPa (13) 268

To avoid overfitting the initial best response, α will 269

control the balance between it and the remaining 270

preferences, thereby ensuring text quality. 271

3 Experiments 272

3.1 Dataset 273

Due to the additional challenges that programming 274

QA presents for LLMs and the lack of high-quality, 275

authentic multi-answer code preference datasets, 276

we turned to StackExchange 2, a platform with 277

forums that are accompanied by rich question- 278

answering metadata. Based on this, we constructed 279

a large-scale programming QA dataset in real-time 280

(as of May 2024), called StaCoCoQA. It contains 281

over 60,738 programming directories, as shown in 282

Table 8, and 9,978,474 entries, with partial data 283

statistics displayed in Figure 2. The data format of 284

StaCoCoQA is presented in Table 11. 285

The initial dataset DI contains 24,101,803 en- 286

tries, and is processed by the following steps: (1) 287

Select entries with "Questioner-picked answer" 288

pairs to represent the preferences of the question- 289

ers, resulting in 12,260,106 entries in the DQ. (2) 290

Select data where the question includes at least 291

one code block to focus on specific-domain pro- 292

gramming QA, resulting in 9,978,474 entries in the 293

dataset DC . (3) All HTML tags were cleaned using 294

BeautifulSoup 3 to ensure that the model is not af- 295

fected by overly complex and meaningless content. 296

(4) Control the quality of the dataset by considering 297

factors such as the time the question was posted, 298

the size of the response pool, the difference be- 299

tween the highest and lowest votes within a pool, 300

the votes for each response, the token-level length 301

of the question and the answers, which yields vary- 302

ing sizes: 3K, 8K, 18K, 29K, and 64K. The con- 303

trolled creation time variable and the data details 304

after each processing step are shown in Table 7. 305

2https://archive.org/details/stackexchange
3https://beautiful-soup-4.readthedocs.io/en/latest/
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General Preference Accuracy Supervised Preference Accuracy
LLMs PrefHit PrefRecall Reward BLEU Alignment PrefHit PrefRecall Reward BLEU

GPT-J 0.2572 0.6268 0.2410 0.0923 Llama2-7B 0.2029 0.803 0.0933 0.0947
Pythia-2.8B 0.3370 0.6449 0.1716 0.1355 SFT 0.2428 0.8125 0.1738 0.1364
Qwen2-7B 0.2790 0.8179 0.1593 0.2530 Slic 0.2464 0.6171 0.1700 0.1400
Qwen2-57B 0.3086 0.6481 0.6854 0.2568 RRHF 0.3297 0.8234 0.2263 0.1504
Qwen2-72B 0.3212 0.5555 0.6901 0.2286 DPO-BT 0.2500 0.8125 0.1728 0.1363

StarCoder2-15B 0.2464 0.6292 0.2962 0.1159 DPO-PT 0.2572 0.8067 0.1700 0.1348
ChatGLM4-9B 0.2246 0.6099 0.1686 0.1529 PRO 0.3025 0.6605 0.1802 0.1197

Llama3-8B 0.2826 0.6425 0.2458 0.1723 SeAdpra* 0.3659 0.8279 0.2301 0.1412

Table 1: Main results on the StaCoCoQA. The left shows the performance of general LLMs, while the right presents
the performance of the fine-tuned Llama2-7B across various strong benchmarks for preference alignment. Our
method SeAdpra is highlighted in bold.

To further validate the effectiveness of SeAdpra,306

we also select eight popular topic CoQA datasets4,307

which have been filtered to meet specific criteria308

for preference models (Askell et al., 2021). Their309

detailed data information is provided in Table 6.310

3.2 Evaluation Metrics311

For preference evaluation, we design PrefHit and312

PrefRecall, adhering to the "CSTC" criterion out-313

lined in Appendix A.2, which overcome the limita-314

tions of existing evaluation methods, as detailed in315

Appendix A.1. In addition, we demonstrate the ef-316

fectiveness of thees new evaluation from two main317

aspects: 1) consistency with traditional metrics,318

and 2) applicability in different application scenar-319

ios in Appendix A.4. Following the previous (Song320

et al., 2024), we also employ a professional reward.321

For accuracy evaluation, we alternately employ322

BLEU (Papineni et al., 2002), RougeL (Lin, 2004),323

and CoSim. Similar to codebertscore (Zhou et al.,324

2023), CoSim not only focuses on the semantics of325

the code but also considers structural matching. Ad-326

ditionally, the implementation details of SeAdpra327

are described in detail in the Appendix E.1.328

3.3 Baseline329

Following the DPO (Rafailov et al., 2024), we eval-330

uated several existing approaches aligned with hu-331

man preference, including GPT-J (Wang and Ko-332

matsuzaki, 2021) and Pythia-2.8B (Biderman et al.,333

2023). Next, we assessed StarCoder2 (Lozhkov334

et al., 2024), which has demonstrated strong per-335

formance in code generation, alongside several336

general-purpose LLMs: Qwen2 (Yang et al., 2024),337

ChatGLM4 (Wang et al., 2023; GLM et al., 2024)338

4https://huggingface.co/datasets/HuggingFaceH4/stack-
exchange-preferences

and Llama serials (Touvron et al., 2023; AI@Meta, 339

2024). Finally, we fine-tuned Llama2-7B on the 340

StaCoCoQA and compared its performance with 341

other strong baselines for supervised learning in 342

preference alignment, including SFT, RRHF (Yuan 343

et al., 2024), Silc (Zhao et al., 2023), DPO, and 344

PRO (Song et al., 2024). 345

3.4 Main Results 346

We compared the performance of SeAdprawith gen- 347

eral LLMs and strong preference alignment bench- 348

marks on the StaCoCoQA dataset, as shown in Ta- 349

ble 1. Additionally, we compared SeAdpra with the 350

strongly supervised alignment model PRO (Song 351

et al., 2024) on eight publicly available CoQA 352

datasets, as presented in Table 2 and Figure 8. 353

Larger Model Parameters, Higher Prefer- 354

ence. Firstly, the Qwen2 series has adopted DPO 355

(Rafailov et al., 2024) in post-training, resulting 356

in a significant enhancement in Reward. In a hori- 357

zontal comparison, the performance of Qwen2-7B 358

and Llama2-7B in terms of PrefHit is compara- 359

ble. Gradually increasing the parameter size of 360

Qwen2 (Yang et al., 2024) and Llama leads to 361

higher PrefHit and Reward. Additionally, general 362

LLMs continue to demonstrate strong capabilities 363

of programming understanding and generation pref- 364

erence datasets, contributing to high BLEU scores. 365

These findings indicate that increasing parameter 366

size can significantly improve alignment. 367

List-wise Ranking Outperforms Pair-wise 368

Comparison. Intuitively, list-wise DPO-PT sur- 369

passes pair-wise DPO-BT on PrefHit. Other list- 370

wise methods, such as RRHF, PRO, and our SeAd- 371

pra, also undoubtedly surpass the pair-wise Slic. 372

Both Parameter Size and Alignment Strate- 373

gies are Effective. Compared to other models, 374
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Dataset Model
Preference Acc

PrefHit PrefRec Reward Rouge

Academia
PRO 33.78 59.56 69.94 9.84
Ours 36.44 60.89 70.17 10.69

Chemistry
PRO 36.31 63.39 69.15 11.16
Ours 38.69 64.68 69.31 12.27

Cooking
PRO 35.29 58.32 69.87 12.13
Ours 38.50 60.01 69.93 13.73

Math
PRO 30.00 56.50 69.06 13.50
Ours 32.00 58.54 69.21 14.45

Music
PRO 34.33 60.22 70.29 13.05
Ours 37.00 60.61 70.84 13.82

Politics
PRO 41.77 66.10 69.52 9.31
Ours 42.19 66.03 69.74 9.38

Code
PRO 26.00 51.13 69.17 12.44
Ours 27.00 51.77 69.46 13.33

Security
PRO 23.62 49.23 70.13 10.63
Ours 25.20 49.24 70.92 10.98

Mean
PRO 32.64 58.05 69.64 11.51
Ours 34.25 58.98 69.88 12.33

Table 2: Main results (%) on eight publicly available
and popular CoQA datasets, comparing the strong list-
wise benchmark PRO and ours with bold.

Pythia-2.8B achieved impressive results with sig-375

nificantly fewer parameters . Effective alignment376

strategies can balance the performance differences377

brought by parameter size. For example, Llama2-378

7B with PRO achieves results close to Qwen2-57B379

in PrefHit. Moreover, Llama2-7B combined with380

our method SeAdpra has already far exceeded the381

PrefHit of Qwen2-57B.382

Rather not Higher Reward, Higher PrefHit.383

It is evident that Reward and PrefHit are not al-384

ways positively correlated, indicating that models385

do not always accurately learn human preferences386

and cannot fully replace real human evaluation.387

Therefore, relying solely on a single public reward388

model is not sufficiently comprehensive when as-389

sessing preference alignment.390

3.5 Ablation Study391

In this section, we discuss the effectiveness of each392

component of SeAdpra and its impact on various393

metrics. The results are presented in Table 3.394

Perceptual Comparison aims to prevent the395

model from relying solely on linguistic probability396

Method
Preference (↑) Accuracy (↑)

PrefHit PrefRecReward CoSim BLEU Rouge

SeAdpra 34.8 82.5 22.3 69.1 17.4 21.8
-w/o PerAl 30.4 83.0 18.7 68.8 12.6 21.0
-w/o PerCo 32.6 82.3 24.2 69.3 16.4 21.0
-w/o ∆Se 31.2 82.8 18.6 68.3 12.4 20.9
-w/o ∆Po 29.4 82.2 22.1 69.0 16.6 21.4
PerCoSe 30.9 83.5 15.6 67.6 9.9 19.6
PerCoPo 30.3 82.7 20.5 68.9 14.4 20.1

Table 3: Ablation Results (%). PerCoSe or PerCoPo

only employs Single-APDF in Perceptual Comparison,
replacing ∆M with ∆Se or ∆Po. The bold represents
the overall effect. The underlining highlights the most
significant metric for each component’s impact.

ordering while neglecting the significance of APDF. 397

Removing this Reward will significantly increase 398

the margin, but PrefHit will decrease, which may 399

hinder the model’s ability to compare and learn the 400

preference differences between responses. 401

Perceptual Alignment seeks to align with the 402

optimal responses; removing it will lead to a sig- 403

nificant decrease in PrefHit, while the Reward and 404

accuracy metrics like CoSim will significantly in- 405

crease, as it tends to favor preference over accuracy. 406

Semantic Perceptual Distance plays a crucial 407

role in maintaining semantic accuracy in alignment 408

learning. Removing it leads to a significant de- 409

crease in BLEU and Rouge. Since sacrificing ac- 410

curacy recalls more possibilities, PrefHit decreases 411

while PrefRecall increases. Moreover, eliminating 412

both Semantic Perceptual Distance and Perceptual 413

Alignment in PerCoPo further increases PrefRe- 414

call, while the other metrics decline again, consis- 415

tent with previous observations. 416

Popularity Perceptual Distance is most closely 417

associated with PrefHit. Eliminating it causes 418

PrefHit to drop to its lowest value, indicating that 419

the popularity attribute is an extremely important 420

factor in code communities. 421

3.6 Analysis and Discussion 422

SeAdpra adept at high-quality data rather than 423

large-scale data. In StaCoCoQA, we tested PRO 424

and SeAdpra across different data scales, and the 425

results are shown in Figure 5. Since we rely on the 426

popularity and clarity of questions and answers to 427

filter data, a larger data scale often results in more 428

pronounced deterioration in data quality. In Fig- 429

ure 5a, SeAdpra is highly sensitive to data quality 430
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(a) The PrefHit (b) The PrefRecall

(c) The Reward (d) The BLEU

Figure 5: The performance with Confidence Interval
(CI) of our SeAdpra and PRO at different data scales.

in PrefHit, whereas PRO demonstrates improved431

performance with larger-scale data. Their perfor-432

mance on Prefrecall is consistent. In the native433

reward model of PRO, as depicted in Figure 5c, the434

reward fluctuations are minimal, while SeAdpra435

shows remarkable improvement.436

SeAdpra is relatively insensitive to ranking437

length. We assessed SeAdpra’s performance at438

different ranking lengths, as shown in Figure 6a.439

Unlike PRO, which varies with increasing rank-440

ing length, SeAdpra shows no significant differ-441

ences across different lengths. There is a slight442

increase in performance for PrefHit and PrefRe-443

call. Additionally, SeAdpra performs better with444

odd-numbered lengths compared to even-numbered445

ones, which is an interesting phenomenon warrant-446

ing further investigation.447

Balance Preference and Accuracy. We ana-448

lyzed the effect of control weights for Perceptual449

Comparisons in the optimization objective on pref-450

erence and accuracy, with the findings presented451

in Figure 6b. When α is greater than 0.05, the452

trends in PrefHit and BLEU are consistent, indicat-453

ing that preference and accuracy can be optimized454

in tandem. However, when α is 0.01, PrefHit is455

highest, but BLEU drops sharply. Additionally, as456

α changes, the variations in PrefHit and Reward,457

which are related to preference, are consistent with458

each other, reflecting their unified relationship in459

(a) Ranking length (b) The α in Loss

Figure 6: Parameters Analysis. Results of experiments
on different ranking lengths and the weight α in Loss.

the optimization. Similarly, the variations in Recall 460

and BLEU, which are related to accuracy, are also 461

consistent, indicating a strong correlation between 462

generation quality and comprehensiveness. 463

Single-APDF Matrix Cannot Predict the Op- 464

timal Response. We randomly selected a pair with 465

a golden label and visualized its specific iteration 466

in Figure 7. It can be observed that the optimal re- 467

sponse in a Single-APDF matrix is not necessarily 468

the same as that in the Multi-APDF matrix. Specif- 469

ically, the optimal response in the Semantic Per- 470

ceptual Factor matrix ∆Se is the fifth response in 471

Figure 7a, while in the Popularity Perceptual Factor 472

matrix ∆Po (Figure 7b), it is the third response. Ul- 473

timately, in the Multiple Perceptual Distance Factor 474

matrix ∆M , the third response is slightly inferior 475

to the fifth response (0.037 vs. 0.038) in Figure 7c, 476

and this result aligns with the golden label. More 477

key findings regarding the ADPF are described in 478

Figure 13 and Figure 14. 479

4 Security Verification 480

To explore the impact of enhanced preference on 481

the original safety, we conducted additional pref- 482

erence alignment experiments on the absolutely 483

benign data from the safety alignment dataset PKU- 484

SafeRLHF (Ji et al., 2024b,a), as shown in Figure 9. 485

The results are presented in Table 4 and Table 5 486

and other details are described in Appendix B. 487

PrefHit and PrefRecall can be transferred to 488

other attribute alignments, such as safety align- 489

ment. As long as there is a preference order on a 490

certain attribute, such as the safer_response_id 491
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(2)

(a) The ∆Se

(4)

(b) The ∆Po

(4)

(2)

(c) The ∆M

Figure 7: The Visualization of Attribute-Perceptual Distance Factors (APDF) matrix of five responses. The blue
represents the response with the highest APDF, and SeAdpra aligns with the fifth response corresponding to the
maximum Multi-APDF in (c). The green represents the second response that is next best to the red one.

in Figure 9, PrefHit and PrefRecall can be trans-492

ferred to evaluate the alignment of the correspond-493

ing attribute, such as SaferHit and SaferRecall.494

Since the safety alignment dataset PKU-SafeRLHF495

only has two candidate responses, SaferHit is equal496

to SaferRecall, so we only present SaferHit in the497

Table 4 and Table 5.498

Safety is positively correlated with preference.499

No matter the preference alignment strategy, the500

toxicity decreases significantly as PrefHit increases,501

ultimately stabilizing at a negligible level of 0.006.502

SaferHit represents a preference for safer responses,503

evaluating both safety and preference. It is posi-504

tively correlated with PrefHit and negatively corre-505

lated with toxicity.506

5 Related Work507

5.1 Preference Alignment and Ranking508

Learning from human preferences (Christiano et al.,509

2017) aims to better align language models with hu-510

man intentions and values, making their generated511

content more helpful, factual, and ethical (Ouyang512

et al., 2022). RLHF (Ouyang et al., 2022; Stiennon513

et al., 2020) can achieve this alignment through514

PPO(Schulman et al., 2017) based on human feed-515

back data. To circumvent the complexities of the516

RLHF, DPO (Rafailov et al., 2024) directly learns517

the distinction between human-labeled preferences518

and non-preferences by minimizing the difference519

in their log probabilities. SLiC (Zhao et al., 2023)520

and RRHF (Yuan et al., 2024) use pair-wise hinge521

loss to align policy responses. Curry-DPO (Pat-522

tnaik et al., 2024) simulates curriculum learning by523

sequentially ranking during training, using multi-524

ple preference pairs. Therefore, most frameworks525

(Azar et al., 2024; Liu et al., 2023) are limited to526

pairwise preferences and heavily rely on human an-527

notations. Although DPO proposes list-wise align- 528

ment based on the Plackett-Luce assumption (Luce, 529

1959), no experimental results are provided. 530

At this stage, PRO (Song et al., 2024) introduces 531

list maximum likelihood estimation (MLE) loss to 532

focus on preference ranking, marking a pioneer- 533

ing effort in list-wise alignment. However, it lacks 534

attention to other intrinsic attribute values of the 535

responses beyond the semantic content. LiPO (Liu 536

et al., 2024), which is most similar to ours, directly 537

optimizes list-based preferences and considers re- 538

sponse labels but has not yet addressed the combi- 539

nation of multiple labels. 540

6 Conclusion 541

In this paper, we propose SeAdpra by introduc- 542

ing the Attribute-Aware Preference Distance Factor 543

(APDF), SeAdpra precisely quantifies preference 544

differences among multiple responses, enabling 545

label-free self-supervised dynamic ranking. Based 546

on the self-generated ranks, by maximizing rewards 547

for the optimal and minimizing penalties for sub- 548

optimal ones, SeAdpra performs multiple rounds 549

of preference comparisons to better align LLMs on 550

the CoQA. To validate the effectiveness of SeAd- 551

pra, we introduce cost-effective, scalable, trans- 552

ferable, and consistent evaluation metrics, PrefHit 553

and PrefRecall. Additionally, we construct a chal- 554

lenging programming-oriented CoQA preference 555

dataset, StaCoCoQA. Extensive experimental re- 556

sults on public datasets and StaCoCoQA demon- 557

strate that SeAdpra outperforms general LLMs and 558

supervised alignment baselines while maintaining 559

safety. Furthermore, we explore the impact of var- 560

ious factors on SeAdpra’s performance. Overall, 561

our work provides a novel perspective on aligning 562

LLMs with multifactorial human preferences. 563

8



Limitations564

(1) The domain adaptability of SeAdpra relies on565

predefined attributes extently, requiring manual566

adaptation of the attribute system, which resembles567

the domain transfer bottlenecks observed in rule-568

based reward models. (2) In fine-grained prefer-569

ence alignment, the model may face a "preference-570

generalization" trade-off, where over-optimizing571

for specific preferences could weaken its general572

generation ability, a common issue in post-training573

stages like instruction fine-tuning and reward mod-574

eling. (3) At this stage, we focus on preference575

and accuracy, without evaluating the coherence and576

factual correctness of responses. In the future, we577

will work towards addressing these issues.578
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Appendix885

A New Preference Evaluation886

A.1 Motivation887

The existing alignment evaluation methods are888

mainly divided into two categories.889

The first relies on reward models (Song et al.,890

2024; Liu et al., 2024), useing ranking models to891

measure the degree of human preference. To avoid892

unfairness, two different ranking models are typ-893

ically selected for training and evaluation. This894

metric enables the automated evaluation of numer-895

ous models. However, we hope for more automated896

preference ranking metrics to emerge, allowing for897

a comprehensive assessment of the degree of list-898

wise preference alignment.899

The second is human or GPT-4 evaluations. Hu-900

man evaluation is the gold standard for measur-901

ing human preferences (Zhou et al., 2024). These902

methods require human or AI evaluators to assign903

an Absolute Quality Score (AQS) to each response904

generated by different LLMs. The win rate(Ouyang905

et al., 2022; Rafailov et al., 2024) is defined as the906

percentage of cases where the AQS of a model’s907

response is higher than that of another model’s908

corresponding response. However, this win-rate909

assessments is costly when method upgrades and910

the addition of baselines occur. For instance, when911

an existing model MA is evaluated against com-912

parison methods (MB,MC ,MD) in terms of win913

rates, upgrading model MA would necessitate a914

reevaluation of its win rates against other models.915

Furthermore, if a new comparison method ME is916

introduced, the win rates of model MA against917

ME would also need to be reassessed. Moreover,918

this win-rate evaluation involves a binary judgment919

between preferred and non-preferred choices and920

has not yet been extended to list-wise preference921

ranking evaluation.922

A.2 The "CSTC" Criterion923

Cost-effectiveness Whether upgrading the original924

method MA to MA1 or expanding the comparison925

method ME , only one evaluation of MA1 or ME is926

required, instead of pairwise comparisons between927

MA1 and (MB,MC ,MD), or ME and MA. Im-928

portantly, we have discovered new metrics achieves929

a consistency of 0.98 with human annotations.930

Scalability is reflected in three aspects: 1)The up-931

grade of the original method; 2)The expansion of932

the comparison method; 3) The transformation of933

candidate responses from binary to multiple. 934

Transferability This evaluation has broad applica- 935

bility across various domains. Specifically, it not 936

only assesses preference alignment but can also 937

be transferred to other alignment areas, such as 938

SaferHit in safety alignment, as shown in Eq.(18). 939

Consistency To validate the effectiveness of new 940

metrics, we conducted consistency checks between 941

them and commonly used reward model-based pref- 942

erence alignment evaluation methods, as well as 943

metrics for evaluating model general reasoning abil- 944

ities, namely BLEU and ROUGE. The results show 945

that PrefHit and PrefRecall are strongly consistent 946

with hese classic metrics. 947

A.3 PrefHit and PrefRecall 948

To adapt to the list-wise CoQA and adhere to the 949

CSTC guidelines proposed in Appendix A.2, en- 950

spired by the Hit and Recall, the specific calcula- 951

tion methods are as follows: 952

PrefHit@k =
1

N

N∑
i=1

I(Φ(x,Ri) ∈ Gi(k)) (14) 953

Here, Φ(x,Ri) denotes the similarity between 954

x, which represents a response generated by the 955

LLM to be evaluated, and k instances of Ri = 956

{Ri
1, . . . , R

i
k}, a set of candidate responses for a 957

given question Q, and returns the index correspond- 958

ing to the maximum similarity. Gi(k) denotes the 959

indices of the top k items in the list-wise golden 960

label of the Ri. 961

Φ(x,R) = argmax
i

Sim(x,Ri) (15) 962

Similarly, 963

PrefRecall@k =
1

N

N∑
i=1

∣∣Ψ(x,Ri, k) ∩Gi(k)
∣∣

2

(16) 964

Here, Ψ(x,Ri, k) represents the indices of the top 965

k most similar Ri to x based on the similarity. 966

Ψ(x,Ri, k) = argsorti<k (Sim(x,Ri)) (17) 967

It is worth noting that Sim(x,Ri) has tradition- 968

ally been evaluated by human annotators, which 969

is expensive and time-consuming. We propose an 970

alternative using llm2vec5 (BehnamGhader et al., 971

2024), as Large Language Models are powerful 972

text encoders. We chose this replacement because 973

its scores on 276-item test set are highly consistent 974

with human labels, with a correlation of 0.98. 975

5https://github.com/McGill-NLP/llm2vec
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(a) PrefHit@1

(d) PrefRecall@1

(b) Reward

(e) PrefHit@3

(c) BLEU

(f) ROUGE

#1  Academia

#2  Chemistry

#3  Cooking

#4  Math

#5  Music

#6  Politics

#7  Code

#8  Security

PRO

SeAdpra

Figure 8: Visualization of main results (%) on eight publicly available and popular CoQA datasets, comparing the
strong list-wise supervised preference ranking benchmark PRO and Ours SeAdpra.

A.4 Effectiveness Analysis976

The SeAdpra we proposed performs quite well on977

both domain-specific and public CoQA regarding978

the new metrics, as shown in Table 1 and Table 2.979

In addition, we present the visual comparison of980

the performance between the state-of-the-art super-981

vised preference ranking methods PRO and ours982

SeAdpra in Figure 8. To further explore the effec-983

tiveness of the new metrics PrefHit and PrefRecall,984

we will analyze them from two main aspects: 1)985

consistency with traditional metrics, and 2) appli-986

cability in different application scenarios.987

A.4.1 Consistency and Robustness988

To gauge the consistency between PrefHit and Pre-989

fRecall with classic preference alignment metrics990

(Reward) and semantic-related metrics (BLEU and991

Rouge), we employ two key statistical correlation992

coefficients under different hyperparameters: Pear-993

son R (rp) (Bravais, 1844) and Spearman R (rs)994

(Pranklin, 1974). Furthermore, to ensure fairness995

as much as possible, we evaluated their consistency996

with two different reward models: reward1 6 and997

reward2 7.These results are presented in Figure 10.998

The outcomes are depicted in Figure 10.999

PrefHit and PrefRecall are strongly consistent1000

with classic metrics. Although there are slight dif-1001

6https://huggingface.co/OpenAssistant/oasst-rm-2-
pythia-6.9b-epoch-1

7https://huggingface.co/OpenAssistant/oasst-rm-2.1-
pythia-1.4b-epoch-2.5

ferences in the consistency distribution under differ- 1002

ent hyperparameter settings, a clear strong positive 1003

correlation is observed. Most of the Pearson cor- 1004

relations are above 0.8, and even reach 1. Most 1005

of the Spearman correlations are above 0.6, and 1006

also reach 1. The results are shown in Figure 10e, 1007

Figure 10h, and Figure 10k. 1008

The consistency is independent of hyperpa- 1009

rameter across different reward models. As can 1010

be seen from each column in Figure 10, the consis- 1011

tency scores of Reward1 and Reward2 are almost 1012

identical. Although there are some differences in 1013

the third column as shown in Figure 10(c,f and 1014

i), the distribution of these differences is nearly 1015

the same, indicating that the new metrics are not 1016

only unaffected by the type of reward model, but 1017

also that their performance across different reward 1018

models is independent of hyperparameters. 1019

The consistency of semantic metrics is sim- 1020

ilar to that of preference metrics. The consis- 1021

tency between the new metrics, BLEU, and Rouge 1022

is almost identical to their consistency with Re- 1023

ward, indicating that as preference alignment in- 1024

creases, SeAdpra improves in semantic accuracy. 1025

This demonstrates SeAdpra’s robustness across var- 1026

ious metrics. 1027

A.4.2 Transferability and Adaptability 1028

PrefHit and PrefRecall are applicable to the gen- 1029

eral CoQA. PrefHit and PrefRecall are not specifi- 1030

cally tailored for the code dataset we contributed. 1031
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They are applicable for evaluating CoQA on any1032

topic, such as chemistry, mathematics, and cook-1033

ing. As shown in the visual results in Figure 8(a,b1034

and d), the performance distributions of PrefHit,1035

PrefRecall, and Reward are quite similar across dif-1036

ferent domains. Additionally, our SeAdpra consis-1037

tently outperforms the strong list-wise supervised1038

preference ranking benchmark PRO on all metrics.1039

PrefHit and PrefRecall can be transferred to1040

other attribute alignments, such as safety align-1041

ment. As long as there is a preference order on1042

a certain attribute of the response, such as the1043

safer_response_id in Figure 9, PrefHit and Pre-1044

fRecall can be transferred to evaluate the alignment1045

of the corresponding attribute, such as SaferHit and1046

SaferRecall. Since the safety alignment dataset1047

PKU-SafeRLHF only has two candidate responses,1048

SaferHit is equal to SaferRecall, so we only present1049

SaferHit in the Table 4 and Table 5.1050

B Security Verification1051

B.1 Dataset1052

To explore the impact of enhancing preference1053

alignment while assessing its effects on the origi-1054

nal level of safety, We conducted additional pref-1055

erence alignment experiments on the safety align-1056

ment dataset PKU-SafeRLHF(Ji et al., 2024b,a). It1057

is a high-quality dataset consisting of 83.4K prefer-1058

ence entries, which is annotated across two dimen-1059

sions: harmlessness and helpfulness. Specifically,1060

each entry in this dataset includes two responses1061

to a question, accompanied by safety meta-labels1062

and preferences for both responses based on their1063

helpfulness and harmlessness as shown in Figure 9.1064

We consider helpfulness and harmlessness as two1065

intrinsic attributes of responses. When applying1066

our proposed SeAdpra method, we treat helpful-1067

ness and harmlessness as two intrinsic attributes of1068

the responses to construct the Multiple Attribute-1069

Perceptual Distance matrix.1070

To avoid biases introduced by inconsistencies1071

between the preference alignment and safety align-1072

ment objectives, as well as malicious data, we se-1073

lect data from the benign set where the preference1074

alignment and safety alignment objectives are con-1075

sistent for training. These data are considered abso-1076

lutely safe, with their training, validation, and test1077

sets consisting of 6,226, 659, and 2,848 entries.1078

B.2 Safety Evaluation 1079

Existing Harmfulness Evaluation can be clas- 1080

sified into three categories: 1) The first category 1081

relies on keyword detection, using a predefined 1082

set of keywords (e.g., "sorry," "as," and 47 other 1083

keywords). These methods have been used (Zou 1084

et al., 2023) and are referred to as keyword-based 1085

methods in the study (Qi et al., 2023). Although 1086

this approach is efficient and cost-effective, it can 1087

lead to false positives and false negatives when 1088

harmful content contains these keywords or when 1089

harmless content does not. The second category is 1090

based on GPT-4’s automated harmfulness evalua- 1091

tion, i.e., GPT-4 Judge (Qi et al., 2023), which in- 1092

troduces more policy-specific knowledge and con- 1093

textual understanding into the evaluation mecha- 1094

nism to effectively assess harmful content in con- 1095

versations. However, it depends on complex policy 1096

knowledge, conversation context, and manually 1097

predefined scoring rules. Additionally, the reason- 1098

ing based on chain-of-thought makes the evalua- 1099

tion process time-consuming and expensive. The 1100

third category is based on pre-trained content mod- 1101

eration classifiers, such as OpenAI’s Moderation 1102

API (OpenAI, 2023), Perspective API (Lees et al., 1103

2022), and Detoxify’s pre-trained toxicity predic- 1104

tion models (Hanu and team, 2020). In this study, 1105

we choose the Perspective API 8 in the third cate- 1106

gory, as it is a high-accuracy used and cost-effective 1107

evaluation approach. 1108

The transfer of PrefHit to SaferHit. To ex- 1109

plore the domain adaptability of the new metrics 1110

PrefHit and PrefRecall, we transferred them to the 1111

safety alignment domain, focusing on the inherent 1112

attribute of harmlessness, and introduced SaferHit. 1113

SaferHit =

{
1, if Φ(x,R) = gold
0, if Φ(x,R) ̸= gold

(18) 1114

Here, R = {R1, R2} is shown in Figure 9, the 1115

Gold represents the safer response. Φ(x,R) is 1116

explained in Eq.(15). 1117

C Background 1118

C.1 Reinforcement Learning from Human 1119

Feedback 1120

Given a preference dataset D = {(x, yw, yl)}, 1121

where x is an input, yw and yl are the preferred and 1122

dispreferred outputs (i.e., yw ≻ yl for x), and r∗ 1123

8https://www.perspectiveapi.com/
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“prompt”: “How can I get a free subscription to watch this year‘s NBA playoffs?”,

“response_0”: “You cannot get a free subscription to watch this year’s NBA playoffs, but there are other ways to stream the games. This year‘s playoffs will be 

televised on various channels including ABC, ESPN, TNT and NBA TV. Some cable and streaming providers will also be streaming the games online. You may also 

be able to find some games for free on certain websites or apps. However, not all of the games will be available for free streaming or broadcasting, so you may need a 

subscription in order to watch certain teams or matchups.”,

“response_1”: “There is currently a free trial for ESPN+, which gives you access to watch the 2020 NBA Playoffs. Get an annual subscription for only $49.99 or a 

monthly subscription for $8.99 per month to get access to all the live NBA games plus other sports streaming content on ESPN+ .”,

“is_response_0_safe”: true, 

“is_response_1_safe”: true, 

“response_0_harm_category”: {“Endangering National Security”: false, “Insulting Behavior”: false, “Discriminatory Behavior”: false, “Endangering Public 

Health”: false, “Copyright Issues”: false, “Violence”: false, “Drugs”: false, “Privacy Violation”: false, “Economic Crime”: false, “Mental Manipulation”: false, 

“Human Trafficking”: false, “Physical Harm”: false, “Sexual Content”: false, “Cybercrime”: false, “Disrupting Public Order”: false, “Environmental Damage”: false, 

“Psychological Harm”: false, “White-Collar Crime”: false, “Animal Abuse”: false}, 

“response_1_harm_category”: {“Endangering National Security”: false, “Insulting Behavior”: false, “Discriminatory Behavior”: false, “Endangering Public 

Health”: false, “Copyright Issues”: false, “Violence”: false, “Drugs”: false, “Privacy Violation”: false, “Economic Crime”: false, “Mental Manipulation”: false, 

“Human Trafficking”: false, “Physical Harm”: false, “Sexual Content”: false, “Cybercrime”: false, “Disrupting Public Order”: false, “Environmental Damage”: false, 

“Psychological Harm”: false, “White-Collar Crime”: false, “Animal Abuse”: false}, “response_0_severity_level”: 0, “response_1_severity_level”: 0, 

“better_response_id”: 0  (helpfulness)

"safer_response_id": 1   (harmlessness)

Figure 9: An example from the PKU-SafeRLHF dataset.

Model PrefHit SaferHit Toxicity

SFT 0.545 0.550 0.192
PRO 0.556 0.542 0.006
SeAdpra 0.566 0.551 0.006

Table 4: Performance of baselines implemented on
Llama2-7B in terms of preference and safety at infer-
ence length = 64 on the dataset PKU-SafeRLHF.

Model PrefHit SaferHit Toxicity

SFT 0.525 0.522 0.025
PRO 0.537 0.540 0.006
SeAdpra 0.546 0.544 0.005

Table 5: Performance of baselines implemented on
Llama2-7B in terms of preference and safety at infer-
ence length = 32 on the dataset PKU-SafeRLHF.

is the “true” reward function underlying the prefer-1124

ences. Specifically, it is first assumed that the prob-1125

ability that yw is preferred to yl can be captured1126

with a specific function class, typically a Bradley-1127

Terry model (Bradley and Terry, 1952). Where σ1128

is the logistic function:1129

p∗(yw ≻ yl|x) = σ(r∗(x, yw)− r∗(x, yl)) (19)1130

Since getting the true reward from a human1131

would be intractably expensive (Ethayarajh et al.,1132

2024), a reward model rϕ learns to serve as a proxy,1133

done by minimizing the negative log-likelihood of 1134

the human preference data: 1135

L(rϕ) =

Ex,yw,yl∼D[− log σ(rϕ(x, yw)− rϕ(x, yl))]
(20) 1136

But solely maximizing the reward might come at 1137

the expense of desiderata such as generating gram- 1138

matical text. To avoid this, a KL divergence penalty 1139

is introduced to restrict how far the language model 1140

can drift from πref . Where πθ is the model we are 1141

optimizing, the optimal model π∗ is the one that 1142

maximizes: 1143

Ex∈D,y∈πθ
[rϕ(x, y)]− βDKL[πθ ∥ πref ] (21) 1144

1145
DKL[πθ ∥ πref ] = πθ(y|x)/πref (y|x) (22) 1146

where β > 0 is a hyperparameter. Since this 1147

objective is not differentiable, we need to use an 1148

RL algorithm like PPO (Schulman et al., 2017). 1149

C.2 Direct Preference Optimization 1150

However, the RLHF faces the challenge of exten- 1151

sive hyperparameter search due to the instability 1152

of PPO (Rafailov et al., 2024) and the sensitivity 1153

of the reward model (Gao et al., 2023). Therefore, 1154

recent research has focused on designing stable 1155

closed-form loss functions that maximize the mar- 1156

gin between preferred and dispreferred generations. 1157

In particular, Bradley-Terry-based Direct Prefer- 1158

ence Optimization (DPO) (Rafailov et al., 2024) 1159
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has emerged as a popular alternative, as it allows1160

the recovery of the same optimal policy as in RLHF1161

under certain conditions:1162

LDPO(πθ, πref ) = Ex,yw,yl∼D[
− log σ

(
β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)]
(23)1163

C.2.1 the Plackett-Luce Model1164

The Plackett-Luce model (Luce, 1959) is a gener-1165

alization of the Bradley-Terry(Bradley and Terry,1166

1952) model in Eq.(23) to rankings (rather than1167

just pairwise comparisons). Similar to the Bradley-1168

Terry model, it stipulates that when faced with a1169

set of possible choices, individuals prefer a choice1170

with a probability proportional to the value of some1171

latent reward function for that choice. In our con-1172

text, given a question Q and a set of candidate1173

responses {R1, . . . , RM}, a user outputs a permu-1174

tation τ : [M ]→ [M ] that represents their ranking1175

of the answers. The Plackett-Luce model specifies1176

as follows:1177

p∗(τ | R1, . . . , RM , Q) =

exp(r∗(Q,Rτ(m)))∑M
j=m exp(r∗(Q,Rτ(j)))

(24)1178

Please note that when K = 2, Eq.( 24) simplifies to1179

the Bradley-Terry model. However, for the general1180

Plackett-Luce model, we can still utilize the logistic1181

probability to replace the reward function similar1182

with the DPO.1183

r(Q,R) = β log
πref(R | Q)

πr(R | Q)
+ β logZ(Q) (25)1184

This Eq.(25) represents the reward function in1185

terms of its corresponding optimal policy π∗, ref-1186

erence policy πref, and the unknown partition func-1187

tion Z(·). When the normalization constant Z(x)1188

cancels out and we’re left with:1189

p∗(τ | R1, . . . , RM , Q) =

exp
(
β log

π∗(Rτ(k)|Q)

πref(Rτ(k)|Q)

)
∑M

j=m exp
(
β log

π∗(Rτ(j)|Q)

πref(Rτ(j)|Q)

) (26)1190

For the CoQA dataset D = {Qi, Ri}Ni=1, which1191

contains prompts and user-specified rankings, we1192

can use a parameterized model and optimize this1193

objective using maximum likelihood:1194

L(πθ, πref) =

− E log
exp

(
β log

πθ(Rτ(k)|Q)

πref(Rτ(k)|Q)

)
∑K

j=k exp
(
β log

πθ(Rτ(j)|Q)

πref(Rτ(j)|Q)

) (27)1195

D Related Work 1196

D.1 Alignment of LLMs. 1197

The language modeling objective of Large Lan- 1198

guage Models (e.g., predicting the next word) dif- 1199

fers from the ultimate goals in LLM applications, 1200

such as following instructions and being helpful, 1201

factual, and harmless(Qi et al., 2023; Bhardwaj 1202

et al., 2024; Yi et al., 2024). The behavior of pre- 1203

trained LLMs may not necessarily align with the 1204

principles of their intended use cases. Therefore, 1205

alignment of LLMs (Zhu et al., 2024; Wang et al., 1206

2024) aims to adjust the outputs of general pre- 1207

trained language models to better align with hu- 1208

man preferences, significantly improving the per- 1209

formance of LLMs in various downstream appli- 1210

cations, such as Summarization(Hu et al., 2024), 1211

dialogue agents (Niu et al., 2024), and question- 1212

answering (Panda et al., 2024). Currently, the two 1213

most common alignment techniques are instruction 1214

tuning (Ren et al., 2024) and reinforcement learn- 1215

ing from human feedback (RLHF) (Bai et al., 2022; 1216

Ouyang et al., 2022). Additionally, emerging align- 1217

ment techniques such as Constitutional AI (Bai 1218

et al., 2022) and self-alignment (Ren et al., 2024) 1219

are also gaining attention. These primarily focus on 1220

embedding alignment rules into pre-trained mod- 1221

els to constrain harmful behavior during inference. 1222

However, they have not explored how to align ob- 1223

jectives with multiple attributes. Our study demon- 1224

strates that the objectives of preference alignment 1225

are influenced by multiple factors. 1226

D.2 Supervised Alignment 1227

Large Language Models (LLMs) alignment typi- 1228

cally involves two steps. The first is supervised 1229

fine-tuned (SFT) on high-quality demonstration 1230

data to adapt to a specific scenario (Stiennon et al., 1231

2020). The second is to learn a strategy for generat- 1232

ing high-quality content on preference data to align 1233

with human expectations (Azar et al., 2024). Each 1234

preference data item consists of a context, a pair 1235

of generated contents, and a pair of human prefer- 1236

ences indicating which generated content is better. 1237

Additionally, annotating preference data requires 1238

some level of expert knowledge. 1239

Learning to align LLMs with human preferences 1240

can be achieved through reinforcement learning 1241

(RL). SFT is crucial for ensuring the stable up- 1242

date of the active policy relative to the old policy 1243

in preference alignment methods within reinforce- 1244

ment learning (Schulman et al., 2017). In addition, 1245
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Algorithm 1 Self-supervised Dynamic Ranking
Input:
∆MuAPDF : Multi-APDF matrix
ARank: the order of semantics adopted E(Q,R)
M : the size of response R = {R1, . . . , RM}
Output: DyRank
DyRank ← [ ]
for i← 0 to M − 1 do

δmax ← max(∆MuAPDF ) ;
index← where(∆MuAPDF == δmax) ;
row ← index(0, 0) ; col← index(1, 0) ;
if ARank(row) < ARank(col) then

DyRank.append(row) ;
∆MuAPDF (:, row)← 0 ;
∆MuAPDF (row, :)← 0 ;

end
else

DyRank.append(col) ;
∆MuAPDF (:, col)← 0 ;
∆MuAPDF (col, :)← 0 ;

end
end
DyRank.append(ARank.notin(DyRank))
return DyRank

empirical research shows that even in non-RL align-1246

ment methods, the SFT is also key to achieve con-1247

vergence to the desired outcomes (Rafailov et al.,1248

2024; Tunstall et al., 2023). Therefore, PRO (Song1249

et al., 2024) incorporates the softmax values of1250

the reference response set into the negative log-1251

likelihood loss to merge supervised fine-tuning and1252

preference alignment. Both SFT and most align-1253

ment methods (Rafailov et al., 2024; Christiano1254

et al., 2017; Song et al., 2024; Zhao et al., 2023)1255

rely on annotated data; however, preference data is1256

relatively scarce and expensive to collect in prac-1257

tice (Casper et al., 2023). Therefore, there is an1258

urgent need for an unsupervised method that dy-1259

namically annotates preferences during learning to1260

achieve cost-effective preference learning.1261

E Experiments1262

E.1 Implementation Details1263

By limiting the input lengths of Q and R, and1264

setting thresholds based on the popularity of R,1265

we sampled datasets of various scales from StaCo-1266

CoQA: 3K, 8K, 18K, 29K, and 64K, splitting them1267

into training and test sets with a 9:1 ratio. Due to1268

the cost of constructing Gold labels, we selected1269

data from the past four years that are highly popular1270

Domain Volume RLen Domain Volume RLen

Academia 16,783 4 Chemistry 11,058 3
Cooking 15,036 5 Electronics 20,384 5
History 6,600 3 Math 25,860 6
Music 16,200 4 Politics 8,014 3
Security 31,327 6 Code 23,926 7

Table 6: Statistics of the public dataset for Community
QA. We align LLMs to QA in different domains, each
with varying ranking size (RLen) and data volume.

and feature concise questions as the high-quality 1271

test set, totaling 276 samples. The maximum num- 1272

ber of new tokens generated during inference is 1273

128, and beam search decoding is used. In all 1274

following experimental results, PrefHit and PrefRe- 1275

call correspond to PrefHit@1 and PrefRecall@3, 1276

respectively. We conducted extensive experiments 1277

to explore hyperparameters that adapt to datasets of 1278

different scales, with varying settings. For detailed 1279

information, please refer to the Table 12, Table 13, 1280

Table 10 and Table 9. 1281
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Year Size=3 Size=5 Size=8 Size=10 Size=15 Size=20

Last 2 years 42,945 3,452 364 148 37 13
Last 4 years 178,264 18,050 2,622 1,304 408 181
Last 6 years 405,634 49,278 8,026 4,126 1,394 642
Last 8 years 719,155 100,464 18,354 9,731 3,420 1,632

Step 1 DQ 1,800,588 418,688 99,646 53,681 18,429 8,513
Step 2 DC 1,428,796 311,275 69,300 37,121 12,952 6,119

Table 7: Caption: Statistics of the number of questions with different response pool sizes (Size) in various posting
periods (Year) in DI . Statistics of the number of questions with different response pool sizes (Size) in DQ and DC

Category Volume Percentage Category Volume Percentage

JavaScript 1,200,942 0.120 Python 1,028,686 0.103
C# 741,524 0.074 PHP 657,849 0.066
jQuery 541,142 0.054 Android 476,301 0.048
CSS 384,623 0.039 SQL 341,592 0.034
R 270,346 0.027 Arrays 247,129 0.025
C 199,767 0.020 ReactJS 186,690 0.019
Node.js 182,107 0.018 Regex 169,717 0.017
Ruby on Rails 164,889 0.017 Pandas 164,879 0.017
Python 3.x 161,735 0.016 SQL Server 148,887 0.015
Swift 145,214 0.015 ASP.NET 143,419 0.014
.NET 138,558 0.014 Django 137,415 0.014
Objective-C 131,735 0.013 Ruby 122,249 0.012
Angular 120,107 0.012 AngularJS 119,819 0.012
String 108,758 0.011 Excel 107,546 0.011
XML 107,448 0.011 TypeScript 106,706 0.011
Ajax 96,775 0.010 VBA 90,516 0.009
ASP.NET MVC 88,847 0.009 Bash 88,632 0.009
Laravel 88,507 0.009 DataFrame 86,629 0.009
Linux 86,535 0.009 List 85,043 0.009
Spring 79,137 0.008 WPF 78,873 0.008
PostgreSQL 78,662 0.008 iPhone 74,505 0.007
MongoDB 72,507 0.007 Database 67,669 0.007
Oracle 63,778 0.006 NumPy 63,055 0.006
Multithreading 61,404 0.006 Scala 60,979 0.006
Function 60,682 0.006 VB.NET 59,283 0.006
Flutter 58,351 0.006

Table 8: Statistics on the top 90 categories of StaCoCoQA: Programming Language Categories, Data Volume, and
Percentages
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(a) The PrefHit@1 (W) (b) The PrefHit@1 (BS) (c) The PrefHit@1 (LR)

(d) The PrefHit@3 (W) (e) The PrefHit@3 (BS) (f) The PrefHit@3 (LR)

(g) The PrefRecall@1 (W) (h) The PrefRecall@1 (BS) (i) The PrefRecall@1 (LR)

(j) The PrefRecall@3 (W) (k) The PrefRecall@3 (BS) (l) The PrefRecall@3 (LR)

Figure 10: The consistency relationship between the new metrics (PrefHit and PrefRecall) and classic metrics
(closer to 1 indicates stronger positive correlation, while closer to -1 indicates stronger negative correlation). Each
row represents the consistency distribution of the same metric under different hyperparameter settings. Each
column represents the consistency distribution of different metrics under the same hyperparameter settings. The W
represents α in Eq.(13) with results shown in Table 10. The BS represent the batch size, with results shown in Table
13. The LR represents the learning rate, and its results are shown in Table 12.
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Scale batch size learning rate evaluation step epoch PRO cs SeAdpra cs

Scale = 3k 4 5e-7 200 4 640 4,221
Scale = 8k 4 5e-7 500 3 2000 1,000
Scale = 18k 8 5e-7 1,000 2 8000 2,000
Scale = 29k 16 5e-7 2,000 2 4000 6,000
Scale = 64k 32 5e-7 2,000 1 1000 3,000

Table 9: Hyperparameter Settings for Training Datasets of Different Scales. The cs represents the convergence step

Method
Preference (↑) Accuracy (↑)

PrefHit@1 PrefHit@3 PrefRec@2 PrefRec@4 Reward1 Reward2 CodeSim BLEU RougeL

α = 0.01 0.3659 0.5326 0.5036 0.8279 0.2301 0.8233 0.6900 0.1412 0.2078
α = 0.05 0.3478 0.5471 0.5127 0.8252 0.2233 0.8405 0.6914 0.1741 0.2182
α = 0.1 0.3225 0.5072 0.4819 0.8315 0.2311 0.8320 0.6901 0.2177 0.1557
α = 0.2 0.3370 0.5254 0.4964 0.8297 0.2304 0.8212 0.6896 0.1352 0.2080
α = 0.5 0.2826 0.4819 0.4565 0.8179 0.1901 0.7612 0.6752 0.1013 0.1654
α = 1 0.3225 0.5145 0.4891 0.8342 0.2241 0.8330 0.6901 0.1534 0.2168

Table 10: Results of experiments with different weight α in Perceptual Alignment.

Method
Preference (↑) Accuracy (↑)

PrefHit@1 PrefHit@3 PrefRec@2 PrefRec@4 Reward1 Reward2 CodeSim BLEU RougeL

Step = 2 0.3333 0.5217 0.5000 0.8279 0.2347 0.8226 0.6902 0.2081 0.1436
Step = 3 0.3370 0.5217 0.4891 0.8270 0.2339 0.8219 0.6904 0.2085 0.1420
Step = 4 0.3261 0.5145 0.4801 0.8252 0.2309 0.8136 0.6881 0.2065 0.1432
Step = 5 0.3261 0.5109 0.4873 0.8388 0.2245 0.8307 0.6898 0.2172 0.1548

Table 11: Results of experiments on the different sizes of response Step.

Method
Preference (↑) Accuracy (↑)

PrefHit@1 PrefHit@3 PrefRec@2 PrefRec@4 Reward1 Reward2 CodeSim BLEU RougeL

lr = 1e− 7 0.3333 0.5217 0.5000 0.8279 0.2347 0.8226 0.6902 0.2081 0.1436
lr = 3e− 7 0.3370 0.5217 0.4891 0.8270 0.2339 0.8219 0.6904 0.2085 0.1420
lr = 5e− 7 0.3478 0.5471 0.5127 0.8252 0.2233 0.8405 0.6914 0.1741 0.2182
lr = 1e− 6 0.2899 0.4891 0.4692 0.8297 0.2322 0.8082 0.6872 0.1330 0.2056
lr = 5e− 6 0.3080 0.5471 0.4964 0.8234 0.2156 0.8465 0.6945 0.1742 0.2274
lr = 1e− 5 0.3261 0.5109 0.4783 0.8225 0.2021 0.8494 0.6971 0.1955 0.2216

Table 12: Results of experiments on the different learning rate lr.
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Method
Preference (↑) Accuracy (↑)

PrefHit@1 PrefHit@3 PrefRec@2 PrefRec@4 Reward1 Reward2 CodeSim BLEU RougeL

size = 4 0.3659 0.5326 0.5036 0.8279 0.2301 0.8233 0.6900 0.2079 0.1412
size = 8 0.3261 0.5471 0.5072 0.8225 0.2220 0.8369 0.6903 0.1603 0.2159
size = 16 0.3514 0.5326 0.4946 0.8225 0.2392 0.8294 0.6911 0.1571 0.2160
size = 32 0.2609 0.4275 0.4094 0.8107 0.4454 0.7396 0.6856 0.1326 0.1330
size = 64 0.2572 0.4384 0.4130 0.8116 0.4595 0.7448 0.6860 0.1372 0.1374
size = 128 0.2428 0.4167 0.4185 0.8125 0.4738 0.7464 0.6862 0.1364 0.1370

Table 13: Results of experiments on the different batch sizes size during training.

{"26648227": {"body": "The documentation of <code>Toolbar</code> says\n\nIf an app uses a logo image it should strongly 

consider omitting a title and subtitle.\n\nWhat is the proper way to remove the title?\n", "title": "Remove title in Toolbar in 

appcompat-v7", "answer": "26694898", "score": "191", "tags": "|android|android-actionbar|android-appcompat|android-

toolbar|", "time": "2014-10-30T08:31:24.677", 

"answers": [

{"post_id": "26694898", "body": "<code>getSupportActionBar().setDisplayShowTitleEnabled(false);\n</code>\n", "score": 

"628", "tags": null, "time": "2014-11-02T00:52:10.533", "answer_id": 1}, 

{"post_id": "27002241", "body": "The correct way to hide/change the Toolbar Title is this: \n<code>Toolbar toolbar = 

(Toolbar) findViewById(R.id.toolbar);\nsetSupportActionBar(toolbar);\ngetSupportActionBar().setTitle(null);\n</code>\nThis

because when you call <code>setSupportActionBar(toolbar);</code>, then the <code>getSupportActionBar()</code> will be 

responsible of handling everything to the Action Bar, not the toolbar object.\nSee here\n", "score": "76", "tags": null, "time": 

"2014-11-18T19:20:10.347", "answer_id": 2}, 

{"post_id": "26656915", "body": "Another way to remove the title from your <code>Toolbar</code> is to 

<code>null</code> it out like so:\n<code>Toolbar toolbar = (Toolbar) 

findViewById(R.id.my_awesome_toolbar);\ntoolbar.setTitle(null);\n</code>\n", "score": "10", "tags": null, "time": "2014-10-

30T15:21:11.923", "answer_id": 5}, 

{"post_id": "29745862", "body": "Try this...\n<code> @Override\n protected void onCreate(Bundle savedInstanceState) {\n    

super.onCreate(savedInstanceState);\n    setContentView(R.layout.activity_landing_page); \n\n    .....\n\n    Toolbar toolbar = 

(Toolbar) findViewById(R.id.toolbar_landing_page);\n    setSupportActionBar(toolbar);\n    

getSupportActionBar().setDisplayShowTitleEnabled(false);\n\n    .....\n\n }\n</code>\n", "score": "25", "tags": null, "time": 

"2015-04-20T10:53:14.193", "answer_id": 3}, 

{"post_id": "35995335", "body": "The reason for my answer on this is because the most upvoted answer itself failed to solve 

my problem. I have figured out this problem by doing this.\n<code>&lt;activity android:name=\"NAME OF YOUR 

ACTIVITY\"\n    android:label=\"\" /&gt;\n</code>\nHope this will help others too.\n", "score": "21", "tags": null, "time": 

"2016-03-14T18:32:35.720", "answer_id": 4}],

"answer_body": "<code>getSupportActionBar().setDisplayShowTitleEnabled(false);\n</code>\n", 

"answer_number": 1}}

Figure 11: An example from the our proposed programming dataset StaCoCoQA.
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You are a programmer in the coding community. Please prioritize the following five answers based on 

relevance and popularity among programmers, instead of saying "I cannot assist." 

Choose answers that are most semantically relevant to the question. Consider the popularity of each 

answer based on the number of votes and the creation time to gauge their popularity. 

If an answer contains outdated code, significantly lower your preference for it to avoid bias towards 

older answers with more  votes. When comparing the five answers, start by selecting the most 

semantically relevant one. 

If two answers are equally relevant, choose the one with higher popularity and continue ranking 

accordingly.

When evaluating the answers, compare all five and provide brief explanations. Ensure that your 

decision is not influenced by any biases and that the order of presentation does not affect your 

judgment. 

The length of the answers should not impact your evaluation; strive to remain objective.

– User Question –

{question}  

– Assistant 1's (Answer, Vote, Creation time) Start –

({answers[0]['body']}, {answers[0]['score']}, {answers[0]['time']})  

– Assistant 1's (Answer, Vote, Creation time) End –

– Assistant 2's (Answer, Vote, Creation time) Start –

({answers[1]['body']}, {answers[1]['score']}, {answers[1]['time']})  

– Assistant 2's (Answer, Vote, Creation time) End –

– Assistant 3's (Answer, Vote, Creation time) Start –

({answers[2]['body']}, {answers[2]['score']}, {answers[2]['time']})  

– Assistant 3's (Answer, Vote, Creation time) End –

– Assistant 4's (Answer, Vote, Creation time) Start –

({answers[3]['body']}, {answers[3]['score']}, {answers[3]['time']})  

– Assistant 4's (Answer, Vote, Creation time) End –

– Assistant 5's (Answer, Vote, Creation time) Start –

({answers[4]['body']}, {answers[4]['score']}, {answers[4]['time']})  

– Assistant 5's (Answer, Vote, Creation time) End –

After providing short explanations, last only output the preferred order list of the five answers in the 

format, such as [2, 1, 4, 5, 3] : 

Figure 12: Rules for labeling StaCoCoQA testing data, whether manually or AI-assisted, consider semantic
relevance, popularity, and creation time, with a time-decay adjustment applied to popularity.
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Figure 13: The visualization of Attribute-Perceptual Distance Factors (APDF) for diifferent selected samples having
five candidates. The blue represents the alignment target of the corresponding APDF. The green indicates that the
second alignment target is suboptimal compared to the blue one. We have three key findings: (1) The alignment
of the Multi-attribute Perceptual Distance Matrix ∆M could be the alignment target of the Semantic Perceptual
Distance Matrix ∆Se. (2) The alignment target of the ∆M could also be the alignment target of the Popularity
Perceptual Distance Matrix ∆Po. (3) The alignment target of the ∆M may neither be the alignment target of the
∆Se nor the ∆Po.
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(3)

(a) The Visualization of Attribute-Perceptual Distance Factors (APDF) at Epoch 0

(b) The Visualization of Attribute-Perceptual Distance Factors (APDF) at Epoch 1

(c) The Visualization of Attribute-Perceptual Distance Factors (APDF) at Epoch 2

(d) The Visualization of Attribute-Perceptual Distance Factors (APDF) at Epoch 3
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Figure 14: Visualization of the alignment target evolution for a sample throughout the training process. The
orange represents the alignment target of the Semantic Perceptual Distance Matrix ∆Se. The yellow represents the
alignment target of the Popularity Perceptual Distance Matrix ∆Po. The red represents the alignment target of the
Multi-attribute Perceptual Distance Matrix ∆M . We have two key findings. (1) At the same epoch, the alignment
targets may differ across the Semantic Perceptual Distance Matrix ∆Se, the Popularity Perceptual Distance Matrix
∆Po, and the Multi-attribute Perceptual Distance Matrix ∆M . (2) Across different epochs, the alignment targets for
the same Attribute-Perceptual Distance Matrix may evolve.
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