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Abstract

Selling a single item to n self-interested buyers is a fundamental problem in
economics, where the two objectives typically considered are welfare maximization
and revenue maximization. Since the optimal mechanisms are often impractical and
do not work for sequential buyers, posted pricing mechanisms, where fixed prices
are set for the item for different buyers, have emerged as a practical and effective
alternative. This paper investigates how many samples are needed from buyers’
value distributions to find near-optimal posted prices, considering both independent
and correlated buyer distributions, and welfare versus revenue maximization. We
obtain matching upper and lower bounds (up to logarithmic factors) on the sample
complexity for all these settings.

1 Introduction

A fundamental problem in Economics is how to sell a single indivisible item to a set of n self-
interested buyers. This problem is challenging because the value associated to the item is private
knowledge of each buyer and thus can be strategically misreported. The mechanism designer usually
has one of two objectives: (a) welfare maximization where we want to maximize the value of the
winning buyer, and (b) revenue maximization where we want to maximize the price paid by the
winning buyer. The welfare maximization problem was resolved by Vickrey in 1961 [Vic61] and
the revenue maximization problem was resolved (for independent distributions) by Myerson in 1981
[Mye81], both of whom were awarded the Nobel prize in Economics for their contributions. In either
case the optimal mechanism is a truthful auction, in which buyers report their values and have no
incentive to misreport.

Although we know optimal mechanisms for selling a single item, these auctions are often diffi-
cult/impossible to implement in practice. For instance, the buyer does not know exactly how much
they will pay if they win the item and these auctions do not work for online settings where the buyers
arrive one-by-one [AM+06, HR09]. Thus, the last two decades has seen a lot of progress on under-
standing the power of simple but near-optimal mechanisms. In this regard, posted pricing mechanisms
have been identified to be very successful (see books and surveys [Rou16, Har13, CFH+19, Luc17]).
Here, the mechanism designer puts a (carefully chosen) price πi on the item and then the i-th
buyer takes the item if the item is not already sold and if they value it above πi. Posted pricing
mechanisms have several advantages: they are truthful since πi does not depend on the i-th buyer’s
value; the buyer knows exactly how much they pay on winning an item; and they work even for
online settings so the buyers do not have to be simultaneously present. Additionally, in the setting of
Myerson’s 1981 paper of independent buyer valuations, they are known to give a 2-approximation
to both the optimal welfare (which is usually called Prophet Inequality) and the optimal revenue
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[KS77, KS78, CHK07, CFPV19], as long as the posted prices are set correctly. This raises the main
question of the current paper:

How many samples are necessary from the value distributions of the buyers to find
near-optimal posted prices for single item? Is there a difference between indepen-
dent vs. correlated distributions or between welfare vs. revenue maximization?

Despite being a natural question, the tight sample complexity bounds for single item posted pricing
are unknown, both for independent/correlated and welfare/revenue settings.

1.1 Model

Before stating our results, we formally describe our model.

Posted pricing. There is single copy of an item. Buyers i = 1, . . . , n arrive in order, each with a
private value (willingness to pay) Vi for that item. Price πi is offered to buyer i, and the first buyer (if
any) for whom Vi ≥ πi end up buying the item, “winning” the auction. The objective is to maximize
either welfare, which is the value of the item to the winner, or revenue, which is the price paid by the
winner.

Distributions and policies. We will assume that the vector of values V = (V1, . . . , Vn) is drawn
from an unknown but fixed distribution D over [0, 1]n. If each Vi is drawn independently from some
marginal distribution Di, then D is called a product distribution, written as D = D1 × · · · ×Dn.
Meanwhile, posted pricing policies are defined by a vector of prices π = (π1, . . . , πn) that must be
fixed before the first buyer arrives, and possibly restricted to some subclass Π. The objective of policy
π under buyer values V is denoted by π(V), which equals Vargmin{i:πi≤Vi} and πargmin{i:πi≤Vi}
for the welfare and revenue objectives respectively, understood to be 0 if the item is not sold.
We (abusively) let π(D) := EV∼D[π(V)] denote the expected objective of π, and let Π(D) :=
supπ∈Π π(D) denote the best expected objective of a policy in Π knowing D.

Note that if we are given the product distribution on buyer values, the optimal policy (for either
objective) can be easily computed using dynamic programming [CFPV19]. Consequently, for product
distributions we consider the full policy class Π = [0, 1]n, and omit the dependence on Π.

Learning problem. A learning algorithm takes as input samples V that are drawn independently and
identically distributed (IID) from the unknown distribution D and an error parameter ε ∈ (0, 1), and
seeks to return a policy π ∈ Π that satisfies π(D) ≥ Π(D)− ε, which is called an ε-approximation.
Given a failure probability δ ∈ (0, 1), the sample complexity is the minimum number of samples
required for there to exist a learning algorithm that, under any distribution D, returns an ε-additive
approximation with probability at least 1− δ, noting that the randomness is over both the samples
and any random bits in the algorithm. The sample complexity and learning algorithm will depend on
the problem variant, defined by the objective (welfare or revenue), any parameters of the policy class
Π, and whether D is restricted to be a product distribution or not. The sample complexity will also
depend on the parameters ε, δ > 0.

1.2 Our Contributions to Posted Pricing for Product Distributions

The study of sample complexity for posted pricing goes back to at least the seminal work of Kleinberg
and Leighton [KL03] who study revenue maximization for selling a single item to a single buyer
(welfare maximization is trivial for single buyer since we just allocate the item by setting 0 price). For
the general posted pricing problem with n buyers, the best known sample complexity bounds were due
to Guo et al. [GHTZ21], who showed that Õ(n/ε2) samples suffice from each buyer’s distribution for
both welfare and revenue maximization objectives. Although there is a simple Ω(1/ε2) lower bound
for both welfare and revenue maximization settings, prior to our work it was unclear if polynomial
dependency on the number of buyers n is necessary.

Our first result for product distribution shows that for welfare maximization using posted pricing
(a.k.a. prophet inequality), the sample complexity is independent of the number of buyers n.

Theorem 1 (proved in Subsection 2.1). For product distributions, the sample complexity of welfare
maximization is O(1/ε2 · log2(1/δ)).
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Proof sketch. We start by constructing the product empirical distribution using the samples, where
for each i we take the uniform distribution on the Õ(1/ε2) samples and then take the product
distribution for different i. Our main result is that the optimal policy (dynamic programming
solution) on this product empirical distribution is an ε-approximation with high probability. Although
one could use standard concentration bounds to bound the gap between the learned and optimal
thresholds, such arguments lose a poly(n) factor. This is because the difference between successive
thresholds is bounded by 1, so naïvely the total variance of n thresholds could be Ω(n). Our main
idea is to instead study a martingale that adds up the errors made in the dynamic programming
solution. This way, too high values for one buyer and too low values for another buyer balance each
other. On this martingale, we use Freedman’s inequality (which is a martingale variant of Bernstein’s
inequality), which allows us to bound the total variance in terms of conditional variances. A careful
application of another concentration bound allows us to bound these conditional variances in terms of
the change in the optimal value, whose sum is always at most 1. This latter concentration bound is
what causes the additional factor of log(1/δ) in the sample complexity.

Our second result for product distribution shows a separation between welfare and revenue maxi-
mization using posted pricing, by proving that the Õ(n/ε2) sample-complexity result of [GHTZ21]
for revenue maximization is tight up to log factors.

Theorem 2 (proved in Subsection 2.2). For revenue maximization on product distributions, any
learning algorithm requires Ω( n

ε2 ) samples to return an ε-additive approximation with probability
greater than 6/7.

Proof sketch. We construct for each buyer i two possible value distributions that add the same
amount (roughly 1

n ) to the value-to-go of the optimal dynamic program. However, these distributions
have different optimal prices, and making a mistake (choosing an incorrect price) in isolation loses
roughly ε

n value. Although these mistakes accumulate in a non-linear fashion, we show that making
M mistakes must lose in total Ω( εM

2

n2 ). Finally, these value distributions have probabilities on the
scale of 1±ε

n with the same supports (essentially, only 1/n of samples provide information), which
means that Ω( n

ε2 ) samples are needed to avoid making a constant fraction of mistakes.

1.3 Our Contributions to Posted Pricing for Correlated Distributions

Independence among buyer valuations can be a strong modeling assumption for many applications.
Although for arbitrary correlated distributions the optimal policy is not learnable, one could hope
to learn the best policy in the class of all posted pricing policies. A recent work of Balcan et al.
[BDD+21] can be applied to this setting to show that Õ(n/ε2) samples are sufficient to learn ε-
optimal posted pricing. As discussed in Theorem 2, this linear in n dependency is necessary for
revenue maximization, even for product distributions. Our first observation is that for correlated
distributions, we need to lose this factor even for welfare maximization.

Theorem 3 (corollary of Theorem 5). For welfare maximization with correlated buyers, any learning
algorithm requires Ω( n

ε2 ) samples to return an ε-additive approximation with constant probability.

Given this lower bound, a natural next question is to consider the subclass of posted pricing policies
where the algorithm is only allowed to change its threshold at a small number of given locations. Can
we now remove the linear in n dependency from sample complexity? The motivation to study this
class comes from posted pricing applications where it is not possible for the algorithm designer to
update the prices at each time step, e.g., due to business constraints.

Formally, for S ⊆ {2, . . . , n}, we say that posted pricing policy π respects change-points S if πi can
differ from πi−1 only when i ∈ S. We let ΠS denote the class of all policies that respect change-
points S, noting that policies in Π(∅) post a static price for all buyers, and Π({2, . . . , n}) = [0, 1]n.
Our following result shows that one can obtain sample complexity that is independent of n, depending
only on the size of S.

Theorem 4 (proved in Subsection 3.1). For correlated distributions, the sample complexity of welfare
or revenue maximization is O

( (1+|S|) log(1+|S|)+log(1/δ)
ε2

)
when the policy is restricted to ΠS , for any

S ⊆ {2, . . . , n}.
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Proof sketch. By existing results in learning theory, it suffices to bound the pseudo-dimension
of ΠS . This will boil down to understanding the structure of “good sets”, which are sets of the
form {π ∈ ΠS : π(v) ≥ z}, for some input v and some target z. We will show that for a natural
parameterization of ΠS , any good set can be expressed as the union and intersection of O(|S|+ 1)
halfspaces, which implies the pseudo-dimension of ΠS is O((|S| + 1) log(|S| + 1)) by a result
of [BDD+21]. This bound on the pseudo-dimension translates to the above sample complexity bound.

The learning algorithm which achieves the sample complexity bound in Theorem 4 is simply sample
average approximation (SAA), which returns the policy in ΠS with the highest objective value
averaged over the samples. SAA can be computed in time O(Tn(Tn)1+|S|). This is because there
are 1 + |S| prices to decide, each of which can take Tn possible values (one for each realized value
in the T samples of length n), and evaluating each combination of prices over each of the T samples
takes runtime linear in n. We leave as an open question whether there is a more efficient algorithm.

Finally, we complement our sample complexity upper bounds for correlated distributions by giving
matching lower bounds (up to polylogs).

Theorem 5 (proved in Appendix A.5). For welfare or revenue maximization on correlated distribu-
tions, a learning algorithm requires Ω( 1+|S|

ε2 ) samples to return an ε-additive approximation with
constant probability, when restricted to the policy class ΠS for any S ⊆ {2, . . . , n}.

Proof sketch. In the construction for Theorem 5, on each trajectory exactly one of the 1 + |S|
decision points (randomly selected) will be relevant, essentially diluting the samples by a factor of
1 + |S| and leading to a lower bound of Ω( 1+|S|

ε2 ).

1.4 Further Related Work

In 2007, Hajiaghayi et al. [HKS07] discovered connections between auction design and posted pricing
via prophet inequalities. Since then, there is a long line of work on understanding the power of posted
pricing for selling multiple items to combinatorial buyers [CMS10, FGL15, DKL20, AKS21, CC23].
For single item revenue maximization with known distributions, Correa et al. [CFPV19] showed the
equivalence of welfare and revenue maximization objectives for single item posted pricing.

For background on sample complexity, we suggest Wainwright’s excellent textbook [Wai19]. Sample
complexity of auction design has been greatly studied; e.g., see [KL03, CR14, MR16]. We refer
the readers to Guo et al. [GHZ19], who recently resolved single item revenue maximization in the
offline setting, for an overview of the literature. In [GHTZ21], Guo et al. generalized their techniques
for revenue maximization over product distributions to all “strongly monotone” problems, which
includes posted pricing for welfare and revenue maximization.

Recently, there is also a lot interest in learning auctions in limited feedback models like bandit and
pricing queries [GKSW24, SW24, LSTW23]. We should note that sample complexity of optimal
stopping (equivalent to our welfare maximization problem) has been previously studied in [GM22],
who analyze linear stopping rules in a contextual setting. Our application of techniques from
[BDD+21] to online algorithms over correlated sequences is also similar in spirit to some results
from [XMX24], who study a different application of inventory optimization.

Another related but tangential line of work focuses on prophet inequalities with samples [AKW14,
RWW, CDFS22, CDF+22, DKL+24]. The key distinction in these works is that their benchmark is
the expected hindsight optimum, rather than the optimal online policy. Notably, any online algorithm
incurs at least a factor of 2 loss compared to the hindsight optimum, even in the case of single-item
prophet inequalities. As a result, this line of research aims to achieve O(1)-approximation guarantees,
rather than the sublinear regret guarantees pursued in the current paper. Furthermore, their techniques
differ significantly, as they often assume unbounded distributions. Finally, there is also work that
explores the (non-)robustness of algorithms for the prophet inequality problem to inaccuracies in the
distributions [DK19] and to dependencies in distributions [ISW20, LPS24].
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2 Product Distributions

In this section we first prove our improved upper bound on the sample complexity of welfare for
product distributions, and then prove a new lower bounds on the sample complexity of revenue for
product distributions.

2.1 Positive Result for Welfare: Proof of Theorem 1

The reward of the optimal policy is given by the following backward induction: r∗n+1 = 0 and
r∗i = E

[
max{r∗i+1, Vi}

]
= E

[
(Vi − r∗i+1)

+
]
+ r∗i+1. It sets πi = r∗i+1.

When we do not know the distributions but only have T samples from each of them, we can
consider the optimal policy on the product empirical distribution, which corresponds to replacing the
expectations in the above definitions by the empirical average. That is, we will analyze the policy that
sets πi = r̂i+1, where r̂i is defined recursively by r̂n+1 = 0, r̂i = 1

T

∑T
t=1(V

(t)
i − r̂i+1)

+ + r̂i+1.

Let ri be the expected reward of this policy when starting with the i-th arrival. In order to prove
the theorem, it is sufficient to show that with probability at least 1 − δ, we have r1 ≥ r∗1 − ϵ if
T ≥ (5 ln(2e/δ)/ϵ)2 for any choices of ϵ, δ ∈ (0, 1).

Let us define ηi = r̂i − E [max{r̂i+1, Vi}] or equivalently as

ηi =
1
T

∑T
t=1(V

(t)
i − r̂i+1)

+ − E [(Vi − r̂i+1)
+] .

That is, ηi denotes the error introduced by using the empirical distribution for buyer i instead of the
actual one. Note that ηi can both be positive and negative.

The two key steps of our proof are as follows. We first show that

r1 ≥ r∗1 − 2maxj≥1

∣∣∣∑j
i=1 ηi

∣∣∣ . (1)

This inequality holds point-wise, that is for any samples drawn. Then, we show that for T ≥
(5 ln(2e/δ)/ϵ)2 samples, we have maxj≥1

∣∣∣∑j
i=1 ηi

∣∣∣ ≤ ϵ with probability at least 1− δ.

In order to show (1), we first lower bound r1 in terms of r̂1.

Lemma 1. r1 ≥ r̂1 −maxj∈{0,...,n}
∑j

i=1 ηi.

Proof. Let j ∈ {0, 1, . . . , n} be the smallest index for which rj+1 ≥ r̂j+1, which exists because
0 = rn+1 ≥ r̂n+1 = 0. Note that we have ri < r̂i for all 1 ≤ i ≤ j. We rewrite r1 as

r1 = Pr [V1 < r̂2] r2 + Pr [V1 ≥ r̂2]E [V1 | V1 ≥ r̂2] = r2 + E [(V1 − r2)1V1≥r̂2 ] .

Repeating this argument,

r1 =
∑j−1

i=1 E[(Vi − ri+1)1Vi≥r̂i+1
] + E[Vj1Vj≥r̂j+1

+ rj+11Vj<r̂j+1
].

Inductively, we can also establish that

r̂1 =
∑j−1

i=1
1
T

∑
t(V

(t)
i − r̂i+1)

+ + 1
T

∑
t max{V (t)

j , r̂j+1}.

Combining these two equalities,

r̂1 − r1 =
∑j−1

i=1

(
1
T

∑T
t=1(V

(t)
i − r̂i+1)

+ − E[(Vi − ri+1︸︷︷︸
<r̂i+1

)1Vi≥r̂i+1
]
)

+ 1
T

∑T
t=1 max{V (t)

j , r̂j+1} − E[Vj1Vj≥r̂j+1
+ rj+1︸︷︷︸

≥r̂j+1

1Vj<r̂j+1
]

≤
∑j−1

i=1

(
1
T

∑T
t=1(V

(t)
i − r̂i+1)

+ − E[(Vi − r̂i+1)
+]
)
+ 1

T

∑T
t=1 max{V (t)

j , r̂j+1} − E[max{Vj , r̂j+1}]

=
∑j

i=1 ηi.

This implies r̂1 − r1 ≤ maxj∈{0,...,n}
∑j

i=1 ηi, completing the proof.
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A similar proof allows us to prove the following lemma.

Lemma 2. r̂1 ≥ r∗1 −maxj∈{0,...,n}(−
∑j

i=1 ηi).

Proof. Let j ∈ {0, 1, . . . , n} be the smallest index for which r̂j+1 ≥ r∗j+1, which exists because
0 = r̂n+1 ≥ r∗n+1 = 0. Note that we have r̂i < r∗i for all 1 ≤ i ≤ j, allowing us to derive

r∗1 − r̂1 =

j−1∑
i=1

(
E[(Vi − r∗i+1︸︷︷︸

>r̂i+1

)+]− 1

T

T∑
t=1

(V
(t)
i − r̂i+1)

+
)

+ E[max{Vj , r
∗
j+1︸︷︷︸

≤r̂j+1

}]− 1

T

T∑
t=1

max{V (t)
j , r̂j+1}

≤
j−1∑
i=1

(
E[(Vi − r̂i+1)

+]− 1

T

T∑
t=1

(V
(t)
i − r̂i+1)

+
)

+ E[max{Vj , r̂j+1}]−
1

T

T∑
t=1

max{V (t)
j , r̂j+1}

= −
j∑

i=1

ηi.

This implies r∗1 − r̂1 ≤ maxj∈{0,...,n}(−
∑j

i=1 ηi), completing the proof.

The last two lemmas imply (1). Thus, we need to bound maxj |
∑j

i=1 ηi| to complete the proof.

Lemma 3. For every ϵ, δ > 0, with probability at least 1 − δ, we have maxj |
∑j

i=1 ηi| ≤ ϵ if
T ≥ (5 ln(2e/δ)/ϵ)2.

Proof. Observe that∣∣∣∑j
i=1 ηi

∣∣∣ = ∣∣∣∑n
i=1 ηi −

∑n
i=j+1 ηi

∣∣∣ ≤ |
∑n

i=1 ηi|+
∣∣∣∑n

i=j+1 ηi

∣∣∣ ≤ 2maxτ |
∑n

i=τ ηi| ,

so it suffices to show that maxτ |
∑n

i=τ ηi| ≥ ϵ/2 with probability at most δ. Reversing the quantity
of interest to maxτ |

∑n
i=τ ηi| allows us to define a martingale, and use Freedman’s inequality, which

is a martingale version of Bernstein’s inequality.

Lemma 4 (Freedman, Theorem 1.6 in [Fre75]). Consider a real-valued sequence {Xt}t≥0 such
that X0 = 0 and E [Xt+1 | Xt, Xt−1, . . . , X0] = 0 for all t. Assume that the sequence is uniformly
bounded, i.e., |Xt| ≤ M almost surely for all t. Now define the predictable quadratic variation
process of the martingale to be Wt =

∑t
j=0 E

[
X2

j

∣∣ Xj−1, . . . , X0

]
for all t ≥ 1. Then for all

ℓ ≥ 0 and σ2 ≥ 0, and any stopping time τ , we have

Pr
[∣∣∣∑τ

j=0 Xj

∣∣∣ ≥ ℓ and Wτ ≤ σ2
]
≤ 2 exp

(
− ℓ2/2

σ2+Mℓ/3

)
.

A corollary of Freedman’s inequality is that Pr
[∣∣∣∑τ

j=0 Xj

∣∣∣ ≥ ℓ
]

≤ 2 exp
(
− ℓ2/2

σ2+Mℓ/3

)
+

Pr
[
Wτ ≤ σ2

]
. In order to use Freedman’s inequality, we consider nT random variables

X1, . . . , XnT , where XiT+t = 1
T

(
(V

(t)
n−i − r̂n−i−1)

+ − E
[
(V

(t)
n−i − r̂n−i−1)

+
])

for i ∈
{0, . . . , n− 1} and t ∈ {1, . . . , T}. By this definition,

ηi =
∑T

t=1 X(n−i)T+t

because V
(t)
n−i and Vn−i are identically distributed and independent of r̂n−i−1. Moreover, for all j,

E [Xj | X1, . . . , Xj−1] = 0 and |Xj | ≤
1

T
.
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Let E be the event that
∑nT

j=1 E
[
X2

j

∣∣ X1, . . . , Xj−1

]
> σ2 := e

e+1
ln(2e/δ)

T . By Freedman’s
inequality, using T ≥ (5 ln(2e/δ)/ϵ)2, we have

Pr
[
maxτ |

∑n
i=τ ηi| ≥

ϵ
2

]
≤ Pr

[
maxτ

∣∣∣∑τ
j=1 Xj

∣∣∣ ≥ ϵ
2

]
≤ 2 exp

(
− ϵ2/8

σ2+ ϵ
6T

)
+ Pr [E ]

≤ 2 exp

−

(
5 ln(2e/δ)√

T

)2
/8

e
e+1

ln(2e/δ)
T + 5 ln(2e/δ)

6T
√
T

+ Pr [E ]

= 2 exp
(
− 25

8e
e+1 + 40

6
√
T

ln(
2e

δ
)
)
+ Pr [E ]

≤ 2 exp
(
−(1) ln( 4δ )

)
+ Pr [E ] = δ

2 + Pr [E ] .

It remains to show that Pr [E ] ≤ δ
2 . To this end, we observe that for any i ∈ {0, . . . , n − 1} and

t ∈ {1, . . . , T},

E
[
X2

iT+t

∣∣ X1, . . . , XiT+t−1

]
= 1

T 2E
[(

(V
(t)
n−i − r̂n−i−1)

+ − E
[
(V

(t)
n−i − r̂n−i−1)

+
])2 ∣∣∣∣ X1, . . . , XiT+t−1

]
≤ 1

T 2E
[
(V

(t)
n−i − r̂n−i−1)

+
∣∣∣ X1, . . . , XiT+t−1

]
= 1

T 3

∑T
t′=1 E

[
(V

(t′)
n−i − r̂n−i−1)

+
∣∣∣ X1, . . . , XiT

]
=

1

T 2
E [r̂i − r̂i+1 | r̂i+1, . . . , r̂n] ,

where the inequality uses E [Y ] ≥ E
[
Y 2
]
≥ E

[
Y 2
]
−(E [Y ])2 = E

[
(Y − E [Y ])2

]
for any random

variable Y with 0 ≤ Y ≤ 1 almost surely. In total, we have∑nT
j=1 E

[
X2

j

∣∣ X1, . . . , Xj−1

]
≤ 1

T

∑n
i=1 E [r̂i − r̂i+1 | r̂i+1, . . . , r̂n] .

As
∑n

i=1(r̂i − r̂i+1) = r̂1 ≤ 1 almost surely, we have by Lemma 5 (see below) that
n∑

i=1

E [r̂i − r̂i+1 | r̂i+1, . . . , r̂n] ≥
e

e− 1
ln

(
2e

δ

)
with probability at most δ

2 . Therefore, we have

Pr [E ] ≤ Pr

[
n∑

i=1

E [r̂i − r̂i+1 | r̂i+1, . . . , r̂n] ≥
e

e− 1
ln

(
2e

δ

)]
≤ δ

2
.

Lemma 5. Let Y1, Y2, . . . , Yn be a sequence of (not necessarily independent) random variables in
[0, 1] such that

∑n
i=1 Yi ≤ 1 almost surely. Then, for any δ > 0, with probability at most δ, we have∑n

i=1 E [Yi | Y1, . . . , Yi−1] ≥ e
e−1 ln

(
e
δ

)
.

We defer the proof of Lemma 5 to the appendix.

2.2 Negative Result for Revenue: Proof of Theorem 2

Each buyer i = 1, . . . , n has a marginal value distribution that could be DH
i (“High”) or DL

i (“Low”):

DH
i =


1
2 + n−i

4n w.p. 1
2n

1
4 + n−i

4n w.p. 1
2n − 16 ε

n

0 w.p. 1− 1
n + 16 ε

n

DL
i =


1
2 + n−i

4n w.p. 1
2n − 8 ε

n
1
4 + n−i

4n w.p. 1
2n + 8 ε

n

0 w.p. 1− 1
n

which are valid distributions as long as ε ≤ 1/32 and n ≥ 2. All 2n configurations of whether each
buyer has the High or Low distribution are possible.
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Optimal policy Fix any configuration of whether each buyer has the High or Low distribution. Let
r∗i denote the expected revenue to be earned under the optimal dynamic program, if buyer i is about
to arrive and the item is not yet sold. We show inductively that r∗i = n+1−i

4n . By definition r∗n+1 = 0,
establishing r∗i = n+1−i

4n for i = n+ 1. Now consider i = n, . . . , 1, and assume r∗i+1 = n−i
4n . Note

that it is better to offer one of the prices 1
2 + n−i

4n or 1
4 + n−i

4n than to reject the buyer by offering a
price of 1, because both of these prices are greater than r∗i (by the induction hypothesis). Thus, if
buyer i has distribution DH

i , then

r∗i = max
{
( 12 + n−i

4n ) 1
2n + r∗i+1(1− 1

2n ), (
1
4 + n−i

4n )( 1n − 16 ε
n ) + r∗i+1(1− 1

n + 16 ε
n )
}

= max
{

1
2 · 1

2n ,
1
4 (

1
n − 16 ε

n )
}
+ n−i

4n = n+1−i
4n .

Similarly, if buyer i instead has DL
i , then

r∗i = max
{

1
2 (

1
2n − 8 ε

n ),
1
4 · 1

n

}
+ n−i

4n = n+1−i
4n .

In either case, we have r∗i = n+1−i
4n , completing the induction. Note that r∗1 = 1/4.

Bounding a policy’s objective by its number of mistakes Now, consider an arbitrary policy
π = (π1, . . . , πn) decided by the learning algorithm. Let ri denote its expected revenue earned
if buyer i is about to arrive and the item is not yet sold (under the true configuration of buyer
distributions). We can without loss assume π to lie in { 1

2 + n−i
4n , 1

4 + n−i
4n }n, because both prices are

higher than ri+1, the expected revenue from rejecting (both prices are in fact higher than r∗i+1, an
upper bound on ri+1). We say that the policy makes a mistake for buyer i if either πi =

1
4 + n−i

4n

when i has the High distribution, or πi =
1
2 + n−i

4n when i has the Low distribution. If the policy
makes a mistake for i, then we have

ri − ri+1 ≤ max
{
( 14 + n−i

4n − ri+1)(
1
n − 16 ε

n ), (
1
2 + n−i

4n − ri+1)(
1
2n − 8 ε

n )
}

= 1
4n − 4 ε

n + (n−i
4n − ri+1)(

1
n − 16 ε

n );

on the other hand, if the policy does not make a mistake for i, then we have

ri − ri+1 ≤ max
{
( 12 + n−i

4n − ri+1)
1
2n , (

1
4 + n−i

4n − ri+1)
1
n

}
= 1

4n + (n−i
4n − ri+1)

1
n .

Hence, if the policy makes M mistakes for some M ∈ {1, . . . , n}, then

r1 =
∑n

i=1(ri − ri+1) ≤ 1
4 −M 4ε

n +
∑n

i=1(
n−i
4n − ri+1)

1
n .

Now, observe that n−i
4n − ri+1 = r∗i+1 − ri+1 ≤ 4ε

n min{n− i,M}, because the loss from making
a mistake is at most 4 ε

n , and starting from buyer i + 1, the number of mistakes can be at most
n− (i+ 1) + 1 = n− i and also at most M . Therefore,

r1 ≤ 1
4 −M 4ε

n +
(
(n−M) 4εn M + 4ε

n (M − 1) + · · ·+ 4ε
n

)
1
n

= 1
4 −M 4ε

n (1− n−M
n − M−1

2n ) = 1
4 − 2εM

n (M+1
n ).

Recalling that r∗1 = 1/4, this shows the additive error is Ω(ε) as long as the fraction of mistakes
M/n is a constant.

Computing the Hellinger distance We first analyze the Hellinger distance H(DH
i , D

L
i ) between

(a single observation of) DH
i vs. DL

i , which we note does not depend on the buyer i. The squared
Hellinger distance can be bounded using 1−H2(DH

i , D
L
i )

=
√

1
2n (

1
2n − 8 ε

n ) +
√
( 1
2n + 8 ε

n − 24 ε
n )(

1
2n + 8 ε

n ) +
√
(1− 1

n + 16 ε
n )(1−

1
n )

≥
(

1
2n − 4ε

n − (8 ε
n )2

1
2n

)
+
(

1
2n − 4ε

n − ( 24ε
n )2

1
2n+ 8ε

n

)
+
(
1− 1

n + 8ε
n − ( 16ε

n )2

1− 1
n

)
= 1−O( ε

2

n ),

where the inequality applies Lemma 6 below to each square root. This shows that H2(DH
i , D

L
i ) =

O( ε
2

n ), and the squared Hellinger distance is additive across independent samples. Using the fact that
the Total Variation distance is upper-bounded by

√
2 times the Hellinger distance [GS02], we see that

the Total Variation distance between T independent samples of DH
i vs. T independent samples of

DL
i is O(

√
T
n ε). The proof of Lemma 6 is deferred because it is elementary.

Lemma 6. Suppose C ∈ (0, 1) and x ∈ [− 3
4C,

3
4C]. Then

√
C(C + x) ≥ C + x

2 − x2

C .
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Completing the proof of Theorem 2 Suppose the distribution of each buyer is equally likely to be
High or Low, independently across buyers. Fix any learning algorithm and the constant probability
1/2. By the computation of Hellinger distance above, if the number of samples T is less than C n

ε2

for some constant C, then for any buyer i, the Total Variation distance between the samples observed
under DH

i vs. DL
i is at most 1/2. (C depends on the choice of constant 1/2.) This means that w.p. at

least 1− 1/2, the price πi decided by the learning algorithm cannot depend on whether buyer i had
distribution DH

i vs. DL
i , which means that there exists an adversarial choice of DH

i or DL
i for each

buyer i under which the probability of making a mistake for buyer i is at least (1− 1/2)/2 = 1/4.

Let M denote the (random) number of mistakes, under this adversarial configuration of whether each
buyer i has distribution DH

i or DL
i . We have that E[Mn ] ≥ 1/4. Although whether the algorithm

makes a mistake could be arbitrarily correlated across buyers i, applying M
n ≤ 1, we can employ

Markov’s inequality on the random variable 1− M
n to see that

P
[
(1− M

n ) ≥ 7/8
]
≤ 3/4

7/8 = 6
7 .

The LHS equals P[Mn ≤ 1
8 ] = 1−P[Mn > 1

8 ], and hence 1
7 ≤ P[Mn > 1

8 ]. We have shown that unless
T = Ω( n

ε2 ), there is probability at least 1/7 of making a constant fraction of mistakes, in which case
we showed above that the additive error would be Ω(ε). This completes the proof of Theorem 2.

3 Correlated Distributions

In this section we prove our upper bound on the sample complexity of welfare/revenue maximization
for correlated buyer distributions. We show nearly matching lower bounds in Appendix A.5.

3.1 Positive Result for Welfare and Revenue: Proof of Theorem 4

To bound the sample complexity of posted pricing for correlated distributions, it suffices to bound
the pseudo-dimension of the policy class ΠS . We use the same approach for both the welfare and
revenue objectives. By standard learning theory results [BBL03], bounds on the pseudo-dimension
translate to bounds on the sample complexity as follows.
Theorem 6. Let PDim(ΠS) denote the pseudo-dimension of ΠS . For any ϵ > 0, any δ ∈ (0, 1) and
any distribution D over [0, 1]n, T = O( 1

ϵ2 (PDim(ΠS) + log 1
δ )) samples are sufficient to ensure

that with probability at least 1− δ over the draw of samples (v1, . . . ,vT ) ∼ DT , for all π ∈ ΠS ,∣∣∣ 1T ∑T
t=1 π(vt)− π(D)

∣∣∣ ≤ ϵ.

We will show that PDim(ΠS) = O(k log k), where k = |S| + 1. This together with the above
theorem immediately implies that Theorem 4 holds for the sample average approximation algorithm.

Let S = {i1, i2, i3, . . . , ik−1}, where 1 < i1 < i2 < . . . < ik−1. For each j = 1, 2, . . . , k,
let Ij = {ij−1, . . . , ij − 1}, with the convention that i0 = 1 and ik = n + 1. In other words,
I1, I2, . . . , Ik are consecutive intervals that partition [n], and ΠS is the class of policies that offers
every customer in Ij the same price. Note that every policy π ∈ ΠS can be parameterized by k prices
ρ = (ρ1, ρ2, . . . , ρk), where ρj is the price offered to customers in Ij . In the rest of this proof, we
will use πρ to denote the policy in ΠS parameterized by ρ.

By the definition of pseudo-dimension,

PDim(ΠS) = VCdim(Π̃S), (2)

where Π̃S := {(v, z) 7→ 1{πρ(v) ≥ z} : ρ ∈ Rk}. Let Π̃∗
S denote the dual class of Π̃S , so

Π̃∗
S := {ρ 7→ 1{πρ(v) ≥ z} : v ∈ [0, 1]n, z ∈ R} .

We will use a result from [BDD+21] to bound the VC dimension of Π̃S . We state this result below
in Definition 1 and Theorem 7. This result essentially says that the pseudo-dimension of the primal
class is bounded if the dual class is well-structured. Here, “well-structured” essentially means that
the domain can be partitioned into pieces defined by a small number of boundary functions, and the
function is simple on each piece.
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Definition 1 (Definition 3.2 in [BDD+21]). A function class H ⊆ RY that maps a domain Y to
R is (F ,G, l)-piecewise decomposable for a class G ⊆ {0, 1}Y of boundary functions and a class
F ⊆ RY of piece functions if the following holds: for every h ∈ H, there are l boundary functions
g(1), . . . , g(l) ∈ G and a piece function fb ∈ F for each bit vector b ∈ {0, 1}l such that for all
y ∈ Y, h(y) = fby (y) where by = (g(1)(y), . . . , g(l)(y)) ∈ {0, 1}l.

The main theorem in [BDD+21] states that if the dual class is (F ,G, l)-piecewise decomposable,
then the pseudo-dimension of the primal class is bounded.
Theorem 7 (Theorem 3.3 in [BDD+21]). Suppose that the dual function class U∗ is (F ,G, l)-
piecewise decomposable with boundary functions G ⊆ {0, 1}U and piece functions F ⊆ RU . The
pseudo-dimension of U is bounded as follows:

PDim(U) = O((PDim(F∗) + VCdim(G∗)) ln(PDim(F∗) + VCdim(G∗)) + VCdim(G∗) ln l).

We now apply Theorem 7 to bound the VC dimension of Π̃S .5 To do so we must show that the dual
class Π̃∗

S is (F ,G, l)-piecewise decomposable for “nice” classes F and G. We will show that for both
the welfare and revenue objectives, we can take F to be the family of constant functions and G to
be the family of axis-aligned halfspaces. This will follow from the below lemma, whose proof is
deferred to the Appendix for space reasons.
Lemma 7. Let v ∈ [0, 1]n and let z ∈ R. Let G(v, z) = {ρ ∈ Rk : πρ(v) ≥ z}. For both the
welfare and revenue objectives, there are l1, u1, · · · , lk, uk ∈ R ∪ {±∞} such that

G(v, z) =
⋃k

j=1 (u1,∞)× · · · × (uj−1,∞)× (lj , uj ]× Rk−j . (3)

Corollary 1. Π̃∗
S is (F ,G, l)-piecewise decomposable, where F is the set of constant functions, G is

the set of axis-aligned halfspaces, and l = 2(|S|+ 1).

Proof. Consider a function h ∈ Π̃∗
S . By definition of Π̃∗

S , there exist v ∈ [0, 1]n and z ∈ R such that
h(ρ) = 1{πρ(v) ≥ z}. By Lemma 7, there are l1, u1, . . . , lk, uk such that

{ρ ∈ Rk : h(ρ) = 1} =
⋃k

j=1 (u1,∞)× · · · × (uj−1,∞)× (lj , uj ]× Rk−j .

For each j ∈ [k], let Lj = {ρ ∈ Rk : ρj > lj} and Uj = {ρ ∈ Rk : ρj ≤ uj}. Note that Lj and Uj

are axis-aligned halfspaces, and

{ρ ∈ Rk : h(ρ) = 1} =
⋃k

j=1 Ū1 ∩ Ū2 ∩ · · · ∩ Ūj−1 ∩ Lj ∩ Uj .

Therefore, in the definition of (F ,G, l)-piecewise decomposable, we may take the boundary functions
to be the 2k functions corresponding to the halfspaces L1, U1, . . . , Lk, Uk. On any given piece
defined by these boundary functions, h is a constant function (equal to either 0 or 1).

For F the set of constant functions and G the set of axis-aligned halfspaces in Rk, it is easy to check
that PDim(F∗) = 0 and VCdim(G∗) = k. Combining Corollary 1 with Theorem 7, we get that

VCdim(Π̃S) = O (k ln k + k ln 2k) = O(k ln k).

This completes the proof of Theorem 4.

Remark. If we directly apply Theorem 7 from [BDD+21] to bound PDim(ΠS), then we would get

• A O(k ln k) pseudo-dimension bound for the revenue objective;
• A O(k ln(kn)) pseudo-dimension bound for welfare objective.

In particular, the bound for welfare would grow with n. This dependence on n is in fact unavoidable
if one works with ΠS directly, because for instances like v = ( 1n ,

2
n , . . . , 1), the dual function

corresponding to v is piecewise constant with Θ(n) pieces, even if k = 1. This is why our Corollary 1
focuses on the indicator functions Π̃∗

S instead. Regardless, both the bounds for welfare and revenue
require our Lemma 7 that analyzes the problem-specific structure of the “good sets”.

5Note Theorem 7 is stated to bound the pseudo-dimension, but the pseudo-dimension coincides with the VC
dimension for function classes consisting of {0, 1}-valued functions.
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A Appendix

A.1 Proof of Lemma 2

Proof. Now, consider the smallest j so that r̂j ≥ r∗j . Again, we know such a j exists because
0 = r̂n+1 ≥ r∗n+1 = 0. We claim that that r̂1 ≥ r∗1 +min{

∑j−1
i=1 ηi, 0}.

Observe that there is nothing to be shown if j = 1 because then r̂1 ≥ r∗1 . So, let’s consider the case
that j > 1. We can now write r̂1 as a telescoping sum

r̂1 = r̂j−1 +
∑j−2

i=1 (r̂i − r̂i+1) . (4)

Since r̂j ≥ r∗j , we have

r̂j−1 = r̂j +
1
T

∑T
t=1(V

(t)
j−1 − r̂j)

+ = r̂j + E [(Vj−1 − r̂j)
+] + ηj−1

= E [max{Vj−1, r̂j}] + ηj−1 ≥ E
[
max{Vj−1, r

∗
j }
]
+ ηj−1 = r∗j−1 + ηj−1 .

Observe that for i+ 1 < j, we have r̂i+1 < r∗i+1. Therefore

r̂i−r̂i+1 = 1
T

∑T
t=1(V

(t)
i −r̂i+1)

+ = E [(Vi − r̂i+1)
+]+ηi ≥ E

[
(Vi − r∗i+1)

+
]
+ηi = r∗i−r∗i+1+ηi .

So, in combination with (4),

r̂1 ≥ r∗j−1 + ηj−1 +
∑j−2

i=1 (r
∗
i − r∗i+1 + ηi) = r∗1 +

∑j−1
i=1 ηi .

A.2 Proof of Lemma 5

Ignoring constants, a slick proof of this lemma is via another application of Freedman’s inequality,
where we define a martingale Xi = Yi−E[Yi | Y1, . . . , Yi−1], and cut this martingale (stop) whenever
the sum of conditional variances exceeds log(1/δ). This bounds the sum of conditional variances by
log(1/δ), i.e. Wτ ≤ σ2 := log(1/δ) w.p. 1. Since the lemma is upper-bounding the probability of the
event that

∑
i Xi > log(1/δ), we can show that this probability is O(δ) by substituting ℓ = log(1/δ)

into Freedman’s inequality.

Below we give another, elementary proof of this lemma.

Proof. Let Z = 1 if
∑n

i=1 E [Yi | Y1, . . . , Yi−1] ≥ e
e−1 ln

(
e
δ

)
. By Markov’s inequality, we have

Pr

[
n∑

i=1

Yi ≤ 1 and Z = 1

]
= Pr

[
Ze−

∑n
i=1 Yi ≥ e−1

]
≤ E

[
Ze−

∑n
i=1 Yi

]
· e

Now, we have

E
[
Ze−

∑n
i=1 Yi

]
= E

[
Z

n∏
i=1

e−Yi

]
= E

[
E [Z | Y1, . . . , Yn]

n∏
i=1

E
[
e−Yi

∣∣ Y1, . . . , Yi−1

]]

For every single conditional expectation, we obtain by convexity

E
[
e−Yi

∣∣ Y1, . . . , Yi−1

]
≤ E

[
Yie

−1 + (1− Yi)
∣∣ Y1, . . . , Yi−1

]
= E

[
Yi(e

−1 − 1)
∣∣ Y1, . . . , Yi−1

]
+ 1

≤ exp
(
E [Yi | Y1, . . . , Yi−1] (e

−1 − 1)
)

.

Now, consider a fixed realization of Y1, . . . , Yn. This realization fully determines Z. If Z = 0, then

E [Z | Y1, . . . , Yn]

n∏
i=1

E
[
e−Yi

∣∣ Y1, . . . , Yi−1

]
= 0 .

Otherwise, with Z = 1, we have

E [Z | Y1, . . . , Yn]

n∏
i=1

E
[
e−Yi

∣∣ Y1, . . . , Yi−1

]
≤ exp

(
n∑

i=1

E [Yi | Y1, . . . , Yi−1] (e
−1 − 1)

)
≤ δ

e
.
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So, we have an upper bound of δ
e regardless of the realization. Taking an expectation, we get

E

[
E [Z | Y1, . . . , Yn]

n∏
i=1

E
[
e−Yi

∣∣ Y1, . . . , Yi−1

]]
≤ δ

e
,

which implies Pr [
∑n

i=1 Yi ≤ 1 and Z = 1] ≤ E
[
Ze−

∑n
i=1 Yi

]
· e ≤ δ

ee = δ, completing the
proof.

A.3 Proof of Lemma 6.

Proof. Let f(x) =
√
C(C + x) = (C2 + Cx)1/2, which is a continuous function over x ∈

[− 3
4C,

3
4C]. We have f ′(x) = 1

2 (C
2 + Cx)−1/2C and f ′′(x) = − 1

4 (C
2 + Cx)−3/2C2, both of

which exist over x ∈ [− 3
4C,

3
4C]. Applying Taylor’s theorem around 0, we get

f(x) = f(0) + f ′(0)x+ f ′′(y)
2 x2 = C +

1

2
x− 1

8
(C2 + Cy)−3/2C2x2

≥ C + x
2 − 1

8 (C
2 + C(− 3

4C))−3/2C2x2 = C + x
2 − x2

C ,

where y lies between 0 and x and the inequality holds because y ≥ − 3
4C, completing the proof.

A.4 Proof of Lemma 7

If z ≤ 0 then G(v, z) = Rk, so we may take any values of l1, u1, . . . , lk, uk such that l1 = l2 =
· · · = lk −∞ and uk = ∞.

For the rest of the proof, assume z > 0. First, consider the welfare objective. We show the lemma
holds for lj and uj as follows:

Define lj to be −∞ if v(Ij)1 ≥ z, and otherwise to be max{v(Ij)1, . . . ,v(Ij)m−1}, where m is
the smallest index such that v(Ij)m ≥ z. (If v(Ij)m < z for all m, set lj = max(v(Ij)).)

Define uj to be max(v(Ij)).

Let G = {ρ ∈ Rk : πρ(v) ≥ z} and G′ =
⋃k

j=1 (u1,∞)× · · · × (uj−1,∞)× (lj , uj ]× Rk−j . To
show that G = G′, we’ll show G ⊆ G′ and G′ ⊆ G.

Case 1 (G ⊆ G′). If G = ∅ we are done, so assume otherwise. Let ρ ∈ G. Let j be the interval
such that the algorithm (using thresholds ρ) accepts a value in v(Ij). Since a value in interval j was
accepted, ρj ≤ max(v(Ij)) = uj . Also, since no value in the previous intervals were accepted,
ρi > ui for all i < j. Finally, we must have ρj > lj , since otherwise the accepted value will be less
than z. Thus ρ ∈ G′.

Case 2 (G′ ⊆ G). Let ρ ∈ G′. Then ρ ∈ (u1,∞)× · · · × (uj−1,∞)× (lj , uj ]× Rk−j for some j.
Since ρi > ui for all i < j, the algorithm using thresholds ρ does not accept any value in the intervals
i < j. Since ρj ∈ (lj , uj ], the definitions of lj and uj imply that a value in v(Ij) is accepted, and
this value is greater than or equal to z. Thus ρ ∈ G.

For revenue, the only difference is that we define lj to be min(z,max(v(Ij))). (uj is still defined to
be max(v(Ij)).) With these definitions of lj and uj , a very similar analysis shows that G = G′ in
the revenue case as well.

A.5 Proof of Theorem 5

We let S ′ ⊆ {1} ∪ S be a subset of decision points such that price πi can be freely chosen for all
i ∈ S ′. For welfare maximization we require i + 1 ∈ {1, . . . , n} \ S ′ for all i ∈ S ′, which can
achieved while ensuring |S ′| ≥ ⌊1+|S|

2 ⌋. Each decision point i ∈ S ′ has marginal value distribution(s)
that could be “High” or “Low”, separately for each decision point (i.e., all 2|S

′| combinations are
possible). For welfare maximization, they are defined as

• High: Vi = 1/2 with probability (w.p.) 1, Vi+1 = 1 w.p. 1/2 + ε, Vi+1 = 0 w.p. 1/2− ε;
• Low: Vi = 1/2 w.p. 1, Vi+1 = 1 w.p. 1/2− ε, Vi+1 = 0 w.p. 1/2 + ε.
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For revenue maximization, they are defined as

• High: Vi = 1 w.p. 1/2 + ε, Vi = 1/2 w.p. 1/2− ε;
• Low: Vi = 1 w.p. 1/2− ε, Vi = 1/2 w.p. 1/2 + ε.

The overall distribution over trajectories V is then correlated as follows. First, a decision point ı̃ ∈ S ′

is drawn uniformly at random. Then, Vı̃ (as well as Vı̃+1 in the case of welfare maximization) is
drawn according to the distributions above, depending on whether decision point ı̃ is High or Low.
All other buyer values are 0 on this trajectory.

Given this, only the prices for decision point ı̃ are relevant, which can without loss be restricted to
{1/2, 1}. The policy should optimize πi for each i ∈ S ′ as if ı̃ = i. For either welfare or revenue
maximization, the constructions above can be checked to satisfy the following properties:

1. Setting πi (and πi+1 in the case of welfare maximization) to 1 is optimal for High and earns
objective 1/2 + ε in expectation; setting to 1/2 is optimal for Low and earns objective 1/2;

2. Setting the wrong price earns expected objective 1/2 for High and 1/2−ε for Low, incurring
a loss of ε compared to optimal in both cases.

3. The High and Low distributions have the same support and probabilities that differ by 2ε.

We note that for welfare maximization, it does not matter whether πi+1 ∈ S , because the decision is
on whether to accept buyer i when Vi = 1/2.

Finally, a policy has additive error Ω(ε) as long as it has constant probability of setting the wrong
price for a decision point. Due to property 3. above, the policy needs Ω( 1

ε2 ) relevant observations
for a given decision point to avoid setting the wrong price for it with constant probability. However,
each sample contains a relevant observation for a given decision point only with probability 1/|S ′|,
so Ω( |S

′|
ε2 ) samples are necessary for the number of relevant observations to be Ω( 1

ε2 ) with high
probability. Because |S ′| ≥ ⌊ 1+|S|

2 ⌋, this completes the proof of Theorem 5.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction clearly reflect our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss in the related work section topics that are not in this paper’s scope.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
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Justification: We clearly state all the assumptions needed for our theorems, and all the proofs
are either in the body or the appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not contain experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: This paper does not contain experiments.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This paper does not contain experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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