
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Task-aware Distributed Source Coding under Dynamic Bandwidth

Anonymous Authors1

Abstract
Efficient compression of correlated data is essen-
tial to minimize communication overload in multi-
sensor networks. Each sensor independently com-
presses the data and transmits them to a central
node due to limited bandwidth. A decoder at the
central node decompresses and passes the data
to a pre-trained machine learning-based task to
generate the final output. Thus, it is important to
compress the features that are relevant to the task.
Additionally, the final performance depends heav-
ily on the total available bandwidth. In practice,
it is common to encounter varying availability in
bandwidth, and higher bandwidth results in better
performance of the task. We design a novel dis-
tributed compression framework composed of in-
dependent encoders and a joint decoder, which we
call neural distributed principal component analy-
sis (NDPCA). NDPCA flexibly compresses data
from multiple sources to any available bandwidth
with a single model, reducing computing and stor-
age overhead. NDPCA achieves this by learning
low-rank task representations and efficiently dis-
tributing bandwidth among sensors, thus provid-
ing a graceful trade-off between performance and
bandwidth. Experiments show that NDPCA im-
proves the accuracy of object detection tasks on
satellite imagery by 14% compared to an autoen-
coder with uniform bandwidth allocation. 1

1. Introduction
Efficient data compression plays a pivotal role in multi-
sensor networks to minimize communication overload. Due
to the limited bandwidth of such networks, it is often im-
practical to transmit all sensor data to a central server, and
compressing data is necessary. In many cases, the sensors,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1An extended version of the paper is under submission at other
conferences.

𝐸!

𝐷𝐸"
Task
Φ

𝑍!

𝑍"

𝐸# 𝑍#

𝑋!

𝑋"

𝑋#

#𝑍!
#𝑍"
#𝑍#

$𝑋!
$𝑋"
$𝑋#

!𝑌

𝑌
Task loss

Frozen weights
Trainable Linear projection

Backpropagation

Inconsistent
bandwidth

DPCA

DPCA

DPCA

DPCA

Figure 1: Task-aware distributed source coding with NDPCA.
X1, . . . , Xk are correlated data sources. Encoders E1, . . . , Ek

independently compress data to latent representations Z1, . . . , Zk.
The DPCA module allocates the bandwidth of sources based on the
importance of the task Φ. The goal is to find the optimal encoders
and decoder that minimize the final task loss.
so-called sources, observe correlated data, which are only
processed by a downstream task, e.g., an object detection
model, but not by human eyes. For example, satellites ob-
serve overlapping images and transmit them through limited
bandwidth to a central server on Earth. Hence, sources
should not transmit redundant information from correlated
data and only transmit features relevant to the downstream
task. It is important to compress each source independently
to reduce the communication overload in the network. Liter-
ature refers to this setting as distributed source coding. To-
gether, we name the distributed compression of task-relevant
features task-aware distributed source coding.

However, existing compression methods fail to combine
three aspects: 1. Existing distributed compression methods
perform poorly in the presence of a task model. Although
neural networks have been shown to be capable of compress-
ing stereo images 2; 3 and correlated images 42, existing
methods focus on reconstructing data, but not for down-
stream tasks. 2. Existing task-aware compression methods
cannot take advantage of the correlation of sources. Previ-
ous works only consider compressing task-relevant features
of single source 10; 23; 12; 31; 9, but not multiple corre-
lated sources. 3. All existing methods, especially those
based on neural networks, only compress data to a fixed
level of compression but not to multiple levels. Thus, they
cannot operate in environments with different demands of
compression levels. We use the term bandwidth to indicate
the information bottleneck in the dimension of transmitted
data, and more related works are discussed in Appendix A.

We present neural distributed principal component analy-
sis (NDPCA), a distributed compression framework that
transmits task-relevant features at multiple compression

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2023

levels. Fig. 1 illustrates the scenario where the cen-
tral node requires data from all sources, and network
bandwidth varies over time. NDPCA consists of neu-
ral encoders E1, E2, . . . , EK that independently compress
correlated data X1, X2, . . . , XK to latent representations
Z1, Z2, . . . , ZK . The distributed principal component anal-
ysis (DPCA) module compresses these representations to
any dimension based on the current bandwidth. At the
central node, a neural decoder reconstructs the represen-
tations Ẑ1, Ẑ2, . . . , Ẑk to X̂1, X̂2, . . . , X̂K and feeds them
into a task. NDPCA combines a neural autoencoder and
the DPCA module to generate task-relevant representations
that are compressible in limited bandwidths. It achieves an
elegant trade-off between the performance of the task and
the bandwidth, enabling efficient transmission of data.

Contributions: First, we formulate the task-aware dis-
tributed source coding problem (Sec. 2). Second, we provide
a theoretical justification for the framework by analyzing the
case of a linear compressor and a task (Sec. 3). Third, we
propose a task-aware distributed source coding framework,
NDPCA, that learns a single model for different levels of
compression (Sec. 4). We validate NDPCA with an object
detection task of satellite imagery (Sec. 5), resulting in a
14% increase in accuracy compared to an autoencoder with
uniform bandwidth allocation.

2. Problem Formulation
Consider a set of K correlated sources. Let
xi ∈ Rni denote the sample from source i where
i ∈ {1, 2, . . . ,K}. Samples from each source are
compressed independently by encoder Ei to a latent
representation zi ∈ Rmi such that

∑K
i=1 mi = m,

where m is the total bandwidth available. A joint de-
coder D receives the representations {z1, z2, . . . , zk}
and reconstructs the sources {x̂1, x̂2, . . . , x̂k} =
{D(E1(x1)), D(E2(x2)), . . . , D(Ek(xk)))}. In the
presence of a task Φ, it takes the reconstructed inputs to
compute the final output Φ(x̂1, x̂2, . . . , x̂k). The goal is
to find a set of encoders and a decoder such that the task
loss Ltask is minimized. We call this problem as task-aware
distributed source coding, which is the focus of this paper:

argmin
E1,...,Ek,D

Ltask(Y, Ŷ )

s.t. Y = Φ(x1, . . . , xk), Ŷ = Φ(x̂1, . . . , x̂k))

(Task-aware distributed source coding),
(1)

where Ltask is the task loss, e.g., the difference of bounding
boxes when the task is object detection.

Bandwidth allocation: In the previous formulations, we
assume that the output dimensions of encoders are known a
priori. However, the dimensions determine the compression

of each encoder, which is also a design factor. That is, given
the total available bandwidth m, we first need to obtain the
optimal mi for each source i, then, we can design the opti-
mal encoders and decoder accordingly. Finding the optimal
set of bandwidths for a given task is a long-standing open
problem, even for the simple task of a modulo-two sum
of two binary sources 27. Also, existing works 42; 39; 30
largely assume a fixed latent dimension for sources and train
different models for different total available bandwidth m,
which is, of course, suboptimal. NDPCA provides heuris-
tics to the underlying key challenge of optimally allocating
available bandwidth, i.e., deciding mi, while adapting to
different total bandwidths m with a single model.

3. Theoretical Analysis
We start with a motivating example of task-aware distributed
source coding under the constraint of linear encoders, a
decoder, and a linear task.

DPCA: We consider a linear task for two sources, de-
fined by the task matrix Φ ∈ Rp×(n1+n2), where the
sources x1 ∈ Rn1 and x2 ∈ Rn2 are of dimensions
n1 and n2, respectively, and the task output is given by
y = Φx ∈ Rp, where x = [x⊤

1 , x
⊤
2 ]

⊤. Without loss of
generality, we assume the sources to be zero-mean. Now,
we have N observations of two sources X1 ∈ Rn1×N

and X2 ∈ Rn2×N and their corresponding task outputs
Y = Φ(X) ∈ Rp×N , where X = [X⊤

1 X⊤
2 ]⊤. We aim

to design the optimal linear encoding matrices (encoders)
E1 ∈ Rm1×n1 , E2 ∈ Rm2×n2 , and the decoding matrix
(decoder) D ∈ R(n1+n2)×(m1+m2) that minimizes the task
loss defined as the Frobenius norm of Φ(X)−Φ(X̂), where
X̂ is the reconstructed X . For now, we assume that m1

and m2 are given. Letting Z1 = E1X1 ∈ Rm1×N and
Z2 = E2X2 ∈ Rm2×N denote the encoded representations
and M = ΦD denote the product of the task and decoder
matrices, we solve the optimization problem:

E∗
1 , E

∗
2 ,M

∗ = argmin
E1,E2,M

∥Y −MZ∥22 (2a)

s.t. Z =

[
Z1

Z2

]
=

[
E1X1

E2X̃2

]
, (2b)

ZZ⊤ = Im , (2c)

Ŷ = MZ, Y = Φ

[
X1

X2

]
.

(2d)

Note that solving M is identical to solving the decoder D
since we can always convert M to D by the generalized
inverse of task Φ. We constrain the representations to be
orthonormal vectors in (2c) as in the normalization in prin-
cipal component analysis (PCA) for the compression of a
single source 24.

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2023

We discuss the detailed solution of DPCA in Appendix B
and provide a brief summary here. First, a preprocessing
step removes the correlation part of X1 from X2 by sub-
tracting the least-square estimator X̂2(X1):

X̃2 = X2 − X̂2(X1) = X2 −X2X
⊤
1 (X1X

⊤
1 )−1X1. (3)

The orthogonality principle of least-square estimators 25
ensures that X1X̃

⊤
2 = 0n1×n2

. Then, we can decouple
the original problem in (2) into subproblems where each
problem is a encoding problem for one encoder, which can
be solved by canonical correlation analysis 19.

Dynamic bandwidth: We extend our approach to determine
the optimal bandwidth allocation given a total bandwidth m.
By solving DPCA with m1 = n1 and m2 = n2, we obtain
optimal encoders E∗

1 and E∗
2 , as well as pairs of canonical

directions and correlations. Similar to PCA, these pairs can
be seen as a generalization of singular vectors and values,
and the sums of squares of canonical correlations are the
optimal values of (2). Sorting the canonical correlations in
descending order, we select the first m pairs of canonical
correlations and directions. These canonical correlations
determines the optimal encoders E∗

1 , E∗
2 , and decoder D∗,

indirectly solving for m1 and m2. The importance of a di-
rection to the task is indicated by the canonical correlations,
so we prioritize the transmission of important directions.
The same approach can be easily extended to compressing
more than 2 sources.

Performance analysis of DPCA: When DPCA compresses
new data matrices with encoder E∗

1 and E∗
2 , the preprocess-

ing step (3) is invalid as the encoders cannot communicate
with each other. So for DPCA to perform optimally while
skipping the step, the two data matrices need to be uncorre-
lated, namely, X̂2(X1) = 0, because in such case the prepro-
cessing step removes nothing from the data sources. Given
that correlated sources lead to suboptimality of DPCA, we
characterize the performance between the joint compression,
PCA, and the distributed compression, DPCA, under the
same bandwidth in Lemma C.1 with the simplest case of
reconstruction, namely, Φ = Ip. In this case, the canonical
correlation analysis is relaxed to the singular value decompo-
sition, which is later used for NDPCA in Sec. 4. Lemma C.1
concludes that as the covariance decreases, DPCA performs
more closely to PCA, the optimal joint compression.

4. Neural Distributed Principal Component
Analysis

Theoretical analysis reveals that DPCA has limitations: it op-
timally compresses data only when sources are uncorrelated
and is limited to linear tasks. However, DPCA dynamically
allocates bandwidth based on source importance. Neural
autoencoders, on the other hand, excel at fixed-dimension
compression but lack dynamic bandwidth allocation. To ad-

dress this contrast, we propose neural distributed principal
component analysis (NDPCA), which combines a neural au-
toencoder and DPCA. NDPCA adapts to any bandwidth and
flexibly allocates it based on the importance of the source
to the task. This integrated approach enables efficient com-
pression and optimal bandwidth allocation. NDPCA has
two encoding stages, as shown in Fig. 1: First, the neural
encoder at each i-th source encodes data Xi to a fixed-
dimensional representation Zi for i ∈ [K]. Then, DPCA
adapts the dimension of Zi via linear matrices according to
the available bandwidth as per Sec. 3. Similarly, the decod-
ing of NDPCA is also performed in two stages. First, the
DPCA linear decoder reconstructs the K fixed-dimensional
representations Ẑ1, . . . , ẐK , based on which the joint neural
decoder generates the estimate of data X̂1, . . . , X̂K . These
estimates are then passed to the neural task model Φ to ob-
tain the final task output Ŷ . Since we have a non-linear task
model here, DPCA mainly adapts the dimension appropri-
ately as needed; the role of the DPCA here is to reliability
reconstruct the embedding Ẑ, which corresponds to the case
described in Lemma C.1 with the task matrix Φ as identity.

Training procedure: During the training of NDPCA, we
assume the task model is pre-trained and we do not update
its wrights. We aim to learn the K neural encoders and the
joint neural decoder which minimize the loss function:

Ltot = λtask ∥Ŷ − Y ∥2F︸ ︷︷ ︸
task loss

+λrec

K∑
i=1

∥X̂i −Xi∥2F︸ ︷︷ ︸
reconstruction loss

. (4)

In the task-aware setting when λrec = 0, the neural autoen-
coder fully restores task-relevant features, which is the main
focus of this paper. When λtask = 0, the neural autoencoder
learns to reconstruct the data X, which is the task-agnostic
setting later compared in Sec. 5.

To encourage NDPCA to work well under various available
bandwidths with DPCA during the training phase, we need
uncorrelatedness from the limitations of the DPCA. To com-
press representations with a few singular vectors and make
NDPCA more bandwidth efficient, we need linear com-
pressibility. That is, encouraging the neural autoencoder
to generate low-rank representations. We tried to explicitly
encourage the desired properties with additional terms in
(4), but they all adversely affect the task performance. We
tried to use the cosine similarity to generate uncorrelated
representations as per 4; 36; 6; 8, and the convex low-rank
approximation, nuclear norm, to increase linear compress-
ibility, as per 35; 16. For the comparison of the resulting
performance, see Appendix H.1. In this regard, we pro-
pose a novel linear compression module that allows us to
adapt to DPCA during training rather than using additional
terms in the loss. We introduce a random-dimension DPCA
projection module to improve performance in lower band-

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2023

10 20 30 40
Dimension of Latent Space

(a)

0.0

0.2

0.4

0.6

0.8

m
AP

50

4 8 12 16 20 24 28 32 36 40
Dimension of Latent Space

(b)

0

10

20

30

40

Di
st

rib
ut

io
n 

of
 b

an
dw

id
th

NDPCA (ours)
DAE
JAE
Task-agnostic NDPCA
Uncompressed
Z1
Z2

Figure 2: (a) Our method achieves equal or higher performance than other methods. (b) Distribution of total available bandwidth among
the two views for NDPCA (ours). The unequal allocation highlights the difference in the importance of the views for a given task.

widths. It projects representations Z to a low dimension
randomly chosen, simulating projections in various avail-
able bandwidths during inference. It can be interpreted as a
differentiable singular value decomposition with a random
dimension, described in Alg. 1. Note that no retraining is
needed for different bandwidths, and only the storage of a
neural autoencoder and a linear matrix at each encoder and
decoder is needed.

5. Experiments
We consider three different tasks to test our framework:
(a) the denoising of CIFAR-10 images 28, (b) multi-view
robotic arm manipulation 41, referred to as the locate and
lift task, and (c) object detection on satellite imagery 13.
Here, we only show the most representative one–object
detection from satellite images-and describe other experi-
ments in detail in Appendix E. We assume that there are two
data sources, referred to as views, each containing partial
information relevant to the task. We refer to our proposed
method, task-aware NDPCA, as NDPCA for simplicity. ND-
PCA includes a single autoencoder with a large dimension
of representations Z ∈ R80. The object detection task
considers using satellite imagery to locate Airbuses where
satellites observe overlapping images of an airport and trans-
mit data to Earth through limited bandwidth. We crop all
images in the dataset into smaller pieces (224× 224 pixels).
The two data sources are the upper 160 pixels (source 1) and
the lower 104 pixels of the image (source 2) with 40 pixels
overlapped. Our object detection model follows the paper
"You Only Look Once" (Yolo) 33. The task loss here is the
difference between object detection loss with and without
compression.

Baselines: We compare NDPCA against three baselines:
(a) Task-aware joint autoencoder (JAE), where a single pair
of encoder and decoder compresses both views. JAE is con-
sidered an upper bound of NDPCA since it can leverage
the correlation between both views while avoiding encoding
redundant information. (b) Task-aware vanilla distributed
autoencoder (DAE), where two encoders independently en-
code one view to equal bandwidths and a joint decoder
decodes the data. DAE is considered a lower bound of

NDPCA since both encoders utilize the same bandwidth
regardless of the importance of the views for the task, while
NDPCA allocates bandwidths in a task-aware manner. (c)
Task-agnostic NDPCA, which differs from NDPCA in the
training loss of reconstructing the original views.

Results: Our results are: (1) Task-aware NDPCA outper-
forms task-agnostic NDPCA, and (2) bandwidth allocation
should be related to the importance of the task. In Fig. 2(a),
we see that task-aware NDPCA performs much better than
task-agnostic NDPCA and DAE, which equally allocates
bandwidths. We see from Fig. 2(a) that task-aware NDPCA
provides a graceful performance degradation with respect
to available bandwidth, with no additional training or stor-
age of multiple models. On the other hand, DAE and JAE
require retraining for every level of compression, so every
sample point in the plot is a different model. We show the
uncompressed upper bound in gray dotted lines. NDPCA
results in up to 14% gain in mAP50 compared to DAE. In
Fig. 2(b), we plotted the ratio of the areas of both views,
while equally splitting the overlapping part, in a dashed
black line. Surprisingly, NDPCA’s empirical allocation
of bandwidth is highly aligned with the theoretical ratio,
supporting that it captures the importance of the task and
allocates bandwidth according to it. We highlight the perfor-
mance gap between JAE and NDPCA and our limitations
later in Appendix E. Also, we show how the weight in (4)
affects the resulting images in Appendix G.5.

6. Conclusion
We proposed a theoretically-grounded linear distributed
compressor, DPCA, and analyzed its performance compared
to the optimal joint compressor. Then, we designed a dis-
tributed compression framework called NDPCA by combin-
ing a neural autoencoder and DPCA to allocate bandwidth
according to their importance to the task. Experiments
on Airbus detection showed that NDPCA near-optimally
outperforms task-agnostic or equal-bandwidth compression
schemes. Moreover, NDPCA requires only one model and
does not need to be retrained for different compression
levels, which makes it suitable for settings with dynamic
bandwidths.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2023

References
Ultralytics yolov8 docs. https://docs.
ultralytics.com/, 2023. [Online; accessed
16-April-2023].

J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-
end optimized image compression. arXiv preprint
arXiv:1611.01704, 2016.

J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston.
Variational image compression with a scale hyperprior.
arXiv preprint arXiv:1802.01436, 2018.

A. Bardes, J. Ponce, and Y. LeCun. VICReg: Variance-
invariance-covariance regularization for self-supervised
learning. In International Conference on Learning Rep-
resentations, 2022.

T. Berger, Z. Zhang, and H. Viswanathan. The CEO problem.
IEEE Transactions on Information Theory, 42(3):887–
902, 1996. doi: 10.1109/18.490552.

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan,
and D. Erhan. Domain separation networks. In Advances
in Neural Information Processing Systems, 2016.

A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov,
M. Druzhinin, and A. A. Kalinin. Albumentations: Fast
and flexible image augmentations. Information, 11(2),
2020. ISSN 2078-2489. doi: 10.3390/info11020125.

R. T. Q. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud.
Isolating sources of disentanglement in variational autoen-
coders. In Advances in Neural Information Processing
Systems, 2018.

J. Cheng, M. Pavone, S. Katti, S. Chinchali, and A. Tang.
Data sharing and compression for cooperative networked
control. In Advances in Neural Information Processing
Systems, 2021.

J. Cheng, S. Chinchali, and A. Tang. Task-aware network
coding over butterfly network. arXiv preprint arXiv:
2201.11917, 2022a.

J. Cheng, A. Tang, and S. Chinchali. Task-aware privacy
preservation for multi-dimensional data. In Proceedings
of the 39th International Conference on Machine Learn-
ing, 2022b.

J. Choi and B. Han. Task-aware quantization network for
jpeg image compression. In European Conference on
Computer Vision, 2020. ISBN 978-3-030-58565-5.

A. Defense and S. Intelligence. Air-
bus aircraft detection. https://www.
kaggle.com/datasets/airbusgeo/
airbus-aircrafts-sample-dataset, 2021.
[Online; accessed 03-April-2023].

E. Diao, J. Ding, and V. Tarokh. DRASIC: Distributed
recurrent autoencoder for scalable image compression.
In Data Compression Conference, 2020. doi: 10.1109/
DCC47342.2020.00008.

Y. Dubois, B. Bloem-Reddy, K. Ullrich, and C. J. Maddison.
Lossy compression for lossless prediction. In Advances
in Neural Information Processing Systems, 2021.

M. Fazel. Matrix rank minimization with applications. PhD
thesis, Stanford University, 2002.

J. Frankle and M. Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

P. han Li, S. P. Chinchali, and U. Topcu. Differentially
private timeseries forecasts for networked control. In
American Control Conference, 2023.

D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical
correlation analysis: An overview with application to
learning methods. Neural Computation, 16(12):2639–
2664, 2004. doi: 10.1162/0899766042321814.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner. beta-VAE:
Learning basic visual concepts with a constrained varia-
tional framework. In International Conference on Learn-
ing Representations, 2017.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone,
Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and
S. Gelly. Parameter-efficient transfer learning for NLP.
In International Conference on Machine Learning, 2019.

E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li,
S. Wang, L. Wang, and W. Chen. LoRA: Low-rank
adaptation of large language models. In International
Conference on Learning Representations, 2022.

R. Ji, H. Yao, W. Liu, X. Sun, and Q. Tian. Task-dependent
visual-codebook compression. IEEE Transactions on
Image Processing, 21(4):2282–2293, 2012. doi: 10.1109/
TIP.2011.2176950.

I. Jolliffe. Principal Component Analysis, pages 1094–1096.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-
04898-2. doi: 10.1007/978-3-642-04898-2_455.

S. M. Kay. Fundamentals of Statistical Signal Processing:
Estimation Theory. Prentice-Hall, Inc., 1993.

D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

J. Korner and K. Marton. How to encode the modulo-two
sum of binary sources. IEEE Transactions on Information
Theory, 25(2):219–221, 1979. doi: 10.1109/TIT.1979.
1056022.

5

https://docs.ultralytics.com/
https://docs.ultralytics.com/
https://www.kaggle.com/datasets/airbusgeo/airbus-aircrafts-sample-dataset
https://www.kaggle.com/datasets/airbusgeo/airbus-aircrafts-sample-dataset
https://www.kaggle.com/datasets/airbusgeo/airbus-aircrafts-sample-dataset


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2023

A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. PhD thesis, University of Toronto, 2009.

W. F. Lo, N. Mital, H. Wu, and D. Gündüz. Collaborative
semantic communication for edge inference. IEEE Wire-
less Communications Letters, 2023. doi: 10.1109/LWC.
2023.3256006.

N. Mital, E. Özyılkan, A. Garjani, and D. Gündüz. Neu-
ral distributed image compression with cross-attention
feature alignment. In IEEE/CVF Winter Conference on
Applications of Computer Vision, 2023. doi: 10.1109/
WACV56688.2023.00253.

M. Nakanoya, S. S. Narasimhan, S. Bhat, A. Anemogian-
nis, A. Datta, S. Katti, S. Chinchali, and M. Pavone.
Co-design of communication and machine inference for
cloud robotics. Autonomous Robots, 2023.

V. Prabhakaran, D. Tse, and K. Ramachandran. Rate region
of the quadratic gaussian CEO problem. In International
Symposium on Information Theory, 2004. doi: 10.1109/
ISIT.2004.1365154.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016. doi: 10.1109/CVPR.2016.91.

F. Rellich and J. Berkowitz. Perturbation theory of eigen-
value problems. CRC Press, 1969.

M. Salzmann, C. H. Ek, R. Urtasun, and T. Darrell. Fac-
torized orthogonal latent spaces. In Proceedings of the
Thirteenth International Conference on Artificial Intelli-
gence and Statistics, 2010.

A. Singh, E. Garza, A. Chopra, P. Vepakomma, V. Sharma,
and R. Raskar. Decouple-and-sample: Protecting sensi-
tive information in task agnostic data release. In Eu-
ropean Conference on Computer Vision, 2022. doi:
10.1007/978-3-031-19778-9_29.

D. Slepian and J. Wolf. Noiseless coding of correlated
information sources. IEEE Transactions on Information
Theory, 1973. doi: 10.1109/TIT.1973.1055037.

F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from
observation. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, 2018. ISBN
9780999241127.

J. Whang, A. Acharya, H. Kim, and A. G. Dimakis.
Neural distributed source coding. arXiv preprint
arXiv:2106.02797, 2021.

M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu.
Good subnetworks provably exist: Pruning via greedy for-
ward selection. In International Conference on Machine
Learning, 2020.

A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin. A
framework for efficient robotic manipulation. In Deep RL
Workshop at Advances in Neural Information Processing
Systems, 2022.

X. Zhang, J. Shao, and J. Zhang. LDMIC: Learning-based
distributed multi-view image coding. In The Eleventh
International Conference on Learning Representations,
2023.

R. Zhao, U. Topcu, S. Chinchali, and M. Phielipp. Learn-
ing sparse control tasks from pixels by latent nearest-
neighbor-guided explorations. arXiv preprint arXiv:
2302.14242, 2023.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2023

Appendix

A. Related Work
Information theoretic perspective: Slepian and Wolf et al. are the first to obtain the minimum bandwidth of distributed
sources to perfectly reconstruct data (Slepian and Wolf, 1973). However, they use exponentially complex compressors while
assuming that the joint distribution of sources is known, which is impractical. In the presence of a task, finding the rate
region of two binary sources has remained an open problem, even for modulo-two sum tasks 27. In terms of imperfectly
reconstructing data with neural autoencoders, previous works consider compression of the original data to a fixed dimension
39; 14, while our work focuses on compressing data to any bandwidth with a task model.

Task-aware compression: Real-world data, such as images or audio, are ubiquitous and high-dimensional, while down-
stream tasks that input the data only utilize certain features for the output. Task-aware compression aims to compress data
while maximizing the performance of a downstream task. Previous works analyze linear task 10, image compression 23; 12;
31; 15, future prediction 9, and data privacy 18; 11, while ours compresses distributed sources under limited bandwidth.

Neural autoencoder: Previous works show the ability of neural autoencoders to generate meaningful and uncorrelated
representations. Instead of adding additional loss terms during training like 4; 36; 8; 6; 29, we use a random projection
module to help a neural autoencoder learn uncorrelated and linear-compressible representations. Other works focus
on designing new neural architectures for multi-view image compression 42; 30, while ours focuses on the framework
to compress data to different compression levels. We choose autoencoders instead of variational autoencoders 26; 20
because we focus on the compression of fixed representations rather than generative tasks from latent distributions. Also,
autoencoders are more compatible with DPCA than variational autoencoders.

B. Solving DPCA
We now solve the optimization problem in (2). For any given E1, E2 (thus, a given Z), we can optimally obtain
M∗ = Y Z⊤(ZZ⊤)−1 = Y Z⊤ by linear regression. Now, we are left to find the optimal encoders E1, E2. First, a
preprocessing step removes the correlation part of X1 from X2 by subtracting the least-square estimator X̂2(X1):

X̃2 = X2 − X̂2(X1) = X2 −X2X
⊤
1 (X1X

⊤
1 )−1X1. (5)

The orthogonality principle of least-square estimators 25 ensures that X1X̃
⊤
2 = 0n1×n2

. We decouple the objective in (2a)
with respect to E1, E2 by the orthogonality principle and (2c):

min
E1,E2

∥Y −M∗Z∥22 = ∥Y ∥22 − max
E1,E2

∥M∗∥22

= ∥Y ∥22 −max
E1

∥Y1X
⊤
1 E⊤

1 ∥22 −max
E2

∥Y2X̃
⊤
2 E⊤

2 ∥22,
(6)

where Y = ΦX =
[
Φ1Φ2

] [
X⊤

1 X⊤
2

]⊤
= Y1 + Y2. We then have two subproblems from (2):

E∗
1 = argmax

E1

∥Φ1X1X
⊤
1 E⊤

1 ∥22

s.t. E1X1X
⊤
1 E⊤

1 = Im1
,

(7)

E∗
2 = argmax

E2

∥Φ2X̃2X̃
⊤
2 E⊤

2 ∥22

s.t. E2X̃2X̃
⊤
2 E⊤

2 = Im2
.

(8)

The two subproblems are the canonical correlation analysis 19, which can be solved by whitening E1X1, E2X̃2 and singular
value decomposition (see 19 for details).

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2023

C. Proof of Lemma
C.1. Bounds of DPCA

Lemma (Bounds of DPCA Reconstruction). Given a zero-mean data matrix and its covariance,

X =

[
X1

X2

]
∈ R(n1+n2)×N , XX⊤ =

[
Cov11 0

0 Cov22

]
︸ ︷︷ ︸

Xdiag

+

[
0 Cov12

Cov21 0

]
︸ ︷︷ ︸

∆X

,

assume that ∆X is relatively smaller than XX⊤, and XX⊤ is positive definite with distinct eigenvalues. For PCA’s encoding
and decoding matrices EPCA, DPCA and DPCA’s encoding and decoding matrices EDPCA, DDPCA, the difference of the
reconstruction losses is bounded by

0 ≤ ∥X −DDPCA EDPCA(X)∥22 − ∥X −DPCAEPCA(X)∥22 = −
n1+n2∑
i=m+1

λie
⊤
i ∆Xei.

where λi and ei are the i-th largest eigenvalue and eigenvector of XX⊤, Tr is the trace function, and m is the dimension of
the compression bottleneck.

Proof. The lower bound is intuitive. We know that DPCA cannot outperform PCA since distributed coding cannot
outperform joint coding and PCA is the optimal linear encoding. The reconstruction loss of PCA is always not greater than
the loss of DPCA, thus the lower bound is 0. Now consider the upper bound:

∥X −DDPCAEDPCAX∥22 − ∥X −DPCAEPCAX∥22
= Tr(XX⊤ +DDPCAEDPCAX (DDPCAEDPCAX)

⊤ − 2DDPCAEDPCAXX⊤)

−
n1+n2∑
i=m+1

λi(XX⊤)

= Tr(Xdiag +∆X +DDPCAEDPCAX (DDPCAEDPCAX)
⊤ − 2DDPCAEDPCAXX⊤)

−
n1+n2∑
i=m+1

λi(XX⊤)

= Tr(∆X + E⊤
DPCAD

⊤
DPCADDPCAEDPCA∆X − 2DDPCAEDPCA∆X)

+

n1+n2∑
i=m+1

λi(Xdiag)− λi(XX⊤)

=

n1+n2∑
i=m+1

λi(Xdiag)− λi(XX⊤).

Finally, we use the matrix perturbation theory 34 to calculate the first-order approximation of the effect of ∆X on the
singular values of Xdiag. The perturbation theory assumes that the perturbation ∆X is relatively small compared to Xdiag.
Then, we know:

∥X −DDPCAEDPCAX∥22 − ∥X −DPCAEPCAX∥22 =

n1+n2∑
i=m+1

λi(Xdiag)− λi(XX⊤)

≤
n1+n2∑
i=m+1

λi − λi − λie
⊤
i ∆Xei

=−
n1+n2∑
i=m+1

λie
⊤
i ∆Xei.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2023

Note that the encoding and decoding matrices of DPCA look like:

DDPCA =

[
D1 0
0 D1

]
, EDPCA =

[
E1 0
0 E2,

]
where E1, E2, D1, D2 are matrices obtained from each source with DPCA.

10 7 10 6 10 5 10 4 10 3

X F / N

10 10

10 8

10 6

10 4

10 2

100

Di
ffe

re
nc

e 
of

 th
e 

lo
ss

es

Upper bound
DPCA - PCA

Figure 3: Bound from Lemma C.1: The obtained upper bound is always larger than the difference of losses of DPCA and PCA.

We examine the correctness of our bound with random data matrices in Fig. 3. We can see that the gap between DPCA and
PCA decreases as the Frobenius norm of ∆X decreases. The upper bound also has the same trend, while it is always larger
than the exact value. Note that in Fig. 3, all axes are in log scale.

D. DPCA Module Pseudocode

Algorithm 1 Projection into a random low dimension using DPCA

1: Input: A size b batch of latent representations Zi ∈ Rb×mi from each source i, min and max bandwidth mmin,mmax

2: Output: Compressed representation Zm
i of each source, reconstructed representation Ẑ for all sources

3: function ENCODE(Zi,mmin,mmax)
4: for each source i do
5: Z̄i ← Zi −Mean(Zi) ▷ Normalize representations
6: si, Vi, Hi ← SVD(Z̄i) ▷ Singular value decomposition
7: end for
8: s, V ← Cat(si), Cat(Vi) ▷ Concatenate singular values and vectors
9: m ← Rand(mmin,mmax) ▷ Randomly choose projection dimension

10: sm , V m ← argmax([s, V ],m) ▷ Select the top m values of s
11: for each source i do
12: V m

i ← {V |V ∈ V m , V ∈ Vi} ▷ Select m vectors from sources
13: Zm

i = Z̄i × V m
i ▷ Project Zi to lower dimensions

14: end for
15: return Zlow ← Cat(Zm

i ) ▷ Return Compressed representation
16: end function
17: function DECODE(Zm

i )
18: for each source i do
19: ˆ̄Zi ← Zm

i × Cat(V m
i )⊤ ▷ Decompressed representation

20: Ẑi← ˆ̄Zi +Mean(Zi) ▷ Denormalize representations
21: end for
22: return Ẑ ← Cat(Ẑi) ▷ Return reconstructed representations
23: end function

E. Discussion of Other Experiments
We now describe the other two datasets and the corresponding tasks of our additional experiments:

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2023

(a) CIFAR-10: view 1 is less cor-
rupted and thus contains more infor-
mation about the original images.

(b) Locate and lift: Side-view (column 1)
faintly captures the absolute position of ob-
jects, in contrast to the arm-view (column 2).

(c) Airbus detection: view 1 and
view 2 observe different parts of
the complete view with overlap.

Figure 4: Datasets: (column 1) view 1. (column 2) view 2. In all experiments, both views are correlated, but one view is more important
than the other as it contains more information relevant to the task.

20 40 60
Dimension of Latent Space

(a)

16
17
18
19
20
21
22
23

PS
NR

 (d
B)

CIFAR 10

5 10 15 20 25
Dimension of Latent Space

(b)

0.0

0.2

0.4

0.6

0.8
Su

cc
es

s R
at

e
Locate and Lift

10 20 30 40
Dimension of Latent Space

(c)

0.0

0.2

0.4

0.6

0.8

m
AP

50

Airbus Detection

8 16 32 48 64
Dimension of Latent Space

(d)

0

10

20

30

40

50

60

Di
st

rib
ut

io
n 

of
 b

an
dw

id
th

4 8 12 16 20 24
Dimension of Latent Space

(e)

0

5

10

15

20

25

Di
st

rib
ut

io
n 

of
 b

an
dw

id
th

4 8 12 16 20 24 28 32 36 40
Dimension of Latent Space

(f)

0

10

20

30

40

Di
st

rib
ut

io
n 

of
 b

an
dw

id
th

Z1 Z2 NDPCA (ours) DAE JAE Task-agnostic NDPCA Uncompressed

Figure 5: Top: Performance Comparison for 3 different tasks. Our method achieves equal or higher performance than other methods.
Bottom: Distribution of total available bandwidth (latent space) among the two views for NDPCA (ours). The unequal allocation
highlights the difference in the importance of the views for a given task.

CIFAR-10 denoising: We first consider a simple task of denoising CIFAR-10 images using two noisy observations of the
same image, shown in Fig. 4 (a). Here, the importance of each observation, or view, for the task is simply the noise level.
For view 1, we consider an image corrupted with additive white Gaussian noise (AWGN) with a variance of 0.12. And view
2 is highly corrupted by AWGN with a variance of 1. All the images were normalized to [0, 1] before adding the noise. We
compressed the noisy observations and passed the reconstructed images through a pre-trained denoising network. We then
computed the final peak signal-to-noise ratio (PSNR) with respect to the clean image. Since the noise levels of both views
are unequal, the importance of the task is unequal as well. The optimal bandwidth allocation should not be equal, thus
showing the advantage of NDPCA. Although view 1 contains more information, not all bandwidth should be allocated to
view 1. This problem is called the CEO problem 5; 32. In fact, even if one view is highly corrupted, we should still leverage
that view and never allocate 0 bandwidth to it.

Locate and lift: For the manipulation task, we consider a scenario in which a simulated 6 degrees-of-freedom robotic arm
controlled by a reinforcement learning agent inputs two camera views to locate and lift a yellow brick. We call the view
from the robotic arm "arm-view" and the one recording the whole desk "side-view", as shown in Fig. 4 (b). The two views
are complementary to completing the task, details discussed in Appendix H.3. We trained the agent in a supervised-learning
manner. We collected a dataset of observation and action pairs 43 and trained an agent from the dataset. Then, we defined
task loss as the L2 norm of actions from images with and without compression and trained NDPCA to minimize the task loss

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2023

through the agent. Literature calls this training method "behavior cloning" 38 as it learns from demonstrations. Behavior
cloning causes a drop in performance, but this paper only focuses on the performance degradation caused by compression,
so we treat the behavior cloning agent with uncompressed views as the upper bound of our method.

The results of the other two experiments are:

Fig. 5(a) shows the results of denoising CIFAR-10 with NPDCA trained at (mmin,mmax) = (8, 64). Although view 1 is
more important than view 2, DAE can only equally allocates bandwidth to both sources. NDPCA compresses the data and
flexibly allocates bandwidths, as shown in 5(d), where we can see that Z1 has more bandwidth than Z2. NDPCA results in
1.2 dB gain in PSNR compared to DAE when m = 64.

Fig. 5(b) shows the results of the locate and lift task with NPDCA trained at (mmin,mmax) = (8, 48). We set the length of
an episode as 50 time steps and measure the success rate in 100 episodes. We show the upper bound, a behavior cloning
agent without compression, in gray dotted lines. The arm view is more important as it captures the precise location of the
brick, and as expected, NDPCA allocates more bandwidth to the arm-view (Z2), as seen in Fig. 5(e). We see that NDPCA
has a 9% higher success rate compared to DAE when m = 24.

Comparison of NDPCA with JAE: JAE uses the information from both views simultaneously to capture the best joint
embedding for the task. In an ideal scenario, JAE will be the upper bound for the performance and hence easily performs
better than DAE across all the experiments. Interestingly, in Fig. 5(b) and (c), we see that NDPCA outperforms not only
DAE but also JAE as well. We attribute it to the better representations present in higher-dimension latent space. It turns
out that learning a high-dimensional representation and then projecting to a lower dimension space, like NDPCA, is more
efficient compared to directly learning a low-dimensional representation, like JAE. This projection from higher dimensional
to lower dimensional is similar to pruning large neural networks to identify effective sparse sub-networks. 17; 40. We also
note that Low-Rank Adaptation (LoRA) 22 technique for large language models can be thought of as a similar approach.

Limitations: In general, autoencoders are poor at generalizing to out-of-distribution data and the drawback translates to
NDPCA as well. When the testing set is noticeably different from the training set, the performance of NDPCA can get
noticeably lower. Additionally, during training, DPCA performs the singular value decomposition in the training set. The
decomposition operation can become ill-conditioned and unstable if the batch size is too small. An alternative approach
could be a parametric low-rank decomposition such as LoRA 22 or using adapter networks 21, although the complexity
increases and the compatibility with DPCA remains to be explored.

F. Details of the Datasets
F.1. CIFAR-10 denoising:

We started with the standard CIFAR-10 dataset and normalized the images to [0, 1]. Two different views are created by
adding different levels of Gaussian noise, N (0, 0.12) and N (0, 1). The pre-trained task model is created by training a
denoising autoencoder that takes both views, concatenates them along the channel dimension, and produces a clean image.
The autoencoders need to learn features that are important for this task model.

F.2. Locate and lift:

We collected 20, 000 pairs of actions and the corresponding images of both views for our training set. The actions are 4
dimensional, controlling the x, y, z coordinate movements and the gripper of the robotic arm. We randomly cropped the
images from 128× 128 to 112× 112 pixels to make our autoencoder more robust. The expert agent is pre-trained by the
same data augmentation as well.

F.3. Airbus detection:

We first cropped all original images of 2560× 2560 pixels (Fig. 6) into 224× 224 pixels with 28 pixels overlapping between
each cropped image. We then eliminated the bounding boxes that are less than 30% left after cropping.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2023

Figure 6: Original image of airbus detection. The original images are 2560× 2560 pixels, and we cropped them into smaller pieces in
224× 224.

G. Implementation Details
G.1. CIFAR-10 denoising:

For the CIFAR-10 dataset, we used the standard CIFAR-10 dataset and applied different levels of AWGN noise to create
two correlated datasets. We used the CIFAR-10 experiments as a proof of concept to try different architectures and loss
functions and other techniques to finalize our framework. We choose λtask = 1 for the task-aware setting and λrec = 1 for
the task-agnostic setting. We run 4 random seeds on NDPCA and all baselines to evaluate the performance.

G.2. Locate and lift:

For the locate and lift experiment, we trained our autoencoder with the same random cropping setting as in Sec. F, which
cropped the images from 128× 128 to 112× 112 pixels. During testing, we randomly initialized the location of the brick
and center-cropped the images from 128× 128 to 112× 112 pixels. We scaled all images to 0 to 1 and ran 5 random seeds
on NDPCA and all baselines to evaluate the performance. For the task-aware setting, λtask = 500, and λrec = 1000 for the
task-agnostic. setting

G.3. Airbus detection:

For the Airbus detection task, we used the original Yolo paper for our object detection model together with the detection loss
33. Our experiments with the latest state-of-the-art Yolo v8 model 1 showed that there is no big difference in the Airbus
detection dataset in terms of run time and accuracy. Since the size of the original dataset is not enough to train an object
detection model, we used the data augmentation proposed in Yolo v8, mosaic, to increase the size of the dataset. Mosaic
randomly crops 4 images and merges them to generate a new image. We used random resized crop, blur, median blur,
and CLAHE enhancement during training, each with probability 0.05 by functions in the Albumentations package 7. We
increased the size of the Airbus dataset from 5904 to 21808 with mosiac and trained the Yolo detection model. Finally, we
trained our autoencoder with the same dataset, but downsample the images to 112× 112 pixels so that the autoencoder is
faster to train. For the task-aware setting, λtask = 0.1, and λrec = 0.5 for the task-agnostic setting. We run 2 random seeds

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2023

on NDPCA and all baselines to evaluate the performance.

G.4. Neural Autoencoder Architecture and Hyperparameters
C

on
v2

D
 3

x2
 (

→
)

Fl
at

te
n

Li
ne

ar
 2

56

Li
ne

ar
 

R
es

id
ua

l B
lo

ck
 

Li
ne

ar
 2

56

(a) Encoder architecture.

R
es

ha
pe

 6
4 

C
ha

nn
el

s

Li
ne

ar
 2

56

Li
ne

ar
 2

56

Li
ne

ar
 4

xH
xW

C
on

v2
D

 3
x1

 (
→

)

U
ps

am
pl

e 
2x

R
es

id
ua

l B
lo

ck
 

C
on

v2
D

 3
x1

 (
→

3)

Li
ne

ar
 

(b) Decoder architecture.

Figure 7: ResNet Autoencoer: The encoder processes inputs through r convolution layers and r ×N residual blocks, followed by 3
fully connected layers with ReLU activation. The decoder processes latent representations in the reverse order from the encoder with 2×
upsamplings.

We used the ResNet encoder shown in Fig. 7a and the decoder in Fig. 7b for all experiments. We used different numbers
of filters and numbers of residual blocks for our experiments, shown as C and r. We denote m as the number of latent
dimensions. The numbers of filters are C1 = 32, C2 = 64, C3 = 128, C1 = 8, C2 = 16, C3 = 32, C4 = 64, and
C1 = 16, C2 = 32, C3 = 64, C4 = 128, and the numbers of residual blocks are r = 0, r = 1, r = 1 for CIFAR-10
denoising, locate and lift, and Airbus detection. For CIFAR-10 denoising, we use the Adam optimizer with a learning rate
of 0.0002, and for the other two experiments, we use the Adam optimizer with a learning rate of 0.0001. For the sake of
training speed, when training DAE and JAE, we first trained a large network with mmax with each random seed. Then, we
fixed the network parameters and trained concatenate 3 fully connected layers on each encoder and decoder network to
compress and decompress the data to smaller m.

G.5. Balancing Task-aware and Task-agnostic Loss

Locate and lift Airbus detection

Ground Truth

Task-aware

Task-agnostic

Figure 8: Weighted task-loss: Weighted task-aware images faintly reconstruct the original images while restoring task-relevant features
with high-frequency noise. In Airbus detection, location of Airbuses is captured with shiny high-frequency pixels in row 3.

NPDCA has a loss function consisting of 2 terms, as shown in (4):

Ltot = λtask ∥Ŷ − Y ∥2F︸ ︷︷ ︸
task loss

+λrec

(
∥X̂1 −X1∥2F + ∥X̂2 −X2∥2F + . . . ∥X̂K −XK∥2F

)
︸ ︷︷ ︸

reconstruction loss

. (4 revisited)

Previous work 31 tested cases of (4), such as task-aware when λtask > 0, λrec = 0, and task-agnostic when λtask =
0, λrec > 0. Of course, one can use different weighted sums of the 2 terms in (4), which we call weighted task-aware. We

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2023

show the resulting reconstructed image in Fig. 8, whose weights are a mixture of half of the two other methods. Weighted
task-aware images have both blurry reconstructions of the original images and task-relevant features. Unsurprisingly, the
task loss and the reconstructed loss of weighted task-aware images are between pure task-aware and task-agnostic, that is,
we can use the weights in the loss function to trade off compressing human perception features against task-relevant features.
Interestingly, we can see that the task-aware images look similar to the images without Airbuses (last 2 columns), and when
there are Airbuses, the task-aware images look different. It means that the features of no Airbuses are pretty much the same
in the latent space, thus resulting in similar images in pixel space. Hence we can conclude that task-aware features are not
random noise, they are meaningful features only to the task model but not to our eyes.

G.6. Storage and Training Complexity

Model CIFAR-10 Locate and lift Airbus detection

Storage (MB) Train (hr) Storage (MB) Train (hr) Storage (MB) Train (hr)

NDPCA 8.3 0.25 16.4 5.0 33.0 13.0
DAE 5× 8.4 5× 0.21 4× 16.3 4× 5.0 4× 22.5 4× 11.5
JAE 5× 10.2 5× 0.22 4× 11.4 4× 3.5 4× 32.9 4× 10.5

Table 1: Storage and training complexity: NDPCA has slightly more storage and training overload than other models for a single
bandwidth but can operate across different bandwidths. We multiply the number of bandwidths tested in Fig. 5 to the storage size and
training time of DAE and JAE as they require different models for different compression levels.

One key feature of NDPCA is that it only needs one model to operate in different bandwidths. Therefore, we only need
to train and store one model at the edge devices and the central node. We compare the complexity of storage and training
in Table 1. Although NDPCA has a larger storage size and longer training time than other models, it can operate across
different bandwidths. According to Table 1, if all models operate in more than 1 bandwidths, NDPCA saves more storage
and training overload because other models have more than 50% of NPDCA’s overload. For CIFAR-10 denoising, we tested
the training time on an RTX 4090, and for the locate and lift and Airbus detection experiments, we tested the training time
on an NVIDIA RTX A5000.

H. Ablation Study

20 40 60
Dimension of Latent Space

16

17

18

19

20

21

PS
NR

CIFAR10

5 10 15 20 25
Dimension of Latent Space

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Locate and Lift

10 20 30 40
Dimension of Latent Space

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Airbus Detection
NDPCA (ours) Nuclear norm Cosine similarity

Figure 9: Ablation study of the nuclear norm and cosine similarity: Adding the nuclear norm or cosine similarity to the loss function
does not improve the performance of the model when compressing latent representations to lower dimensions.

H.1. Cosine similarity and nuclear norm

In Fig. 9, we show that adding nuclear norm or cosine similarity in the training loss (4) does not help the model perform
when we use DPCA to project latent representations into lower dimensions. We compared our proposed NDPCA with

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2023

the DPCA module against NDPCA without the DPCA module but with the penalization of the nuclear norm and cosine
similarity added. The weights of all the additional terms are 0.1. From Fig. 9, we conclude that the DPCA module can
increase the performance better than the other two.

20 40 60
Dimension of Latent Space

16

17

18

19

20

21

PS
NR

CIFAR10

5 10 15 20 25
Dimension of Latent Space

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Locate and Lift

10 20 30 40
Dimension of Latent Space

0.2

0.4

0.6

0.8

m
AP

50

Airbus Detection
NDPCA (ours) No DPCA module

Figure 10: Ablation study of DPCA module: The proposed DPCA module effectively increases the performance in lower bandwidths,
while achieving the same performance at larger bandwidths.

H.2. DPCA module

In Fig. 10, we show that the proposed DPCA module can help the neural autoencoder learn linear compressible repre-
sentations, as described in Sec. 4. We see that with the DPCA module, NDPCA can increase the performance in lower
bandwidths, while saturating at the performance close to the model without the module. We conclude that with the DPCA
module, NDPCA learns to generate low-rank representations, so the performance is better in lower bandwidths. However,
when the bandwidth is higher, the bandwidth can almost fully restore the representations, so the two methods perform
similarly.

H.3. Single view performance of locate and lift

In the locate and lift experiments, the reinforcement learning agent leverages information from both views as input to
manipulate. Here, we detail why the 2 views are complementary to accomplish the task. The success rate of an agent is 76%
with only the arm-view and 45% with the side-view. When combining both, the success rate is 83%. The reason why the
views are complementary is that the side-view provides global information on the position of the arm and the brick, but
sometimes the brick is hidden behind the arm. The arm-view captures detailed information from a narrow view of the desk.
Once the arm-view captures the brick, it is straightforward to move toward it and lift it. The arm view is more important
because with only the arm-view, the agent can randomly explore the brick, but with only the side-view, the brick might be
vague to see and thus harder to lift. Of course, with both views, the robotic arm can easily move toward the vague position
of the brick and use arm-view to lift it.

15


