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ABSTRACT

In this work, we introduce Token Condensation as Adaptation (TCA), a training-
free approach designed to mitigate distribution shifts encountered by vision-
language models (VLMs) during test-time inference. TCA bridges distribution
gaps at the patch level by condensing image tokens that exhibit low attentiveness
to the <cls> token. Recognizing the <cls> token may correspond to universal
concepts, TCA identifies and tracks the most reliable <cls> tokens that align
specifically with target classes from historical data streams. To achieve this, we
propose a context token reservoir (CTR), which retains tokens with the lowest
uncertainty as “anchors” to guide the preservation of class-relevant tokens during
inference. These anchors, in turn, act as token-level classifiers to correct VLM
predictions and improve visual-text alignment. Utilizing anchors sampled from
CTR, TCA condenses tokens through two operations: (1) pruning class-irrelevant
tokens that consistently rank low across all attention heads to reach cross-head
consensus on their irrelevance, and (2) merging the remaining class-ambiguous
tokens into representative centers using coreset selection, maintaining linear com-
putational complexity. As the first method to explore token efficiency in test-time
adaptation, TCA consistently demonstrates superior performance across cross-
dataset and out-of-distribution adaptation tasks, reducing GFLOPs by 12.2% to
48.9% while achieving accuracy improvements up to 21.4% against the strongest
baseline without introducing additional parameters.

1 INTRODUCTION

Online test-time adaptation (TTA) (Wang et al., 2023c) has emerged as a promising strategy to han-
dle distribution shifts encountered during inference (Liang et al., 2023). TTA dynamically fine-tunes
pretrained models on unlabeled data batches, enhancing generalization by aligning intermediate-
layer batch statistics (Niu et al., 2023), optimizing for first-order flatness in the loss landscape (Foret
et al., 2021), promoting self-supervised consistency across augmentations (Zhang et al., 2022), or
tracking model historical weights (Lee & Chang, 2024). Despite the success of traditional TTA
methods, they often require computationally expensive tuning of the backbone’s parameters. This
challenge is further amplified in vision-language models (VLMs), which consist of vast parameter
sets and require large batch sizes (e.g., 256) for stabilizing adaptation (Döbler et al., 2024).

Test-time prompting (TPT) offers a more efficient alternative for TTA by shifting adaptation focus
to the language side of VLMs, learning a small set of task-specific context prompts for downstream
tasks while freezing the visual backbone. Nevertheless, TPT largely overlooks the impact of visual
distribution shifts. Adapting to high-variance target images through prompts often relies on external
source data (Samadh et al., 2023) or extensive data augmentation (Feng et al., 2023) (e.g., 60×more
AugMix or diffusion-based synthetic samples). In strict online TTA settings, where the batch size is
constrained to one, this reliance on augmentation significantly inflates computational costs, leading
to a 60× rise in GFLOPs compared single-sample processing (i.e., 1108.61 vs. 17.59 GFLOPs).
The need for gradient backpropagation during inference further increases the computation burden,
making exiting TPT suboptimal for many resource-constrained applications.

In this paper, we attempt to tackle visual shifts at a patch level by introducing a novel approach
named Token Condensation as Adaptation (TCA). TCA allows the model to adapt on the fly to
unseen target domains while accelerating VLM inference by 20% fewer GFLOPs without requiring
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Figure 1: An illustration of the proposed Token Condensation as Adaptation (TCA). To better
adapt visual embeddings to text embeddings during test-time, TCA selectively prunes and merges
tokens (top-right) with low attentiveness to the <cls> token. A historical <cls> token with the
lowest uncertainty is sampled from the context-aware token reservoir (CTR) and serves as an “an-
chor” to move visual embeddings zt toward text embeddings tc. These anchors act as token-level
classifiers, refining predictions through the logit correction step.

additional training. To understand where the visual shifts came from, we conducted a leave-one-
out preliminary study to evaluate the impact of dropping patch tokens on visual-text alignment,
as depicted in Figure 2a. The results reveal that discarding tokens with lower attentiveness to its
<cls> token may not harm, and can even improve run-time predictions. This motivates us to
focus on condensing two key types of tokens for adaptation: (1) class-irrelevant background tokens,
which may mislead VLMs by emphasizing non-essential regions that differ from the pre-training
data, leading to erroneous predictions; (2) class-ambiguous object tokens, such as cat whiskers or
fur, which can overlap across other classes and disperse visual embeddings.

However, relying solely on the current sample’s <cls> token for token condensation may not be
optimal, as it tends to be overly universal and may not specifically align with the target classes.
Although the text encoder in VLMs offers cues about the target semantics, the dimensionality mis-
match between the textual and visual embeddings prevents direct alignment for this purpose. To find
<cls> tokens that better represent target classes, we trace the historical <cls> tokens from target
data streams with the lowest uncertainty across time steps, which we refer to as “anchors” capturing
the context in the stream. As shown in Figure 2b, retaining these “anchors” follows a promising
trajectory that gradually aligns with the text embeddings within the same visual space. These an-
chors serve as proxies to bridge visual and textual representations, guiding <cls> attentiveness to
be more semantically aligned with target domains.

Building on these two insights, we design a context-aware token pruning and merging mechanism
to condense tokens within the ViT blocks. As shown in Figure 1, the context from the target class
is incorporated into the token condensation function via a context token reservoir (CTR). At each
adaptation step, the most reliable <cls> tokens are retained as “anchors” and used to guide the
selection and preservation of class-relevant tokens. These anchors, in turn, act as token-level clas-
sifiers to correct VLM predictions and improve the final visual-text alignment. Specifically, our
token pruning strategy utilizes consensus across attention heads to retain only the most relevant
class-specific patches, while class-ambiguous tokens are merged into representative centers using a
coreset selection algorithm. Empirically, we show that a minimal number of centers is sufficient to
stabilize performance, allowing TCA to scale efficiently with linear complexity.

To our knowledge, this is the first work to explore token condensation in the context of test-time
adaptation. The efficiency and effectiveness of our training-free TCA approach have been rigor-
ously validated across multiple TTA benchmark datasets, including ImageNet and four associated
natural distribution shift datasets, along with ten fine-grained classification datasets. In extensive
evaluations with traditional TTA baselines, prompting, and test-time prompting approaches, our
method consistently outperforms the baselines by up to 21.4% compared with the strongest base-
line, while reducing GFLOPs cost by 12.2% to 48.9%. For reproducibility, we provide the complete
benchmarking toolkit in the supplementary material for reference.

2 RELATED WORK

Online Test-time Adaptation. To address performance degradation during test time, online test-
time adaptation (TTA) has gained significant attention. Current TTA methods can be categorized
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into three main types (Wang et al., 2023c): optimization-based, data-based, and model-based ap-
proaches. Optimization-based methods focus on model updates and optimization objectives (Goyal
et al., 2022; Marsden et al., 2024; Zhang et al., 2022). A prominent example is Tent (Wang et al.,
2021), which adapts Batch Normalization layers (Ioffe & Szegedy, 2015) using entropy minimiza-
tion. SAR (Niu et al., 2023) extends this approach to Layer Normalization (Ba et al., 2016) and
Group Normalization (Wu & He, 2018) with sharpness-aware minimization (Foret et al., 2021).
Data-based methods include augmentations like selective augmentation (Wang et al., 2022) and ad-
versarial augmentation (Tomar et al., 2023), as well as the use of memory banks (Gong et al., 2022;
Yuan et al., 2023; Chen et al., 2022). Model-based approaches involve architectural modifications
to enhance model adaptability during testing (Liu et al., 2024a; Iwasawa & Matsuo, 2021; Jang
et al., 2023; Wang et al., 2023b). However, these methods typically depend on large batch sizes and
augmentations, which introduce significant latency for online prediction.

Recently, vision-language models like CLIP (Radford et al., 2021) have excelled beyond fixed label
sets, rendering traditional TTA methods less suitable (Döbler et al., 2024). As a result, various on-
line adaptation strategies have been proposed to improve zero-shot generalization. Test-time prompt
tuning has emerged as a key approach in this context. TPT (Shu et al., 2022) optimizes learnable
prompts using data augmentations and soft entropy minimization, Diff-TPT (Feng et al., 2023) en-
riches this with more diverse augmentations (Rombach et al., 2022), while C-TPT (Yoon et al., 2024)
focusing on model calibration. Other methods like VTE (Döbler et al., 2024) and DART (Liu et al.,
2024b) leverage prompt ensembles with DART further employing moving averages to boost perfor-
mance. SwapPrompt (Ma et al., 2023) incorporates an EMA-updated target prompt. AdaPrompt
(Zhang et al., 2024) utilizes a class-balanced memory bank to enhance adaptability. SCP (Wang
et al., 2024) builds on TPT with a teacher-student framework to prevent semantic drift, while RLCF
(Zhao et al., 2024) incorporates reinforcement learning strategy (Williams, 1992) to optimize the
adaptation process. Beyond these, MTA (Zanella & Ayed, 2024) introduces a new objective based
on test-time augmentation to optimize visual features in the semantic space. TDA (Karmanov et al.,
2024) further improves CLIP’s zero-shot ability by incorporating positive and negative caches with
a training-free adapter. However, it relies on a large number of hyperparameters and is highly sen-
sitive to them, while incurring significant computational costs during inference. In contrast, our
approach strikes a better balance between computational efficiency and performance, outperforming
both training-required and training-free methods.

Token Condensation in Vision Transformers. Vision transformers have achieved notable success
in image recognition tasks, but their deployment is often limited by resource-constrained environ-
ments. To address this, various token condensation methods (Meng et al., 2022; Rao et al., 2021;
Ryoo et al., 2021; Xu et al., 2022; Zong et al., 2022; Kong et al., 2022; Wang et al., 2023a) have been
proposed to reduce the computational overhead, primarily through two strategies: token pruning
and token merging. Token pruning eliminates less informative tokens to save computation, as seen
in methods like EViT (Liang et al., 2022), which retains tokens based on their attentiveness to the
<cls> tokens. ATS (Fayyaz et al., 2022) introduces input-dependent token pruning to adapt to vari-
ability across inputs. Token merging, on the other hand, seeks to combine similar tokens to reduce
redundancy. For instance, ToME (Bolya et al., 2023) uses bipartite soft matching to merge neigh-
boring tokens that exhibit similarity. Hybrid approaches have also emerged, such as TPS (Wei et al.,
2023), which prunes tokens and transfers information to retained ones using nearest-neighbor match-
ing, and PruMerge (Shang et al., 2024), which prunes inattentive tokens using interquartile range and
merges via k-nearest neighbors. While previous works have focused on enhancing efficiency within
pure ViT models, our approach utilizes token condensation from a different perspective: addressing
multimodal distribution shifts in VLMs. This shift remains underexplored, particularly in how to
use semantic guidance to prune irrelevant visual tokens that introduce ambiguity. By condensing
these tokens, we effectively reduce such distribution shifts, enhancing test-time performance while
simultaneously lowering computational costs.

3 OUR APPROACH

Problem Set-up. We begin by revisiting online test-time adaptation (TTA) of VLMs, focusing on
contrastive language-image pre-training (CLIP) as a representative case. For a given downstream
taskDtar, the test data x = {xt}Tt=1 arrives sequentially at each time step t. The objective is to adapt
CLIP on the fly to classify the incoming test samples into one of C classes, each represented by a
textual prompt like “a photo of a <classname>”. CLIP embeds both visual and textual
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inputs into a shared space. The visual encoder Ev extracts visual features zt = Ev(Vt) ∈ RD

from image patches Vt = [vcls,v1, . . . ,vN ] ∈ R(N+1)×Dv of dimension Dv , where vcls is a
special <cls> token appended to N patches. The text encoder Et generates class embeddings
T = {tc}Cc=1, where each tc ∈ RD corresponding to a class prompt. Classification is performed by
computing the cosine similarity between the visual embedding zt and each class embedding tc with
the probabilities calculated as:

pt,c(zt, tc) =
exp (cos(zt, tc)/τ)∑C
j=1 exp (cos(zt, tj)/τ)

, (1)

where τ denotes the temperature parameter controlling the sharpness of the output distribution.

Pitsfalls of TTA. Since the target domain Dtar is unseen during CLIP’s pre-training, the alignment
between visual embeddings zt and the textual embeddings T may be suboptimal. Previous methods
have attempted to address this by learning domain-specific prompts (Yoon et al., 2024) or replacing
classifier weights with visual centroids (Iwasawa & Matsuo, 2021) to move T closer to zt. How-
ever, the variability in CLIP’s visual embeddings is often much higher than in textual embeddings
(Radford et al., 2021). At the patch level, individual tokens within the visual embeddings can drift
and vary significantly (Radford et al., 2021). Thus, it becomes more urgent to derive methods that
adjust zt towards T for improved alignment.

Do Visual Tokens Correlate to Drift? In VLMs, the visual encoder Ev is typically a Vision Trans-
former (ViT), where patch tokens play a key role in forming the visual representation. To investigate
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Figure 2: Preliminary studies of token
influence and anchor strategy.

the sources of visual shifts, we first analyze the roles of
individual patch tokens in the misalignment of text em-
beddings. Using a leave-one-out strategy, we sequen-
tially remove each token based on its attentiveness to the
<cls> token and measure the resulting impact on the
similarity of zt to its corresponding text embedding tc
(see Figure 2a). Our analysis reveals that token contri-
butions to the final prediction are uneven—removing to-
kens with lower correlations to <cls> (highlighted in
grey and blue) often leads to no decrease in performance,
or even slightly improves alignment. This observation
suggests that class-ambiguous or class-irrelevant token
groups introduce noise or drift in the visual representa-
tion, highlighting the need and feasibility for strategies to
manipulate these tokens during adaptation.

How to Mine <cls> Tokens Aligned with Text? In
CLIP pretraining, the <cls> token is trained to align
with a vast array of concepts, leading to attentiveness pat-
terns that may extend beyond the target classes. Given
the mismatch in dimensionality between textual and vi-
sual tokens, a fundamental challenge remains in finding a
more representative <cls> token that consistently aligns
with the text embeddings. To address this, we exploit
temporal cues by tracing target samples with the lowest
uncertainty as “anchors”. The similarity between these
anchors and T is plotted in Figure 2b. Our findings indicate that retaining these “anchors” with
minimal uncertainty leads to a steady convergence of visual embeddings with the corresponding
text embeddings in the same visual space. These anchors serve as contextually relevant proxies,
effectively bridging the gap between visual and textual representations and enabling <cls> atten-
tiveness to align more consistently with target classes.

3.1 TOKEN CONDENSATION AS ADAPTATION

Building upon our empirical findings, we propose a novel strategy called Token Condensation
as Adaptation (TCA), which selectively removes or merges tokens contributing to drift, enabling
efficient adaptation in a training-free manner. Specifically, given an L-layer ViT, the forward pass
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through the l-th Transformer block, where l ∈ [1, 2, . . . , L], is formulated as:

Vl+1 = V̂l +MLP(V̂l), V̂l = Vl +
1

H

H∑
h=1

Attention(VlWh
Q,V

lWh
K)VlWh

V , (2)

where Vl ∈ R(N+1)×Dv represents the token embeddings at layer l. The matrices Wh
Q, Wh

K ,
Wh

V ∈ RDv×Dv represent linear projection for the query, key, and value vectors in the h-th attention
head, and H denotes the total number of attention heads. To effectively condense tokens without
compromising performance, we introduce two key functions: the token pruning function fprune and
the token merging function fmerge. In line with (Liang et al., 2022), these functions are applied
between the multi-head self-attention layers and feed-forward layers of each transformer block. The
modified forward pass becomes:

V̂l = fmerge ◦ fprune
(
Vl;R

)
, (3)

where fprune(·;R) : RN+1 7→ R(α·R·N)+1 and fmerge(·;R) : R(α·R·N)+1 7→ RR·N+1 are responsi-
ble for reducing the number of tokens from N +1 (including the <cls> token) to R ·N +1, where
R represents the fraction of tokens to be preserved. The parameter α controls the extent of token
pruning, ensuring only the most semantically significant tokens are retained. Detailed explanation
of fprune and fmerge can be found in Section 3.2 and 3.3.

Context Token Reservoir R. Notably, both fprune and fmerge rely on a class-specific token reser-
voir R = {Rc}Cc=1. Each buffer Rc = {(Hc(zi; tc),A

cls
i,c)}Mi=1 is structured as a priority queue

that retains the top M most reliable anchor target samples, which serve to implicitly distil semantic
information from the corresponding text prompt tc to guide the visual adaptation. These anchors
are crucial alignment proxies: although the architectures of the text encoder Et and the visual en-
coder Ev differ, the selected anchor samples help determine which visual tokens best align with text
features from CLIP’s perspective. The reliability of these anchors is quantified by entropy scores
Hc(zt, tc),

Hc(zt, tc) = −pt,c (zt, tc) logpt,c (zt, tc) , (4)
which act as keys to update the reservoir Rc. At each time step t, for each visual embedding zt,
the corresponding <cls> embeddings from all L layers Acls

t,c = [v1
cls, . . . ,v

L
cls] ∈ RL×Dv will be

stored in Rc if argmax(pt,c) = c, ensuring that only the most semantically consistent samples are
retained:

Rc ← update
(
Rc,

(
Hc(zt, tc),A

cls
t,c

))
. (5)

If the priority queue Rc has reached its capacity M , the sample with the highest entropy score
is discarded, and the new sample is inserted. Strategies for updating the reservoir such as first-in,
first-out (FIFO) policies and similarity- and diversity-enforcing methods are explored in Section 4.3.

Logits Self-correction. To counter the shifts on the semantic side, we introduce a logits self-
correction mechanism that leverages anchor tokens stored in R. In particular, the <cls> embed-
ding of the current sample, Vcls

t ∈ RL×Dv , is compared with the stored anchors denoted as a set
A = {Acls

i,c}Mi=1. The cosine similarity between these cross-layer <cls> tokens serves as a token-
level classifier, which provides auxiliary information to adjust the predicted probability pt,c from a
visual perspective:

p̃t,c = pt,c + λptoken
t,c , ptoken

t,c =
1

M

M∑
i=1

cos(Vcls
t ,Acls

i,c) ·P · 1c, (6)

where λ is the logit correction weight and 1c ∈ RC the one-hot vector for the c-the class. The layer-
specific exponential scaling coefficients are denoted as P = [exp( l

β )]
L
l=1 ∈ RL, where β controls

the influence of different layers. We show that this correction temperature β provides semantic
interpretability, as further discussed in Section 4.3. This self-correction mechanism ensures that
the final prediction is better aligned with the visual and semantic contexts, improving robustness in
handling semantic shifts during inference.

3.2 CONTEXT-AWARE CROSS-HEAD TOKEN PRUNING fprune

Prior token pruning methods for ViTs such as (Liang et al., 2022) primarily discard patch tokens
with lower averaged attention scores S ∈ RN relative to the <cls> token vl

cls across all attention

5
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heads. The pruning process can be expressed as

V̂l
prune ← {v̂l

i | Si ≤ θprune(α,R),∀i ∈ [N ]}, Si =
1

H

H∑
h=1

Attention(vl
clsW

h
Q,v

l
iW

h
K), (7)

where V̂l
prune denotes the set of tokens retained after pruning at layer l. Here, the pruning threshold

θprune(α,R) is determined by the desired pruning ratio, ensuring only top-ranked α·R·N tokens are
retained. However, this approach faces two limitations when applied in TTA tasks: (1) The <cls>
token is universal and may not be specifically aligned with the target class set. It may capture broad,
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Figure 3: An illustration of context-aware cross-
head token pruning.

unrelated semantics (e.g., “cat food”), leading
to the retention of irrelevant tokens that mis-
lead the model into making incorrect predic-
tions of the target class (e.g., “cat”). (2) Av-
eraging attention scores across all heads risks
omitting important details, as each attention
head tends to focus on distinct features (e.g.,
shape, color). Outliers in attention heads (high-
lighted by red circles in Figure 3) may dispro-
portionately dominate the overall score, over-
shadowing valuable information by other heads
and leading to suboptimal pruning decisions.
To overcome these limitations, we propose a
cross-head token pruning function that evalu-
ates the token importance individually for each
attention head and utilizes the averaged relative

ranking positions to determine which tokens to prune (see Figure 3). This approach reaches a more
robust cross-head consensus and mitigates the impact of outliers. To guide pruning with more repre-
sentative <cls> tokens, we sample an anchor <cls> token for the (l−1)-th layer from Rc∗ , where
c∗ is determined by comparing the cosine similarity between the current vl

cls token embedding and
the stored anchor tokens Al−1

i,c ∈ A:

Al−1
c∗ =

1

M

∑
i∈[M ]

Al−1
i,c∗ , c

∗ = argmaxc∈[C] cos(v
l
cls,A

l−1
i,c ), (8)

where Al−1
c∗ ∈ RDv is the averaged anchor token sampled from Rc∗ , providing historical context

that is better aligned with target semantics. Subsequently, we refine the attention map by inserting
this historical anchor Al−1

c∗ to compute the pruning scores Shead
i for the i-th token:

Shead
i =

1

H

H∑
h=1

rankh(i), V̂
l
prune ← {v̂l

i | Shead
i ≤ θprune(α,R),∀i ∈ [N ]},

rankh(i) = argsort(Attention([vl
cls;A

l−1
c∗ ]Wh

Q, [V
l;Al−1

c∗ ]Wh
K),

(9)

where [·; ·] indicates concatenation and rankh(i) gives the relative ranking positions of token i in
head h based on its attention score to vl

cls and Al−1
c∗ . This method ensures that tokens receiving

consistently high attention across individual heads are retained, thereby achieving greater robustness
to outliers in specific attention heads.

3.3 CONTEXT-AWARE TOKEN MERGING fmerge

As depicted in Figure 2a, a subset of tokens, although relevant to the target class, exhibit high
uncertainty. These tokens are referred to as class-ambiguous tokens, identified from the ranked
token list derived using Equation (9):

Φ = {i | θmerge(R) ≤ Shead
i ≤ θprune(α,R),∀i}, (10)

where θmerge(R) denotes thresholds for token selection during merging. The selected tokens Vl
Φ =

{vl
i}i∈Φ can introduce variance or noise into latent representation zt and negatively impact the

final classification decision. To address this, we propose a context-aware token merging strategy to
consolidate these tokens into more representative ones.

6
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Existing token merging strategies either truncate neighbored token pairs with high similarity with
bipartite soft matching (Bolya et al., 2023) or apply spectral clustering (Bianchi et al., 2020), and
graph pooling (Wu et al., 2022) to merge similar tokens at higher costs. In contrast, we adopt a
more efficient coreset selection approach, which identifies the most representative tokens V̂l

merge ∈
RK×Dv from Vl

Φ and assigns the remaining ambiguous tokens to these selected tokens. The coreset
selection strategy is equivalent to solving the K-Center problem (Wolf, 2011; Sener & Savarese,
2018). The objective is to select K center tokens such that the maximum distance between any
token and its nearest center is minimized. Formally, the greedy search for optimization is defined as
follows:

C∗ = argmin
C⊆Vl

Φ,|C|=K

max
vl
i∈Vl

Φ

min
vl
c∈C

d(vl
i,v

l
c), (11)

where C∗ ∈ RK×Dv represents the set of selected center tokens, K is the number of centers, and
d(·, ·) is the distance metric between token vl

i and center token vl
c. Once the center tokens C∗ are

selected, the remaining tokens are assigned to their nearest centers, and the ambiguous tokens are
merged as:

V̂l
merged =

1

|N (k)|
∑

vl
i∈N (k)

vl
i, (12)

where N (k) represents the set of tokens assigned to center k. As demonstrated in Section A.1,
the value of K can be kept small, with K ≪ N , allowing our merging algorithm to operate with
linear complexity. The final embedding is composed of the class token vl

cls, the pruned tokens
V̂l

prune excluding those in the class-ambiguous set Φ, and the merged tokens V̂l
merge. This combined

embedding is then passed to the next layer in the ViT. The algorithm can be found via Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Following prior works, we conducted two main benchmarks: the cross-dataset (CD)
benchmark and the out-of-distribution (OOD) benchmark. The CD benchmark assesses the model’s
performance on unseen classes across 10 datasets: Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei
et al., 2007), Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019),
Flower102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), Pets (Parkhi et al., 2012),
SUN397 (Xiao et al., 2010), and UCF101 (Soomro et al., 2012). In contrast, the OOD benchmark
focuses on evaluating the model’s effectiveness on shifted data using label sets previously seen by
CLIP. This includes variants of ImageNet (Deng et al., 2009): ImageNet-A (Hendrycks et al., 2019),
ImageNet-V2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2021), and ImageNet-S (Wang
et al., 2019).

Baselines. To provide a comprehensive evaluation, we compare TCA with existing approaches
across four categories: (1) Prompt-tuning methods like CoOp (Zhou et al., 2022b) and CoCoOp
(Zhou et al., 2022a), which require multi-epoch adaptation; (2) Conventional online test-time adap-
tation (TTA) methods such as Tent (Wang et al., 2021) and SAR (Niu et al., 2023). Tent updates
batch normalization layers, while SAR further incorporates sharpness-aware minimization for reli-
able model updates. Following Döbler et al. (2024), we reran these experiments with adjusted batch
sizes to align with our settings; (3) Test-time prompting methods, including TPT (Shu et al., 2022),
C-TPT (Yoon et al., 2024), and Diff-TPT (Feng et al., 2023), as well as TTA methods for CLIP
such as MTA (Zanella & Ayed, 2024) and TDA (Karmanov et al., 2024); and (4) Token pruning
and merging methods for ViTs, such as EViT (Liang et al., 2022), ToMe (Bolya et al., 2023), and
ATS (Fayyaz et al., 2022). As ATS is an adaptive token pruning method with no fixed budget, we
constrain its computational cost by an upper bound to ensure fair comparison.

Implementation Details. We utilize the official CLIP 1 prompts as text inputs. The batch size is
set to 1 without data augmentations to mimic realistic deployment scenarios. All experiments are
conducted using the pre-trained CLIP models, specifically using ViT-B/16 and ViT-L/14 architec-
tures as the visual backbone. For both CD and OOD benchmarks, we set K to 2. Notably, our
method is training-free, which achieves rapid adaptation with no need for any hyperparameters for
optimization. All experiments are performed on a single NVIDIA RTX A6000 GPU.

1https://github.com/openai/CLIP
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Table 1: Results on the cross-dataset benchmark using CLIP ViT-B/16, including the number of
learnable parameters (L-Param.) for learning-based TTA methods. ∗ denotes the averaged GFLOPs
across all datasets.
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CLIP ✓ 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59 17.59 0
CoOp ✗ 18.47 93.70 64.51 41.92 46.39 68.71 85.30 89.14 64.15 66.55 63.88 17.59 2048
CoCoOp ✗ 22.29 93.79 64.90 45.45 39.23 70.85 83.97 90.46 66.89 68.44 64.63 17.59 34,816

Tent ✓ 8.97 93.39 62.69 39.78 20.85 61.23 83.70 87.76 65.30 66.93 59.06 17.59 40,960
SAR ✓ 21.09 91.85 61.15 44.68 46.19 63.54 81.43 87.95 59.74 65.58 62.32 17.59 31,744
TPT ✗ 24.78 94.16 66.87 47.75 42.44 68.98 84.67 87.79 65.50 68.04 65.10 1108.61 2048
Diff-TPT ✗ 25.60 92.49 67.01 47.00 43.13 70.10 87.23 88.22 65.74 62.67 65.47 - -
C-TPT ✗ 23.90 94.10 66.70 46.80 48.70 69.90 84.50 87.40 66.00 66.70 65.47 1108.61 2048
MTA ✗ 25.32 94.21 68.47 45.90 45.36 68.06 85.00 88.24 66.67 68.11 65.53 - -
TDA ✓ 23.91 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 67.53 17.59 0

EViTR=0.9 ✓ 24.12 92.25 64.57 45.09 48.41 70.24 84.99 88.96 64.58 68.46 65.17 15.41 0
ToMER=0.9 ✓ 24.66 92.49 63.10 44.92 48.64 69.22 85.04 87.90 64.22 68.62 64.88 15.31 0
ATSR=0.9 ✓ 22.86 92.21 57.90 40.96 40.62 67.52 80.16 85.34 61.53 67.22 61.63 11.15∗ 0
EViTR=0.7 ✓ 23.31 91.20 58.44 43.32 43.26 67.11 79.70 85.77 61.41 66.69 62.02 11.62 0
ToMER=0.7 ✓ 22.26 90.79 55.48 42.32 40.12 64.11 79.36 84.19 60.66 63.97 60.33 11.45 0
ATSR=0.7 ✓ 17.28 85.40 33.65 36.52 27.79 52.62 55.97 72.94 48.82 56.44 48.74 8.76∗ 0

TCAR=0.9 ✓ 24.87 93.63 65.33 46.16 70.43 73.33 85.31 89.53 65.92 72.38 68.69 15.45−12.2% 0
TCAR=0.7 ✓ 23.19 92.13 58.15 44.50 61.63 69.79 79.99 85.99 61.89 67.38 64.46 11.69−33.5% 0

4.2 COMPARISON WITH STATE-OF-THE-ART

4.2.1 CROSS-DATASET BENCHMARK

Table 1 presents the results for fine-grained cross-dataset benchmark using the ViT-B/16 architec-
ture. As observed in Figure 2a, the core idea behind TCA is that condensing inattentive tokens
can effectively mitigate distribution shifts caused by visual-text misalignment. This concept is first
validated by the improved performance of token pruning baselines over CLIP inference, where a
condensed token set yields a 0.9% increase in average accuracy when R = 0.9. TCA further en-
hances its performance by dealing with visual-text misalignment, moving visual features toward
historical anchor tokens from CTR. As a result, TCA achieves an average accuracy of 68.69%, out-
performing both train-required and training-free baselines without augmentation. Conventional TTA
methods perform poorly on all datasets even with the requirement of fine-tuning a large amount of
learnable parameters. In contrast, prompt-tuning methods, although requiring fewer learnable pa-
rameters, rely heavily on augmentation and struggle to effectively handle visual shifts. While TDA
is a training-free method, it requires a large number of hyperparameters (a total of 10 for managing
positive and negative caches) to achieve optimal performance. On the other hand, TCA uses signif-
icantly fewer hyperparameters and delivers a 1.72% improvement in average accuracy over TDA,
with approximately 12.2% fewer GFLOPs. Further details on TDA combined with token conden-
sation baselines can be found in Figure 4c. To verify the universality of the proposed TCA, we
examine the impact of the visual backbone (ViT-L/14), where we reduce 48.9% GFLOPs without
compromising adaptation. The results are presented in Section A.1.

4.2.2 OUT-OF-DISTRIBUTION BENCHMARK

A consistent observation can be seen in the out-of-distribution (OOD) benchmark, where TCA
demonstrates significant improvements over the CLIP baseline under a constrained GFLOPs bud-
get of R = 0.95, as shown in Table 3. TCA outperforms traditional test-time adaptation methods
while maintaining efficiency. TCA also achieves superior results on ImageNet-R and ImageNet-S,
outperforming TPT without augmentation. Additionally, when compared to other training-based
approaches, even those with unlimited computational budgets, TCA delivers comparable perfor-
mance. However, we observe that TCA does not perform as strongly on the OOD benchmark as it
does on the CD benchmark even with a higher rate R. This may be due to the conceptual shifts in
OOD datasets, as shown in Section A.4, which could present a challenge for training-free adaptation
methods.

4.3 ABLATION STUDY

We conducted a comprehensive ablation study to evaluate TCA’s effectiveness and efficiency. For
further analysis on reservoir size, merging center, pruning to merging ratio, visual backbone, and
more baseline comparisons, see Section A.1.
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Figure 4: Impact of TCA on performance under different configurations.
Table 3: Results on the out-of-distribution benchmark with CLIP ViT-B/16. ∗ denotes the averaged
GFLOPs across all datasets.

Method Aug-free ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Average OOD Average GFLOPs
CLIP ✓ 68.34 49.89 61.88 77.65 48.24 61.20 59.42 17.59

Tent ✓ 65.49 44.57 59.26 78.72 22.52 54.11 51.27 17.59
SAR ✓ 58.52 33.71 53.95 76.08 39.24 52.30 50.75 17.59
TPT ✗ 68.98 54.77 63.45 77.06 47.94 62.44 60.81 1108.61
Diff-TPT ✗ 70.30 55.68 65.10 75.00 46.80 62.28 60.52 -
C-TPT ✗ 69.30 52.90 63.40 78.00 48.50 62.42 60.70 1108.61
MTA ✗ 70.08 58.06 64.24 78.33 49.61 64.06 62.56 -
TDA ✓ 69.26 50.82 62.23 77.93 50.26 62.10 60.31 17.59

EViTR=0.95 ✓ 68.32 49.46 61.73 77.00 47.76 60.85 58.99 16.31
ToMER=0.95 ✓ 67.57 48.81 60.88 75.78 47.05 60.02 58.13 16.21
ATSR=0.95 ✓ 65.83 49.80 59.47 71.09 43.38 57.91 55.94 11.50∗

TCAR=0.95 ✓ 68.88 50.13 62.10 77.11 48.95 61.43 59.57 16.55

Table 2: Impact of scale factor β.
β 0.01 0.05 1 3 5

Pets 89.51 89.53 89.37 89.42 89.26
Flower102 73.33 73.08 70.93 70.56 70.44
EuroSAT 63.64 64.06 69.86 70.26 70.43

Impact of Logits Correction Temperature β. In Table
2, we examine how different logits correction tempera-
tures β affect the adaptation results. The intuition is that
with a smaller β value, the logits correction will empha-
size the tokens in shallower layers (Equation (6)), while a
larger β value will shift the focus to deeper layers. We observe that a smaller value of β is preferred
for the Pets dataset as it contains animals as objects, requiring more high-level contextual informa-
tion for accurate predictions (Raghu et al., 2021). In contrast, for EuroSAT, the best predictions are
obtained with larger β values, suggesting that low-level, local information is crucial. This aligns well
with the nature of the dataset, where different types of land can be distinguished by features such as
colors and edges. Nevertheless, our method consistently provides significant improvements across
all β values, with accuracy gains of up to 20%, highlighting the effectiveness of logits correction
using the anchor tokens.

Table 4: Impact of correction weight λ.
λ 2 3 4 5 6 7 8

Pets 89.53 89.32 89.13 88.96 88.96 88.66 88.44
Flower102 72.43 72.76 73.20 73.16 73.16 73.33 73.16
EuroSAT 60.15 65.74 68.80 69.51 69.84 70.16 70.43

Impact of Correction Weight λ. To investi-
gate how different correction weights λ affect
performance, as described in Equation (6), we
conducted experiments across a wide range of
λ values, from 2 to 8, as shown in Table 4. We
observe that Pets exhibits stable results across
different λ values, indicating that less aggressive correction is sufficient. In contrast, datasets such
as Flower102 and EuroSAT which initially do not perform well on CLIP, benefit from stronger cor-
rections, achieving their best performance with larger correction weights of 7 and 8, respectively.
This highlights the effectiveness of our logits correction module.

Impact of GFLOPs Budget. We evaluate TCA’s performance under different GFLOPs budgets:
R = {0.6, 0.7, 0.8, 0.9}, resulting in GFLOPs of 9.91, 11.68, 13.27, and 15.45, respectively, com-
pared to the baseline (R = 1, 17.58 GFLOPs). As shown in Figure 4b, condensing inattentive tokens
can even enhance performance on certain datasets, notably Pets, and EuroSAT. Specifically for Eu-
roSAT, when R = 0.9, the model’s adaptation performance is significantly improved, aligning with
our findings in Figure 2a. However, excessively aggressive pruning budgets (e.g., GFLOPs less than
13) lead to significant performance degradation across all datasets. This occurs since higher prun-
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ing rates may inadvertently remove informative tokens, causing irreversible harm in training-free
scenarios where we lack supervision or the ability to update the model for extra correction.

Table 5: Impact of reservoir updating strategy.
FIFO Uncertainty Similarity-enf Diversity-enf

Pets 89.21 89.18 88.91 89.53
Flower102 70.65 73.28 72.15 73.33
EuroSAT 50.28 70.20 68.48 70.43

Impact of Reservoir Saving Strategy. In
Table 5, we examine the performance changes
across different reservoir saving strategies. We
compare several approaches: First-In, First-
Out (FIFO); an uncertainty-based strategy,
which discards the most uncertain sample when
the reservoir reaches capacity; a similarity-enforced strategy, where samples with high certainty and
high cosine similarity to the saved samples are preferred; and a diversity-enforced strategy, which
prioritizes saving prototypes that contain distinct tokens compared to those already stored.

Table 6: Impact of component.

Al
c∗ Shead Food101 Pets EuroSAT

85.25 88.77 68.14
✓ 85.31 88.96 67.69

✓ 85.25 89.23 67.14

✓ ✓ 85.31 89.53 70.43

Our results show that the FIFO strategy performs poorly on
Flower102 and EuroSAT, likely because CLIP’s low confi-
dence leads to retaining misclassified samples. Conversely,
Pets has high CLIP zero-shot accuracy (86.91% in Table 1),
which makes FIFO acceptable. Among all strategies, the
diversity-based approach consistently achieves the best per-
formance. This is intuitive, as it maintains a representative set
of features by capturing dataset diversity, whereas entropy-
based methods may store homogenous features and overlook multiple class prototypes. By priori-
tizing diversity, our method ensures that a more representative set of features is maintained, leading
to more robust performance across datasets.

Input Image Layer 3 Layer 9

Figure 5: Examples of our token
condensation. More visualizations
can be found in the appendix.

Impact of Component. The impact of the historical anchor
Al

c∗ and the head-wise sorting score Shead (Equation (8)) is
presented in Table 6. We observe that each component indi-
vidually contributes to performance improvements. On the
Food101 and Pets datasets, incorporating either component
yields measurable gains in accuracy. By leveraging histori-
cal anchors, the model acquires rich contextual information,
enhancing the stability of token importance over time. Si-
multaneously, cross-head token sorting ensures that token
pruning decisions are more robust by accounting for con-
sensus across attention heads. An intriguing case arises with
the EuroSAT dataset. Here, the baseline performance with-
out any components is 68.14%. Applying either component
alone results in a slight performance decrease. However,
when both components are used together, performance sig-
nificantly improves to 70.43%. This outcome emphasizes the necessity of combining historical
anchors and cross-head token sorting to fully realize the model’s potential.

Visualization of Proposed Token Condensation. We visualize the pruned and merged tokens
of different ViT layers in Figure 5. Here, the black mask indicates pruned regions while different
colors are set for different merging clusters. We observe that as token condensation progresses, non-
discriminative tokens are gradually removed, leading to better alignment with the text semantics.
See Section A.3 for more details.

5 CONCLUSION

In this paper, we introduced Token Condensation as Adaptation (TCA), a novel training-free test-
time adaptation method for CLIP models. Our comprehensive experiments demonstrated that token
condensation significantly benefits the visual-text alignment in CLIP, which can further serve as
an interpretation of visual semantics. Additionally, our method reduces GFLOPs as a beneficial
byproduct, enhancing computational efficiency. For fair comparisons, we fixed the GFLOPs budget
by pre-setting R in our experiments; however, the condensing rate can be adaptively estimated
using the distances to merging center as an indicator, which can be a promising direction for future
research. We also acknowledge the limitations of TCA as a training-free method, particularly its
bottleneck in handling datasets with severe distribution shifts, as discussed in Section A.4.
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A APPENDIX

This appendix provides additional descriptions of the proposed TDA, including empirical results
and algorithm. Visual aids for token condensation are also included to enhance understanding of the
proposed method.

• Section A.1: Additional Ablation Study.

• Section A.2: Token Condensation Algorithm.

• Section A.3: Quantitative study for token condensation (R = 0.7).

• Section A.4: Potential limitation of TCA.

A.1 ADDITIONAL ABLATION STUDY

Impact of Reservoir Size M . We assess the effectiveness of TCA across various reservoir sizes M
on Pets, Flower102, and EuroSAT datasets, as illustrated in Figure 4a. Remarkably, although the
best performances are achieved at different reservoir sizes for different datasets, our TCA consis-
tently maintains stable and high performance across a wide range of M values. This showcases the
robustness and flexibility of TCA with respect to different reservoir budgets. Notably, even under
extreme conditions with a minimal reservoir size (i.e., M = 1), our strategy significantly surpasses
the strongest baseline method, TDA, by a large proportion on the EuroSAT dataset (14.2%).

Table 7: Impact of K.
K 1 2 3 4

Pets 89.29 89.53 89.29 89.21
EuroSAT 66.25 70.43 66.96 67.44
Food101 85.15 85.31 85.31 85.38

Impact of Merging Center Number K. We evaluate TCA
performance by giving different numbers of merging centers
K for Pets, EuroSAT, and Food101 datasets. As shown in
Table 7, setting K = 2 consistently yields the best results.
This choice balances preserving important information and
reducing redundancy. A smaller K (i.e., K = 1) may over-
simplify the merging process, leading to the loss of critical
details, especially in diverse datasets like EuroSAT. Conversely, increasing K beyond 2 introduces
unnecessary complexity and can over-segment the token space, retaining redundant tokens that con-
tribute little to classification. Therefore, maintaining a very small K (where K ≪ N ) is sufficient
and advantageous.

Table 8: Impact of token merg-
ing/pruning ratio.

Merging:Pruning 0:1 1:2 2:1

Pets 89.04 88.99 89.53
EuroSAT 69.63 69.98 70.43

Impact of Pruning & Merging Ratio. We experiment
with different token pruning and merging ratios under the
same computational budget, as shown in Table 8. Incorpo-
rating token diversity through merging consistently enhances
performance. Specifically, the 2:1 merging-to-pruning ratio
outperforms other configurations, especially those favoring
pruning. This is because merging preserves diverse token
representations by K coresets that pure pruning might dis-
card. When comparing pruning-only (0:1) with the 1:2 merging-pruning ratio on Pets, pruning-only
performs better. This may be because the dataset features images with a single prominent object,
meaning that pruning background tokens has minimal impact since essential object information re-
mains intact. In contrast, for the EuroSAT dataset, which comprises diverse satellite imagery, simply
pruning tokens leads to the loss of important contextual features necessary for accurate classification.

Impact of Visual Backbone. Trends similar to ViT-B/16 are observed with the ViT-L/14 archi-
tecture, as shown in Table 9. TCA consistently surpasses TDA across multiple datasets, including
Aircraft, Caltech101, EuroSAT, Flower102, Pets, and UCF101, while adhering to a limited GFLOPs
budget (19.6% GFLOPs reduction). Even with a 48.9% reduction in GFLOPs, TCA continues de-
livering satisfactory results. This demonstrates the scalability and robustness of our method across
different model sizes, reinforcing its effectiveness without additional training.

Comparison with State-of-the-Art TTA Using Token Condensation. We additionally evaluate
the performance when combining TDA with token pruning and merging baselines and show the per-
formance gain over TDA + ATS in Figure 4c. Although TDA achieves considerable performance
gain, it heavily relies on the negative cache and a large set of hyperparameters. In contrast, TCA’s ac-
curacy gain significantly surpasses that of TDA + EViT and TDA + ToME across multiple datasets
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Table 9: Results on the cross-dataset benchmark with CLIP ViT-L/14. ∗ denotes the averaged
GFLOPs across all datasets.

Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average GFLOPs
CLIP 31.59 94.56 78.12 57.03 63.00 79.58 90.92 93.46 69.05 76.13 73.34 81.14
Tent 27.45 94.97 76.93 57.15 66.20 74.83 89.20 93.27 68.73 75.73 72.45 81.14
SAR 26.07 94.52 75.58 56.91 63.77 75.03 89.13 93.05 68.39 75.50 71.80 81.14
TPT 30.06 95.21 76.84 52.30 55.11 76.21 88.56 93.08 67.69 73.78 70.88 143.31
TDA 33.42 95.46 78.72 57.39 66.27 79.94 90.83 93.27 70.74 78.14 74.42 81.14

EViTR=0.9 31.23 94.56 76.59 56.38 63.04 79.13 90.08 93.32 68.54 76.40 72.93 65.19
ToMER=0.9 28.29 92.54 71.26 56.68 60.30 77.87 89.77 91.28 68.21 72.22 70.84 64.74
ATSR=0.9 25.74 93.39 67.69 55.02 52.81 76.78 86.48 91.50 66.26 72.56 68.82 43.62∗

EViTR=0.7 26.94 92.94 62.55 53.96 52.04 73.24 80.69 90.00 63.70 71.21 66.73 40.78
ToMER=0.7 15.60 83.73 38.43 49.82 44.51 59.36 72.65 77.73 58.32 50.99 55.11 40.05
ATSR=0.7 6.87 67.87 16.37 40.78 30.12 37.43 34.50 60.94 30.07 33.44 35.84 26.76∗

TCAR=0.9 33.84 96.39 76.93 56.38 67.74 80.71 90.21 93.54 70.02 78.24 74.40 65.24−19.6%

TCAR=0.7 29.73 94.81 63.72 53.72 60.69 76.00 81.55 90.02 65.61 73.14 68.90 41.44−48.9%

Algorithm 1 Token Condensation at the l-Layer in Ev

Input:
1: Token reservoir R;
2: Visual patches Vl−1 at layer l − 1;
3: Pruning threshold θprune(α ·R);
4: Merging threshold θmerge(R)

Output: Token-efficient visual feature V̂l

5: Token Anchoring: Obtain Al−1
c∗ by Equation (8), using anchor tokens in R and sample’s

<cls> token vl
cls

6: Compute cross-head scores Shead
i for every token i

7: if ∀i, Shead
i ≤ θprune(α ·R) then

8: Token Pruning: Obtain V̂l
prune via Equation (9)

9: end if
10: if ∀i, θmerge(R) ≤ Shead

i ≤ θprune(α ·R) then
11: Token Merging: Obtain V̂l

merged via Equation (12)
12: end if
13: return V̂l, which is composed of vl

cls, V̂
l
prune (excluding merged tokens), and V̂l

merged

and on average, even with a minimal set of hyperparameters, highlighting its superior adaptation
capability.

A.2 ALGORITHM

Algorithm 1 outlines a simple process for performing token pruning and merging at layer l in a
ViT-based CLIP model. We first obtain the averaged anchor token Al−1

c∗ by the <cls> tokens saved
in the reservoir R. Token condensation is then conducted given the anchor token. Specifically,
we conduct token pruning by relative ranking positions of token i across multiple attention heads.
Then, coreset selection is used for token merging. Finally, we concatenate the <cls> token vl

cls
with the retained tokens as the input for the next layer, where the original N + 1 tokens are shrunk
to (R ·N) + 1, thereby reducing the computational cost.

A.3 QUANTITATIVE STUDY

We visualize the token condensation masks at layer 3, layer 6, and layer 9, and compare them with
the original image across multiple datasets, as shown in Figure 6. As the layers go deeper, we ob-
serve that class-irrelevant patches are gradually pruned, as indicated by the black mask. TCA also
merges class-ambiguous patches, such as fur in cat images, and ground and sky in aircraft and car
images. All similar tokens are merged into a single token using our proposed coreset selection strat-
egy. After token condensation, the sample features retain only discriminative information, thereby
bridging the gap between visual and text features, and mitigating the distribution shift between pre-
trained data and unseen datasets.
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Figure 6: Visualization of our proposed token condensation with R = 0.7. Pruned tokens are
masked in black, while different colors represent distinct merging clusters.

A.4 DISCUSSION ON THE LIMITATION OF TCA

In this section, we discuss the potential limitations of our proposed TCA. Due to the training-free
nature of the approach, it is challenging to mitigate the performance gap when the testing domain di-
verges significantly from the training domain. As observed in the out-of-distribution (OOD) samples
shown in Figure 7, the ground truth object is not always centrally located, and larger class-irrelevant
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Figure 7: Sample data from the OOD benchmark. The samples from the same class exhibit
significant diversity. For instance, in the ImageNet-R dataset, one image of a great white shark
is dominated by shoes and human legs, while another is on top of a building, showing extreme
variability.

objects (e.g., humans or shoes) can sometimes dominate the prediction. This issue is particularly
prominent in CLIP models, where text features for all classes are predefined. When the dominant
object is included in the label set, accurately directing visual features to the correct class without
additional training becomes difficult. Moreover, the diversity of OOD samples introduces further
complexity, especially in the absence of data augmentation. These observations raise important
questions for future research: (1) How can we quantify the capacity to mitigate domain shift effec-
tively? (2) What lightweight solutions can be developed for backpropagation and network updates
to facilitate test-time adaptation? We leave these questions for future work.
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