
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Who Gets the Reward & Who Gets the Blame?
Evaluation-Aligned Post-Training for

Multi-LLM Agents

Anonymous Author(s)
Affiliation
Address
email

Abstract

Teams of LLM agents are increasingly used for complex tasks, yet post-
training of these multi-agent systems (MAS) is often outcome-only and ad
hoc: effective learning requires localized signals that specify which agent
and which action to adjust. We introduce an evaluation-aligned framework
that maps

system evaluation → agent credit → response-level signals,

closing the loop between evaluation and training. In successful episodes, the
system reward is attributed fairly to agents and then distributed across their
steps using context-aware labels; in failures, we localize the first error in the
interaction trace to construct preference comparisons. These signals drop
into standard post-training (value-free policy gradients with KL on success;
preference learning on failure) without bespoke algorithms. Progress is
tracked by the same evaluator that defines the signals (e.g., success rates
and scores), with optional surrogate judges to reduce cost. The result is a
simple, task- and model-agnostic recipe that yields interpretable artifacts
(agent contributions, step helpfulness) and turns routine operation into
training data. As a conceptual paper, we formalize this mapping and
protocol.

1 Introduction

Large language model post-training refers to refining a pretrained model with outcome-
and process-level signals to better follow instructions, align with human preferences, and
reason over intermediate steps—e.g., RLHF, DPO, and process supervision [1, 2, 3, 4, 5]. In
parallel, LLMs are increasingly deployed as teams of specialized agents that plan, verify, and
refine one another’s outputs to solve complex tasks [6, 7, 8, 9, 10]. However, post-training
for such multi-agent systems (MAS) often remains ad hoc: evaluations tend to score only
final outcomes, while effective learning requires localized signals indicating which agent and
which step to improve [10, 6, 7]. We take a cooperative-games view of multi-LLM systems,
where a set of role-specialized policies forms a coalition to pursue a shared objective [11, 12].
Game-theoretic tools provide principled notions of contribution and fairness, and recent
works begin to explore these ideas for LLM agents [13, 14, 15]. However, existing approaches
largely stop at attribution: they do not connect system-level scores (success or failure) to
post-training procedures that update agents at the granularity of roles and responses.

This gap matters in practice. Small local errors can cascade across agents and derail an
otherwise competent team [6]; moreover, most agents are trained independently for narrow

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

skills rather than for cooperative dynamics [7, 16]. The central question we address is: How
can we transform system-level evaluation into agent-level and response-level supervision that
directly drives post-training for multi-agent LLMs? Our answer is an evaluation-aligned
pipeline that, in success episodes, allocates the system reward to agents using Shapley-style
credit with explicit counterfactual baselines and then distributes each agent’s credit across
its individual responses via process labels; and, in failure episodes, localizes the first error
in the global interaction history via an OmegaPRM-style binary search and converts that
step into less-/more-preferred pairs for preference learning [4, 17, 2]. This design deliberately
uses reward-based updates when the scalar signal is informative (success) and preference-
based updates when the scalar is uninformative (Rsys=0 in failure), matching established
advantages of RLHF/DPO-style training under sparse or zero rewards [1, 2, 5].

Contributions. We propose a general, model-agnostic framework that maps evaluator
outcomes to agent and response supervision and plugs directly into off-the-shelf post-training.
It (i) unifies cooperative-game attribution with process supervision to yield fair, incentive-
compatible agent credits that sum to the system reward and context-aware response scores;
(ii) extends OmegaPRM-style first-error localization to multi-agent traces to construct
preference pairs in failure; (iii) exposes a simple interface for value-free policy gradients
(success) and DPO/GRPO-style preference learning (failure), without bespoke algorithms;
and (iv) improves interpretability by producing explicit, auditor-friendly artifacts—per-agent
contribution ratios and per-step helpfulness labels—while naturally generating data (episodes,
coalition/evaluator outcomes, first-error pairs) that accumulates during normal operation
and can seed future benchmarking or surrogate models.

2 Background and Related Work

Multi-agent LLM systems. Recent surveys document rapid progress in multi-LLM
workflows, infrastructure, and evaluation challenges [10, 7]. Large-scale systems (e.g.,
MegaAgent) show that heterogeneous teams can operate without predefined SOPs but
remain brittle under coordination errors [8, 6]. Methods for reflection, verification, and
planning (e.g., multi-agent reasoning and tool use) improve robustness but do not directly
translate outcomes into training signals [16, 9, 18].

Credit assignment and cooperation. In classical multi-agent reinforcement learning
(MARL), credit assignment is a core challenge (e.g., Multi-Agent Deep Deterministic Policy
Gradients, MADDPG, and other multi-agent actor–critic methods) [19]. For LLM agents,
Shapley-based and language-guided credit assignment are emerging: Shapley-Coop attributes
cooperative gains in self-interested settings [13]; language-model–generated dense rewards
accelerate MARL convergence [20, 21]; and public-goods formulations study incentives in
multi-LLM teams [14]. These approaches illuminate how to measure or shape credit, but
generally do not route those signals into a unified post-training protocol that updates agents
at the step level.

Process supervision and preference learning. Process reward models (PRMs) score
intermediate steps for single-agent reasoning [17, 3, 22, 23, 24]. OmegaPRM automates
data collection via a binary search to find the first incorrect step [4]. In outcome-level
alignment, RLHF provides reward-driven updates [1], while DPO and KTO leverage prefer-
ence/comparison data without explicit reward modeling [2, 5]. Our framework extends process
supervision to multi-agent interaction traces and pairs it with cooperative-game credit so that
success episodes yield reward-shaped updates and failure episodes yield preference-shaped
updates within the same pipeline.

Gaps our framework addresses. First, existing MAS works often treat attribution
and training separately: they measure credit or encourage cooperation but stop short of
translating outcomes into per-agent and per-response updates. Second, success/failure
are not handled symmetrically: reward-based RL relies on informative scalars (satisfied by
success), whereas failure offers Rsys=0; preference learning thrives precisely when comparisons
(better/worse steps) are available. Our pipeline formalizes this separation and provides a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

single route from system outcome to localized supervision across both regimes. Finally,
prior efforts typically evaluate on narrow settings; our design is task- and topology-agnostic
and, as a byproduct of operation, produces a valuable dataset (episodes, coalition outcomes,
step labels, first-error pairs) useful for interpretability, reproducibility, and future surrogate
modeling [25, 26, 27, 18]. Moreover, because our mapping from system outcome → agent
credit → response signal does not depend on a particular model architecture, it could carry
over to foundation-model(FM) settings by instantiating “agents” as role-conditioned modules
(e.g., prompts, adapters, or heads) atop a shared backbone.

3 Proposed Framework: System→Agent→Response Signals

We propose a general framework for evaluation-driven post-training of multi-agent LLM
systems. Our goal is to transform system-level outcomes into agent- and response-level
learning signals, thereby closing the loop between evaluation and training. Unlike prior
work that focuses either on high-level credit assignment or on single-agent post-training, our
framework integrates game-theoretic attribution and process supervision to design a
principled and task-agnostic protocol. Throughout, we use “response-level” to mean per-
step, context-conditioned signals attached to individual agent emissions mi,t within a full
episode of n collaborating agents (i.e., supervision at the granularity of (Ht−1, mi,t) rather
than only at the final system output).

3.1 Setting

We consider a multi-agent LLM system composed of a finite set of agents

A = {A1, . . . ,An}, n ≜ |A|,
each instantiated as an LLM policy πi specialized for a role. Examples of roles include
planner, coder, and summarizer, analogous to role-specialized policies in cooperative MARL.
The agents collaborate in a cooperative game: given a user input x ∈ X (e.g., a natural
language instruction or problem description), they exchange intermediate messages and
collectively produce a system output y ∈ Y (e.g., program, plan, or solution) intended to
solve the task.

Communication proceeds asynchronously along a directed interaction graph G = (V,E),
where vertices correspond to agents V = {A1, . . . ,An} and edges (Ai → Aj) ∈ E specify
which agents may pass messages to which others. At each interaction step t, an agent Ai

receives an input state si,t (consisting of x and prior messages) and produces an output
message mi,t. A full execution trace of the system is thus a sequence of agent–message pairs

τ = {(Ai,mi,t)}Tt=1,

where T is the number of interaction rounds until termination.

The system-level output y = f(τ) is verified by an external evaluator E , which returns an
outcome of the form

E(x, y) =
{
fail, if the task is unsuccessful,

success(r), if the task succeeds with scalar score r ∈ R≥0.

Here r is the scalar score attached to a successful outcome (we will map outcomes to a scalar
in Sec. 3.3). This evaluation establishes two regimes: (i) in failure, we must localize which
agent actions contributed to the error; (ii) in success, we must divide the scalar reward fairly
among agents, avoiding degenerate competition for credit. Formally, each system run yields
a tuple

(x, τ, E(x, y)),
which serves as the training signal for our framework.

3.2 Overview

Given this setting, we propose a pipeline that, for both successful and failing episodes,
transforms the evaluator’s global outcome E(x, y) into localized supervision. Concretely, we

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

(i) compute agent-level credits via cooperative-game attribution and (ii) refine these into
response-level signals—i.e., per-step, context-aware supervision on (Ht−1,mi,t)—via process
supervision, yielding {ri,t}. The remainder of this section specifies this mapping from system
outcome to response-level feedback; the next section shows how to plug these signals into
standard post-training objectives (preference- and RL-based) for updating the policies πi.

3.3 Success Regime: System Evaluation → Agent Credit

Objective. Recall from Sec. 3 /Setting that the (multi-LLM-agent) system’s evaluator
outputs E(x, y) ∈ {fail, success(r)} with r ≥ 0. Define a scalar extractor score(·) by
score(success(r)) = r and score(fail) = 0, and let the system reward for the full multi-
agent system (all n agents participating) be

Rsys ≜ score
(
E(x, y)

)
.

In the success regime, we design a credit-allocation mechanism such that (i) each agent’s
local objective is aligned with improving Rsys, and (ii) credit is divided fairly to discourage
free-riding and encourage productive collaboration.

Cooperative game and Shapley value. Model the interaction as a transferable-utility
cooperative game on A = {A1, . . . ,An}. For any coalition S ⊆ A, consider the counterfactual
run where only agents in S contribute (others are replaced by a baseline; see below). Let

ES(x, yS) ∈ {fail, success(rS)}

be the evaluator’s outcome for this coalition, and define the coalition value

v(S) ≜ score
(
ES(x, yS)

)
=

{
rS , if ES = success(rS),

0, if ES = fail.
(1)

In particular, for the grand coalition S = A we have v(A) = Rsys.

Baselines. “Replacing by a baseline” implements the counterfactual where non-members
do not contribute. We use one of: (i) no-op (the agent emits an empty/neutral message),
(ii) a fixed reference policy πref (e.g., a small, general-purpose LLM frozen for evaluation),
or (iii) masking that copies the last valid state without adding content. These choices keep
comparisons well-defined and reproducible.

The Shapley value assigns agent Ai its expected marginal contribution:

ϕi =
∑

S⊆A\{i}

|S|! (n− |S| − 1)!

n!

(
v(S ∪ {i})− v(S)

)
, (2)

satisfying efficiency, symmetry, linearity, and the null-player property. In particular,∑n
i=1 ϕi=v(A)=Rsys, preventing free-riding.

Normalized contribution coefficients and agent rewards. Define the (system-
normalized) agent contribution ratio

αi ≜
ϕi∑n
j=1 ϕj

=
ϕi

Rsys
,

n∑
i=1

αi = 1, αi ∈ [0, 1]. (3)

We allocate agent rewards by
ri ≜ αi ·Rsys = ϕi, (4)

so that
∑n

i=1 ri=Rsys (by (3)) and each agent maximizes its payoff by increasing its marginal
contribution to the system.

3.4 Agent → Response Decomposition via Binary Labels

To leverage standard post-training techniques, we further decompose the agent-level reward
ri into response-level rewards for trajectories produced by the full system (all n agents

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

participating). This provides fine-grained signals suitable for preference-based or RL-style
updates.

Each agent Ai can emit multiple intermediate responses during a trajectory. Let the global
message (chat) history up to step t− 1 be

Ht−1 ≜ {(Ai′ ,mi′,u)}t−1
u=1,

and let the response from agent i at step t be mi,t ∈ M. Denote by

Ti ≜ { t ∈ {1, . . . , T} : agent i acts (produces a response) at time t }

the index set of timesteps at which agent i acts within the episode, and let

ki ≜ |Ti|

be the number of responses produced by agent i in that episode. After system-level allocation
(4), the per-agent data for the episode can be summarized as

Di =
{
ri, (Ht−1, mi,t) for all t ∈ Ti

}
.

In words: we first decompose the system reward into agent-level rewards via Shapley values,
then further distribute each agent’s reward across that agent’s individual responses within
the episode.

Relation to multi-step single-agent training. At this granularity, the setting reduces
to step-wise credit assignment familiar from single-agent multi-step training, where response-
level supervision guides post-training. We adopt a simple, intuitive scheme that is compatible
with preference-based or RL-style updates (cf. RLHF and preference learning [28, 1, 2]).

Binary labels (context-aware). We use a judge (human or LLM-as-judge) that evaluates
a response in its context :

J (Ht−1, mi,t) =


1, if mi,t is helpful/correct given Ht−1

(moves the trajectory toward a correct final output),

0, if mi,t is harmful/irrelevant given Ht−1.

(5)

We write qi,t ≜ J (Ht−1,mi,t) ∈ {0, 1}. The context Ht−1 is explicitly considered so that an
agent is judged on whether its action was directionally helpful given its inputs—not merely
on its surface form.1

Per-response allocation weights and response rewards. Let the (response-level)
allocation weight for agent i at step t ∈ Ti be

ωi,t ≜
qi,t∑

u∈Ti
qi,u

with the convention
∑
u∈Ti

qi,u = 0 ⇒ ωi,t =
1

ki
. (6)

The response-level reward is then

ri,t ≜ ωi,t ri. (7)

By construction,
n∑

i=1

ri = Rsys,
∑
t∈Ti

ri,t = ri,

so the system reward decomposes into agent rewards, which further decompose into response
rewards.

1Even in successful episodes, some intermediate responses can be unhelpful; later agents may
correct the trajectory. To avoid penalizing an agent for faithfully acting on a flawed context,
helpfulness is judged conditional on Ht−1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Summary of the success pipeline. At a high level, we (i) run the full multi-agent
system and obtain an evaluator outcome; (ii) convert the outcome into a scalar Rsys; (iii)
attribute Rsys to agents by predicting α̂ = Gθ(τ) (optionally seeded by a lightweight Shapley
sampler during training); (iv) decompose each agent’s reward into response-level signals
using the learned judge Jϕ; and (v) apply standard post-training (preference/RL) updates
with these localized signals—thereby unifying system-level evaluation, agent-level attribution,
and response-level supervision into a single, scalable pipeline.

3.5 Failure Regime: First-Error Localization and Preference Construction

Objective. When the evaluator returns E(x, y) = fail, we set the system reward

Rsys = score(E(x, y)) = 0,

so agent-level rewards (and therefore response scores ri,t) vanish for that episode. We
nevertheless extract response-level supervision by localizing the first error in the trajectory
and converting it into less-preferred examples for preference-based post-training (consumed
in Sec. 4).

Extending process supervision to multi-agent episodes. Process supervision re-
wards/penalizes intermediate steps rather than only final answers [17]. OmegaPRM [4]
automates data collection by binary searching a Chain-of-Thought to find the first incorrect
step, enabling efficient PRM training. We extend this idea from single-agent traces to
multi-agent interaction traces by running the check over the global history prefixes and
attributing the first detected error to the agent that acted at that step.

First-error via OmegaPRM-style binary search. Let Ht = {(Ai′ ,mi′,u)}tu=1 denote
the global prefix through step t. Define a prefix-consistency judge JΩ that returns

JΩ(Ht) ∈ {OK, ERR},

with an approximate monotonicity property: once a violation appears, all longer prefixes
remain erroneous (as in 4). We locate the first failing index by bisection:

t⋆ = min{ t ∈ {1, . . . , T} : JΩ(Ht) = ERR }, found with O(log T) judge queries. (8)

Let i⋆ be the agent that acted at t⋆ (i.e., produced mi⋆,t⋆). We set the response-level label

qi⋆,t⋆ = 0, and (when available) mark passing steps as qj,u = 1 for u < t⋆. (9)

Here qi,t ∈ {0, 1} is the binary helpfulness indicator from (5): 1 if the response is locally
correct/helpful given its context Ht−1, and 0 otherwise. These labels supply directional
supervision even when scalar rewards are absent.

Preference construction (handoff to post-training). For training, treat the first-error
message as the less-preferred candidate. Using ci⋆,t⋆ = Ht⋆−1 as the conditioning context,
choose a preferred alternative y+ via one of: (i) a successful episode that encountered a
comparable context, (ii) a post-hoc correction (human/LLM edit) of mi⋆,t⋆ , or (iii) an
N-best/beam sample that passes local checks. Form pairs(

ci⋆,t⋆ , y
+, y−≜ mi⋆,t⋆

)
7→ (preferred, less preferred), (10)

optionally weighted by judge confidence. These pairs are fed to preference-based objectives
(e.g., DPO/GRPO) in Sec. 4. No agent-level scalar rewards are required in the failure regime.

Unification. Together with the success regime (Sec. 3.3)—where we decompose Rsys >
0 into agent- and response-level rewards—this failure pipeline provides complementary
supervision: positive credit when the system succeeds, and negative preferences anchored at
the first detected error when it fails.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.6 Closing the loop (evaluation ↔ training)

With the mappings in Secs. 3.3–3.4 in place, a full iteration proceeds as follows. Given

current agent policies {π(k)
i }ni=1, we run a rollout to obtain a trace τ (k) and an evaluator

outcome E(x, y(k)), which we convert to a scalar R
(k)
sys = score(E).

1. If success (R
(k)
sys > 0): compute cooperative-game attributions {ϕ(k)

i } via (2), set agent

rewards r
(k)
i = ϕ

(k)
i by (4), and distribute them across steps as response-level scores {r(k)i,t }

using context-aware labels q
(k)
i,t from (5) and weights (6)–(7).

2. If failure (R
(k)
sys = 0): run the OmegaPRM-style bisection over global prefixes to find the

first error t⋆ via (8), mark qi⋆,t⋆ = 0 per (9), and form contrastive pairs for the implicated
context using (10). (No scalar rewards are required in this regime.)

We aggregate the resulting tuples into a supervision buffer

S(k) =
{
(i, t, c

(k)
i,t , y

(k)
i,t , q

(k)
i,t , r

(k)
i,t)

}
, c

(k)
i,t = H

(k)
t−1, y

(k)
i,t = m

(k)
i,t .

Operationally, the buffer accumulates both success-derived response scores and failure-derived
preference pairs, enabling a single interface for downstream updates. Optionally (see Sec. ??),
after multiple iterations one may train lightweight auxiliaries to amortize attribution and
labeling; we defer all efficiency details and models to the Discussion.

In the next section (Sec. 4), we show how to plug S(k) into standard objectives: value-free
policy-gradient updates on success episodes (using response scores) and preference-based
updates on failure episodes (using first-error pairs). We then roll out the updated policies

{π(k+1)
i } and repeat, thus closing the evaluation→training loop across both regimes.

4 From Response-Level Signals to Post-Training

Having mapped system outcomes to response-level signals {ri,t} (Sec. 3), we now show
how to plug these signals into existing post-training methods with minimal machinery. Our
interface exposes, for each agent i and step t: the context ci,t = Ht−1, the produced response
yi,t = mi,t, a binary/soft helpfulness label qi,t, and a response-level score ri,t (nonzero only in
successful episodes). We use the same interface to feed (i) RL-style objectives on successful
episodes (using ri,t) and (ii) preference-based objectives on failing episodes (using first-error
pairs; Sec. 3.5). The intent is practical: readers can drop these signals into their preferred
post-training stack with little adaptation.

4.1 Supervision set

For each episode, agent i, and timestep t ∈ Ti,

ci,t ≜ Ht−1, yi,t ≜ mi,t, qi,t ∈ {0, 1} (or soft), ri,t as in (7).

Aggregating across episodes yields the supervision multiset

S =
{
(i, t, ci,t, yi,t, qi,t, ri,t)

}
,

which we reuse across the two training routes below.

4.2 RL-style post-training (success episodes)

For episodes with Rsys > 0, we use the response scores {ri,t} directly in a simple, value-free
policy-gradient update; no learned critic is required.

Value-free policy gradient (group-relative / REINFORCE). Define a centered
signal by subtracting a baseline that does not depend on the sampled action:

Ãi,t = ri,t − bi,t, bi,t ∈
{
ri (per-episode mean), rbatch (mini-batch mean)

}
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

With KL regularization to a fixed reference policy πref , the update for agent i is

LRL
i = − Et

[
Ãi,t log πi(yi,t | ci,t)

]
+ η Et

[
KL

(
πi(· | ci,t) ∥ πref(· | ci,t)

)]
. (11)

This objective is “plug-and-play”: it accepts the response scores from Sec. 3 and uses a
lightweight scalar baseline bi,t solely for variance reduction, which is a scalar control variate
(e.g., a running mean); it is not a policy and does not generate tokens. It is distinct from the
counterfactual baseline policy (no-op/masking/πref) used earlier when computing coalition
values for attribution. We do reuse πref as a fixed reference distribution for KL regularization.

4.3 Preference-based post-training (failure episodes)

For episodes with Rsys = 0, response scores vanish (ri,t = 0), but Sec. 3.5 provides first-
error pairs. Construct (approximately context-matched) tuples (c, y+, y−, w) with c =
Ht⋆−1, y− = mi⋆,t⋆ , y+ a corrective alternative, w (optional weight). A standard DPO-
style objective for agent i is

Lpref
i = − E(c,y+,y−,w)

[
w log σ

(
β
(
[log πi(y

+ | c)− log πref(y
+ | c)]− [log πi(y

− | c)− log πref(y
− | c)]

))]
,

(12)
with GRPO/KTO variants being drop-in replacements. This route requires no scalar
rewards—only the less-/more-preferred responses around the localized first error.

4.4 Putting it together (plug-and-play)

Training mixes the two routes across agents:

L =

n∑
i=1

(
⊮[Rsys > 0] LRL

i︸ ︷︷ ︸
success episodes

+ ⊮[Rsys = 0] Lpref
i︸ ︷︷ ︸

failure episodes

)
.

In practice: (i) build S from full multi-agent rollouts; (ii) on success episodes, apply the
value-free update (11) using response scores; (iii) on failure episodes, apply (12) to first-error
pairs from Sec. 3.5. This section’s role is connective tissue: it shows how the signals produced
by our framework drop cleanly into widely used post-training objectives. Practitioners can
swap in their preferred losses (e.g., different KL schedules, pair weighting, temperature
scaling) without changing the supervision interface.

5 Evaluation Protocol

We outline a concise evaluation protocol for practitioners who adopt our framework. The
core idea is to reuse the same evaluator E and process judge J used during training so that
metrics and training signals remain aligned. Users can evaluate on held-out tasks with fixed
prompts, tools, and interaction graph G, averaging results across random seeds.

System level: Measure end-to-end success rate and mean system reward Rsys, optionally
normalized by tokens/time/cost. Track rounds-to-success as an efficiency indicator. Probe
robustness by small team perturbations (e.g., drop or shuffle agents/edges) and report safety
or constraint metrics when applicable.

Agent level: Track contribution ratios α before and after post-training to assess fairness
and reduced free-riding. Validate attribution with light counterfactuals such as leave-one-
agent-out or replacing an agent with the reference policy πref ; compare observed marginal
impact against assigned credit.

Response level: Report the fraction of helpful steps (qi,t=1), the judge’s agree-
ment/calibration against a human subset, and, for failures, the accuracy and cost of first-error
localization (does t⋆ match human diagnosis with O(log T) checks?). As a practical diag-
nostic, measure “correction efficiency” by swapping the first-error response with a preferred
alternative and re-evaluating.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Generalization and reporting: Test transfer under distribution shifts (new domains/tools
or harder task compositions) and topology changes in G. Provide concise ablations for key
components (credit attribution, response labeling, failure-pair construction, KL regulariza-
tion). Report 95% confidence intervals over seeds, disclose compute (tokens, time, and cost),
and include prompts and hyperparameters to support reproducibility.

6 Discussion and Limitations

Limitation: evaluator cost. Exact cooperative-game attribution is expensive (coalitions
grow exponentially), and first-error checks add judge calls. This is the primary bottleneck
early on [25, 26, 27].

Our practical remedy: learn from operations. A key advantage of our framework
is that episodes, scores, and labels are produced while the system runs (no dependence on
static benchmarks). After a few passes, the collected buffer enables:

• Lightweight attribution: train a compact episode-to-credit model to predict normalized
contribution ratios α̂ = Gθ(τ) in a single forward pass, using a small number of sampled
Shapley targets for bootstrapping [25, 27].

• Learned process judge: distill a binary/soft judge Jϕ(Ht−1,mi,t) from human-verified
labels for fast response scoring (building on [17, 4, 3]).

Additional engineering wins include caching repeated coalitions, bandit-style sampling of
informative subsets, and incremental updates when roles/topology change.

What remains and why it is acceptable. Attribution fidelity can drift under distribution
shift; periodic recalibration with a small batch of sampled coalitions keeps Gθ honest.
Judge reliability is approximate; consensus judging and spot audits mitigate errors. Despite
these caveats, the operate → collect → distill loop turns live interaction data into efficient
surrogates, making the pipeline practical at scale while remaining model- and domain-
agnostic (and complementary to emerging MAS credit-assignment and collaboration work
[21, 20, 13, 9, 16, 18, 6]).

7 Conclusion

We presented a practical, task-agnostic framework that turns system-level evaluation of multi-
LLM teams into localized, response-level supervision and feeds it back into post-training. The
pipeline first maps evaluator outcomes to agent credit via Shapley-style cooperative-game
attribution with explicit counterfactual baselines, then refines credit into response-level
signals using context-aware (binary or soft) process labels. These signals plug directly
into off-the-shelf objectives: value-free policy gradients with KL regularization for successful
episodes (using per-step response scores) and preference learning (DPO/GRPO) for failures,
where we construct pairs by localizing the first error in the global trace via an OmegaPRM-
style binary search. The result is a simple, scalable way to close the loop between evaluation
and training for multi-agent LLM systems.

Contributions. Our work (i) formalizes a unified System → Agent → Response mapping
that converts global outcomes into fair, incentive-compatible agent credit and step-level scores;
(ii) extends process supervision to multi-agent traces with context-conditioned labels and
first-error localization, exposing a plug-and-play interface that routes success to value-free RL
updates and failure to preference-based updates while clarifying the difference between coun-
terfactual policy baselines for attribution and scalar variance-reduction baselines for learning;
and (iii) outlines a practical efficiency path—operate→collect→distill—where lightweight
surrogates (episode→credit predictors and learned judges) amortize attribution and labeling
without changing the supervision format. Because the mapping is architecture-independent,
it can plausibly extend to foundation-model settings by instantiating “agents” as role-
conditioned modules atop a shared backbone, enabling the same system→agent→response
supervision to fine-tune a single FM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References

[1] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feedback. Advances in neural
information processing systems, 35:27730–27744, 2022.

[2] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon,
and Chelsea Finn. Direct preference optimization: Your language model is secretly
a reward model. Advances in neural information processing systems, 36:53728–53741,
2023.

[3] Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh
Agarwal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress:
Scaling automated process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146,
2024.

[4] Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara,
Yunxuan Li, Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in
language models by automated process supervision. arXiv preprint arXiv:2406.06592,
2024.

[5] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe
Kiela. KTO: Model alignment as prospect theoretic optimization. arXiv preprint
arXiv:2402.01306, 2024.

[6] Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh
Tiwari, Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al.
Why do multi-agent LLM systems fail? arXiv preprint arXiv:2503.13657, 2025.

[7] Junda He, Christoph Treude, and David Lo. LLM-based multi-agent systems for
software engineering: Literature review, vision, and the road ahead. ACM Transactions
on Software Engineering and Methodology, 34(5):1–30, 2025.

[8] Qian Wang, Tianyu Wang, Zhenheng Tang, Qinbin Li, Nuo Chen, Jingsheng Liang, and
Bingsheng He. MegaAgent: A large-scale autonomous LLM-based multi-agent system
without predefined SOPs. In Findings of the Association for Computational Linguistics:
ACL 2025, pages 4998–5036, 2025.

[9] Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu Li, Zhen Wang, and Xuelong
Li. Towards efficient LLM grounding for embodied multi-agent collaboration. arXiv
preprint arXiv:2405.14314, 2024.

[10] Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on LLM-based multi-agent
systems: workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024.

[11] Talal Rahwan, Tomasz Michalak, Michael Wooldridge, and Nicholas R Jennings. Any-
time coalition structure generation in multi-agent systems with positive or negative
externalities. Artificial Intelligence, 186:95–122, 2012.

[12] Stéphane Airiau. Cooperative games and multiagent systems. The Knowledge Engi-
neering Review, 28(4):381–424, 2013.

[13] Yun Hua, Haosheng Chen, Shiqin Wang, Wenhao Li, Xiangfeng Wang, and Jun Luo.
Shapley-Coop: Credit assignment for emergent cooperation in self-interested LLM
agents. arXiv preprint arXiv:2506.07388, 2025.

[14] Yunhao Liang, Yuan Qu, Jingyuan Yang, Shaochong Lin, and Zuo-Jun Max Shen.
Everyone contributes! Incentivizing strategic cooperation in multi-LLM systems via
sequential public goods games. arXiv preprint arXiv:2508.02076, 2025.

[15] Kavindu Warnakulasuriya, Prabhash Dissanayake, Navindu De Silva, Stephen Cranefield,
Bastin Tony Roy Savarimuthu, Surangika Ranathunga, and Nisansa de Silva. Evolution
of cooperation in LLM-agent societies: A preliminary study using different punishment
strategies. arXiv preprint arXiv:2504.19487, 2025.

[16] Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and
Ji-Rong Wen. Reflective multi-agent collaboration based on large language models.
Advances in Neural Information Processing Systems, 37:138595–138631, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

[17] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy
Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. In The Twelfth International Conference on Learning Representations, 2023.

[18] Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov,
Ivan Laptev, Philip HS Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder
de Witt. MALT: Improving reasoning with multi-agent LLM training. arXiv preprint
arXiv:2412.01928, 2024.

[19] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in
neural information processing systems, 30, 2017.

[20] Muhan Lin, Shuyang Shi, Yue Guo, Vaishnav Tadiparthi, Behdad Chalaki, Ehsan Moradi
Pari, Simon Stepputtis, Woojun Kim, Joseph Campbell, and Katia Sycara. Speaking
the language of teamwork: LLM-guided credit assignment in multi-agent reinforcement
learning. arXiv preprint arXiv:2502.03723, 2025.

[21] Kartik Nagpal, Dayi Dong, Jean-Baptiste Bouvier, and Negar Mehr. Leveraging large
language models for effective and explainable multi-agent credit assignment. arXiv
preprint arXiv:2502.16863, 2025.

[22] Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang.
ReST-MCTS*: LLM self-training via process reward guided tree search. Advances in
Neural Information Processing Systems, 37:64735–64772, 2024.

[23] Jiawei Li, Xinyue Liang, Junlong Zhang, Yizhe Yang, Chong Feng, and Yang Gao.
PSPO*: An effective process-supervised policy optimization for reasoning alignment.
arXiv preprint arXiv:2411.11681, 2024.

[24] Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-Shepherd: Verify and reinforce LLMs step-by-step without human
annotations. arXiv preprint arXiv:2312.08935, 2023.

[25] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the Shapley
value based on sampling. Computers & operations research, 36(5):1726–1730, 2009.

[26] Sasan Maleki, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex Rogers. Bounding
the estimation error of sampling-based Shapley value approximation. arXiv preprint
arXiv:1306.4265, 2013.

[27] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[28] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss,
Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with
human feedback. Advances in neural information processing systems, 33:3008–3021,
2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not
remove the checklist: The papers not including the checklist will be desk rejected.
The checklist should follow the references and follow the (optional) supplemental material.
The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions.
For each question in the checklist:

• You should answer , , or .

• means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are
visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be
asked to also include it (after eventual revisions) with the final version of your paper, and its
final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their
evaluation. While ”” is generally preferable to ””, it is perfectly acceptable to answer ””
provided a proper justification is given (e.g., ”error bars are not reported because it would
be too computationally expensive” or ”we were unable to find the license for the dataset we
used”). In general, answering ”” or ”” is not grounds for rejection. While the questions are
phrased in a binary way, we acknowledge that the true answer is often more nuanced, so
please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in
appendix. If you answer to a question, in the justification please point to the section(s)
where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper
checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines
below.

• Do not modify the questions and only use the provided macros for your
answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: Yes

Justification: The abstract and introduction state exactly what the paper contributes:
a pipeline that maps system-level evaluation to agent- and response-level signals, with
(i) Shapley-based, system→agent→response credit in success and (ii) OmegaPRM-
style first-error localization for failure, and then plugging these signals into standard
RL-/preference-based post-training (§3, §4). We make no experimental performance
claims.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: Yes

Justification: §6 explicitly discusses computational cost (evaluator/Shapley), depen-
dence on judge quality and evaluator alignment, data/operational assumptions, and

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

offers mitigation routes (learned contribution-ratio predictor, learned judge with
calibration).

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: N/A

Justification: The paper proposes a framework and uses standard definitions (e.g.,
Shapley value) with citations; it does not introduce new theorems requiring formal
proofs.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper (regardless of whether the code and data are
provided or not)?

Answer: N/A

Justification: No experiments are reported in this submission; the paper is method-
ological.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results?

Answer: N/A

Justification: No datasets or experimental code accompany this conceptual framework
in the current submission.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details necessary to
understand the results?

Answer: N/A

Justification: There are no experiments in this submission.

7. Experiment Statistical Significance

Question: Does the paper report error bars or other appropriate information about
statistical significance?

Answer: N/A

Justification: There are no experimental results.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources needed?

Answer: N/A

Justification: There are no experiments in this submission.

9. Code Of Ethics

Question: Does the research conform to the NeurIPS Code of Ethics?

Answer: Yes

Justification: The work is a conceptual framework; it does not involve human
subjects or sensitive data. We discuss potential risks and mitigations at a high level
in §6.

10. Broader Impacts

Question: Does the paper discuss both potential positive and negative societal
impacts?

Answer: Yes

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Justification: §6 outlines potential benefits (more interpretable/traceable multi-
agent training) and risks (misuse, misattribution, evaluator bias), with suggested
safeguards.

11. Safeguards

Question: Does the paper describe safeguards for responsible release of high-risk
assets?

Answer: N/A

Justification: No models or datasets are being released in this submission; the paper
presents a methodology.

12. Licenses for existing assets

Question: Are third-party assets properly credited with licenses and terms of use?

Answer: N/A

Justification: The paper uses no external assets beyond cited literature.

13. New Assets

Question: Are new assets introduced in the paper well documented?

Answer: N/A

Justification: No new datasets/models are released in this submission.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing/human-subjects research, are instructions and com-
pensation details included?

Answer: N/A

Justification: The work does not involve crowdsourcing or human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent

Question: Were risks disclosed and approvals obtained for human-subjects research?

Answer: N/A

Justification: No human-subjects research is included.

14

