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ABSTRACT

Recent research on optimization using large language models (LLMs) typically
involves either iterative next-step solution seeking or directly prompting LLMs
to generate critical optimization codes. However, these methods often suffer
from low computational efficiency, high sensitivity to prompt design, and a lack
of domain-specific knowledge. We introduce LLaMoCo, the first instruction-
tuning framework designed to adapt LLMs for solving optimization problems in
a code-to-code manner. LLaMoCo features a comprehensive instruction set that
includes code-style problem descriptions as input prompts and robust optimization
codes from expert optimizers as target outputs. We then develop a novel two-
phase learning strategy with a contrastive learning-based warm-up to enhance
convergence during instruction tuning. Extensive experiments demonstrate that a
CodeGen (350M) model tuned by our LLaMoCo yields a powerful domain-specific
model for generating expert-level optimizers, achieving superior performance
compared to GPT-4 Turbo and other competitors on both synthetic and realistic
problem sets. The trained model and the usage instructions are available online.

1 INTRODUCTION

Nowadays, Large Language Models (LLMs) are posing a profound impact on human society (Floridi
and Chiriatti, 2020; Lund and Wang, 2023) through their remarkable natural language understanding
and ability to solve complex tasks (Biswas, 2023a; Lund and Wang, 2023; Biswas, 2023b). Op-
timization is very related to LLMs. Optimization is everywhere yet can not be easily solved by
everyone (AhmadiTeshnizi et al., 2023). For now, most optimization problems from scientific or
industrial scenarios are solved by hand, requiring expert-level knowledge to 1) formulate the problem,
2) solve the problem with the desired optimizer. This in turn hinders the widespread of optimization
techniques. This raises a key research question: Can LLMs tackle challenging optimization problems
that are difficult for humans to address? This question drives the core of our study in this paper.

In the literature, several works have explored the possibilities of using LLMs to solve optimization
problems. A common and straightforward way is to iteratively prompt LLMs to generate better
solutions through a multi-turn conversation process (Yang et al., 2023; Guo et al., 2023a; Liu et al.,
2023a), sometimes incorporating the concept of in-context learning. This solution-to-solution process
involves prompting the LLMs with initial or current best-so-far solutions and iteratively requesting
improved solutions. While showing certain effectiveness, they can have several limitations: 1)
the scale of target optimization tasks (e.g., in terms of the number of decision variables, historical
solutions and newly generated solutions) is constrained by the context window length of LLMs;
2) the iterative process typically involves hundreds rounds of conversations, consuming significant
resources or API callings; and 3) due to LLMs’ sensitivity to prompt design, it is nontrivial to provide
consistent prompts that ensure ideal outputs.

An alternative way involves directly prompting LLMs to generate optimization programs, either
through reusing existing optimization toolboxes (AhmadiTeshnizi et al., 2023) or combining multiple
optimizers to create novel ones (Pluhacek et al., 2023). It can be more efficient than the solution-to-
solution methods for two reasons: 1) only a few rounds of conversation are needed to generate codes;
and 2) the prompts and generated codes do not include solution information, making it compatible
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Sure, here is the code for solving 
this problem:
“””
m.setObjective(7*x1+10+x2,GRB.
MAXIMIZE)
“””

Prompt for Optimizer

I will give you an LP optimization 
problem, and want you to write a 
python code using Gurobi to solve it.

The problem is as follows:

Nature language 
description of the 

problem

Instruction Tuning
Our LLaMoCo 

According to the provided problem, 
the best solver is:
import scipy
config = .... # hyper-params
res = scipy.optimize.minimize(obj 
fun, x0,method='SLSQP'...)                              
                                      )

Use python to solve the following 
problem:

Stipulated Prompts Protocol
   -dimension: D
   -maxFEs: K
   -obj func: python/latex code
   -constraints: (optional)

Sure, here is the suggestions: 
[2.3, 1.5,...., 4.7]
...
[1.1, 3.5,..., -4.0]

Prompt for Solution

Now you will help me minimize a 
function. I have some points and the 
function values, lower is better:
 [-7.1, 0.5,...., 10.8], 17.8
...
[-1.7, -3.5,..., 4.2], 61.2
Give me some new points that is 
different from the above, and has
lower function values.

Instruction Set

Pre-trained
LLM

Pre-trained
LLM

Pre-trained
LLM

Instruction-tuned
 LLM

Two-Stage Finetuning Process

contrastive 
learning + supervised

fine-tuning

training workflow

training data

Large-Scale Benchmarking

construct

+synthetic 
problems

algorithm
pool

Figure 1: Conceptual overview of LLMs for optimization. Left: optimization through iteratively
prompting for better solutions (e.g., (Yang et al., 2023)). Middle: optimization through prompting
LLMs for optimizer configuration or code generation (e.g., (Romera-Paredes et al., 2024; Ahma-
diTeshnizi et al., 2023; Lange et al., 2024)). Right: our LLaMoCo framework, which is among the
first to learn a domain-specific optimization model that generates expert-level optimization code
(optimizers) from formatted prompts, tuned using a comprehensive instruction set.

with the problem scales. However, careful prompt crafting is crucial to ensure logical coherence.
For example, OptiMUS (AhmadiTeshnizi et al., 2023) integrates hints about the target optimizer
into the prompts, requiring a deep understanding of optimization domain knowledge. Additionally,
LLMs pre-trained on a broad corpus often fail to generate customized optimizers tailored to a specific
optimization problem instance due to the lack of domain-specific expert knowledge (Zhao et al., 2023),
a limitation that extends to other complex tasks involving structured data, such as knowledge-base
question answering and semantic parsing (Jiang et al., 2023; Xie et al., 2022).

In this paper, we propose LLaMoCo, a novel framework that adapts general-purpose Large Language
Models for optimization Code generation. Unlike methods based solely on prompt engineering,
LLaMoCo learns a domain-specific model to generate expert-level optimizers tailored at the instance
level. It leverages a well-formatted instruction set comprising code-to-code pairs of problem de-
scriptions in Python or LaTeX and their corresponding high-performing optimizer implementations,
refined through extensive benchmarking and hyper-parameter tuning. Once trained with our cus-
tomized instruction set that contains diverse examples of effective optimizers for various problem
instances with distinct landscapes, the model can generalize well to unseen optimization problems.
To accelerate the training convergence, we introduce two-phase learning: first enhancing the latent
representation through contrastive learning (Hadsell et al., 2006), followed by sequence-to-sequence
instruction tuning with a designed loss function. LLaMoCo offers several unique advantages: 1) It
generates optimization programs in a single round, making it more efficient for large-scale problems;
2) We standardize problem description prompts to structured codes, reducing prompt design effort
and enhancing underlying pattern learning for superior optimization performance and zero-shot
generalization; 3) LLaMoCo can generate more robust, expert-level optimizers compared to existing
general LLMs. Figure 1 depicts the difference between our LLaMoCo and existing approaches.

Extensive experiments reveal the remarkably robust performance of our LLaMoCo, surpassing exist-
ing methods. Notably, we show that instruction tuning a small LLM like CodeGen-350M (Nijkamp
et al., 2023) on domain-specific tasks significantly outperforms even very large models like GPT-
4 (Achiam et al., 2023). Moreover, we also provide in-depth analyses of the two-phase adaptation
strategy, training data sensitivity, and zero-shot generalization performance. Our contributions
are four folds: 1) we introduce LLaMoCo, the first framework for adapting LLMs to generate
expert-level optimizers; 2) we establish a code-to-code instruction set tailored for the optimization
domain; 3) we propose a two-phase training strategy based on contrastive warm-up training; and 4)
our LLaMoCo exhibits superior zero-shot generalization, efficiency, and robustness.

2 RELATED WORKS

Fine-tuning LLMs. Pre-trained LLMs can be refined by parameter updates on specific tasks
through a fine-tuning process. We introduce two prominent fine-tuning strategies: Instruction
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Tuning (IT) (Ouyang et al., 2022) and Alignment Tuning (AT) (Christiano et al., 2017; Ziegler
et al., 2019), each serving distinct purposes. Generally, IT involves fine-tuning pre-trained LLMs
using a moderate collection of formatted task instances (Wei et al., 2022a). The fine-tuning process
typically includes two steps: 1) prepare instruction-formatted training examples by associating a task
description with each task instance, which aids LLMs in understanding tasks (Sanh et al., 2022); and
2) leverage the prepared instruction set to fine-tune LLMs using a sequence-to-sequence supervised
loss (Gupta et al., 2023). By incorporating a well-established task-specific instruction set, IT can
effectively inject domain-specific knowledge into general LLMs. It enables the transfer of LLMs
to specific experts in domains like medicine (Singhal et al., 2023), law (Huang et al., 2023) and
finance (Zhang et al., 2023a). Differently, AT aims to correct unexpected behaviors of LLMs by
aligning the models with human values and preferences (Ouyang et al., 2022; Ziegler et al., 2019). A
practical algorithm for AT is the Reinforcement Learning from Human Feedback (RLHF) (Ziegler
et al., 2019), which firstly estimates a reward model on a human-preference data collection via
maximum likelihood. It then uses the learned reward model to provide feedback and post-trains
the LLMs through Proximal Policy Optimization (PPO) (Schulman et al., 2017). A recent work
named Direct Preference Optimization (DPO) (Rafailov et al., 2023) first reparameterizes the reward
function based on the parameters of the pre-trained LLMs, saving the modelling and training of the
reward function. DPO is mathematically equivalent to RLHF but is even more efficient, which is
widely adopted in the latest LLMs such as Mistral 8x7B (Jiang et al., 2024). Our LLaMoCo is the first
instruction-tuning framework for adapting general LLMs as an efficient and effective optimization
tool, which addresses the unsatisfactory optimization performance due to the limited domain-specific
knowledge of general LLMs.

LLMs for code generation. Generating code from natural language descriptions is exciting and com-
plex (Zan et al., 2023; Chen et al., 2021). Although general-purpose LLMs such as GPT (Brown et al.,
2020), Llama 2 (Touvron et al., 2023) and Mistral (Jiang et al., 2024) show competitive performance
on the widely used LLM benchmarks including HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021) and DS-1000 (Lai et al., 2023), their performance on a particular task may still be limited.
Recent efforts have focused on developing LLMs specifically tailored for code generation. These
models can be trained exclusively on code, such as AlphaCode (Li et al., 2022) and StarCoder (Li
et al., 2023), fine-tuned from general LLMs, like Codex (Chen et al., 2021) and Code Llama (Roziere
et al., 2023), or prompted from pre-trained LLMs such as FunSearch (Romera-Paredes et al., 2024).
Notably, Codex shows that a 12B LLM can solve 72.31% of complex programming tasks posed by
humans. This success has led to the emergence of various Code LLMs, such as CodeGen (Nijkamp
et al., 2023) that factorizes a potentially long specification into multiple steps to enhance program
synthesis, and Code Llama that extends Llama 2 models through a cascade of fine-tuning steps. Other
models such as Phi-2 (Javaheripi et al., 2023), InCoder (Fried et al., 2023) and CodeGeeX (Zheng
et al., 2023) have also gained great attention. Nevertheless, the target scenario in our LLaMoCo is the
optimization domain, where the optimization code generation is more challenging than normal code
generation task due to the intricate semantic alignment issue and data imbalance issue. We in this
paper propose a novel two-stage instruction tuning to address these challenges.

LLMs as optimizers. Optimization is crucial in numerous science and engineering fields but
poses significant challenges. Unlike tasks such as language understanding, optimization problems
are difficult for humans to solve without efficient algorithms, challenging LLM’s reasoning and
generalization abilities. Recent research has explored prompting LLMs for solutions of the
given numerical optimization (Yang et al., 2023; Wang et al., 2024; Liu et al., 2023b), optimizer
discovery (Pluhacek et al., 2023; Liu et al., 2024; Zhang et al., 2023b), or prompt optimization (Guo
et al., 2023b) scenarios, which is based on prompt engineering and in-context learning (Min et al.,
2022). Typically, these methods involve a set of candidate solutions for improvement, where LLMs
receive prompts with these solutions and their objective values and then generate improved solutions
iteratively until a termination condition is met. However, such a paradigm challenges the expertise of
the general LLMs for optimization, which is less developed during their pre-training. To address this,
the latest studies innovatively proposed prompting LLMs to behave like black-box optimizers, that is,
instructing LLMs to perform mutation, crossover operations and elitism strategy (Liu et al., 2023a;
Lehman et al., 2023; Chen et al., 2023; Brahmachary et al., 2024) on the candidate solutions. An
eye-catching work of this line is EvoPrompting (Chen et al., 2023), which is surprisingly capable of
finding neural network architectures with state-of-the-art performance. However, these approaches
have limitations in efficiency due to the need for extensive iterations.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In contrast, several studies share a similar ambition with our LLaMoCo: prompting LLMs directly
for pieces of executable optimization programs. An emerging research area is LLMs for Algorithm
Design (Liu et al., 2024) in the combinatorial optimization domain, that is, applying LLMs at the
algorithm design level to search and refine algorithm programs in an evolution fashion. By evolving
the programs of constructive methods, the finally obtained optimization program could beat certain
human-crafted heuristics. OptiMUS (AhmadiTeshnizi et al., 2023), on the other hand, integrates
hints about the target optimizer into the prompts to create and test new optimizers for numerical
optimization problems. Differently, our LLaMoCo facilitate a novel paradigm: fine-tuning LLMs
to generate advanced optimizer programs for numerical optimization in one round conversation at
the instance level. To this end, we propose a stipulated optimization problem description format, a
novel automated synthetic problem generation procedure and a large-scale benchmarking process
to construct a comprehensive instruction set. To the best of our knowledge, all the aforementioned
works focus on prompt engineering of pre-trained LLMs, and the area of fine-tuning general LLMs
with optimization-domain knowledge remains unexplored.

3 LLAMOCO

LLaMoCo is the first instruction tuning framework for adapting general-purpose LLMs to generate
instance-level optimizers. Operating on a code-to-code basis, it takes an optimization problem written
with Python or LaTeX and generates a code implementation of a customized optimizer (as illustrated
in Appendix F). Achieving such code-to-code flexibility encounters several unique challenges. First,
we propose a novel synthesizing procedure which could automatically generate sufficient and diverse
synthetic functions with/without constraints for instruction-tuning (Section 3.1). Next, to construct
high-quality prompt-answer data for the instruction tuning, we propose an innovative and automated
large-scale benchmarking process to facilitate effective answer labeling (Section 3.1). At last, based
on the semantic alignment issue and data imbalance issue in the constructed instruction set, we design
a novel two-phase tuning strategy to fine-tune general LLMs, as detailed in Section 3.2

3.1 CONSTRUCTION OF INSTRUCTION SET

Task synthesis. An optimization problem can be mathematically formulated as follows:

min
x

f(x), gi(x) ≤ 0, i = 1, ...,Mg, hj(x) = 0, j = 1, ...,Mh (1)

where f(x) is the objective function, gi(·) and hj(·) denote Mg inequality constraints and Mh equality
constraints respectively. Without loss of generality, we assume a minimization problem where the
optimal solution x∗ attains the minimum objective value, adhering to all specified constraints.

Optimization task synthesizing. The first concern is generating a sufficient number of high-quality
and diverse problem instances for instruction tuning (Sanh et al., 2022; Zhou et al., 2023). As
it is impractical to gather all types of real-world optimization problems, we generate synthetic
instances that represent various problem landscapes. Specifically, we collect a basic function set
𭟋 with various optimization problems and a basic constraint set Ω with various constraints from
the well-known benchmarks (Boyd and Vandenberghe, 2004; Wu et al., 2017; Guo et al., 2023c).
Following Mohamed et al. (2021), we synthesize a new objective function from K basic functions in
𭟋 through two different paradigms as given by Equation (2): 1) Composition: a linear combination
of the K basic functions over the entire decision space, with each wi uniformly sampled from [0, 1].
2) Hybrid: The decision vector x is randomly decomposed into K segments (s1 to sK). Each basic
function operates on one segment, and the final objective function is their summation.

Composition : f(x) =

K∑
i=1

wi · fi(x), Hybrid : f(x) =

K∑
i=1

fi(x[si]) (2)

We then process each problem instance in three steps: 1) indicate the problem dimension D, the
search bounds for each dimension (e.g., −10 ≤ xi ≤ 10), and the number of basic functions K; 2) if
K = 1, randomly select a basic function in 𭟋 as f(x), otherwise, we apply Composition/Hybrid
paradigm to synthesize f(x); and 3) randomly select a group of constraints {{gi}, {hj}} in Ω. Note
that step 3) is optional, as some optimization problems may not have constraints. In this work,
we generate 3k problem instances without constraints, denoted as Pnc, and another 3k problem
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instances with constraints, denoted as Pc. The complete set P is the union of Pnc and Pc, consisting
of 6000 instances. These instances showcase different characteristics of global landscapes, including
unimodal or multimodal, separable or nonseparable, and symmetrical or asymmetrical. They also
exhibit various local landscape properties, such as distinct properties around different local optima,
continuous everywhere yet differentiable nowhere, and optima situated in flattened areas. This
guarantees that the generated instances comprehensively mirror various realistic problems.

Knowledge gathering. In our study, the term ‘knowledge’ refers to expertise in handling optimization
problems, including selecting a well-performing optimizer and configuring its hyperparameters. To
this end, we conduct exhaustive benchmarking to determine one effective optimizer for each instance
p ∈ P . Concretely, we filter a wide range of optimizers from the literature (Stork et al., 2022;
Zhan et al., 2022), competitions (Wu et al., 2017; Mohamed et al., 2021; Turner et al., 2021), and
benchmarks (R.Turner and D.Eriksson, 2019; Guo et al., 2023c), selecting 23 optimizers that span
various algorithm families, including Evolutionary Algorithms (e.g., GA (Holland, 1992; Clune et al.,
2008; Wang et al., 2023), DE (Storn and Price, 1997; Xu et al., 2020; Biswas et al., 2021; Ye et al.,
2023), PSO (Kennedy and Eberhart, 1995; Gong et al., 2015; Wu and Wang, 2022; Lu et al., 2023)
and ES (Hansen and Ostermeier, 2001; Ros and Hansen, 2008; Hansen, 2009; He et al., 2020)),
Bayesian Optimization (Snoek et al., 2012; Wang et al., 2020), Local Search strategies (Kirkpatrick
et al., 1983; Van Laarhoven et al., 1987; Xiang et al., 1997; Fontes et al., 2023), and Numerical
Optimization methods (Kraft, 1988; Conn et al., 2000; Powell, 2007; Bollapragada et al., 2018). To
determine the most effective optimizer for each instance p, we employ a two-step process. Firstly, we
perform a grid search to identify the best configuration for each optimizer on p (conducted multiple
runs to reduce the impact of variance). Subsequently, we select the optimizer that yields the best
performance among all the configured optimizers. The selected optimizer and its configuration are
implemented as a piece of Python code, denoted as ap, serving as the knowledge of the desired
optimizer’s implementation for instance p. Refer to Appendix A and Appendix E.4 for details and
correctness of the benchmarking process respectively.

Instruction set construction. So far we have obtained a problem set P of 6000 optimization
instances and their best-performing optimizer code. However, how to describe each instance p ∈ P in
a programming language has not been resolved. Common sense is that we human beings describe an
optimization problem’s mathematical formulation in computers by programming languages such as
Python or LaTeX. However, even with such universal languages, different users created diverse code
pieces to formulate the given problem due to their programming habits. This motivates us to augment
each instance in P to diverse problem descriptions written in either Python or LaTeX. Training on
such augmented data could help LLaMoCo output consistent optimization code even if its inputs are
different description versions of the same problem instance. To achieve this, we have conducted a
survey among computer science students, and let them independently write problem descriptions
for instances in P by both Python and LaTeX. We analysed the collected scripts and found several
major programming patterns. By using these patterns, we create 4 ∼ 6 Python or LaTeX problem
descriptions for each instance. Due to the space limitation, we provide details about the found
patterns in Appendix B. After the augmentation, for each problem instance p ∈ P , we first insert
each description of it into the prompt template to attain 4 ∼ 6 text prompts {q1,p, q2,p, ...}. We then
insert the selected best-performing optimization code for p into the answer template to attain a text
answer ap. At last, for each p, we construct 4 ∼ 6 prompt-answer pairs {(q1,p, ap), (q2,p, ap), ...}. By
repeatedly constructing prompt-answer pairs for all instances in P , we finally construct an instruction
tuning set I comprising 32570 prompt-answer pairs.

3.2 TWO-PHASE INSTRUCTION TUNING

Contrastive warm-up. Given the constructed instruction set I, although we could naively ap-
ply regular LM loss to train an LLM to fit prompt-answer pairs in I, the training convergence
and stability suffer from two cases: a) there are 6000 problem instances involved, and they can
be categorized into 23 classes, where the class label is the optimizer achieving best performance
on each instance. This means that there is a chance two different problems hold very similar
answers. b) for two different problems, the difference in their programming language descrip-
tion might be very small. For example, consider two problems with the same objective function
one with a constraint and the other without, the difference in their code descriptions is only one
line. However, the answer for the one without constraint should be the DE algorithm and for
the other should be SLSQP. The above two cases would confuse the LLM during the fine-tuning.
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Similar prompt
q+
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Dissimilar prompt
q−

Transformer layers
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Negative sample loss:
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Figure 2: The contrastive warm-up .

In fact, such an issue is endemic in code understanding
scenarios (Guo et al., 2022) and a common practice is
leveraging contrastive learning to align the latent represen-
tation for case a) and drag the latent representation apart
for case b). In LLaMoCo, we follow the idea and design
a contrastive warm-up process before instruction tuning.
Concretely, to construct a mini-batch of training data, we
first randomly select a prompt-answer pair (q, a) from I,
where q is regarded as the anchor prompt. For the positive
sample, we randomly select a data pair (q+, a) with the
same optimizer type (we have 23 types). For the negative
sample, we randomly select a data pair (q−, a′) with a different optimizer type. Then these three
samples are applied to calculate the positive and negative sample loss, respectively. Specifically, for
the decoder-only LLMs adopted for code generation tasks in this paper, we activate the Transformer
layers (Vaswani et al., 2017) and regard the output embedding of the final self-attention block as a
latent representation for a prompt. In LLaMoCo, we measure the distance between two prompts q
and q′, denoted as G(q, q′), by considering the cosine similarity between their latent representations−→o (q) and −→o (q′):

G(q, q′) =
1

2

(
1− o⃗ (q) · o⃗ (q′)

∥o⃗ (q)∥ ∥o⃗ (q′)∥

)
(3)

The distance G(q, q′) ∈ [0, 1]. The contrastive loss of q and q′, denoted as Lcl(q, q
′), is calculated as:

Lcl =

{
G(q, q′) q′ = q+

max(0, φ−G(q, q′)) q′ = q−
(4)

where φ is a margin parameter. By minimizing Lcl, we could efficiently pull together the represen-
tations of two prompts which share the same desired optimizer yet have different forms, and vice
versa. This contrastive phase is economic since we only consume a small number of epochs to warm
up the fine-tuning of LLMs by Lcl and then instruction-tune the LLMs with the regular LM loss for
next-token prediction (Wolf et al., 2019). We validate the effectiveness of this contrastive learning
phase in Section 4.3.

Balanced data sampling. The instruction set I exhibits certain imbalance in the distribution of data.
Notably, we observe that several optimizers dominate on thousands of problem instances, while the
others only outperform on a few problem instances. Dealing with imbalanced data poses a challenge
during the process of fine-tuning models (Batista et al., 2004; Zhao et al., 2023). To address the
issue, we follow the example-proportional mixing strategy (Raffel et al., 2020) to re-balance the data
distribution in I. Each data pair (q, a) is sampled with a probability ρ as:

ρ(q, a) =
1

Na ×Nq,a
(5)

where Na denotes the number of optimizers in the gathered algorithm pool, Nq,a denotes the number
of instances whose desired optimizer is a. In this way, the number of sampled pairs dominated by
each optimizer is approximately equal in each training epoch. Note that we apply this strategy in both
the contrastive warm-up phase and the instruction tuning phase. The approach aids in avoiding biased
training of the LLMs and enables them to effectively learn the knowledge from minority instances.

4 RESULTS AND DISCUSSIONS

4.1 EXPERIMENTAL SETUP

Fundamental models & Training settings. We adopt CodeGen-Mono (350M), Phi-2 (2.7B) and
Code Llama (7B) as backbone models and fine-tune them on our instruction set. The reasons are
two-fold: 1) these models show robust programming language reasoning and code generation ability,
serving as a good starting point for the code-to-code scenario in our work; 2) the relatively small model
size helps to reduce computational resources required for training and deploying. For generating
the task set P , the range of the problem dimension is [2, 50], and the number of components K is
randomly chosen from [1, 5]. We randomly split the instruction set I into a training set Itrain with 30k
input-output pairs and a test set Ieval with the rest examples. We leave other details in Appendix C.
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Table 1: Results of different approaches in terms of Code Error Rate (Err.), Code Recovery
Cost (Rec.), Optimization Performance (Perf.), and Computational Overhead (Comp.) on
the unconstrained problems (Ieval/Pc), constrained problems (Ieval/Pnc), both constrained and
unconstrained problems (Ieval), and realistic problems Ireal, where “-” denotes that the approach does
not generate code (it follows a solution-to-solution paradigm).

Testset Metrics Prompt for Solution Prompt for Optimizer Our LLaMoCo

OPRO LMEA CodeGen-Mono-
350M Phi-2-2.7B DeepSeekMath-

Instruct-7B GPT-4 Turbo Code Llama-7B Llama2-70B LLaMoCo-S LLaMoCo-M LLaMoCo-L

Ieval/Pc

Err. ↓ - - 99.864% 97.413% 71.564% 43.333% 98.184% 99.673% 5.437% 4.414% 4.697%
Rec. ↓ - - 80.234% 72.242% 13.483% 9.942% 67.857% 62.232% 9.684% 10.101% 9.947%
Perf. ↑ 29.499% 20.350% 12.341% 17.313% 58.568% 71.783% 14.089% 18.922% 85.360% 86.412% 85.810%

Comp. ↓ 115k 249k 1.9k 2.1k 2.1k 3.4k 1.7k 1.5k 2.3k 2.3k 2.3k

Ieval/Pnc

Err. ↓ - - 99.413% 92.234% 67.488% 39.944% 90.474% 99.521% 5.697% 6.130% 5.977%
Rec. ↓ - - 78.341% 54.156% 12.145% 16.463% 44.938% 49.202% 11.861% 10.443% 10.584%
Perf. ↑ 4.514% 7.541% 20.314% 41.342% 53.477% 75.678% 46.968% 22.460% 77.576% 79.718% 83.404%

Comp. ↓ 115k 249k 2.1k 2.2k 2.1k 3.5k 2.0k 2.0k 2.5k 2.5k 2.5k

Ieval

Err. ↓ - - 99.421% 94.314% 69.371% 41.667% 95.156% 99.617% 5.580% 5.434% 5.509%
Rec. ↓ - - 79.371% 63.314% 12.518% 13.072% 57.001% 55.717% 10.826% 10.349% 10.461%
Perf. ↑ 17.821% 14.762% 15.341% 19.345% 55.847% 74.248% 29.717% 20.579% 81.843% 83.369% 83.451%

Comp. ↓ 115k 249k 2.0k 2.1k 2.1k 3.5k 1.9k 1.7k 2.4k 2.4k 2.4k

Baselines. We include two solution-to-solution approaches, OPRO (Yang et al., 2023) and LMEA (Liu
et al., 2023a), which prompt pre-trained LLMs (e.g., GPT-4 Turbo) repeatedly to generate and improve
solutions for the given problems. Compared to OPRO, LMEA additionally engineered its prompt
with an explicit indication of using some evolutionary operators to let LLMs act as an evolutionary
optimizer for performance boost. We also include six general LLMs for code generation, namely
CodeGen-Mono-350M (Nijkamp et al., 2023), Phi-2-2.7B (Javaheripi et al., 2023), Code Llama-
7B (Roziere et al., 2023), Llama 2-70B (Touvron et al., 2023), DeepSeedMath-Instruct-7B (Shao
et al., 2024) and GPT-4 Turbo (Achiam et al., 2023). We prompt these three general LLMs with
the same format as in our instruction set I to generate an optimizer for each problem instance. Note
that we do not include the LLMs for algorithm design works such as EoH (Liu et al., 2024) into
the comparison, since works in this line primarily address the combinatorial optimization problems
but our LLaMoCo revolves around numerical optimization problems. The configurations of the
baselines are set by default according to the corresponding references, and listed in Appendix C. Note
that we do not include Algorithm Selection methods (Kerschke et al., 2019; Guo et al., 2024) for
comparison since LLaMoCo generates complete optimizer source codes that not only specify the
selected algorithm but also include the necessary implementation details, which is beyond the scope
of standard algorithm selection. Besides, LLaMoCo performs hyper-parameter tuning as part of the
optimization code generation process, providing a level of configurability that algorithm selection
methods cannot achieve.

Performance metrics. When evaluating the performance of LLMs for optimization, we consider
four metrics: 1) the code error rate, which indicates the proportion of problems for which the LLMs
generate optimization codes with bugs (lower values are preferable); 2) the code recovery cost,
which measures the proportion of lines of code that need to be corrected in order to fix the bugs
in the erroneous codes (lower values are preferable); 3) the average optimization performance on
the test problems (higher values are preferable), which is a min-max normalized term indicating
the optimization results over the tested problem set; and 4) the average computational overhead for
solving a problem, which is determined by the number of tokens used for both the input and output
of LLMs (lower values are preferable). These four metrics could provide a comprehensive evaluation
of existing baselines and our LLaMoCo in aspects of code generation robustness, optimization
performance and runtime complexity. The detailed calculations can be found in Appendix D.

4.2 PERFORMANCE ANALYSIS

We use LLaMoCo-S(mall), -M(edium) and -L(arge) to denote the fine-tuned CodeGen-Mono (350M),
Phi-2 (2.7B) and Code Llama (7B) models on Itrain, respectively.

Performance on test sets. First, we evaluate the performance of our fine-tuned LLMs and the
competitors on three test sets, Ieval/Pc, Ieval/Pnc, and Ieval that represent the unconstrained task set,
constrained task set, and the complete set mixing unconstrained and constrained tasks, respectively,
each with 5 independent runs. The results are reported in Table 1, which show that: 1) The LLMs fine-
tuned by our LLaMoCo framework consistently achieve superior performance, which validates that
instruction tuning the general LLMs with moderate expert-level knowledge would gain substantial
performance reinforcement in optimization. For example, LLaMoCo-L fine-tuned on the Code
Llama (7B) demonstrate a performance boost from 29.717% to 81.843% on Ieval.
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2) Although LLaMoCo-S is fine-tuned from a relatively small fundamental model, it achieves
competitive performance to those of LLaMoCo-M and LLaMoCo-L. This reveals a potential marginal
effect in instruction tuning, since the data scale should match the model capacity. See Appendix E.3
for a detailed experiment where we provide an initial exploration on LLaMoCo’s scaling law.

3) The solution-to-solution approaches OPRO and LMEA achieve unsatisfactory performance on
our complex optimization task sets. Considering the tremendous tokens these approaches consume
to solve one optimization problem through iteratively prompting solutions, both the efficacy and
efficiency (as shown in the ‘Perf.’ and ‘Comp.’ rows of Table 1) of them require further improvement.

4) Among the six ‘prompt for optimizer’ models we compared, the GPT-4 Turbo dominates the
others, which shows the power of a general-purpose LLM with high capacity. Nevertheless, it still
underperforms our domain-specific LLaMoCo. Our models effectively reduce the error rates and
the required recovery efforts for generating the codes of an optimizer through the instruction tuning.
Meanwhile, note that the Code Llama (7B) model achieves better overall performance than the Llama
2 (70B) model in our experiments. The above observations validate that, although LLMs with larger
capacity may show strong performance for solving general tasks, a smaller model could be sufficient
to be fine-tuned as a domain-specific task solver.

5) Without specifically trained on our proposed Itrain, all general LLM baselines show high
error rates when generating the optimizer program. This further outlines the advantages of
instruction-tuning the general LLMs with LLaMoCo (with at most 6.13% error rate for our three
pre-trained models). We have to note that recent few-shot prompting researches (Madaan et al.,
2022; Bareiß et al., 2022) indicate that the error rate could be decreased by providing the gen-
eral LLMs with moderate examples as hints. We also conduct a comparison study between
our LLaMoCo models and the three general LLMs enhanced by the few-shot prompting strat-
egy (see Appendix E.1). Although the error rates of the three general LLM baselines are sig-
nificantly reduced, the error rates are still over 10%. Besides, few-shot prompting for the gen-
eral LLMs requires additional computational overheads and certain expertise for the examples.

Table 2: Performance comparison across 350M ∼
7B CodeGen-Mono models before and after LLaM-
oCo’s instruction-tuning.

Model Model Size

350M 1B 3B 7B
CodeGen-Mono 15.341% 18.943% 19.348% 20.982%

LLaMoCo-CodeGen 81.843% 82.541% 83.315% 83.513%

6) We additionally use our LLaMoCo to fine-
tune all models of codeGen series, from 350M
to 7B. We present the optimization performance
of these models before and after LLaMoCo’s
instruction tuning in Table 2. The results clearly
validate the robust performance boosting ability
of LLaMoCo for different model-size LLMs.

Zero-shot performance on realistic problems. To validate the generalization of LLaMoCo on intri-
cate real-world scenarios, we compare models fine-tuned by our LLaMoCo and the other baselines on
a wide range of realistic instances. Concretely, we select 8 realistic optimization tasks: 1) Haverly’s
Pooling problem (Floudas and Pardalos, 1990) for allocating gas flow in pipeline transportation
networks with minimum cost, which represents a linear-objective non-linear COP. 2) Multi-product
batch plant problem (Grossmann and Sargent, 1979) for scheduling operations of multiple products
in a plant. 3) Robot gripper problem (Osyczka et al., 1999) for controlling the robotic gripper to
grab target objects. 4) Wind farm layout problem (Wang et al., 2017) for optimizing the locations of
wind turbines to maximize the total power output. 5) SOPWM problem (Rathore et al., 2010) for
regulating Medium-Voltage drives. 6) Protein docking problem (Hwang et al., 2010) for optimizing
the docking pattern to achieve a stable protein-protein complex. 7) HPO problem (Arango et al.,
2021) for finding optimal hyper-parameter settings for machine learning algorithm. 8) Neuroevolu-
tion problem (Such et al., 2017) for optimizing neural networks to address various downstream tasks
such as classification and control. These problems show diverse optimization challenges such as opti-
mization with complex constraints, rugged objective landscapes, expensive evaluation, ill-conditioned
objective landscapes, multimodality etc. We present the results in Table 3, where we provide the
optimization performances of all baselines and our LLaMoCo. The results demonstrate the robust
performance of LLaMoCo for optimization problems in our daily life. This generalization roots from
the stipulated problem description we proposed in this paper, where either the synthetic problems or
the realistic problems are represented by programming language hence share the semantic consistency,
which helps the generalizability of LLaMoCo. We further validate the zero-shot performance of
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LLaMoCo on a realistic problem collection proposed by Kumar et al. (2020), which covers 57 diverse
real-world optimization scenarios. The results is provided in Appendix E.2.

Table 3: Performance comparison between LLaMoCo and other baselines on realistic problems.
These problems cover various domains such as engineering, continuous control, AutoML, and
scientific discovery, showing diverse optimization challenges.

Methods
Realistic Problems

Haverly’s
Pooling

Multi-product
batch plant Robot gripper Wind Farm

Layout
SOPWM for

3-level inverters
Protein

Docking HPO Neuroevolution

OPRO 58.567% 37.153% 26.488% 31.499% 34.125% 28.315% 58.567% 18.243%
LMEA 46.852% 40.256% 34.786% 29.457% 36.445% 17.342% 46.852% 19.423%

CodeGen-Mono-350M 43.729% 33.154% 43.155% 19.456% 40.564% 18.348% 43.729% 24.354%
Phi-2-2.7B 50.345% 40.782% 49.486% 34.498% 46.557% 40.348% 50.345% 26.487%

DeepSeekMath-Instruct-7B 62.782% 57.121% 59.478% 53.145% 66.784% 61.783% 62.782% 34.364%
GPT-4 Turbo 63.487% 67.158% 58.586% 58.489% 76.447% 74.284% 63.487% 37.145%

Code Llama-7B 51.425% 53.187% 55.406% 46.487% 70.887% 39.341% 51.425% 32.451%
Llama2-70B 49.488% 51.156% 52.045% 44.267% 68.456% 37.481% 49.488% 35.478%
LLaMoCo-S 83.152% 75.145% 61.798% 75.412% 81.364% 80.734% 83.657% 57.364%
LLaMoCo-M 80.468% 78.851% 64.587% 75.654% 82.457% 81.044% 80.468% 58.145%
LLaMoCo-L 86.758% 76.148% 62.891% 77.364% 82.669% 81.532% 83.152% 57.341%
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Figure 3: Left: Effectiveness of the contrastive warm-up strategy presented as the performance gains
along the instruction tuning process. The proposed contrastive warm-up boosts both the learning
efficiency and the learning effectiveness of LLaMoCo. Middle: Effectiveness of the diversity
enhancement strategy. Right: Effectiveness of the balanced data sampling strategy.

Table 4: Comparison between LLaMoCo and the OpenAI models, in terms of Code Error Rate (Err.),
Code Recovery Cost (Rec.), Optimization Performance (Perf.), and Computational Over-
head (Comp.) on the test set Ieval.

GPT-4 Turbo GPT-4o o1-mini o1-preview GPT-4 vector search LLaMoCo-S LLaMoCo-M LLaMoCo-L

Ieval

Err. ↓ 41.667% 33.771% 3.355% 4.107% 9.336% 5.580% 5.434% 5.509%
Rec. ↓ 13.072% 14.405% 10.299% 10.641% 12.853% 10.826% 10.349% 10.461%
Perf. ↑ 74.248% 75.193% 80.269% 79.945% 79.944% 81.843% 86.412% 85.810%

Comp. ↓ 3.5k 3.6k 4.1k 4.1k 7.1k 2.4k 2.4k 2.4k

4.3 ABLATION STUDY

Contrastive warm-up. The contrastive warm-up phase in our proposed two-phase instruction
tuning strategy (see Section 3.2) aims to reduce the cross-modal ambiguity by aligning the latent
representations of different prompts that share the same desired optimizer (vice versa). We illustrate
the performance gain curves on Ieval with or without the contrastive warm-up during the instruction
tuning in the left of Figure 3, where LLaMoCo-S is applied as a showcase and the error bars indicate
the variance across 5 training runs. The results show that incorporating such a contrastive warm-up
strategy aids in accelerating the convergence of the subsequent instruction tuning. Furthermore, it is
advantageous for the LLMs to generate accurate codes and enhance the overall performance. We
refer to Appendix E.5 for all results on different LLaMoCo models and test problem sets.

Diversity enhancement. To improve the generalization of the fine-tuned LLMs in LLaMoCo, we
enrich the task descriptions for each problem instance by augmenting the description of its objective
function and constraints with Python or LaTeX codes of different writing styles. We illustrate the
effect of this procedure in the middle of Figure 3 by showing the optimization performance of six
LLaMoCo-S models trained on pure Python, pure LaTeX and Python+LaTeX data, with or without
the diversity enhancement by rephrasing. The results show that providing multi-lingual descriptions
of optimization problems significantly boosts the generalization performance, while rephrasing each
description with multiple writing styles further enhances the final training results.

Balanced data sampling. In LLaMoCo, we address the imbalanced data distribution (caused by
dominate optimizers) through performing example-proportional sampling on Itrain. To investigate its
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effectiveness, we train two LLaMoCo-S models on Itrain, with or without the data balancing strategy,
respectively. The optimization performance of the two models is presented in the right of Figure 3, by
separately considering the majority instances (which request the dominating optimizers), the minority
instances (which request the others), and the overall instances of Ieval. The results consistently show
that keeping a balanced training data distribution significantly boosts performance.

4.4 OPEN-ENDED DISCUSSION: IS GPT-4 A TRUE OPTIMIZATION EXPERT?

Considering the competitive performance of GPT-4, as shown in Table 1, we delve into whether
GPT-4 can be deemed as a genuine optimization expert. Upon viewing the optimization codes
generated by GPT-4 for both test and realistic problem sets, a noteworthy pattern emerges. GPT-4
consistently leans towards generating a specific numerical optimizer, SLSQP (Kraft, 1988), for almost
all tested problems. While SLSQP is a classical solver for convex quadratic programming and is
included in our chosen advanced optimizers, our benchmarking results identify that on a proportion
of tested problems, it underperforms the others such as the Vanilla DE (Storn and Price, 1997).

To investigate further, we have conducted testing on a series of latest GPT models: GPT-4o, GPT
o1-mini and GPT o1-preview. In particular, we also add a GPT-4 vector search baseline (OpenAI,
2023) which uses a vector search method to provide in-context enhancement for the GPT-4 model.
We present the performance comparision in Table 4. From the results, we can observe that: a) o1 v.s.
GPT-4o: indeed, o1 models achieve significantly lower coding errors than 4o model, demonstrating
their robust coding enhancement. b) o1-mini v.s. LLaMoCo: on the one hand, the error rate of
o1-mini is lower than our LLaMoCo, which originates from the black-box training of o1-mini on
extremely large coding tasks. On the other hand, LLaMoCo, trained on a very small model, could
achieve more optimization performance gain, with fewer tokens consumed. Besides, we look into
the source codes generated by o1-mini as we have done for GPT-4 Turbo model in Section 4.4. It
turns out that o1-mini also leans toward generating a particular optimizer, DE algorithm, for almost
all tested problems. This further underscores the core motivation of LLaMoCo, which is exploring
how to inject domain-specific knowledge into LLMs to adapt them for specific tasks. c) By providing
GPT-4 Turbo with an example prompt-answer pair which is similar to the tested prompt, the error
rate of the generated optimizer code significantly declines. d) However, such a prompting strategy
consumes doubled tokens than directly prompting GPT-4 Turbo, which is inefficient considering our
LLaMoCo only requires 2.4k tokens to achieve superior optimization performance. This underscores
the importance of our LLaMoCo for adapting LLMs to solve optimization problems.

5 CONCLUSION

We introduce LLaMoCo, the first instruction-tuning framework to adapt general LLMs to function
as expert-level systems to solve optimization problems. To achieve this, we meticulously construct
an instruction set with more than 30k demonstration examples and then employ a novel two-phase
instruction tuning strategy to fine-tune a series of LLMs. The results show that our models consistently
outperform existing approaches. Notably, we observe that a relatively small LLM is sufficient to
be tuned as an expert-level optimization code generator superior to GPT-4. As a pioneering work,
LLaMoCo holds certain limitations. On the one hand, The current LLaMoCo has been fine-tuned
on a dataset comprising 30k single-objective optimization problems, serving as a proof of concept
for the framework’s potential on larger-scale training. Hence, these models may not yet be fully
equipped to handle all out-of-distribution problem types. Exploring LLaMoCo’s applicability to other
additional problem domains represents an exciting avenue for future research. On the other hand,
beyond the current reliance on a labeled dataset for fine-tuning, we can see significant potential in
further enhancing LLaMoCo’s efficiency and generalization capabilities by integrating Alignment
Tuning (AT), which not only promises to refine the model’s performance with expert optimization
knowledge but also ensures that the solutions it generates are more interpretable and aligned with
human knowledge. Other future research directions include but not limited to: a) the potential
application of the proposed contrastive warmup strategy to other domains outlines an interesting and
open-ended future work. b) the design of the instruction dataset such as employing CoT (Wei et al.,
2022b) to enhance the reasoning ability of the fine-tuned model, is very promising. c) incorporate
LLaMoCo with effective multi-turn code optimization framework might be a promising way to further
improve both the code correctness and the optimization performance of LLaMoCo. In a word, we
propose LLaMoCo with the hope that this preliminary exploratory research could appeal to more
researchers to explore the potential of LLMs as Optimizers.
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A BENCHMARKING FOR KNOWLEDGE GATHERING

A.1 OPTIMIZER POOL AND THE USED ASSETS

To match each problem instance in the generated problem set P with an appropriate optimizer with
corresponding code implementation, we construct an optimizer pool Λ which integrates 23 well-
performing optimizers from various algorithm families. These selected optimizers can be divided
into two groups considering their compatibility for constraint handling. We briefly list the two groups
as below:

Unconstrained group Λuc: Simulated Annealing (Kirkpatrick et al., 1983), Vanilla PSO (Kennedy
and Eberhart, 1995), Vanilla DE (Storn and Price, 1997), Dual Annealing (Xiang et al., 1997),
SAMR-GA (Clune et al., 2008), SEP-CMA-ES (Ros and Hansen, 2008), BIPOP-CMA-ES (Hansen,
2009), DEAP-DE (Fortin et al., 2012), Vanilla BO (Snoek et al., 2012), GLPSO (Gong et al.,
2015), MMES (He et al., 2020), LA-MCTS (Wang et al., 2020), MadDE (Biswas et al., 2021),
sDMS-PSO (Wu and Wang, 2022), AMCDE (Ye et al., 2023), NSA (Fontes et al., 2023).

Constrained group Λc: SLSQP (Kraft, 1988), Trust-Constr (Conn et al., 2000), COBYLA (Powell,
2007), L-BFGS-B (Morales and Nocedal, 2011), HECO-DE (Xu et al., 2020), DTPSO (Lu et al.,
2023), GA-TDX (Wang et al., 2023).

We benefit from open-source libraries, including DEAP (Fortin et al., 2012), PyPop7 (Duan et al.,
2022), evosax (Lange, 2023), SciPy (Virtanen et al., 2020) and Scikit-Optimizer (Louppe and Kumar,
2016) etc., for the easy implementation of the selected optimizers. We list the codebases we adopt for
the implementation of these optimizers and their licenses in Table 5. We note that the development
and deployment of our framework strictly follow those licenses.

Table 5: Used assets and their licenses

Asset Codebase License

DEAP-DE (Fortin et al., 2012) DEAP (Fortin et al., 2012) LGPL-3.0 LicenseVanilla PSO (Kennedy and Eberhart, 1995)

SAMR-GA (Clune et al., 2008)
evosax (Lange, 2023) Apache-2.0 licenseBIPOP-CMA-ES (Hansen, 2009)

Simulated Annealing (Kirkpatrick et al., 1983)

SEP-CMA-ES (Ros and Hansen, 2008)

PyPop7 (Duan et al., 2022)
GPL-3.0 licenseMMES (He et al., 2020)

LA-MCTS (Wang et al., 2020)
NSA (Fontes et al., 2023)

Dual Annealing (Xiang et al., 1997)
SciPy (Virtanen et al., 2020) BSD-3-Clause licenseSLSQP (Kraft, 1988)

COBYLA (Powell, 2007)

Vanilla BO (Snoek et al., 2012) Scikit-Optimizer (Louppe and Kumar, 2016) BSD-3-Clause License

GA-TDX (Wang et al., 2023)

advanced-global-optimizers
https://pypi.org/project/advanced-global-optimizers/

MIT License

Vanilla DE (Storn and Price, 1997)
MadDE (Biswas et al., 2021)

AMCDE (Ye et al., 2023)
HECO-DE (Xu et al., 2020)
GLPSO (Gong et al., 2015)

sDMS-PSO (Wu and Wang, 2022)
DTPSO (Lu et al., 2023)

A.2 BENCHMARKING PROCESS

The benchmarking process aims to find an appropriate configured optimizer for each problem instance
p ∈ P . To this end, for each optimizer Λk ∈ Λ, we span a grid-search configuration space Ck based
on its tunable hyper-parameters, which is listed in Table 6. Take DEAP-DE (Fortin et al., 2012)
as an example, it has three hyper-parameters and each of them has 5 optional values (pre-defined
by us). We hence span the Ck of DEAP-DE as a configuration space comprising 5× 5× 5 = 125

configurations, each denoted as Cj
k. We now establish the target of our benchmarking process:

argmax
Λk∈Λ,Cj

k∈Ck

E
[
eval(p,Λk, C

j
k)
]

where p denotes the tested problem instance, eval denotes the final optimization performance by
calling Λk with configuration Cj

k to solve p, and E denotes the expectation of the optimization

18

https://pypi.org/project/advanced-global-optimizers/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

performance, which is unbiased-estimated by 5 independent runs in this work. For constrained
problems, we benchmark Λc, while for unconstrained problems we benchmark Λnc. We note that
the benchmarking process for each problem instance may encounter execution failures, e.g., some
optimizers in Λc can not handle equality constraints, some optimizers in Λnc are incompatible with
non-convex problems, BO optimizers are extremely time-consuming on high-dimensional problems.
When failures occur, the corresponding eval(p,Λk, C

j
k) is set to 0. After benchmarking Λ on P , we

provide a configured optimizer a(Λk, C
j
k), and the corresponding code implementation as the desired

optimizer for each p.

Table 6: Configurations and the hyperparameter tuning settings of the optimizers.

Type Algorithm Parameters Search range

GA

SAMR-GA
Clune et al. (2008)

NP [10, 20, 50, 100, 200]
elite_ratio 0.0
sigma_init [0, 0.5, 1]

sigma_meta [1, 2, 3, 4, 5]
sigma_best_limit [0.0001, 0.001, 0.1]

GA-TDX
Wang et al. (2023)

beta [0.1, 0.2, 0.3, 0.4, 0.5]
gamma [1, 3, 5, 7, 9]

m 1e10
NP [10, 20, 50, 100, 200]

DE

Vanilla DE
Storn and Price (1997)

NP [10, 20, 50, 100, 200]
F [0, 0.5, 0.9]
Cr [0, 0.5, 0.9]

mutation {best1, best2, rand2, current2rand,
current2best, rand2best2}

bound {clip, periodic, reflect, rand}

DEAP-DE
Fortin et al. (2012)

NP [10, 20, 50, 100, 200]
F [0.1, 0.3, 0.5, 0.7, 0.9]
Cr [0.1, 0.3, 0.5, 0.7, 0.9]

HECO-DE
Xu et al. (2020)

F0 0.5
Cr0 0.5

Arate [2, 4, 6, 8]
Hm [1, 3, 5]

NPm 12
NPmin 40
lamda [10, 20, 30, 40]

n0 [1, 2, 3]
gamma [0.05, 0.1, 0.2]

MadDE
Biswas et al. (2021)

p [0.09, 0.18, 0.27, 0.36]
PqBX [0.01, 0.1, 0.2, 0.3, 0.5]

F0 0.2
Cr0 0.2

Arate [1.3, 1.8, 2.3, 2.8 ,3.3]
Hm [5, 10 ,15, 20]

NPm [2, 4, 6, 8]
NPmin 4

AMCDE
Ye et al. (2023)

F0 0.2
Arate [1.6, 2.1, 2.6, 3.1, 3.6]
Hm [5, 10, 15, 20]

NPm [3, 6, 9]
NPmin 4

Gn 5
pbc1 [0.4, 0.5, 0.6]
pbc2 [0.4, 0.5, 0.6]
pw [0.1, 0.2, 0.3]
pr [0.005, 0.01, 0.05]

plssucc 0.1
plsfail 0.0001

PSO

Vanilla PSO
Kennedy and Eberhart (1995)

NP [10, 20, 50, 100, 200]
phi1 [1, 2, 3]
phi2 [1, 2, 3]

GLPSO
Gong et al. (2015)

pm [0.01, 0.1, 0.2]
NP [10, 20, 50, 100, 200]
nsel 10
w 0.7298
c1 1.49618
sg 7
rho [0.1, 0.2, 0.3]

sDMS-PSO
Wu and Wang (2022)

w [0.729, 0.271, 0.5]
NP [33, 66, 99, 198]
c1 [1.49445, 3., 0.75]
c2 [1.49445, 3., 0.75]
m [1, 3, 5]
R [5, 10, 15]

LP [5, 10, 15]
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Table 6 continued from previous page
Type Algorithm Parameters Search range

LA 8
L 100

L_FEs 200

PSO DTPSO
Lu et al. (2023)

p [0.1, 0.5, 0.9]
sigma [0.25, 0.5, 0.75]

gamma [0.25, 0.5, 0.75]
u1 [0, 0.5]
u2 [0, 0.5]

c1,1 [0, 1.711897]
c1,2 [0, 1.711897]
c2,1 [0, 1.711897]
c2,2 [0, 1.711897]
ws 0.9
we 0.4

NPinit [50, 100, 200]
radius [0.05, 0.1, 0.2]

ES

SEP-CMA-ES
Ros and Hansen (2008)

n_individuals [10, 20, 50, 100]
c_c [1, 2, 3, 4, 5]

sigma [0.1, 0.3, 0.5]

BIPOP-CMA-ES
Hansen (2009)

NP [10, 20, 50, 100]
elite_ratio [0.2, 0.5, 0.7]
sigma_init 1

mean_decay 0
min_num_gens [10, 30, 50]

popsize_multiplier [1, 2, 3, 4, 5]

MMES
He et al. (2020)

a_z [0.05, 0.1, 0.2]
c_s [0.1, 0.3, 0.5]
ms [2, 4, 6]

n_individuals [25, 50, 100]
n_parents [25, 50, 100]

sigma [0.1, 0.3, 0.5]

BO

Vanilla BO
Snoek et al. (2012)

acq_func [LCB, EI, PI, gp_hedge, EIps, PIps]
n_initial_points [5, 10, 20]

initial_point_generator [random, sobol, halton, hammersly, lhs]

LA-MCTS
Wang et al. (2020)

n_individuals [10, 20, 50, 100]
c_e [0.01, 0.05, 0.1]

leaf_size [10, 20, 30, 40, 50]

LS

Simulated Annealing
Kirkpatrick et al. (1983)

NP [10, 20, 50, 100, 200]
sigma_init [0.1, 0.3, 0.5]

sigma_decay 1
sigma_limit [0.01, 0.05, 0.1]
temp_init 1

temp_limit 0.1
temp_decay [0.9, 0.99, 0.999]

boltzmann_const [1, 5, 10]

Dual Annealing
Xiang et al. (1997)

initial_temp [523, 5230, 50000]
visit [1.62, 2.62, 3.62]

restart_temp_ratio [2e-5, 2e-3, 2e-1]

NSA
Fontes et al. (2023)

sigma [0.1, 0.3, 0.5]
schedule [linear, quadratic]

n_samples [10, 20, 50, 100, 200]
rt [0.9, 0.99, 0.999]

NO

SLSQP
Kraft (1988) eps [1e-12, 1e-10, 1e-8, 1e-6, 1e-4]

Trust-Constr
Conn et al. (2000)

initial_tr_radius [0.5, 1, 1.5, 2]
initial_constr_penalty [0.5, 1, 1.5, 2]
factorization_method [equality_constrained_sqp, tr_interior_point]

COBYLA
Powell (2007) rhobeg [0.5, 1, 1.5, 2]

L-BFGS-B
Morales and Nocedal (2011)

maxcor [5, 10, 15, 20]
eps [1e-12, 1e-10, 1e-8, 1e-6, 1e-4]

A.3 DATA QUALITY CONTROL

To ensure the dataset include only solvable and non-trivial problems, for those problems without
constraints, the composition and hybrid construction on the base functions follows the procedure of
IEEE CEC 2021 Single-objective Competition, where the optimum and optimal objective value of
the constructed function are closed-form. By adding the rotation and shift to the optimum, we change
the landscape to be optimized to make the solution non-trivial. For the constrained problems, we
additionally run optimizers in our algorithm pool which specialize at solving constrained problems
to optimize the constructed problem instances for multiple times (50 runs) to ensure the problem
instance is without constraint conflict and hence solvable.
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B DETAILS OF DATA AUGMENTATION

It is a common practice to augment the training data for boosting the generalization performance
in recent LLMs works (Sanh et al., 2022; Wei et al., 2022a; Chung et al., 2022). In LLaMoCo,
we alter different writing styles of a problem’s definition to generate moderate diverse prompts
for each problem instance generated in P . For the different writing styles, we conducted a
survey among university students majoring in computer science, inviting them to write diverse
Python or LaTeX code that they believe is correct for defining the given problem instances in
their own coding styles. From all of the collected scripts, we choose 50 most representative
ones for analysis. After systematic statistics, we have empirically summarized several writing
patterns, which we believe could approximately represent the major writing patterns of different
users. Based on these different patterns, for each problem instance p ∈ P , we can obtain
moderate rephrased versions for its objective function and constraints written by either Python or La-
TeX code. We showcase the found patterns on a toy Katsuura problem which holds the formulation as:

Minimize : f(x) =
10

D2

D∏
i=1

1 + i

32∑
j=1

∣∣2jxi − round
(
2jxi

)∣∣
2j

 10
D1.2

− 10

D2
, X ∈ RD

For LaTeX patterns, we found three different writing styles from the 50 scripts, which differ from each
other mainly based on the laws of arithmetic, e.g., commutative law, distributive law and associative
law. We illustrate some different LaTeX codes for our toy problem in Figure 4.

$\begin{aligned}
Minimize:\quad &f(x) = \frac{10}{D^2} 
\prod_{i=1}^D\left(1+i \sum_{j=1}^{32} 
\frac{\left|2^j x_i-\operatorname{round}\left(2^j 
x_i\right)\right|}{2^j}\right)^{\frac{10}{D^{1
2}}}-\frac{10}{D^2} , X\in R^{D}\\
\end{aligned}$

$\begin{aligned}
Minimize:\quad &f(x) = \frac{10}{D^2} 
\left[\prod_{i=1}^D\left(1+i \sum_{j=1}^{32} 
\frac{\left|2^j x_i-\operatorname{round}\left(2^j 
x_i\right)\right|}{2^j}\right)^{\frac{10}
{D^{12}}}-1\right] , X\in R^{D}\\
\end{aligned}

$\begin{aligned}
Minimize:\quad &f(x) =\frac{10\prod_{i=1}^D
\left(1+i \sum_{j=1}^{32} \frac{\left|2^j x_i-
\operatorname{round}\left(2^j x_i\right)\right|}
{2^j}\right)^{\frac{10}{D^{12}}}-10}{D^2} , x 
=  \left({x_1,x_2,...,x_D}\right)\\
\end{aligned}$

Figure 4: Three writing styles in LaTeX of the toy problem.

For Python patterns, the testees show different coding preferences on the writing styles of the
objective functions and the constraints, e.g., some may prefer using temporary variables to store
interim calculation results, some leverage numpy to facilitate matrix operations while others use a for
loop, some may encapsulate the calculation details into a functional module etc. In Figure 5 we list
some of these writing styles on the toy problem.

D = np.shape(x)[-1]
temp1 = np.power(D, 1.2)
temp2 = np.repeat(np.power(np.ones((1, 32)) * 2, 
np.arange(1, 33)), x.shape[0], 0)
temp3 = np.ones(x.shape[0])
for i in range(D):
    temp4 = temp2 * np.repeat(x[:, i, None], 32, 1)
    temp5 = np.sum(np.fabs(temp4 - 
np.floor(temp4 + 0.5)) / temp2, -1)
    temp3 *= np.power(1 + (i + 1) * temp5, 10 / 
temp1)
temp6 = 10 / D / D
result = temp3 * temp6 - temp6

D = np.shape(x)[-1]
result = np.zeros(x.shape[0])
for i in range(x.shape[0]):
    result[i] = 10 / (D ** 2)
    for j in range(D):
        round_x = 0
        for k in range(32):
            round_x += np.abs(2**(k+1) * x[i][j] - 
np.round(2**(k+1) * x[i][j])) / (2**(k+1))
        result[i] *= np.power(1 + (j + 1) * round_x, 
10 / (np.power(D, 1.2)))
result[i] -= 10 / (D ** 2)

def f1(x):
    D = np.shape(x)[-1]
    temp1 = np.power(D, 1.2)
    temp2 = np.repeat(np.power(np.ones((1, 32)) * 
2, np.arange(1, 33)), x.shape[0], 0)
    temp3 = np.ones(x.shape[0])
    for i in range(D):
        temp4 = temp2 * np.repeat(x[:, i, None], 32, 
1)
        temp5 = np.sum(np.fabs(temp4 - 
np.floor(temp4 + 0.5)) / temp2, -1)
        temp3 *= np.power(1 + (i + 1) * temp5, 10 / 
temp1)
    return temp3
D = np.shape(x)[-1]
temp1 = f1(x)
temp2 = 10 / D / D
result = temp1 * temp2 - temp2

Figure 5: Three writing styles in Python of the toy problem.
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C DETAILS IN EXPERIMENTS

Training settings. For generating the task set P , the problem dimension D for each pi is randomly
chosen from [2, 50], and the number of components K is randomly chosen from [1, 5]. We randomly
split the instruction set I into a training set Itrain with 30k input-output pairs and a test set Ieval with
the rest examples. We leave other details in Appendix. For our two-phase instruction tuning, we
deploy 5 epochs of contrastive warm-up and 20 epochs of instruction tuning for all fundamental
models. Specifically, we first apply SGD (Amari, 1993) with a fixed learning rate 5× 10−4 in the
contrastive warm-up phase, alongside φ = 0.3. Then, we apply AdamW (Loshchilov and Hutter,
2019) to optimize the LLMs in the instruction tuning phase. During the initial 1k iterations, the
learning rate gradually increases from 0 to 5× 10−4 in a linear manner. Subsequently, it decreases to
0 according to a cosine schedule. The batch size in both phases is set to 4. Note that we fine-tune
the CodeGen-Mono (350M) with full parameters, but apply LoRA (Hu et al., 2022) to fine-tune the
larger Phi-2 (2.7B) and Code Llama (7B) models, with the rank r = 8, scaling factor α = 32, and a
dropout rate of 0.05. All experiments are performed on a platform with an Intel(R) Xeon(R) Gold
6348 CPU, 504GB RAM and a Nvidia A800 (80GB) GPU. Upon the settings, the training duration
for CodeGen is one day, whereas Phi-2 and Code Llama require 2.5 days and 4 days, respectively.

Settings of the baseline. The general LLM baselines we considered in the comparison are configured
by their default settings . In particular, we adopt a temperature of 0, a maximum token length of 2048,
and the basemodel codellama − 7b − instruct for Code Llama-7B, which follows the reported
settings for their pass@1 evaluation on MBPP and HumanEval benchmark (see Table 2 in their paper
Roziere et al. (2023)). Besides, the configurations for Llama2-70B baseline is with a temperature of
0.1, a maximum token length of 2048, and the basemodel llama− 70b− chat, which aligns with the
settings for MBPP and HumanEval benchmark (Table 21 in their paper (Touvron et al., 2023)). To the
best of our knowledge, the MBPP and the HumanEval benchmark are the most related code generation
tasks to the optimization program generation task of LLaMoCo. We directly call the corresponding
APIs (see https://docs.llama-api.com/essentials/chat) for the evaluation in our
paper. As for GPT-4 Turbo, since there are limited literature discussing the code generation ability of
GPT-4 Trubo, we adopt the default settings with a temperature of 1, a maximum token length of 2048,
and the basemodel gpt − 4 − 1106 − preview of the OpenAI API (see https://platform.
openai.com/docs/guides/text-generation/chat-completions-api).

We would also clarify the configurations for OPRO and LMEA. Following the comparison settings
stated at the LMEA paper (Liu et al., 2023a), the population size N is set to 16, the maximum
generation number G is set to 250, for both OPRO and LMEA, with the backbone LLM as gpt −
4 − 1106 − preview version of GPT-4 Turbo. The major difference of these two approaches lies
on the concrete temperature settings. While OPRO reported 1.0 as the best performing temperature
(see Section 5.1 of their paper (Yang et al., 2023)), LMEA (Liu et al., 2023a) adaptively adjust the
temperature along the optimization horizon: with initial temperature as 1.0, which will increase by
0.1 if it fails to find a better solution for every 20 generations.

Homogeneous batch sampling. We further apply a homogeneous batch sampling strategy at the
instruction tuning phase to reinforce the alignment of the different rephrasing version prompts for
a problem p ∈ P . Concretely, we force the LLMs to sample data pairs which come from the same
problem instances in a mini-batch. We observe consistent boosts in the training of LLaMoCo-S,
LLaMoCo-M and LLaMoCo-L. By presenting the LLMs with a batch of homogeneous samples, they
can learn patterns specific to these cross-modal prompts data more effectively.

Batch size. We would clarify that due to the resource limitation, all of our experiments are run on an
NVIDIA A800 GPU. When we train the CodeGen-Mono (350M), the batch size is 4 for both phases
in our two-phase learning strategy. However, for one A800, Phi-2 (2.7B) and Code Llama (7B) are
too large to include a batch of 4 samples, even if we adapt LoRA for them. For Phi-2, the batch size
is 3 and 2 for each learning phase, while 3 and 1 for Code Llama.

D CALCULATION OF EXPERIMENTAL STATISTICS

To provide a thorough evaluation on the LLMs fine-tuned by our LLaMoCo and the other approaches,
for a group of Np problem instances, we first leverage the optimization programs generated by each
LLM to optimize them, for 5 independent runs. Then we calculate the average error rate, recovery
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cost, optimization performance and computational cost of an approach as the performance metrics of
overall performance. The calculation details of these four performance metrics in our experimental
results are as follows:

Error rate (Err.) The robustness of the generated optimization program is a very important index for
quality of service (QoS). We measure the robustness by the proportion of error programs generated
by an LLM, named as error rate. For each instance, we use the optimization program generated by an
LLM (ours or the others) to optimize that instance for 5 independent runs. We count the number of
the generated programs which encounter compilation error or runtime error when being executed,
denoted as Nerr (every single run on each instance is counted). Then the error rate of an approach on
the tested instances is calculated as Nerr

5×Np
.

Recovery cost (Rec.) While an optimization program may encounter compilation error or runtime
error, we observe from our experiments that a certain proportion of the error programs could be
repaired and recovered. We provide a metric named recovery cost to measure the efforts required to
repair the generated programs. Concretely, during the test time, if the optimization program generated
by an LLM was non-functional, we would give the tested LLM an additional turn of conversation
to refine the errors of the generated optimization code. Concretely, we construct a prompt: for
an optimization program aj , we denote the number of lines in it as L(j), and the number of lines

that need to be repaired as L
(j)
err. Then the recovery cost for aj is rj =

L(j)
err

L(j)
, and the recovery

cost considering all Nerr error programs is calculated as
∑Nerr

j=1 rj

Nerr
. For the case that the generated

optimization code is still erroneous after the self-refine process, we set the performance of that LLM
on that optimization problem as 0.

Optimization performance (Perf.) We measure the optimization performance of an approach by a
min-max normalized objective value descent. Concretely, we first estimate an optimal objective value
f∗
i for i-th problem instance, which can be easily obtained from our benchmarking process (achieved

best objective value). For the given approach, we denote the performance on the i-th problem instance
in j-th run as a min-max normalized term wi,j = 1− f∗

i,j−f∗
i

f0
i,j−f∗

i
, where f0

i,j is the best objective value
of the solutions initialized by the optimizer on solving the i-th problem instance in j-th run, and f∗

i,j
is the corresponding best objective the optimizer finds. We have to note that if the optimization code
generated is still non-functional after the repairing process above, we assign a performance value of 0
for that run. At last, the overall average optimization performance of the given approach on the Np

instances can be calculated as follows:
∑Np

i=1

∑5
j=1 wi,j

5×Np
.

Computational overhead (Comp.) Measuring the computational overhead by the wall-time com-
plexity of an LLM-based approach is impractical since some of the LLMs only provide API for users.
The network communication budget through calling the APIs would bias the ground results. We
instead count the average number of tokens (input+output) consumed by an approach for solving a
problem instance over the test runs.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COMPARISON WITH FEW-SHOT PROMPTING STRATEGY

We conduct further investigation on the performance of the three general LLM baselines under
the few-shot prompting setting, which would make the comparison more rigorous and convincing.
Concretely, we test each baseline for 5 runs, on the test set Ieval. For each tested instance, 1 or 2 few-
shot prompts are randomly chosen as hints from Itrain (it depends the pre-defined maximum context
length of the corresponding LLM). We report the four average performance metrics of the original
three general LLM baselines, their few-shot enhanced versions and our LLaMoCo-L in Table 7.
The results show that few-shot prompting strategy does introduce performance improvement for the
baselines. In particular, by showing the baselines with some prompts as hints, the Error rate and the
Recovery cost are significantly reduced. However, due to the provided few-shot example prompts, it
would require more computational overheads (Comp.).
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Table 7: Comparison between our LLaMoCo models and the few-shot prompting enhancement
of the general LLM baselines, in terms of Code Error Rate (Err.), Code Recovery Cost (Rec.),
Optimization Performance (Perf.), and Computational Overhead (Comp.) on the test set Ieval.

Testset Metrics
Prompt for Optimizer Prompt for Optimizer (few-shot) Our LLaMoCo

GPT-4 Turbo Code Llama-7B Llama2-70B GPT-4 Turbo
(few-shot)

Code Llama-7B
(few-shot)

Llama2-70B
(few-shot) LLaMoCo-L

Ieval

Err. ↓ 41.667% 95.156% 99.617% 10.546% 15.235% 10.235% 5.509%
Rec. ↓ 13.072% 57.001% 55.717% 8.423% 29.445% 7.456% 10.461%
Perf. ↑ 74.248% 29.717% 20.579% 76.568% 45.775% 37.456% 83.451%

Comp. ↓ 3.5k 1.9k 1.7k 7.0k 6.1k 6.5k 2.4k

Besides, we would also clarify that the three baseline LLMs (GPT-4 Turbo, Code Llama-7B and
Llama-70B) have certain code generation ability and code semantics understanding ability (according
to their papers or technical reports). However, these baselines fall short when compared to our
LLaMoCo models, highlighting the core motivation behind LLaMoCo: to embed expert-level
optimization knowledge within LLMs, thereby enhancing their performance in specific domains.
While few-shot prompting can potentially improve LLMs’ understanding of tasks, it necessitates
users to supply expert-level knowledge explicitly in their prompts (for example, instructing the use of
the Gurobi package for solving a mixed-integer programming problem). This requirement contradicts
the fundamental aim of our work, which is to provide users with a solution that demands minimal
knowledge of optimization to effectively address their tasks.

E.2 ADDITIONAL ZERO-SHOT EVALUATIONS

We additionally test our trained model on the realistic problem collection where we sample the former
six problems in Table 3. This collection is proposed by Kumar et al. Kumar et al. (2020). It contains
57 real-world constrained optimization problems collected from a diverse range of engineering
scenarios. We present the comparison results (average on all 57 problems) of our LLaMoCo and the
other baselines in Table 8. The results further validate the effectiveness and superior performance of
our LLaMoCo.

Table 8: Zero-shot performance of different approaches in terms of Code Error Rate (Err.), Code
Recovery Cost (Rec.), Optimization Performance (Perf.), and Computational Overhead (Comp.)
on realistic problems. (Ireal), where “-” denotes that the approach does not generate code (it follows
a solution-to-solution paradigm).

Testset Metrics Prompt for Solution Prompt for Optimizer Our LLaMoCo

OPRO LMEA CodeGen-Mono-
350M Phi-2-2.7B DeepSeekMath-

Instruct-7B GPT-4 Turbo Code Llama-7B Llama2-70B LLaMoCo-S LLaMoCo-M LLaMoCo-L

Ireal

Err. ↓ - - 99.487% 98.131% 68.921% 40.148% 99.344% 99.473% 5.984% 5.479% 5.359%
Rec. ↓ - - 81.166% 58.546% 15.470% 16.791% 58.101% 59.189% 10.648% 10.486% 10.198%
Perf. ↑ 31.832% 27.549% 26.477% 33.460% 58.044% 61.468% 49.481% 47.146% 84.462% 87.279% 88.135%

Comp. ↓ 253k 298k 2.1k 2.1k 2.1k 3.6k 2.0k 1.9k 2.6k 2.6k 2.6k

E.3 IMPACT OF DATASET SIZE

To in-depth analyse LLaMoCo’s scaling law, we chose the base model of our LLaMoCo-S, which is
the CodeGen family (350M 1B, 3B, 7B), for the experiment. Further, we construct four training set
with different sizes (1k, 5k, 15k, 30k). We presents the optimization performance of these 16 trained
models on the test set Ieval in Table 9.

Table 9: Optimization performance comparison between different model sizes and dataset sizes.

model/data 1k 5k 15k 30k
350M 47.260% 66.661% 80.306% 81.843%

1B 46.799% 67.829% 81.783% 82.541%
3B 47.131% 68.492% 82.501% 83.315%
7B 45.645% 70.147% 82.966% 83.513%

The results above provide several key observations: a) when data size is very small (1k), increasing
model size would not obtain any performance gain, which possibly indicates overfitting. b) for all
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model sizes, increasing the dataset size could introduce performance gain consistently. c) In summary,
both the model size and the dataset size could influence the final performance of LLaMoCo.

E.4 ABLATION ON GRID SEARCH GRANULARITY

We conduct two additional benchmarking processes, with half and double granularity of our original
setting. For example, if a hyper-parameter holds four optional values in our setting: [0.2, 0.4, 0.6, 0.8],
half granularity denotes [0.2, 0.8], double granularity denotes [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], etc.
We present the averaged optimization performance of the most effective optimizers on our problem
set searched by these two granularities, normalized by our original granularity’s performance, as well
as the averaged searching wall time for one problem instance in Table 10.

Table 10: The averaged optimization performance normalized by our original granularity’s perfor-
mance and averaged searching wall time for one problem instance of different grid search granularities.

half our setting double
Performance 71.793% 1 102.344%

wall time 6s 211s 6379s

The results reveal an evident tradeoff between the searching effectiveness and the searching efficiency
of different grid search granularities. The searching wall time increases exponentially since there are
4-5 hyper-parameters in an optimizer. However, the performance improvement obtained by spending
so much computational resources is only 2.344%. This result validates the selection appropriateness
of our grid search granularity.

E.5 ADDITIONAL CONTRASTIVE WARM-UP ABLATION RESULTS

In this section we present the performance gain curves of LLaMoCo-S, LLaMoCo-M, LLaMoCo-L
on three test sets Ieval/Pc, Ieval/Pnc and Ieval in Figure 6, in which we can observe consistent
learning enhancement through introducing our proposed contrastive learning warmup.
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(a) LLaMoCo-S on Ieval/Pc
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(b) LLaMoCo-S on Ieval/Pnc
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(c) LLaMoCo-S on Ieval
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(d) LLaMoCo-M on Ieval/Pc
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(e) LLaMoCo-M onIeval/Pnc
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(f) LLaMoCo-M on Ieval
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(g) LLaMoCo-L on Ieval/Pc
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(h) LLaMoCo-L on Ieval/Pnc
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(i) LLaMoCo-L on Ieval

Figure 6: The performance gain curves of LLaMoCo-S, LLaMoCo-M, LLaMoCo-L on three test sets
Ieval/Pc, Ieval/Pnc and Ieval with and without contrastive learning.
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F EXAMPLE INPUT-OUTPUT OF THE FINE-TUNED MODEL

F.1 SYNTHETIC UNCONSTRAINED EXAMPLE

We showcase the prompt and the generated optimization program (Figure 7) of a synthetic problem
instance without constraints, which has the following formulation:

Minimize : f(x) =

1∑
i=0

Wifi(z), z = MTx, x ∈ RD,M ∈ RD×D

Where : f0(x) = −20 exp

−0.2

√√√√(1/D)

D∑
i=1

x2
i

− exp

(
(1/D)

D∑
i=1

cos (2πxi)

)
+ 20 + e

f1(x) =

D∑
i=1

(√
|xi|+ 2sin(x3

i )
)

W0 = 0.6002499789314202

W1 = 0.02117765478091216

Problem Prompt
Given an 16 dimensional optimization problem:
x_in = M@x_in
x=copy.deepcopy(x_in)
temp1 = np.exp(-0.2 * np.sqrt(np.average(x ** 2, -1)))
temp2 = np.exp(np.average(np.cos(2 * np.pi * x),-1))
result = -20 * temp1 - temp2 + 20 + np.e
res0 = result
temp1 = np.power(np.abs(x),0.5)
temp2 = 2*np.sin(x**3)
result = np.sum(temp1+temp2, axis=-1)
res1 = result
result = 0.6002499789314202 * res0 + 0.02117765478091216 * res1
Note that the feasible domain is:
[[-70.0, 70.0], [-70.0, 70.0], [-40.0, 40.0],
 [-40.0, 40.0], [-20.0, 20.0], [-60.0, 60.0], 
[-60.0, 60.0], [-10.0, 10.0], [-70.0, 70.0], 
[-80.0, 80.0], [-70.0, 70.0], [-30.0, 30.0],
 [-30.0, 30.0], [-20.0, 20.0], [-10.0, 10.0], [-50.0, 50.0]].
The problem should be solved within 40000 function evaluations.
Generate a solver for it:

Optimizer Program
from evosax import BIPOP_CMA_ES
import jax
import numpy as np
# Define problem dimension
D =?
# Define the objective function,
# the first parameter is a solution x in one dimensional np.array,
# you can include other parameters for obj_func in args
def obj_func(x: 1D np.array,...) -> float:
    pass   
# Insert other parameters of obj_func into args, empty by default
args = ()
# Assign search ranges
bounds = [[min1, max1],..., [minD, maxD]]
# Assign maximum function evaluations
maxFEs =?
# Assign random seed
seed = 1
# The suggested algorithm configuration
popsize = 100
elite_ratio = 0.5
sigma_init = 1.0
mean_decay = 0.0
min_num_gens = 50
popsize_multiplier = 2
# Construct the optimizer
rng = jax.random.PRNGKey(seed=seed)
optimizer = BIPOP_CMA_ES(popsize=popsize, num_dims=D, elite_ratio=elite_ratio, 
                         sigma_init=sigma_init, mean_decay=mean_decay)
es_params = optimizer.default_params
strategy_params = es_params.strategy_params.replace(init_max=1, init_min=0, clip_max=1, clip_min=0)
restart_params = es_params.restart_params.replace(min_num_gens=min_num_gens, popsize_multiplier=popsize_multiplier)
es_params = es_params.replace(strategy_params=strategy_params, restart_params=restart_params)
state = optimizer.initialize(rng, es_params)

# Optimize the problem
nfev = 0
lb = np.array(bounds)[:,0]
ub = np.array(bounds)[:,1]
while nfev < maxFEs:
    rng, rng_gen, rng_eval = jax.random.split(rng, 3)
    x, state = optimizer.ask(rng_gen, state, es_params)
    fitness = np.zeros(x.shape[0])
    for i in range(x.shape[0]):
        xi = np.array(x[i]) * (ub - lb) + lb
        fitness[i] = obj_func(xi, *args)
    nfev += x.shape[0]
    state = optimizer.tell(x, fitness, state, es_params)

# Get the result
x, fun = state.strategy_state.best_member, state.strategy_state.best_fitness

Figure 7: A unconstrained problem prompt (on the left, a Python version), and the optimization
program (on the right) output by LLaMoCo-S. The corresponding 16-dimensional problem is con-
structed by a composition of two basic functions. Our LLaMoCo-S is prompted to output a competent
optimizer for solving the problem within 40000 function evaluations, which in this case, is BIPOP-
CMA-ES.
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F.2 SYNTHETIC CONSTRAINED EXAMPLE

We showcase the prompt and the generated optimization program (Figure 8) of a synthetic problem
instance with some constraints, which has the following formulation:

Minimize : f(x) = z21 + 106
D∑
i=2

z2i , z = x− o,X ∈ RD, o ∈ RD

s.t. :

h0(x) :

D∑
i=1

 i∑
j=1

yj

2

= 0, y = x− o

h1(x) :

D−1∑
i=1

(
y2i − yi+1

)2
= 0, y = x− o

Problem Prompt
Given an 23 dimensional optimization problem:
x_in = x_in-o
x=copy.deepcopy(x_in)
def f(x):
    return x[:,0] + np.power(10,6) * np.sum(x[:,1:], axis=-1)
result = f(x**2)
Note that the feasible domain is:
[[-10.0, 10.0], [-20.0, 20.0],[-60.0, 60.0],[-30.0, 30.0], 
[-90.0, 90.0], [-70.0, 70.0],[-10.0, 10.0], [-50.0, 50.0],
[-40.0, 40.0], [-10.0, 10.0],[-70.0, 70.0], [-40.0, 40.0], 
[-20.0, 20.0], [-70.0, 70.0], [-50.0, 50.0],[-20.0, 20.0],
[-60.0, 60.0], [-40.0, 40.0],[-70.0, 70.0], [-30.0, 30.0], 
[-20.0, 20.0], [-50.0, 50.0], [-90.0, 90.0]].
The problem should be solved within 20000 function evaluations.
The constraints for solutions:
equality_1:
x_in = x_in-o
D = x_in.shape[-1]
result = 0
for i in range(1, D+1):
    result += np.square(np.sum(x_in[:,:i], axis=-1))
equality_2:
x_in = x_in-o
result = np.sum(np.square(x_in[:,:-1] - x_in[:,1:]), axis=-1)
Generate a solver for it:

Optimizer Program
from scipy.optimize import minimize
import numpy as np
# Define problem dimension
D =?
# Define the objective function,
# the first parameter is a solution x in one dimensional np.array,
# you can include other parameters for obj_func in args
def obj_func(x: 1D np.array,...) -> float:
    pass
# Insert other parameters of obj_func into args, empty by default
args = ()
# Define the constraints
def h_cons_1(x) -> float:
    pass
...

def g_cons_1(x) -> float:
    pass
...

constraints = [
    {'type': 'eq', 'fun': h_cons_1},
   ...
    {'type': 'ineq', 'fun': g_cons_1},
   ...
]
# Assign search ranges
bounds = [[min1, max1],..., [minD, maxD]]
# Assign maximum function evaluations
maxFEs =?
# The suggested algorithm configuration
method = 'SLSQP'
eps = 0.0001
# Initial solution
x0 = np.random.rand(D)
# Optimize the problem
result = minimize(obj_func, x0, args=args, method=method, bounds=bounds, 
                              constraints = constraints, options={'maxiter': maxFEs, 'eps': eps} )

Figure 8: A constrained problem prompt (on the left, a Python version), and the optimization
program (on the right) output by LLaMoCo-S. The corresponding 23-dimensional problem is one of
the basic functions, with two additional quality constraints. Our LLaMoCo-S is prompted to output
a competent optimizer for solving that problem within 20000 function evaluations, which in this
case, is SLSQP. We note that the GPT-4 Turbo attain the same answer on this problem. However, the
configurations suggested by LLaMoCo-S achieve higher optimization performance against GPT-4
Turbo that adopts the default configurations.
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F.3 REALISTIC EXAMPLE

We showcase the prompt and the generated optimization program (Figure 9) of a realistic problem in-
stance with a large number of constraints yet with a relatively simpler objective function, which holds
a different problem structure against the synthetic problems, which has the following formulation:

Minimize : f(x) = 35x0.6
1 + 35x0.6

2

s.t. :

h1(x) : 200x1x4 − x3 = 0

h2(x) : 200x2x6 − x5 = 0

h3(x) : x3 − 10000(x7 − 100) = 0

h4(x) : x5 − 10000(300− x7) = 0

h5(x) = x3 − 10000(600− x8) = 0

h6(x) = x5 − 10000(900− x9) = 0

h7(x)) = x4 ln(x8 − 100)− x4 ln(600− x7)− x8 + x7 + 500 = 0

h8(x) = x6 ln(x9 − x7)− x6 ln(600)− x9 + x7 + 600 = 0

Problem Prompt
Given an 9 dimensional optimization problem:
$\begin{aligned}
Minimize:\quad&f(x)=35x_{1}^{0.6}
+35x_{2}^{0.6} \\s.t.\quad &: \\&
h_1(x):200x_1x_4-x_3=0\\&
h_{2}(x):200x_{2}x_{6}-x_{5}=0\\&
h_{3}(x):x_{3}-10000(x_{7}-100)=0 \\&
h_4(x):x_5-10000(300-x_7)=0\\&
h_{5}(x)=x_{3}-10000(600-x_{8})=0 \\&
h_{6}(x) =x_{5}-10000(900-x_{9})=0  \\&
h_{7}(x))=x_4\ln(x_8-100)-x_4\ln(600-x_7)-x_8+x_7+500=0  \\&
h_{8}(x) =x_6\ln(x_9-x_7)-x_6\ln(600)-x_9+x_7+600=0
\end{aligned}$
Note that the feasible domain is:
[[0.0, 10.0], [0.0, 200.0], [0.0, 100.0], 
[0.0, 200.0], [1000.0, 2000000.0], [0.0, 600.0], 
[100.0, 600.0], [100.0, 600.0], [100.0, 900.0]].
The problem should be solved within 10000 function evaluations.
Generate a solver for it:

Optimizer Program
from advanced_global_optimizers.constrained_solvers import GA_TDX
from advanced_global_optimizers import Problem
import numpy as np
# Define problem dimension
D =?
# Define the objective function,
# the first parameter is a solution x in one dimensional np.array,
# you can include other parameters for obj_func in args
def obj_func(x: 1D np.array,...) -> float:
    pass   
# Insert other parameters of obj_func into args, empty by default
args = ()
# Define the constraints
def h_cons_1(x) -> float:
    pass
...

def g_cons_1(x) -> float:
    pass
...

constraints = [
    {'type': 'eq', 'fun': h_cons_1},
   ...
    {'type': 'ineq', 'fun': g_cons_1},
   ...
]
# Assign search ranges
bounds = [[min1, max1],..., [minD, maxD]]
# Assign maximum function evaluations
maxFEs =?
# The suggested algorithm configuration
param = {
    'beta': 0.1,
    'gamma': 3,
    'NP': 50,
}
# Construct the problem and optimizer
problem = Problem(D, obj_func, bounds, maxFEs, args, constraints)
optimizer = GA_TDX(param)
# Optimize the problem
result = optimizer.optimize(problem)

Figure 9: A realistic problem prompt (on the left, a LaTeX version), and the optimization pro-
gram (on the right) output by LLaMoCo-S. The corresponding 9-dimensional problem holds an
out-of-distribution structure, with far more constraints than the problem instances LLaMoCo-S has
ever seen. Our LLaMoCo-S is prompted to output a competent optimizer for solving that problem
within 10000 function evaluations, which in this case, is an advanced GA-TDX algorithm specialized
in constraints handling. We note that the GPT-4 Turbo suggests a DE algorithm for this problem,
which is hardly adopted for solving constrained problems.
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