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Abstract

Teams of LLM agents are increasingly used for complex tasks, yet post-
training of these multi-agent systems (MAS) is often outcome-only and ad
hoc: effective learning requires localized signals that specify which agent
and which action to adjust. We introduce an evaluation-aligned framework
that maps

system evaluation → agent credit → response-level signals,

closing the loop between evaluation and training. In successful episodes, the
system reward is attributed fairly to agents and then distributed across their
steps using context-aware labels; in failures, we localize the first error in the
interaction trace to construct preference comparisons. These signals drop
into standard post-training (value-free policy gradients with KL on success;
preference learning on failure) without bespoke algorithms. Progress is
tracked by the same evaluator that defines the signals (e.g., success rates
and scores), with optional surrogate judges to reduce cost. The result is a
simple, task- and model-agnostic recipe that yields interpretable artifacts
(agent contributions, step helpfulness) and turns routine operation into
training data. As a conceptual paper, we formalize this mapping and
protocol.

1 Introduction

Large language model post-training refers to refining a pretrained model with outcome-
and process-level signals to better follow instructions, align with human preferences, and
reason over intermediate steps—e.g., RLHF, DPO, and process supervision [1, 2, 3, 4, 5]. In
parallel, LLMs are increasingly deployed as teams of specialized agents that plan, verify, and
refine one another’s outputs to solve complex tasks [6, 7, 8, 9, 10]. However, post-training
for such multi-agent systems (MAS) often remains ad hoc: evaluations tend to score only
final outcomes, while effective learning requires localized signals indicating which agent and
which step to improve [10, 6, 7]. We take a cooperative-games view of multi-LLM systems,
where a set of role-specialized policies forms a coalition to pursue a shared objective [11, 12].
Game-theoretic tools provide principled notions of contribution and fairness, and recent
works begin to explore these ideas for LLM agents [13, 14, 15]. However, existing approaches
largely stop at attribution: they do not connect system-level scores (success or failure) to
post-training procedures that update agents at the granularity of roles and responses.

This gap matters in practice. Small local errors can cascade across agents and derail an
otherwise competent team [6]; moreover, most agents are trained independently for narrow
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skills rather than for cooperative dynamics [7, 16]. The central question we address is: How
can we transform system-level evaluation into agent-level and response-level supervision that
directly drives post-training for multi-agent LLMs? Our answer is an evaluation-aligned
pipeline that, in success episodes, allocates the system reward to agents using Shapley-style
credit with explicit counterfactual baselines and then distributes each agent’s credit across
its individual responses via process labels; and, in failure episodes, localizes the first error
in the global interaction history via an OmegaPRM-style binary search and converts that
step into less-/more-preferred pairs for preference learning [4, 17, 2]. This design deliberately
uses reward-based updates when the scalar signal is informative (success) and preference-
based updates when the scalar is uninformative (Rsys=0 in failure), matching established
advantages of RLHF/DPO-style training under sparse or zero rewards [1, 2, 5].

Contributions. We propose a general, model-agnostic framework that maps evaluator
outcomes to agent and response supervision and plugs directly into off-the-shelf post-training.
It (i) unifies cooperative-game attribution with process supervision to yield fair, incentive-
compatible agent credits that sum to the system reward and context-aware response scores;
(ii) extends OmegaPRM-style first-error localization to multi-agent traces to construct
preference pairs in failure; (iii) exposes a simple interface for value-free policy gradients
(success) and DPO/GRPO-style preference learning (failure), without bespoke algorithms;
and (iv) improves interpretability by producing explicit, auditor-friendly artifacts—per-agent
contribution ratios and per-step helpfulness labels—while naturally generating data (episodes,
coalition/evaluator outcomes, first-error pairs) that accumulates during normal operation
and can seed future benchmarking or surrogate models.

2 Background and Related Work

Multi-agent LLM systems. Recent surveys document rapid progress in multi-LLM
workflows, infrastructure, and evaluation challenges [10, 7]. Large-scale systems (e.g.,
MegaAgent) show that heterogeneous teams can operate without predefined SOPs but
remain brittle under coordination errors [8, 6]. Methods for reflection, verification, and
planning (e.g., multi-agent reasoning and tool use) improve robustness but do not directly
translate outcomes into training signals [16, 9, 18].

Credit assignment and cooperation. In classical multi-agent reinforcement learning
(MARL), credit assignment is a core challenge (e.g., Multi-Agent Deep Deterministic Policy
Gradients, MADDPG, and other multi-agent actor–critic methods) [19]. For LLM agents,
Shapley-based and language-guided credit assignment are emerging: Shapley-Coop attributes
cooperative gains in self-interested settings [13]; language-model–generated dense rewards
accelerate MARL convergence [20, 21]; and public-goods formulations study incentives in
multi-LLM teams [14]. These approaches illuminate how to measure or shape credit, but
generally do not route those signals into a unified post-training protocol that updates agents
at the step level.

Process supervision and preference learning. Process reward models (PRMs) score
intermediate steps for single-agent reasoning [17, 3, 22, 23, 24]. OmegaPRM automates
data collection via a binary search to find the first incorrect step [4]. In outcome-level
alignment, RLHF provides reward-driven updates [1], while DPO and KTO leverage prefer-
ence/comparison data without explicit reward modeling [2, 5]. Our framework extends process
supervision to multi-agent interaction traces and pairs it with cooperative-game credit so that
success episodes yield reward-shaped updates and failure episodes yield preference-shaped
updates within the same pipeline.

Gaps our framework addresses. First, existing MAS works often treat attribution
and training separately: they measure credit or encourage cooperation but stop short of
translating outcomes into per-agent and per-response updates. Second, success/failure
are not handled symmetrically: reward-based RL relies on informative scalars (satisfied by
success), whereas failure offers Rsys=0; preference learning thrives precisely when comparisons
(better/worse steps) are available. Our pipeline formalizes this separation and provides a
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single route from system outcome to localized supervision across both regimes. Finally,
prior efforts typically evaluate on narrow settings; our design is task- and topology-agnostic
and, as a byproduct of operation, produces a valuable dataset (episodes, coalition outcomes,
step labels, first-error pairs) useful for interpretability, reproducibility, and future surrogate
modeling [25, 26, 27, 18]. Moreover, because our mapping from system outcome → agent
credit → response signal does not depend on a particular model architecture, it could carry
over to foundation-model(FM) settings by instantiating “agents” as role-conditioned modules
(e.g., prompts, adapters, or heads) atop a shared backbone.

3 Proposed Framework: System→Agent→Response Signals

We propose a general framework for evaluation-driven post-training of multi-agent LLM
systems. Our goal is to transform system-level outcomes into agent- and response-level
learning signals, thereby closing the loop between evaluation and training. Unlike prior
work that focuses either on high-level credit assignment or on single-agent post-training, our
framework integrates game-theoretic attribution and process supervision to design a
principled and task-agnostic protocol. Throughout, we use “response-level” to mean per-
step, context-conditioned signals attached to individual agent emissions mi,t within a full
episode of n collaborating agents (i.e., supervision at the granularity of (Ht−1, mi,t) rather
than only at the final system output).

3.1 Setting

We consider a multi-agent LLM system composed of a finite set of agents

A = {A1, . . . ,An}, n ≜ |A|,
each instantiated as an LLM policy πi specialized for a role. Examples of roles include
planner, coder, and summarizer, analogous to role-specialized policies in cooperative MARL.
The agents collaborate in a cooperative game: given a user input x ∈ X (e.g., a natural
language instruction or problem description), they exchange intermediate messages and
collectively produce a system output y ∈ Y (e.g., program, plan, or solution) intended to
solve the task.

Communication proceeds asynchronously along a directed interaction graph G = (V,E),
where vertices correspond to agents V = {A1, . . . ,An} and edges (Ai → Aj) ∈ E specify
which agents may pass messages to which others. At each interaction step t, an agent Ai

receives an input state si,t (consisting of x and prior messages) and produces an output
message mi,t. A full execution trace of the system is thus a sequence of agent–message pairs

τ = {(Ai,mi,t)}Tt=1,

where T is the number of interaction rounds until termination.

The system-level output y = f(τ) is verified by an external evaluator E , which returns an
outcome of the form

E(x, y) =
{
fail, if the task is unsuccessful,

success(r), if the task succeeds with scalar score r ∈ R≥0.

Here r is the scalar score attached to a successful outcome (we will map outcomes to a scalar
in Sec. 3.3). This evaluation establishes two regimes: (i) in failure, we must localize which
agent actions contributed to the error; (ii) in success, we must divide the scalar reward fairly
among agents, avoiding degenerate competition for credit. Formally, each system run yields
a tuple

(x, τ, E(x, y)),
which serves as the training signal for our framework.

3.2 Overview

Given this setting, we propose a pipeline that, for both successful and failing episodes,
transforms the evaluator’s global outcome E(x, y) into localized supervision. Concretely, we
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(i) compute agent-level credits via cooperative-game attribution and (ii) refine these into
response-level signals—i.e., per-step, context-aware supervision on (Ht−1,mi,t)—via process
supervision, yielding {ri,t}. The remainder of this section specifies this mapping from system
outcome to response-level feedback; the next section shows how to plug these signals into
standard post-training objectives (preference- and RL-based) for updating the policies πi.

3.3 Success Regime: System Evaluation → Agent Credit

Objective. Recall from Sec. 3 /Setting that the (multi-LLM-agent) system’s evaluator
outputs E(x, y) ∈ {fail, success(r)} with r ≥ 0. Define a scalar extractor score(·) by
score(success(r)) = r and score(fail) = 0, and let the system reward for the full multi-
agent system (all n agents participating) be

Rsys ≜ score
(
E(x, y)

)
.

In the success regime, we design a credit-allocation mechanism such that (i) each agent’s
local objective is aligned with improving Rsys, and (ii) credit is divided fairly to discourage
free-riding and encourage productive collaboration.

Cooperative game and Shapley value. Model the interaction as a transferable-utility
cooperative game on A = {A1, . . . ,An}. For any coalition S ⊆ A, consider the counterfactual
run where only agents in S contribute (others are replaced by a baseline; see below). Let

ES(x, yS) ∈ {fail, success(rS)}

be the evaluator’s outcome for this coalition, and define the coalition value

v(S) ≜ score
(
ES(x, yS)

)
=

{
rS , if ES = success(rS),

0, if ES = fail.
(1)

In particular, for the grand coalition S = A we have v(A) = Rsys.

Baselines. “Replacing by a baseline” implements the counterfactual where non-members
do not contribute. We use one of: (i) no-op (the agent emits an empty/neutral message),
(ii) a fixed reference policy πref (e.g., a small, general-purpose LLM frozen for evaluation),
or (iii) masking that copies the last valid state without adding content. These choices keep
comparisons well-defined and reproducible.

The Shapley value assigns agent Ai its expected marginal contribution:

ϕi =
∑

S⊆A\{i}

|S|! (n− |S| − 1)!

n!

(
v(S ∪ {i})− v(S)

)
, (2)

satisfying efficiency, symmetry, linearity, and the null-player property. In particular,∑n
i=1 ϕi=v(A)=Rsys, preventing free-riding.

Normalized contribution coefficients and agent rewards. Define the (system-
normalized) agent contribution ratio

αi ≜
ϕi∑n
j=1 ϕj

=
ϕi

Rsys
,

n∑
i=1

αi = 1, αi ∈ [0, 1]. (3)

We allocate agent rewards by
ri ≜ αi ·Rsys = ϕi, (4)

so that
∑n

i=1 ri=Rsys (by (3)) and each agent maximizes its payoff by increasing its marginal
contribution to the system.

3.4 Agent → Response Decomposition via Binary Labels

To leverage standard post-training techniques, we further decompose the agent-level reward
ri into response-level rewards for trajectories produced by the full system (all n agents

4
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participating). This provides fine-grained signals suitable for preference-based or RL-style
updates.

Each agent Ai can emit multiple intermediate responses during a trajectory. Let the global
message (chat) history up to step t− 1 be

Ht−1 ≜ {(Ai′ ,mi′,u)}t−1
u=1,

and let the response from agent i at step t be mi,t ∈ M. Denote by

Ti ≜ { t ∈ {1, . . . , T} : agent i acts (produces a response) at time t }

the index set of timesteps at which agent i acts within the episode, and let

ki ≜ |Ti|

be the number of responses produced by agent i in that episode. After system-level allocation
(4), the per-agent data for the episode can be summarized as

Di =
{
ri, (Ht−1, mi,t) for all t ∈ Ti

}
.

In words: we first decompose the system reward into agent-level rewards via Shapley values,
then further distribute each agent’s reward across that agent’s individual responses within
the episode.

Relation to multi-step single-agent training. At this granularity, the setting reduces
to step-wise credit assignment familiar from single-agent multi-step training, where response-
level supervision guides post-training. We adopt a simple, intuitive scheme that is compatible
with preference-based or RL-style updates (cf. RLHF and preference learning [28, 1, 2]).

Binary labels (context-aware). We use a judge (human or LLM-as-judge) that evaluates
a response in its context :

J (Ht−1, mi,t) =


1, if mi,t is helpful/correct given Ht−1

(moves the trajectory toward a correct final output),

0, if mi,t is harmful/irrelevant given Ht−1.

(5)

We write qi,t ≜ J (Ht−1,mi,t) ∈ {0, 1}. The context Ht−1 is explicitly considered so that an
agent is judged on whether its action was directionally helpful given its inputs—not merely
on its surface form.1

Per-response allocation weights and response rewards. Let the (response-level)
allocation weight for agent i at step t ∈ Ti be

ωi,t ≜
qi,t∑

u∈Ti
qi,u

with the convention
∑
u∈Ti

qi,u = 0 ⇒ ωi,t =
1

ki
. (6)

The response-level reward is then

ri,t ≜ ωi,t ri. (7)

By construction,
n∑

i=1

ri = Rsys,
∑
t∈Ti

ri,t = ri,

so the system reward decomposes into agent rewards, which further decompose into response
rewards.

1Even in successful episodes, some intermediate responses can be unhelpful; later agents may
correct the trajectory. To avoid penalizing an agent for faithfully acting on a flawed context,
helpfulness is judged conditional on Ht−1.
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Summary of the success pipeline. At a high level, we (i) run the full multi-agent
system and obtain an evaluator outcome; (ii) convert the outcome into a scalar Rsys; (iii)
attribute Rsys to agents by predicting α̂ = Gθ(τ) (optionally seeded by a lightweight Shapley
sampler during training); (iv) decompose each agent’s reward into response-level signals
using the learned judge Jϕ; and (v) apply standard post-training (preference/RL) updates
with these localized signals—thereby unifying system-level evaluation, agent-level attribution,
and response-level supervision into a single, scalable pipeline.

3.5 Failure Regime: First-Error Localization and Preference Construction

Objective. When the evaluator returns E(x, y) = fail, we set the system reward

Rsys = score(E(x, y)) = 0,

so agent-level rewards (and therefore response scores ri,t) vanish for that episode. We
nevertheless extract response-level supervision by localizing the first error in the trajectory
and converting it into less-preferred examples for preference-based post-training (consumed
in Sec. 4).

Extending process supervision to multi-agent episodes. Process supervision re-
wards/penalizes intermediate steps rather than only final answers [17]. OmegaPRM [4]
automates data collection by binary searching a Chain-of-Thought to find the first incorrect
step, enabling efficient PRM training. We extend this idea from single-agent traces to
multi-agent interaction traces by running the check over the global history prefixes and
attributing the first detected error to the agent that acted at that step.

First-error via OmegaPRM-style binary search. Let Ht = {(Ai′ ,mi′,u)}tu=1 denote
the global prefix through step t. Define a prefix-consistency judge JΩ that returns

JΩ(Ht) ∈ {OK, ERR},

with an approximate monotonicity property: once a violation appears, all longer prefixes
remain erroneous (as in 4). We locate the first failing index by bisection:

t⋆ = min{ t ∈ {1, . . . , T} : JΩ(Ht) = ERR }, found with O(log T ) judge queries. (8)

Let i⋆ be the agent that acted at t⋆ (i.e., produced mi⋆,t⋆). We set the response-level label

qi⋆,t⋆ = 0, and (when available) mark passing steps as qj,u = 1 for u < t⋆. (9)

Here qi,t ∈ {0, 1} is the binary helpfulness indicator from (5): 1 if the response is locally
correct/helpful given its context Ht−1, and 0 otherwise. These labels supply directional
supervision even when scalar rewards are absent.

Preference construction (handoff to post-training). For training, treat the first-error
message as the less-preferred candidate. Using ci⋆,t⋆ = Ht⋆−1 as the conditioning context,
choose a preferred alternative y+ via one of: (i) a successful episode that encountered a
comparable context, (ii) a post-hoc correction (human/LLM edit) of mi⋆,t⋆ , or (iii) an
N-best/beam sample that passes local checks. Form pairs(

ci⋆,t⋆ , y
+, y−≜ mi⋆,t⋆

)
7→ (preferred, less preferred), (10)

optionally weighted by judge confidence. These pairs are fed to preference-based objectives
(e.g., DPO/GRPO) in Sec. 4. No agent-level scalar rewards are required in the failure regime.

Unification. Together with the success regime (Sec. 3.3)—where we decompose Rsys >
0 into agent- and response-level rewards—this failure pipeline provides complementary
supervision: positive credit when the system succeeds, and negative preferences anchored at
the first detected error when it fails.
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3.6 Closing the loop (evaluation ↔ training)

With the mappings in Secs. 3.3–3.4 in place, a full iteration proceeds as follows. Given

current agent policies {π(k)
i }ni=1, we run a rollout to obtain a trace τ (k) and an evaluator

outcome E(x, y(k)), which we convert to a scalar R
(k)
sys = score(E).

1. If success (R
(k)
sys > 0): compute cooperative-game attributions {ϕ(k)

i } via (2), set agent

rewards r
(k)
i = ϕ

(k)
i by (4), and distribute them across steps as response-level scores {r(k)i,t }

using context-aware labels q
(k)
i,t from (5) and weights (6)–(7).

2. If failure (R
(k)
sys = 0): run the OmegaPRM-style bisection over global prefixes to find the

first error t⋆ via (8), mark qi⋆,t⋆ = 0 per (9), and form contrastive pairs for the implicated
context using (10). (No scalar rewards are required in this regime.)

We aggregate the resulting tuples into a supervision buffer

S(k) =
{
(i, t, c

(k)
i,t , y

(k)
i,t , q

(k)
i,t , r

(k)
i,t )

}
, c

(k)
i,t = H

(k)
t−1, y

(k)
i,t = m

(k)
i,t .

Operationally, the buffer accumulates both success-derived response scores and failure-derived
preference pairs, enabling a single interface for downstream updates. Optionally (see Sec. ??),
after multiple iterations one may train lightweight auxiliaries to amortize attribution and
labeling; we defer all efficiency details and models to the Discussion.

In the next section (Sec. 4), we show how to plug S(k) into standard objectives: value-free
policy-gradient updates on success episodes (using response scores) and preference-based
updates on failure episodes (using first-error pairs). We then roll out the updated policies

{π(k+1)
i } and repeat, thus closing the evaluation→training loop across both regimes.

4 From Response-Level Signals to Post-Training

Having mapped system outcomes to response-level signals {ri,t} (Sec. 3), we now show
how to plug these signals into existing post-training methods with minimal machinery. Our
interface exposes, for each agent i and step t: the context ci,t = Ht−1, the produced response
yi,t = mi,t, a binary/soft helpfulness label qi,t, and a response-level score ri,t (nonzero only in
successful episodes). We use the same interface to feed (i) RL-style objectives on successful
episodes (using ri,t) and (ii) preference-based objectives on failing episodes (using first-error
pairs; Sec. 3.5). The intent is practical: readers can drop these signals into their preferred
post-training stack with little adaptation.

4.1 Supervision set

For each episode, agent i, and timestep t ∈ Ti,

ci,t ≜ Ht−1, yi,t ≜ mi,t, qi,t ∈ {0, 1} (or soft), ri,t as in (7).

Aggregating across episodes yields the supervision multiset

S =
{
(i, t, ci,t, yi,t, qi,t, ri,t)

}
,

which we reuse across the two training routes below.

4.2 RL-style post-training (success episodes)

For episodes with Rsys > 0, we use the response scores {ri,t} directly in a simple, value-free
policy-gradient update; no learned critic is required.

Value-free policy gradient (group-relative / REINFORCE). Define a centered
signal by subtracting a baseline that does not depend on the sampled action:

Ãi,t = ri,t − bi,t, bi,t ∈
{
ri (per-episode mean), rbatch (mini-batch mean)

}
.

7
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With KL regularization to a fixed reference policy πref , the update for agent i is

LRL
i = − Et

[
Ãi,t log πi(yi,t | ci,t)

]
+ η Et

[
KL

(
πi(· | ci,t) ∥ πref(· | ci,t)

)]
. (11)

This objective is “plug-and-play”: it accepts the response scores from Sec. 3 and uses a
lightweight scalar baseline bi,t solely for variance reduction, which is a scalar control variate
(e.g., a running mean); it is not a policy and does not generate tokens. It is distinct from the
counterfactual baseline policy (no-op/masking/πref) used earlier when computing coalition
values for attribution. We do reuse πref as a fixed reference distribution for KL regularization.

4.3 Preference-based post-training (failure episodes)

For episodes with Rsys = 0, response scores vanish (ri,t = 0), but Sec. 3.5 provides first-
error pairs. Construct (approximately context-matched) tuples (c, y+, y−, w) with c =
Ht⋆−1, y− = mi⋆,t⋆ , y+ a corrective alternative, w (optional weight). A standard DPO-
style objective for agent i is

Lpref
i = − E(c,y+,y−,w)

[
w log σ

(
β
(
[log πi(y

+ | c)− log πref(y
+ | c)]− [log πi(y

− | c)− log πref(y
− | c)]

))]
,

(12)
with GRPO/KTO variants being drop-in replacements. This route requires no scalar
rewards—only the less-/more-preferred responses around the localized first error.

4.4 Putting it together (plug-and-play)

Training mixes the two routes across agents:

L =

n∑
i=1

(
⊮[Rsys > 0] LRL

i︸ ︷︷ ︸
success episodes

+ ⊮[Rsys = 0] Lpref
i︸ ︷︷ ︸

failure episodes

)
.

In practice: (i) build S from full multi-agent rollouts; (ii) on success episodes, apply the
value-free update (11) using response scores; (iii) on failure episodes, apply (12) to first-error
pairs from Sec. 3.5. This section’s role is connective tissue: it shows how the signals produced
by our framework drop cleanly into widely used post-training objectives. Practitioners can
swap in their preferred losses (e.g., different KL schedules, pair weighting, temperature
scaling) without changing the supervision interface.

5 Evaluation Protocol

We outline a concise evaluation protocol for practitioners who adopt our framework. The
core idea is to reuse the same evaluator E and process judge J used during training so that
metrics and training signals remain aligned. Users can evaluate on held-out tasks with fixed
prompts, tools, and interaction graph G, averaging results across random seeds.

System level: Measure end-to-end success rate and mean system reward Rsys, optionally
normalized by tokens/time/cost. Track rounds-to-success as an efficiency indicator. Probe
robustness by small team perturbations (e.g., drop or shuffle agents/edges) and report safety
or constraint metrics when applicable.

Agent level: Track contribution ratios α before and after post-training to assess fairness
and reduced free-riding. Validate attribution with light counterfactuals such as leave-one-
agent-out or replacing an agent with the reference policy πref ; compare observed marginal
impact against assigned credit.

Response level: Report the fraction of helpful steps (qi,t=1), the judge’s agree-
ment/calibration against a human subset, and, for failures, the accuracy and cost of first-error
localization (does t⋆ match human diagnosis with O(log T ) checks?). As a practical diag-
nostic, measure “correction efficiency” by swapping the first-error response with a preferred
alternative and re-evaluating.

8
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Generalization and reporting: Test transfer under distribution shifts (new domains/tools
or harder task compositions) and topology changes in G. Provide concise ablations for key
components (credit attribution, response labeling, failure-pair construction, KL regulariza-
tion). Report 95% confidence intervals over seeds, disclose compute (tokens, time, and cost),
and include prompts and hyperparameters to support reproducibility.

6 Discussion and Limitations

Limitation: evaluator cost. Exact cooperative-game attribution is expensive (coalitions
grow exponentially), and first-error checks add judge calls. This is the primary bottleneck
early on [25, 26, 27].

Our practical remedy: learn from operations. A key advantage of our framework
is that episodes, scores, and labels are produced while the system runs (no dependence on
static benchmarks). After a few passes, the collected buffer enables:

• Lightweight attribution: train a compact episode-to-credit model to predict normalized
contribution ratios α̂ = Gθ(τ) in a single forward pass, using a small number of sampled
Shapley targets for bootstrapping [25, 27].

• Learned process judge: distill a binary/soft judge Jϕ(Ht−1,mi,t) from human-verified
labels for fast response scoring (building on [17, 4, 3]).

Additional engineering wins include caching repeated coalitions, bandit-style sampling of
informative subsets, and incremental updates when roles/topology change.

What remains and why it is acceptable. Attribution fidelity can drift under distribution
shift; periodic recalibration with a small batch of sampled coalitions keeps Gθ honest.
Judge reliability is approximate; consensus judging and spot audits mitigate errors. Despite
these caveats, the operate → collect → distill loop turns live interaction data into efficient
surrogates, making the pipeline practical at scale while remaining model- and domain-
agnostic (and complementary to emerging MAS credit-assignment and collaboration work
[21, 20, 13, 9, 16, 18, 6]).

7 Conclusion

We presented a practical, task-agnostic framework that turns system-level evaluation of multi-
LLM teams into localized, response-level supervision and feeds it back into post-training. The
pipeline first maps evaluator outcomes to agent credit via Shapley-style cooperative-game
attribution with explicit counterfactual baselines, then refines credit into response-level
signals using context-aware (binary or soft) process labels. These signals plug directly
into off-the-shelf objectives: value-free policy gradients with KL regularization for successful
episodes (using per-step response scores) and preference learning (DPO/GRPO) for failures,
where we construct pairs by localizing the first error in the global trace via an OmegaPRM-
style binary search. The result is a simple, scalable way to close the loop between evaluation
and training for multi-agent LLM systems.

Contributions. Our work (i) formalizes a unified System → Agent → Response mapping
that converts global outcomes into fair, incentive-compatible agent credit and step-level scores;
(ii) extends process supervision to multi-agent traces with context-conditioned labels and
first-error localization, exposing a plug-and-play interface that routes success to value-free RL
updates and failure to preference-based updates while clarifying the difference between coun-
terfactual policy baselines for attribution and scalar variance-reduction baselines for learning;
and (iii) outlines a practical efficiency path—operate→collect→distill—where lightweight
surrogates (episode→credit predictors and learned judges) amortize attribution and labeling
without changing the supervision format. Because the mapping is architecture-independent,
it can plausibly extend to foundation-model settings by instantiating “agents” as role-
conditioned modules atop a shared backbone, enabling the same system→agent→response
supervision to fine-tune a single FM.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not
remove the checklist: The papers not including the checklist will be desk rejected.
The checklist should follow the references and follow the (optional) supplemental material.
The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions.
For each question in the checklist:

• You should answer , , or .

• means either that the question is Not Applicable for that particular paper or the relevant
information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are
visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be
asked to also include it (after eventual revisions) with the final version of your paper, and its
final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their
evaluation. While ”” is generally preferable to ””, it is perfectly acceptable to answer ””
provided a proper justification is given (e.g., ”error bars are not reported because it would
be too computationally expensive” or ”we were unable to find the license for the dataset we
used”). In general, answering ”” or ”” is not grounds for rejection. While the questions are
phrased in a binary way, we acknowledge that the true answer is often more nuanced, so
please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in
appendix. If you answer to a question, in the justification please point to the section(s)
where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper
checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines
below.

• Do not modify the questions and only use the provided macros for your
answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: Yes

Justification: The abstract and introduction state exactly what the paper contributes:
a pipeline that maps system-level evaluation to agent- and response-level signals, with
(i) Shapley-based, system→agent→response credit in success and (ii) OmegaPRM-
style first-error localization for failure, and then plugging these signals into standard
RL-/preference-based post-training (§3, §4). We make no experimental performance
claims.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: Yes

Justification: §6 explicitly discusses computational cost (evaluator/Shapley), depen-
dence on judge quality and evaluator alignment, data/operational assumptions, and
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offers mitigation routes (learned contribution-ratio predictor, learned judge with
calibration).

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: N/A

Justification: The paper proposes a framework and uses standard definitions (e.g.,
Shapley value) with citations; it does not introduce new theorems requiring formal
proofs.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper (regardless of whether the code and data are
provided or not)?

Answer: N/A

Justification: No experiments are reported in this submission; the paper is method-
ological.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results?

Answer: N/A

Justification: No datasets or experimental code accompany this conceptual framework
in the current submission.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details necessary to
understand the results?

Answer: N/A

Justification: There are no experiments in this submission.

7. Experiment Statistical Significance

Question: Does the paper report error bars or other appropriate information about
statistical significance?

Answer: N/A

Justification: There are no experimental results.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources needed?

Answer: N/A

Justification: There are no experiments in this submission.

9. Code Of Ethics

Question: Does the research conform to the NeurIPS Code of Ethics?

Answer: Yes

Justification: The work is a conceptual framework; it does not involve human
subjects or sensitive data. We discuss potential risks and mitigations at a high level
in §6.

10. Broader Impacts

Question: Does the paper discuss both potential positive and negative societal
impacts?

Answer: Yes
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Justification: §6 outlines potential benefits (more interpretable/traceable multi-
agent training) and risks (misuse, misattribution, evaluator bias), with suggested
safeguards.

11. Safeguards

Question: Does the paper describe safeguards for responsible release of high-risk
assets?

Answer: N/A

Justification: No models or datasets are being released in this submission; the paper
presents a methodology.

12. Licenses for existing assets

Question: Are third-party assets properly credited with licenses and terms of use?

Answer: N/A

Justification: The paper uses no external assets beyond cited literature.

13. New Assets

Question: Are new assets introduced in the paper well documented?

Answer: N/A

Justification: No new datasets/models are released in this submission.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing/human-subjects research, are instructions and com-
pensation details included?

Answer: N/A

Justification: The work does not involve crowdsourcing or human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent

Question: Were risks disclosed and approvals obtained for human-subjects research?

Answer: N/A

Justification: No human-subjects research is included.
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