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Abstract

The flexibility of intelligent behavior is fundamentally attributed to the ability to
separate and assign structural information from content in sensory inputs. Variable
binding is the atomic computation that underlies this ability. In this work, we
investigate the implementation of variable binding via pointers of assemblies of
neurons, which are sets of excitatory neurons that fire together. The Assembly
Calculus [13] is a framework that describes a set of operations to create and modify
assemblies of neurons. We focus on the project (which creates assemblies) and
reciprocal-project (which performs variable binding) operations and study
the capacity of networks in terms of the number of assemblies that can be reliably
created and retrieved. We find that assembly calculus networks implemented
through Hebbian plasticity resemble associative memories in their structure and
behavior. However, for networks with N neurons per brain area, the capacity of
variable binding networks (0.01N ) is an order of magnitude lower than the capacity
of assembly creation networks (0.22N ). To alleviate this drop in capacity, we
propose a skip connection between the input and variable assembly, which boosts
the capacity to a similar order of magnitude (0.1N ) as the Project operation,
while maintaining its biological plausibility. †

∗Equal contributions.
†All code used in this work can be found at https://github.com/minzsiure/Variable-Binding-Capacity.
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1 Introduction

Variable binding is the atomic computation that underlies the ability to separate and assign structural
information from content in sensory inputs [8]. Variable binding associates variables to specific
values or entities, enabling structured information representation and varied queries like “What
color is the block?” and “What object is blue?”. In this work, we study the capacity of neural
circuits that implement pointer-based variable binding, which separates the content and the pointer
into two distinct brain areas. We investigate this architecture in the Assembly Calculus (AC), a
computational framework that operates in a level of detail intermediate between the level of spiking
neurons and synapses and that of the whole brain models [13]. Assemblies (or Ensembles) of neurons
are sets of excitatory neurons that fire together. They are a key data structure in the representation
of sensory information in the brain [2], and are believed to encode memories, concepts, words, and
other cognitive information [13]. AC is Turing-complete [11] and capable of performing cognitive
tasks like language parsing [10] and planning in the block world [3].

In this paper, we establish the two basic AC operations, project, and reciprocal-project,
exhibit associative memories. We show that such associative memories yield a clear class structure
after receiving multiple classes of stimuli, and can complete patterns based on partial or perturbed
inputs. We then study the capacity of the associative memories that emerge in both these operations
and find that the capacity of reciprocal-project is smaller than the capacity of project by an
order of magnitude. Lastly, we propose a biologically plausible skip connection in the architecture of
reciprocal-project to mitigate this drop in capacity. This addition enables new opportunities for
exploring hierarchical models using assemblies of neurons.

2 Assembly Calculus

The model of a brain network in AC consists of several brain areas, each with N binary excitatory
neurons. To support inhibition, AC uses a cap-K operation: no more than K out of the N neurons
in a specific area can fire at each discrete timestep, where K is the cap size. Afferent connections
across brain areas and recurrent connections within each brain areas are initialized independently at
random with probability p. Multiplicative Hebbian plasticity increases the strength of the connections
between neurons that fire together in consecutive timesteps by a factor of β. We model homeostasis by
periodically normalizing the weights of synaptic connections. In this work, we study AC operations
that create assemblies (Project) and perform variable binding (Reciprocal-Project) using
stimulus classes as detailed in appendix A.
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Figure 1: (A) Project operation. (B) Variable Binding with optional skip connection (dotted arrow).

Project (Figure 1A) Project is the primary operation in Assembly Calculus. Through the
projection of a stimulus in area S, an assembly forms in a downstream area C that fires along with
the stimulus. The K neurons in area C with the largest synaptic activation are chosen to fire at each
timestep. While the set of neurons that fires varies due to the random afferent and recurrent synaptic
connections, Hebbian plasticity helps this process converge to an assembly with high probability
[12].

Reciprocal-Project (Figure 1B) Reciprocal-project is an operation in Assembly Calculus
that performs variable binding. This is achieved through the firing of a stimulus in the input area
S, which in turn forms assemblies in the content area C and in the pointer variable area V . There
are forward and backward synaptic connections between C and V and recurrent connections within
each of the two areas. The bidirectional connections allow the content and variable assemblies to
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recall each other. In this paper, we introduce a variation of this operation in which an additional skip
connection between the input area S and the variable pointer area V is included.

3 Associative Memories Emerge from Assembly Calculus Operations

While previous work [12] has shown that these operations allow convergence to stable sets of
assemblies, our objective is to characterize the resulting neural circuits using synaptic weight matrices.
We study the patterns and structures that emerge from these neural circuits and characterize them in
terms of associative memories. We establish the correspondence between associative memories and
models in AC in two ways. Firstly, we employ spectral decomposition on synaptic weight matrices
and observe clear class structures in the neural circuits. Secondly, we demonstrate that circuits learned
during AC operations can reconstruct assemblies from incomplete or noisy stimuli; and, AC can
complete patterns, with the firing of a small subset of the assembly being able to activate the whole
assembly very accurately, as also observed in [13] with stimuli of a single class. Furthermore, we
show that these properties hold when the stimuli come from multiple classes of stimuli.

3.1 Spectral Factors of Synaptic Connections Resemble Associative Memories

In Figure 2, we consider a network that forms content assemblies through project from single or
multiple classes of stimuli. Different stimulus classes are defined by their distinct coresets of K
neurons. As detailed in A, the K neurons within the coreset of a class fire with a high probability
(signal), while neurons outside the coreset fire with a small probability (noise). We show that
associative memory structure emerges in the synaptic connections learned by Hebbian updates
during the operation by implementing Singular Value Decomposition on the afferent and recurrent
connectivity matrices. For instance, we examine the decomposition of the afferent connections from
S to C where WCS = UΣV ⊤. We observe that the top right singular vectors (SVs) Vi closely ‡ align
with the assemblies c1, c2 created by the two stimuli classes in the content area C. Notably, we
find that the singular vectors are specifically associated with the inputs and assemblies created by a
particular stimulus class. We repeat the analyses on recurrent connectivity weights WCC and find a
similar relationship between singular vectors and assemblies created. The variable binding network
exhibits the same behavior, in which the top left SVs Ui are close to the assemblies created in the
pointer variable area V . See appendix C for details.
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Figure 2: Hamming distance between singular vectors in weight matrices obtained with project and
the input or output assemblies. During project, we normalize the weights of synaptic connections
every 5 iteration. The model learns a class until reaches convergence with at most 30 iterations. At
test time, we fix the weights and extract assemblies formed after 5 iterations of projection. (A) single
class of stimuli. (B) binary classes of stimuli.

3.2 Assembly Calculus Circuits are Capable of Pattern Completion & Assembly Recall

In Figure 3, we highlight a key property of associative memories in AC operations: the capacity to
recover stored patterns from incomplete assemblies [9] (pattern completion) or perturbed stimuli

‡We measure the distance to assemblies ci as the hamming distance between the assemblies and the K-
winner-take-all operation applied to the SVs Vi. This metric is also applied to analyze other weight matrices.
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(assembly recall) that the circuit has learned. The ability of AC circuits to reconstruct assemblies from
a fraction of their neurons indicates that the recurrent synaptic weights are key to forming associative
memories. Similarly, reconstructing assemblies from perturbed stimuli indicates that the afferent
synaptic weights also play an important role in forming associative memories. Both demonstrations
further support our claim that assembly calculus operations learn associative memories. See more
details of the experiment setup in appendix A, E, and F.
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Figure 3: Performance of pattern completion (A) and assembly recall (B and C) for project, shown
in median values and standard errors across 5 trials. We denote a stack of stimuli x or assemblies y
by X and Y . (A) Pattern completion across different numbers of training examples for each class.
The model forms stable assemblies from few-shot presentations of multiple classes of stimuli. It can
recover the original assembly in Trecover = 2 iterations when probed with an incomplete assembly
with only α = 50% of its original K winners activated. (B) Performance of recalling the original
assembly Y (formed under the stimuli X) across perturbations of coreset firing rate r, decreasing
from the original r = 0.9. At test time, the model receives a stream of corrupted inputs X̃ constructed
by varying the coreset firing rate r in each stimulus class within X . The y-axis shows dH(Y, Ỹ )
in percentage, the normalized (by K) Hamming distance between the original assemblies Y and
of assemblies Ỹ . (C) Performance of recalling the original assembly Y across manipulations of
Hamming distance between the original coreset and the corrupted coreset. The corrupted inputs X̃
are drawn from corrupted coresets S̃ that differ by a certain Hamming distance from the coreset S of
the original stimuli X . The y-axis again shows dH(Y, Ỹ ) in percentage.

4 Skip Connections Increase the Capacity of Variable Binding Networks

In light of the establishment that Assembly Calculus operations like project and
reciprocal-project essentially learn associative memories, we ask: what is their capacity?

100 200 300 400 500 600 700 800
Number of neurons (N)

0

20

40

60

80

100

120

140

160

Ca
pa

cit
y

Project.
Variable Binding (VB), C
Variable Binding (VB), V
VB w/ Skip Connection, C
VB w/ Skip Connection, V
Double Project, C
Double Project, V

A

50 100 150 200 250
Cap size (K)

0

10

20

30

40

50

60

70

Ca
pa

cit
y

Project.
Variable Binding (VB), C
Variable Binding (VB), V
VB w/ Skip Connection, C
VB w/ Skip Connection, V
Double Project, C
Double Project, V

B

Figure 4: Capacity (number of classes) of different models, shown in median values and standard
errors across 5 trials. (A) Capacity as a function of N (brain area size) for the Variable Binding model
without (in blue) and with a skip connection (in red). The baseline project model is shown in light
orange. The double-project model is shown in purple. (B) Capacity as a function of cap size K.

We define the memory capacity of these brain networks as the maximal number of distinct stimulus
classes whose assemblies can be reliably differentiated from one another. For example, a network
for reciprocal-project is considered to have reached capacity when any formed assemblies of
a class in the content area C or the pointer area V become indistinguishable across any other class
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of assemblies. This also corresponds to when a linear classifier trained to classify assemblies from
different stimulus classes achieves chance-level accuracy.

As shown in Figure 4A, the capacity of the associative memory created using project is approx-
imately 0.22 × N , where N is the number of neurons in each brain area. This is similar to the
capacity of Hopfield memories, which was estimated to be ≈ 0.14×N [5]. However, the capacity
of the regular reciprocal-project model (referred to as the VB model for variable binding in
Figure 4) dramatically drops to 0.01×N . We postulate that this drop can be explained by the fact
that the assemblies created in the pointer variable area V are extremely noisy, due to some loss
of information when assemblies are being formed in its preceding content space C. Appendix B
visualizes the similarity among assemblies formed in each downstream brain area for project and
reciprocal-project.

To isolate the cause of capacity drop from the backward connections and simultaneous creations of
assemblies in area C and V unique to reciprocal-project model, we build a double-project
model. The double-project model consists of same brain areas, S, C, and V , but without the
backward connections from V to C. The model instead performs project twice in a row sequentially.
The effect of noise is still evident in this model. As shown in Figure 4A in purple, while the capacity
of the shallower area C matches that of the project model, the capacity of the deeper area V in
double-project drops significantly. We infer that the second project operation to the deeper area
amplifies the noise in the preceding assemblies, thus resulting in a decrease in capacity.

To combat the loss of information, we propose the addition of a skip connection between the input
stimulus area S and the pointer variable area V to supply the information directly. This results
in a tenfold increase of capacity to ≈ 0.1 × N , as shown in Figure 4A in red. We also measure
capacity’s progression as a function of the cap size K (Figure 4B). In all models, capacity decreases
exponentially with K. However, the VB model with Skip Connection starts with a larger capacity
than the original Variable Binding model, and remains larger across the board. Notably, the capacity
of the pointer variable area V becomes comparable to the shallower area. By allowing the pointer
variable to be directly accessed by the sensory input, the skip connection between S and V boosts the
capacity of the Variable Binding model greatly, while maintaining its variable binding characteristics
(e.g., retrieving information in both directions) and being biologically plausible.

The biological relevancy of skip connections is backed up by research on long-ranged connections. A
recent connectome study of an insect brain [14] has revealed analogous architectural features with
connections that skip layers. Additionally, the canonical organization of neocortical circuits [4] can
be characterized by a small-world network topology, which consists of dense local clustering and
relatively few long-range connections [1]. This topology is claimed to support both specialized and
integrated information processing while being effective on wiring costs and enabling high dynamical
complexity. Moreover, [7] shows that long-ranged connections contribute to the optimization of both
global wiring cost as well as total processing steps. Studies using cortical thickness measurements in
magnetic resonance images have provided further evidence for the existence of long-range connections
in the human brain in both intra- and interhemispheric regions. These studies also highlight the
robust small-world properties in the human brain anatomical network [6]. Collectively, these findings
underscore the biological plausibility and significance of long-range connections in the underlying
architecture of complex brain networks.

5 Discussion

We establish that the circuits formed under basic Assembly Calculus operations can be understood
as associative memories. We do so by analyzing the spectral structure of the synaptic weights, and
by demonstrating their ability to retrieve and reconstruct stored assemblies. We further provide
the empirical capacity and show the capacity of assembly creation circuit exceeds that of Hopfield
memories, even though the linear scaling remains. Finally, we show that the capacity of variable
binding model is much lower than the capacity of assembly creation model, and that their capacity
can be boosted by the addition of skip connections. Our results indicate that one can construct
variable binding models that scale favorably with the size of brain areas by adding skip connections.
Our experiments also highlight that deeper brain areas can amplify the noise. The introduction of
skip connections offers a streamlined, yet significant, approach to mitigate this influence. This also
provides a pathway to design deeper and larger models based on assemblies of neurons.
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Appendix A Stimuli: Representation of Distinct Concept Classes

A stimulus is defined by a pattern of activity - represented by a vector in {0, 1}N . Stimuli are modeled
as random vectors, where each neuron fires independently. Since the neural stimuli corresponding to
different phenomena are going to have different representations, we introduce the idea of concept
classes or stimuli classes. Each concept class is represented by a coreset of neurons that fires with a
higher probability than the rest of the neurons in the stimulus area. The stimulus classes are thus fully
specified by the coresets, the probability of firing within the coreset, and the background probability
of firing. We denote these quantities by {S, r, q} respectively. The coreset of stimulus class i is
denoted by Si, and we set its cardinality |Si| = K. Every neuron that belongs to Si fires with
probability r, while the rest of the neurons fire with probability q which is typically much smaller
than r. The parameters r, q can be thought of as determining the signal-to-noise ratio of this problem.

By manipulating {S, r, q}, we can create a diverse range of stimulus classes with varying levels of
complexity, coreset activation, and noise. This flexibility allows us to simulate different scenarios
and analyze how well our model can discriminate and classify various concept classes under different
conditions. In this paper, we set r = 0.9 and q = 0.01. We choose the coresets uniformly at random
from all K-sized subsets of N neurons.
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Appendix B Assemblies learned for various concept classes

In Figure 5 and 6, we show the assemblies being learned for five stimulus classes through project
and reciprocal-project. For both, N = 1000, p = 0.1, β = 0.1, r = 0.9, q = 0.01, with 100
samples per class over 5 rounds when forming the assemblies at the test time. We observe that
the assemblies formed by reciprocal-project are more noisy and the patterns learned become
significantly more sparse as the number of classes increases, compared to the ones learned by
project.

Figure 5: Assemblies learned for five stimulus classes through project. In (A), we exhibit the
distribution of firing probabilities over neurons of the content area C. for each class In (B1) and (B2),
we show the average overlap of different input samples (red) and the overlaps of the corresponding
representations in the assemblies (blue).

Figure 6: Assemblies learned for five stimulus classes through reciprocal-project. In A1 and
A2, we exhibit the distribution of firing probabilities over neurons of the content area C (top) and
variable area V (bottom) for each class. In B, we show the average overlap of different input samples
(red). In C1 and C2, we show the overlaps of the corresponding representations in the assemblies
(green) in content area C (top) and variable area V (bottom).
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Appendix C Further details on spectral factors of synaptic connections

We repeat the SVD Hamming distance visualization for reciprocal-project, an operation em-
ploying three brain areas to facilitate variable binding. The singular vectors in the learned weight
matrices store associations of input and output pairs, and the structure of two stimuli classes is
largely preserved (Figure 7B). However, we observe that with the hierarchical structure of brain
areas in reciprocal-project, such class structure becomes increasingly noisier in subsequent
layers. The class structure is most distinct in the afferent connection WSC , which is situated at the
top of the network. This suggests that as the stimuli signals traverse through multiple afferent and
recurrent synaptic connections, the model can introduce additional noise due to the randomness
in weight initialization. To address this issue, we explore the inclusion of a skip connection in
reciprocal-project (see section 4).
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Figure 7: Hamming distance between singular vectors of weight matrices of reciprocal-project
and the input or output assembly. During learning, we normalize the weights after every 5 iterations.
Here, N = 1000, K = 100, p = 0.1, β = 0.1. The model “learns” a class when reaches convergence
with at most 50 iterations. At test time, we extract assemblies formed after 5 iterations. (A) A single
class of stimuli. (B) Two classes of stimuli.

In figures 2 and 7, we observe that the number of singular vectors that are closer than random to
the stimuli/assemblies is ≈ K. This is likely due to the cap-K operation in Assembly Calculus,
which limits the rank of the updates to each synaptic weight matrix. However, when examining
the multi-class stimuli experiments, we find that the number of singular vectors associated with
each stimulus class can be significantly smaller than K. This implies the model can store multiple
classes of stimuli-assembly associations, as we explore in section 4. We expect that the capacity of an
assembly calculus circuit is limited by the rank of the learned synaptic weight matrix. Homeostasis
(or normalization) plays a critical role here by preventing the rank of the weight matrices from
collapsing (see appendix D for more details).
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Appendix D The Role of Normalization on Matrix Rank
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Figure 8: Rank collapsing in project: the ratio of the sum of the top-K singular values over the
sum of all singular values in a weight matrix. Top: No normalization. Bottom: Normalize every 5
iterations.

To track the rank of the weight matrices during project, we compute the ratio of the sum of the top-
K singular values to the sum of all singular values. A ratio of 1.0 signifies that the rank has collapsed
to K, implying a stabilization of the representational potential within the weight matrix. Conversely,
a smaller ratio indicates that the matrix retains the capacity for additional information storage within
the representational space; however, the acquired information may be less distinguishable from
noise than a saturated matrix. Hebbian learning propels the matrix towards the system’s fixed point,
resulting in the rank gradually converging to K as the number of iterations increases; the convergence
rate is contingent upon the learning rate β (Figure 8, top).

We note that weight normalization effectively inhibits the rank from prematurely collapsing to K
(Figure 8, bottom). This suggests that, for an equivalent number of iterations, normalization enables
the weight matrix to accommodate a greater variety of stimulus classes by preventing its collapse
to the fixed point. However, this comes at the expense of potentially weakening the emergent class
structure in the normalized weight matrix compared to the unnormalized counterpart. In the following
sections, we provide evidence that weight normalization can maintain a distinguishable class structure
for multiple input classes.
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Appendix E Experiment details for pattern completion

Previous work [13] has shown that assemblies can be recovered from a fraction of the individual
neurons, provided that the original assembly has been adequately reinforced. We show that this
is also the case for AC circuits that are learned from multiple classes of stimuli. We conduct an
experiment on an AC network implementing project. We present stimuli from M different concept
classes, each for Ttrain iterations to form assemblies ym ∈ {0, 1}n,m = 1, . . . ,M in area C. For
each class assembly, we make an incomplete version of ym by retaining only a fraction α ∈ [0, 1]
of the K active neurons, thereby creating the subset assembly ỹm. We then attempt to recover
ym by setting y(0) = ỹm and employing the recurrent synaptic connections WCC to execute the
cap-K operation for Trecover steps. Mathematically, the neurons in brain content area C evolve as
ym(t+1) = capK

(
WCCy

m
(t)

)
. We measure the performance of pattern completion by recording the

percentage of the assembly recovered, ∣∣∣Sym ∩ Sym
(Trecover)

∣∣∣
|Sym |

,

where Sy denotes the set of K winners in assembly y. The results of this experiment are shown in
Figure 3A, where we see that following sufficient training on multiple classes of stimuli (Ttrain), the
model successfully completed assemblies from all classes with perfect accuracy in merely Trecover = 2
iterations. The parameter settings for this experiment are given in Table 1.

Hyperparameters Specification

α 0.5
N 1000
K 100
p 0.1
β 0.1
m K
r 0.9
q 0.01

Number of samples per class during training (Ttrain) np.linspace(4, 14,
10).astype(int)

Number of assemblies formed per class during testing 50
Number of rounds to form each assembly during testing 5

Number of rounds to recover each assembly during testing (Trecover) 2
Normalization Normalize after

learning each class
Trials Take median over 5

trials

Table 1: Hyperparameters and other relevant settings used for pattern completion experiment in
Section 3.2.
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Appendix F Experiment details for assembly recall

In the patterm completion experiment, we demonstrated that the recurrent synaptic connections WCC
in a project model form an associative memory. We now probe the model with corrupted inputs
to show that it can recover the learned assemblies. This will demonstrate that the afferent synaptic
connections WSC also form an associative memory.

Similar to the pattern completion experiment, we present stimuli xm from M different concept
classes, each for Ttrain steps to form assemblies ym ∈ {0, 1}n,m = 1, . . . ,M in area C. We then
probe the model with corrupted inputs x̃m. The corrupted inputs can be created in two ways. First,
we vary the probability of the coreset firing r ∈ [0.1, 0.9]. Alternatively, we create a corrupted input
by perturbing its coreset to be a certain Hamming distance away from that of the original class coreset
S, denoted S̃. The Hamming distance between the coresets varies from 0 to 2K. Given the perturbed
inputs x̃m, we obtain its associated assembly ỹm by projecting x̃m for Trecover steps. The robustness
of assembly recall was measured by the Hamming distance between the original assembly ym and
the recalled assembly ỹm.

Hyperparameters Specification

N 1000
K 100
p 0.1
β 0.1
m K
r 0.9
q 0.01

Number of samples per class during training (Ttrain) 5
Number of assemblies formed per class during testing 500

Number of rounds to form each assembly during testing 5
Number of rounds to recover each assembly during testing (Trecover) 2

Normalization Normalize after
learning each class

Trials Take median over 5
trials

Table 2: Hyperparameters and other relevant settings used for assembly recall experiments of
perturbing coreset firing rate r and the Hamming distance between coresets, in Section 3.2.
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Appendix G Experiment details for the capacity measurement

Below we show the setup for hyperparameters and other relevant settings used for the Assembly
Calculus model under both project or reciprocal-project in Section 4. When measuring the
model capacity with respect to N (Table 3) or K (Table 4), we vary the hyperparameter of interest
(either N or K) while keeping all else constant. Here, N is the number of neurons in each brain
area of the model, while K is the maximum number of firing neurons per brain area. The synaptic
connections between neurons in different areas are drawn independently at random with probability p,
while β is the multiplicative Hebbian plasticity learning rate. {m, r, q} are specified for the stimulus
classes. In particular, m specifies the number of neurons in the coreset of each stimulus class. r is
the probability of each neuron in the coreset firing independently, while q is the probability of the
neurons outside the coreset firing independently (i.e. noise). During training, the model learns 5
samples drawn independently from a particular stimulus class distribution, updates its parameters,
and undergoes a round of normalization, then proceeds to learn the next stimulus class. After the
parameters are learned, we form 50 assemblies per class at test time; each assembly is formed under
5 rounds of iteration to fully utilize the recurrent connections. We take the median over 5 trials.

Hyperparameters Specification

N 100 − 800
K 50
p 0.1
β 0.1
m K
r 0.9
q 0.01

Number of samples per class during training 5
Number of assemblies formed per class during testing 50

Number of rounds to form each assembly during testing 5
Normalization Normalize after learning each class

Trials Take median over 5 trials
Table 3: Hyperparameters and other relevant settings used for training the models and measuring the
capacity with respect to N , in Section 4.

Hyperparameters Specification

K 20 − 240
N 250
p 0.1
β 0.1
m 50
r 0.9
q 0.01

Number of samples per class during training 5
Number of assemblies formed per class during testing 50

Number of rounds to form each assembly during testing 5
Normalization Normalize after learning each class

Trials Take median over 5 trials
Table 4: Hyperparameters and other relevant settings used for training the models and measuring the
capacity with respect to K, in Section 4.
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