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ABSTRACT

Speculative decoding (SD) has emerged as a widely used paradigm to accelerate
LLM inference without compromising quality. It works by first employing a com-
pact model to draft multiple tokens efficiently and then using the target LLM to
verify them in parallel. While this technique has achieved notable speedups, most
existing approaches necessitate either additional parameters or extensive training
to construct effective draft models, thereby restricting their applicability across
different LLMs and tasks. To address this limitation, we explore a novel plug-
and-play SD solution with layer-skipping, which skips intermediate layers of the
target LLM as the compact draft model. Our analysis reveals that LLMs exhibit
great potential for self-acceleration through layer sparsity and the task-specific na-
ture of this sparsity. Building on these insights, we introduce SWIFT, an on-the-fly
self-speculative decoding algorithm that adaptively selects intermediate layers of
LLMs to skip during inference. SWIFT does not require auxiliary models or ad-
ditional training, making it a plug-and-play solution for accelerating LLM infer-
ence across diverse input data streams. Our extensive experiments across a wide
range of models and downstream tasks demonstrate that SWIFT can achieve over
a 1.3×∼1.6× speedup while preserving the original distribution of the generated
text. We release our code in https://github.com/hemingkx/SWIFT.

1 INTRODUCTION

Large Language Models (LLMs) have exhibited outstanding capabilities in handling various down-
stream tasks (OpenAI, 2023; Touvron et al., 2023a;b; Dubey et al., 2024). However, their token-by-
token generation necessitated by autoregressive decoding poses efficiency challenges, particularly as
model sizes increase. To address this, speculative decoding (SD) has been proposed as a promising
solution for lossless LLM inference acceleration (Xia et al., 2023; Leviathan et al., 2023; Chen et al.,
2023). At each decoding step, SD first employs a compact draft model to efficiently predict multiple
tokens as speculations for future decoding steps of the target LLM. These tokens are then validated
by the target LLM in parallel, ensuring that the original output distribution remains unchanged.

Recent advancements in SD have pushed the boundaries of the latency-accuracy trade-off by ex-
ploring various strategies (Xia et al., 2024), including incorporating lightweight draft modules into
LLMs (Cai et al., 2024; Ankner et al., 2024; Li et al., 2024a;b), employing fine-tuning strategies to
facilitate efficient LLM drafting (Kou et al., 2024; Yi et al., 2024; Elhoushi et al., 2024), and aligning
draft models with the target LLM (Liu et al., 2023a; Zhou et al., 2024; Miao et al., 2024). Despite
their promising efficacy, these approaches require additional modules or extensive training, which
limits their broad applicability across different model types and causes significant inconvenience in
practice. To tackle this issue, another line of research has proposed the Jacobi-based drafting (San-
tilli et al., 2023; Fu et al., 2024) to facilitate plug-and-play SD. As illustrated in Figure 1(a), these
methods append pseudo tokens to the input prompt, enabling the target LLM to generate multiple
tokens as drafts in a single decoding step. However, the Jacobi-decoding paradigm misaligns with
the autoregressive pretraining objective of LLMs, resulting in suboptimal acceleration effects.
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Figure 1: Illustration of prior solution and
ours for plug-and-play SD. (a) Jacobi-based
drafting appends multiple pseudo tokens to
the input prompt, enabling the target LLM to
generate multiple tokens as drafts in a sin-
gle step. (b) SWIFT adopts sparsity-based
drafting, which exploits the inherent sparsity
in LLMs to facilitate efficient drafting. This
work is the first exploration of plug-and-play
SD using sparsity-based drafting.

In this work, we introduce a novel research direc-
tion for plug-and-play SD: sparsity-based drafting,
which leverages the inherent sparsity in LLMs to
enable efficient drafting (see Figure 1(b)). Specifi-
cally, we exploit a straightforward yet practical form
of LLM sparsity – layer sparsity – to accelerate in-
ference. Our approach is based on two key obser-
vations: 1) LLMs possess great potential for self-
acceleration through layer sparsity. Contrary to
the conventional belief that layer selection must be
carefully optimized (Zhang et al., 2024), we surpris-
ingly found that uniformly skipping layers to draft
can still achieve a notable 1.2× speedup, provid-
ing a strong foundation for plug-and-play SD. 2)
Layer sparsity is task-specific. We observed that
each task requires its own optimal set of skipped lay-
ers, and applying the same layer configuration across
different tasks would cause substantial performance
degradation. For example, the speedup drops from
1.47× to 1.01× when transferring the configuration
optimized for a storytelling task to a reasoning task.

Building on these observations, we introduce SWIFT, the first on-the-fly self-speculative decoding
algorithm that adaptively optimizes the set of skipped layers in the target LLM during inference,
facilitating the lossless acceleration of LLMs across diverse input data streams. SWIFT integrates
two key innovations: (1) a context-based layer set optimization mechanism that leverages LLM-
generated context to efficiently identify the optimal set of skipped layers corresponding to the current
input stream, and (2) a confidence-aware inference acceleration strategy that maximizes the use of
draft tokens, improving both speculation accuracy and verification efficiency. These innovations
allow SWIFT to strike an expected balance between the latency-accuracy trade-off in SD, providing
a new plug-and-play solution for lossless LLM inference acceleration without the need for auxiliary
models or additional training, as demonstrated in Table 1.

We conduct experiments using LLaMA-2 and CodeLLaMA models across multiple tasks, including
summarization, code generation, mathematical reasoning, etc. SWIFT achieves a 1.3×∼1.6× wall-
clock time speedup compared to conventional autoregressive decoding. Notably, in the greedy set-
ting, SWIFT consistently maintains a 98%∼100% token acceptance rate across the LLaMA2 series,
indicating the high alignment potential of this paradigm. Further analysis validated the effectiveness
of SWIFT across diverse data streams and its compatibility with various LLM backbones.

Our key contributions are:

(i) We performed an empirical analysis of LLM acceleration on layer sparsity, revealing both
the potential for LLM self-acceleration via layer sparsity and its task-specific nature, un-
derscoring the necessity for adaptive self-speculative decoding during inference.

(ii) Building on these insights, we introduce SWIFT, the first plug-and-play self-speculative
decoding algorithm that optimizes the set of skipped layers in the target LLM on the fly,
enabling lossless acceleration of LLM inference across diverse input data streams.

(iii) We conducted extensive experiments across various models and tasks, demonstrating that
SWIFT consistently achieves a 1.3×∼1.6× speedup without any auxiliary model or train-
ing, while theoretically guaranteeing the preservation of the generated text’s distribution.

2 RELATED WORK

Speculative Decoding (SD) Due to the sequential nature of autoregressive decoding, LLM in-
ference is constrained by memory-bound computations (Patterson, 2004; Shazeer, 2019), with the
primary latency bottleneck arising not from arithmetic computations but from memory reads/writes
of LLM parameters (Pope et al., 2023). To mitigate this issue, speculative decoding (SD) introduces
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Methods Drafting Verification Speedup
Approach AM Plug&Play Greedy Sampling Token Tree

EAGLE (Li et al., 2024a;b) Draft Heads Yes ✗ ✓ ✓ ✓ -
REST (He et al., 2024) Context Retrieval Yes ✗ ✓ ✓ ✓ -
SELF-SD (Zhang et al., 2024) Layer Skipping No ✗ ✓ ✓ ✗ -
PARALLEL (Santilli et al., 2023) Jacobi Decoding No ✓ ✓ ✗ ✗ 0.9×∼1.0×
LOOKAHEAD (Fu et al., 2024) Jacobi Decoding No ✓ ✓ ✓ ✓ 1.2×∼1.4×
SWIFT (Ours) Layer Skipping No ✓ ✓ ✓ ✓ 1.3×∼1.6×

Table 1: Comparison of SWIFT with existing SD methods. “AM” denotes whether the method
requires auxiliary modules such as additional parameters or data stores. “Greedy”, “Sampling”,
and “Token Tree” denote whether the method supports greedy decoding, multinomial sampling, and
token tree verification, respectively. SWIFT is the first plug-and-play layer-skipping SD method,
which is orthogonal to those Jacobi-based methods such as Lookahead (Fu et al., 2024).

utilizing a compact draft model to predict multiple decoding steps, with the target LLM then validat-
ing them in parallel (Xia et al., 2023; Leviathan et al., 2023; Chen et al., 2023). Recent SD variants
have sought to enhance efficiency by incorporating additional modules (Kim et al., 2023; Sun et al.,
2023; Du et al., 2024; Li et al., 2024a;b) or introducing new training objectives (Liu et al., 2023a;
Kou et al., 2024; Zhou et al., 2024; Gloeckle et al., 2024). However, these approaches necessitate
extra parameters or extensive training, limiting their applicability across different models. Another
line of research has explored plug-and-play SD methods with Jacobi decoding (Santilli et al., 2023;
Fu et al., 2024), which predict multiple steps in parallel by appending pseudo tokens to the input and
refining them iteratively. As shown in Table 1, our work complements these efforts by investigating
a novel plug-and-play SD method with layer-skipping, which exploits the inherent sparsity of LLM
layers to accelerate inference. The most related approaches to ours include Self-SD (Zhang et al.,
2024) and LayerSkip (Elhoushi et al., 2024), which also skip intermediate layers of LLMs to form
the draft model. However, both methods require a time-consuming offline training process, making
them neither plug-and-play nor easily generalizable across different models and tasks.

Efficient LLMs Utilizing Sparsity LLMs are powerful but often over-parameterized (Hu et al.,
2022). To address this issue, various methods have been proposed to accelerate inference by lever-
aging different forms of LLM sparsity. One promising research direction is model compression,
which includes approaches such as quantization (Dettmers et al., 2022; Frantar et al., 2023; Ma
et al., 2024), parameter pruning (Liu et al., 2019; Hoefler et al., 2021; Liu et al., 2023b), and knowl-
edge distillation (Touvron et al., 2021; Hsieh et al., 2023; Gu et al., 2024). These approaches aim to
reduce model sparsity by compressing LLMs into more compact forms, thereby decreasing mem-
ory usage and computational overhead during inference. Our proposed method, SWIFT, focuses
specifically on sparsity within LLM layer computations, providing a more streamlined approach to
efficient LLM inference that builds upon recent advances in layer skipping (Corro et al., 2023; Zhu
et al., 2024; Jaiswal et al., 2024; Liu et al., 2024). Unlike these existing layer-skipping methods
that may lead to information loss and performance degradation, SWIFT investigates the utilization
of layer sparsity to enable lossless acceleration of LLM inference.

3 PRELIMINARIES

3.1 SELF-SPECULATIVE DECODING

Unlike most SD methods that require additional parameters, self-speculative decoding (Self-SD) first
proposed utilizing parts of an LLM as a compact draft model (Zhang et al., 2024). In each decoding
step, this approach skips intermediate layers of the LLM to efficiently generate draft tokens; these
tokens are then validated in parallel by the full-parameter LLM to ensure that the output distribution
of the target LLM remains unchanged. The primary challenge of Self-SD lies in determining which
layers, and how many, should be skipped – referred to as the skipped layer set – during the drafting
stage, which is formulated as an optimization problem. Formally, given the input data X and the
target LLM MT with L layers (including both attention and MLP layers), Self-SD aims to identify
the optimal skipped layer set z that minimizes the average inference time per token:

z∗ = argmin
z

∑
x∈X f (x | z;θMT

)∑
x∈X |x|

, s.t. z ∈ {0, 1}L, (1)
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where f(·) is a black-box function that returns the inference latency of sample x, zi ∈ {0, 1} denotes
whether layer i of the target LLM is skipped when drafting, and |x| represents the sample length.
Self-SD addresses this problem through a Bayesian optimization process (Jones et al., 1998). Before
inference, this process iteratively selects new inputs z based on a Gaussian process (Rasmussen &
Williams, 2006) and evaluates Eq (1) on the training set of X . After a specified number of iterations,
the best z is considered an approximation of z∗ and is held fixed for inference.

While Self-SD has proven effective, its reliance on a time-intensive Bayesian optimization process
poses certain limitations. For each task, Self-SD must sequentially evaluate all selected training
samples during every iteration to optimize Eq (1); Moreover, the computational burden of Bayesian
optimization escalates substantially with the number of iterations. As a result, processing just eight
CNN/Daily Mail (Nallapati et al., 2016) samples for 1000 Bayesian iterations requires nearly 7.5
hours for LLaMA-2-13B and 20 hours for LLaMA-2-70B on an NVIDIA A6000 server. These
computational demands restrict the generalizability of Self-SD across different models and tasks.

3.2 EXPERIMENTAL OBSERVATIONS

This subsection delves into Self-SD, exploring the plug-and-play potential of this layer-skipping SD
paradigm for lossless LLM inference acceleration. Our key findings are detailed below.
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Figure 2: (a) LLMs possess self-acceleration potential via layer sparsity. By utilizing drafts from
the top-k candidates, we found that uniformly skipping half of the layers during drafting yields a
notable 1.2× speedup. (b) Layer sparsity is task-specific. Each task requires its own optimal set of
skipped layers, and applying the skipped layer configuration from one task to another can lead to
substantial performance degradation. “X LS” represents the skipped layer set optimized for task X.

3.2.1 LLMS POSSESS SELF-ACCELERATION POTENTIAL VIA LAYER SPARSITY

We begin by investigating the potential of behavior alignment between the target LLM and its layer-
skipping variant. Unlike previous work (Zhang et al., 2024) that focused solely on greedy draft pre-
dictions, we leverage potential draft candidates from top-k predictions, as detailed in Section 4.2.
We conducted experiments using LLaMA-2-13B across the CNN/Daily Mail (Nallapati et al., 2016),
GSM8K (Cobbe et al., 2021), and TinyStories (Eldan & Li, 2023) datasets. We applied a uniform
layer-skipping pattern with k set to 10. The experimental results, illustrated in Figure 2(a), demon-
strate a 30% average improvement in the token acceptance rate by leveraging top-k predictions,
with over 90% of draft tokens accepted by the target LLM. Consequently, compared to Self-SD,
which achieved a maximum speedup of 1.01× in this experimental setting, we revealed that the
layer-skipping SD paradigm could yield an average wall-clock speedup of 1.22× over conventional
autoregressive decoding with a uniform layer-skipping pattern. This finding challenges the prevail-
ing belief that the selection of skipped layers must be meticulously curated, suggesting instead that
LLMs possess greater potential for self-acceleration through inherent layer sparsity.

3.2.2 LAYER SPARSITY IS TASK-SPECIFIC

We further explore the following research question: Is the skipped layer set optimized for one spe-
cific task applicable to other tasks? To address this, we conducted domain shift experiments using
LLaMA-2-13B on the CNN/Daily Mail, GSM8K, TinyStories, and WMT16 DE-EN datasets. The
experimental results, depicted in Figure 2(b), reveal two critical findings: 1) Each task requires its
own optimal skipped layer set. As illustrated in Figure 2(b), the highest speedup performance is
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consistently achieved by the skipped layer configuration specifically optimized for each task. The
detailed configuration of these layers is presented in Appendix A, demonstrating that the optimal
configurations differ across tasks. 2) Applying the static skipped layer configuration across dif-
ferent tasks can lead to substantial efficiency degradation. For example, the speedup decreases
from 1.47× to 1.01× when the optimized skipped layer set from a storytelling task is applied to
a mathematical reasoning task, indicating that the optimized skipped layer set for one specific task
does not generalize effectively to others.

These findings lay the groundwork for our plug-and-play solution within layer-skipping SD. Sec-
tion 3.2.1 provides a strong foundation for real-time skipped layer selection, suggesting that addi-
tional optimization using training data may be unnecessary; Section 3.2.2 highlights the limitations
of static layer-skipping patterns for dynamic input data streams across various tasks, underscoring
the necessity for adaptive layer optimization during inference. Building on these insights, we present
our on-the-fly self-speculative decoding method for efficient and adaptive layer set optimization.

4 SWIFT: ON-THE-FLY SELF-SPECULATIVE DECODING

We introduce SWIFT, the first plug-and-play self-speculative decoding approach that optimizes the
skipped layer set of the target LLM on the fly, facilitating lossless LLM acceleration across diverse
input data streams. As shown in Figure 3, SWIFT divides LLM inference into two distinct phases:
(1) context-based layer set optimization (§4.1), which aims to identify the optimal skipped layer set
given the input stream, and (2) confidence-aware inference acceleration (§4.2), which employs the
determined configuration to accelerate LLM inference.

context accumulation layer set optimization acceleration

0 N 2N mN (m+1)N (m+2)N
Generated
Tokens... ...

Context-based Layer Set Optimization Confidence-aware Inference Acceleration

...

Figure 3: Timeline of SWIFT inference. N denotes the maximum generation length per instance.

4.1 CONTEXT-BASED LAYER SET OPTIMIZATION

Layer set optimization is a critical challenge in self-speculative decoding, as it determines which
layers of the target LLM should be skipped to form the draft model (see Section 3.1). Unlike prior
methods that rely on time-intensive offline optimization, our work emphasizes on-the-fly layer set
optimization, which poses a greater challenge to the latency-accuracy trade-off: the optimization
must be efficient enough to avoid delays during inference while ensuring accurate drafting of subse-
quent decoding steps. To address this, we propose an adaptive optimization mechanism that balances
efficiency with drafting accuracy. Our method minimizes overhead by performing only a single for-
ward pass of the draft model per step to validate potential skipped layer set candidates. The core
innovation is the use of LLM-generated tokens (i.e., prior context) as ground truth, allowing for
simultaneous validation of the draft model’s accuracy in predicting future decoding steps.

In the following subsections, we illustrate the detailed process of this optimization phase for each
input instance, which includes context accumulation (§4.1.1) and layer set optimization (§4.1.2).

4.1.1 CONTEXT ACCUMULATION

Given an input instance in the optimization phase, the draft model is initialized by uniformly skip-
ping layers in the target LLM. This initial layer-skipping pattern is maintained to accelerate infer-
ence until a specified number of LLM-generated tokens, referred to as the context window, has been
accumulated. Upon reaching this window length, the inference transitions to layer set optimization.

4.1.2 LAYER SET OPTIMIZATION

During this stage, as illustrated in Figure 4, we integrate an optimization step before each LLM
decoding step to refine the skipped layer set, which comprises two substeps:
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Figure 4: Layer set optimization process in SWIFT. During the optimization stage, SWIFT performs
an optimization step prior to each LLM decoding step to adjust the skipped layer set, which involves:
(a) Efficient layer set optimization. SWIFT integrates random search with interval Bayesian op-
timization to propose layer set candidates; (b) Parallel candidate evaluation. SWIFT uses LLM-
generated tokens (i.e., prior context) as ground truth, enabling simultaneous validation of the pro-
posed candidates. The best-performing layer set is selected to accelerate the current decoding step.

Efficient Layer Set Suggestion This substep aims to suggest a potential layer set candidate. For-
mally, given a target LLM MT with L layers, our goal is to identify an optimal skipped layer set
z ∈ {0, 1}L to form the compact draft model. Unlike Zhang et al. (2024), which relies entirely on
a time-consuming Bayesian optimization process, we introduce an efficient strategy that combines
random search with Bayesian optimization. In this approach, random sampling efficiently handles
most of the exploration. Specifically, given a fixed skipping ratio r, SWIFT applies Bayesian op-
timization at regular intervals of β optimization steps (e.g., β = 25) to suggest the next layer set
candidate, while random search is employed during other optimization steps.

z =

{
Bayesian Optimization(l) if o % β = 0
Random Search(l) otherwise , (2)

where 1 ≤ o ≤ S is the current optimization step; S denotes the maximum number of optimization
steps; l =

(
L
rL

)
denotes the input space, i.e., all possible combinations of layers that can be skipped.

Parallel Candidate Evaluation SWIFT leverages LLM-generated context to simultaneously val-
idate the candidate draft model’s performance in predicting future decoding steps. Formally, given
an input sequence x and the previously generated tokens within the context window, denoted as
y = {y1, . . . , yγ}, the draft model MD, which skips the designated layers z of the target LLM, is
employed to predict these context tokens in parallel:

y′i = argmax
y

logP (y | x,y<i;θMD
) , 1 ≤ i ≤ γ, (3)

where γ represents the context window. The cached key-value pairs in the target LLM MT are reused
by MD, presumably aligning MD’s distribution with MT and reducing the redundant computation.
The matchness score is defined as the exact match ratio between y and y′:

matchness =

∑
i I (yi = y′i)

γ
, 1 ≤ i ≤ γ, (4)

where I(·) denotes the indicator function. This score serves as the optimization objective during
optimization, reflecting MD’s accuracy in predicting future decoding steps. As shown in Figure 4,
the matchness score at each step is integrated into the Gaussian process model to guide Bayesian
optimization, with the highest-scoring layer set candidate being retained to form the draft model.

As illustrated in Figure 3, the process of context accumulation and layer set optimization alternates
for each instance until a termination condition is met – either the maximum number of optimiza-
tion steps is reached or the best candidate remains unchanged over multiple iterations. Once the
optimization phase concludes, the inference process transitions to the confidence-aware inference
acceleration phase, where the optimized draft model is employed to speed up LLM inference.

4.2 CONFIDENCE-AWARE INFERENCE ACCELERATION
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Figure 5: Confidence-aware inference pro-
cess of SWIFT. (a) The drafting terminates
early if the confidence score drops below
threshold ϵ. (b) Draft candidates are dynam-
ically selected based on confidence and then
verified in parallel by the target LLM.

During the acceleration phase, the optimization step
is removed. SWIFT applies the best-performed layer
set to form the compact draft model and decodes fol-
lowing the draft-then-verify paradigm. Specifically,
at each decoding step, given the input x and previous
LLM outputs y, the draft model MD predicts future
LLM decoding steps in an autoregressive manner:

y′j = argmax
y

logP
(
y | x,y,y′

<j ;θMD

)
, (5)

where 1 ≤ j ≤ ND is the current draft step, ND de-
notes the maximum draft length, y′

<j represents pre-
vious draft tokens, and P (·) denotes the probability
distribution of the next draft token. The KV cache of
the target LLM MT and preceding draft tokens y′

<j
is reused to reduce the computational cost.

Let pj = maxP (·) denote the probability of the top-1 draft prediction y′j , which can be regarded
as a confidence score. Recent research (Li et al., 2024b; Du et al., 2024) shows that this score is
highly correlated with the likelihood that the draft token y′j will pass verification – higher confidence
scores indicate a greater chance of acceptance. Therefore, following previous studies (Zhang et al.,
2024; Du et al., 2024), we leverage the confidence score to prune unnecessary draft steps and select
valuable draft candidates, improving both speculation accuracy and verification efficiency.

As shown in Figure 5, we integrate SWIFT with two confidence-aware inference strategies1: 1)
Early-stopping Drafting. The autoregressive drafting process halts if the confidence pj falls below
a specified threshold ϵ, avoiding any waste of subsequant drafting computation. 2) Dynamic Ver-
ification. Each y′j is dynamically extended with its top-k draft predictions for parallel verification
to enhance speculation accuracy, with k determined by the confidence score pj . Concretely, k is set
to 10, 5, 3, and 1 for p in the ranges of (0, 0.5], (0.5, 0.8], (0.8, 0.95], and (0.95, 1], respectively.
All draft candidates are linearized into a single sequence and verified in parallel by the target LLM
using a special causal attention mask (see Figure 5 (b)).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details We mainly evaluate SWIFT on LLaMA-2 (Touvron et al., 2023b) and
CodeLLaMA series (Rozière et al., 2023) across various tasks, including summarization, mathemat-
ical reasoning, storytelling, and code generation. The evaluation datasets include CNN/Daily Mail
(CNN/DM) (Nallapati et al., 2016), GSM8K (Cobbe et al., 2021), TinyStories (Eldan & Li, 2023),
and HumanEval (Chen et al., 2021). The maximum generation lengths on CNN/DM, GSM8K, and
TinyStories are set to 64, 64, and 128, respectively. We conduct 1-shot evaluation for CNN/DM and
TinyStories, and 5-shot evaluation for GSM8K. We compare pass@1 and pass@10 for HumanEval.
We randomly sample 1000 instances from the test set for each dataset except HumanEval. The
maximum generation lengths for HumanEval and all analyses are set to 512. During optimization,
we employ both random search and Bayesian optimization2 to suggest skipped layer set candidates.
Following prior work, we adopt speculative sampling (Leviathan et al., 2023) as our acceptance
strategy with a batch size of 1. Detailed setups are provided in Appendix B.1 and B.2.

Baselines In our main experiments, we compare SWIFT to two existing plug-and-play methods:
Parallel Decoding (Santilli et al., 2023) and Lookahead Decoding (Fu et al., 2024), both of which
employ Jacobi decoding for efficient LLM drafting. It is important to note that SWIFT, as a layer-
skipping SD method, is orthogonal to these Jacobi-based SD methods, and integrating SWIFT with
them could further boost inference efficiency. We exclude other SD methods from our comparison
as they necessitate additional modules or extensive training, which limits their generalizability.

1These confidence-aware inference strategies are also applied during the optimization phase, where the
current optimal layer set is used to form the draft model and accelerate the corresponding LLM decoding step.

2https://github.com/bayesian-optimization/BayesianOptimization
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Models Methods CNN/DM GSM8K TinyStories Speed
(tokens/s)

Overall
SpeedupM Speedup M Speedup M Speedup

LLaMA-2-13B

VANILLA 1.00 1.00× 1.00 1.00× 1.00 1.00× 20.10 1.00×
PARALLEL 1.04 0.95× 1.11 0.99× 1.06 0.97× 19.49 0.97×
LOOKAHEAD 1.38 1.16× 1.50 1.29× 1.62 1.37× 25.46 1.27×
SWIFT 4.34 1.37×† 3.13 1.31×† 8.21 1.53×† 28.26 1.41×

LLaMA-2-13B
-Chat

VANILLA 1.00 1.00× 1.00 1.00× 1.00 1.00× 19.96 1.00×
PARALLEL 1.06 0.96× 1.08 0.97× 1.10 0.98× 19.26 0.97×
LOOKAHEAD 1.35 1.15× 1.57 1.31× 1.66 1.40× 25.69 1.29×
SWIFT 3.54 1.28× 2.95 1.25× 7.42 1.50×† 26.80 1.34×

LLaMA-2-70B

VANILLA 1.00 1.00× 1.00 1.00× 1.00 1.00× 4.32 1.00×
PARALLEL 1.05 0.95× 1.07 0.97× 1.05 0.96× 4.14 0.96×
LOOKAHEAD 1.36 1.15× 1.54 1.30× 1.59 1.35× 5.45 1.26×
SWIFT 3.85 1.43×† 2.99 1.39×† 6.17 1.62×† 6.41 1.48×

Table 2: Comparison between SWIFT and prior plug-and-play methods. We report the mean gener-
ated length M, speedup ratio, and average decoding speed (tokens/s) under greedy decoding. † indi-
cates results with a token acceptance rate α above 0.98. More details are provided in Appendix C.1.

Datasets Methods CodeLLaMA-13B CodeLLaMA-34B

M α Acc. Speedup M α Acc. Speedup

HumanEval (pass@1) VANILLA 1.00 - 0.311 1.00× 1.00 - 0.372 1.00×
SWIFT 4.75 0.98 0.311 1.40× 3.79 0.88 0.372 1.46×

HumanEval (pass@10) VANILLA 1.00 - 0.628 1.00× 1.00 - 0.677 1.00×
SWIFT 3.55 0.93 0.628 1.29× 2.79 0.90 0.683 1.30×

Table 3: Experimental results of SWIFT on code generation tasks. We report the mean generated
length M, acceptance rate α, accuracy (Acc.), and speedup ratio for comparison. We use greedy
decoding for pass@1 and random sampling with a temperature of 0.6 for pass@10.

Evaluation Metrics We report two widely-used metrics for SWIFT evaluation: mean generated
length M (Stern et al., 2018) and token acceptance rate α (Leviathan et al., 2023). Detailed descrip-
tions of these metrics can be found in Appendix B.3. In addition to these metrics, we report the
actual decoding speed (tokens/s) and wall-time speedup ratio compared with vanilla autoregressive
decoding. The acceleration of SWIFT theoretically guarantees the preservation of the target LLMs’
output distribution, making it unnecessary to evaluate the generation quality. However, to provide a
point of reference, we present the evaluation scores for code generation tasks.

5.2 MAIN RESULTS

Table 2 presents the comparison between SWIFT and previous plug-and-play methods on text gener-
ation tasks. The experimental results demonstrate the following findings: (1) SWIFT shows superior
efficiency over prior methods, achieving consistent speedups of 1.3×∼1.6× over vanilla autore-
gressive decoding across various models and tasks. (2) The efficiency of SWIFT is driven by the
high behavior consistency between the target LLM and its layer-skipping draft variant. As shown
in Table 2, SWIFT produces a mean generated length M of 5.01, with a high token acceptance
rate α ranging from 90% to 100%. Notably, for the LLaMA-2 series, this acceptance rate remains
stable at 98%∼100%, indicating that nearly all draft tokens are accepted by the target LLM. (3)
Compared with 13B models, LLaMA-2-70B achieves higher speedups with a larger layer skip ra-
tio (0.45→0.5), suggesting that larger-scale LLMs exhibit greater layer sparsity. This underscores
SWIFT’s potential to deliver even greater speedups as LLM scales continue to grow. A detailed anal-
ysis of this finding is presented in Section 5.3, while additional experimental results for LLaMA-70B
models, including LLaMA-3-70B, are presented in Appendix C.2.

Table 3 shows the evaluation results of SWIFT on code generation tasks. SWIFT achieves speedups of
1.3×∼1.5× over vanilla autoregressive decoding, demonstrating its effectiveness across both greedy
decoding and random sampling settings. Additionally, speculative sampling theoretically guarantees
that SWIFT maintains the original output distribution of the target LLM. This is empirically validated
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by the task performance metrics in Table 3. Despite a slight variation in the pass@10 metric for
CodeLLaMA-34B, SWIFT achieves identical performance to autoregressive decoding.

5.3 IN-DEPTH ANALYSIS

Modules Latency (ms) Ratio (%)

Optimize 0.8

Draft 64.4

Verify 28.4

Others 6.4

Total 100.0

Latency Breakdown per Token

19.93 ± 1.36
0.24 ± 0.02

8.80 ± 2.21
1.98 ± 0.13
30.95 ± 2.84

Figure 6: Illustration and latency breakdown of SWIFT inference. As the left figure shows, after
the context-based layer set optimization phase, the overall speedup of SWIFT steadily increases,
reaching the average instance speedup during the acceleration phase. The additional optimization
steps account for only 0.8% of the total inference latency, as illustrated in the right figure.

Illustration of Inference As described in Section 4, SWIFT divides the LLM inference process
into two distinct phases: optimization and acceleration. Figure 6 (left) illustrates the detailed accel-
eration effect of SWIFT during LLM inference. Specifically, the optimization phase begins at the
start of inference, where an optimization step is performed before each decoding step to adjust the
skipped layer set forming the draft model. As shown in Figure 6, in this phase, the matchness
score of the draft model rises sharply from 0.45 to 0.73 during the inference of the first instance. This
score then gradually increases to 0.98, which triggers the termination of the optimization process.
Subsequently, the inference transitions to the acceleration phase, during which the optimization
step is removed, and the draft model remains fixed to accelerate LLM inference. As illustrated,
the instance speedup increases with the matchness score, reaching an average of 1.53× in the
acceleration phase. The overall speedup gradually rises as more tokens are generated, eventually
approaching the average instance speedup. This dynamic reflects a key feature of SWIFT: the effi-
ciency of SWIFT improves with increasing input length and the number of instances.

Breakdown of Computation Figure 6 (right) presents the computation breakdown of different
modules in SWIFT with 1000 CNN/DM samples using LLaMA-2-13B. The results demonstrate that
the optimization step only takes 0.8% of the overall inference process, indicating the efficiency
of our strategy. Compared with Self-SD (Zhang et al., 2024) that requires a time-consuming opti-
mization process (e.g., 7.5 hours for LLaMA-2-13B on CNN/DM), SWIFT achieves a nearly 180×
optimization time reduction, facilitating on-the-fly inference acceleration. Besides, the results show
that the drafting stage of SWIFT consumes the majority of inference latency. This is consistent with
our results of mean generated length in Table 2 and 3, which shows that nearly 80% output tokens
are generated by the efficient draft model, demonstrating the effectiveness of our SWIFT framework.
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Figure 7: Comparison between SWIFT and Self-SD in handling dynamic data input streams. Unlike
Self-SD, which suffers from efficiency reduction during distribution shift, SWIFT maintains stable
acceleration performance with an acceptance rate exceeding 0.9.
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Dynamic Input Data Streams We further validate the effectiveness of SWIFT in handling dy-
namic input data streams. We selected CNN/DM, GSM8K, Alpaca (Taori et al., 2023), WMT14
DE-EN, and Nature Questions (Kwiatkowski et al., 2019) for the evaluation on summarization, rea-
soning, instruction following, translation, and question answering tasks, respectively. For each task,
we randomly sample 500 instances from the test set and concatenate them task-by-task to form
the input stream. The experimental results are presented in Figure 7. As demonstrated, Self-SD
is sensitive to domain shifts, with the average token acceptance rate dropping from 92% to 68%.
Consequently, it suffers from severe speedup reduction from 1.33× to an average of 1.05× under
domain shifts. In contrast, SWIFT exhibits promising adaptation capability to different domains with
an average token acceptance rate of 96%, leading to a consistent 1.3×∼1.6× speedup.
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(b) Scaling Law of SWIFT
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Figure 8: In-depth analysis of SWIFT, which includes: (a) Flexible optimization strategy. The
maximum optimization iteration S and Bayesian interval β can be flexibly adjusted to accommodate
different input data types. (b) Scaling law. The speedup and optimal layer skip ratio of SWIFT
increase with larger model sizes, indicating that larger LLMs exhibit greater layer sparsity.

Flexible Optimization & Scaling Law Figure 8(a) presents the flexibility of SWIFT in handling
various input types by adjusting the maximum optimization step S and Bayesian interval β. For
input with fewer instances, reducing S enables an earlier transition to the acceleration phase while
increasing β reduces the overhead during the optimization phase, enhancing speedups during the
initial stages of inference. In cases with sufficient input data, SWIFT enables exploring more op-
timization paths, thereby enhancing the overall speedup. Figure 8(b) illustrates the scaling law of
SWIFT: as the model size increases, both the optimal layer-skip ratio and overall speedup improve,
indicating that larger LLMs exhibit more layer sparsity. This finding highlights the potential of
SWIFT for accelerating LLMs of larger sizes (e.g., 175B), which we leave for future investigation.
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Figure 9: Speedups of SWIFT on LLM back-
bones and their instruction-tuned variants.

Other LLM Backbones Beyond LLaMA, we as-
sess the effectiveness of SWIFT on additional LLM
backbones. Specifically, we include Yi-34B (Young
et al., 2024) and DeepSeek-Coder-33B (Guo et al.,
2024) along with their instruction-tuned variants for
text and code generation tasks, respectively. The
speedup results of SWIFT are illustrated in Figure 9,
demonstrating that SWIFT achieves efficiency im-
provements ranging from 26% to 54% on these LLM
backbones. Further experimental details are pro-
vided in Appendix C.3.

6 CONCLUSION

In this work, we introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively
selects certain intermediate layers of LLMs to skip during inference. The proposed method does not
require additional training or auxiliary models, making it a plug-and-play solution for accelerating
LLM inference across diverse input data streams. Extensive experiments conducted across various
LLMs and tasks demonstrate that SWIFT achieves over a 1.3×∼1.6× speedup while preserving the
distribution of the generated text. Furthermore, our in-depth analysis highlights the effectiveness
of SWIFT in handling dynamic input data streams and its seamless integration with various LLM
backbones, showcasing the great potential of this paradigm for practical LLM inference acceleration.
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14

https://doi.org/10.48550/arXiv.2406.16858
https://doi.org/10.48550/arXiv.2310.07177
https://doi.org/10.48550/arXiv.2404.06954
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym
https://doi.org/10.48550/arXiv.2402.17764
https://doi.org/10.48550/arXiv.2402.17764
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/1022594.1022596
https://proceedings.mlsys.org/paper_files/paper/2023/hash/c4be71ab8d24cdfb45e3d06dbfca2780-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/c4be71ab8d24cdfb45e3d06dbfca2780-Abstract-mlsys2023.html
https://www.worldcat.org/oclc/61285753


Published as a conference paper at ICLR 2025

Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023.
doi: 10.48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.
12950.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Ric-
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APPENDIX

A PRELIMINARY DETAILS

We present the detailed configuration of Self-SD across four task domains in Figure 10, demonstrat-
ing that the optimal skipped layer configurations vary depending on the specific task.

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(a) Summarization - CNN/DM

MLP 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(b) Reasoning - GSM8K
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ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(c) Storytelling - TinyStories
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ATT 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

(d) Translation - WMT16

Figure 10: Visualization of skipped layer set configurations of LLaMA-2-13B optimized by Self-
SD (Zhang et al., 2024) on different task domains. Gray squares indicate retained layers, red squares
denote skipped attention layers, and blue squares signify skipped MLP layers.

B EXPERIMENTAL SETUPS

B.1 MODELS AND DATASETS

Our experiments mainly evaluate the effectiveness of SWIFT on LLaMA-2 (Touvron et al., 2023b)
and CodeLLaMA series (Rozière et al., 2023). We provide empirical validation on a diverse range
of generation tasks. For summarization, mathematical reasoning, storytelling, and code generation
tasks, we chose the CNN/Daily Mail (CNN/DM) (Nallapati et al., 2016), GSM8K (Cobbe et al.,
2021), TinyStories (Eldan & Li, 2023), and HumanEval (Chen et al., 2021) datasets, respectively.
We perform 1-shot evaluation for CNN/DM and TinyStories, and 5-shot evaluation for GSM8K.
The maximum generation lengths on CNN/DM, GSM8K, and TinyStories are set to 64, 64, and
128, respectively. We compare pass@1 and pass@10 for HumanEval. In our further analysis, we
include three more datasets to validate the capability of SWIFT in handling dynamic input data
streams. Specifically, we select Alpaca (Taori et al., 2023), WMT14 DE-EN, and Nature Ques-
tions (Kwiatkowski et al., 2019) for the instruction following, translation, and question answering
tasks, respectively. The maximum generation lengths for HumanEval and all analyses are set to 512.
We randomly sample 1000 instances from the test set for each dataset except HumanEval.

B.2 INFERENCE SETUP

In the optimization phase, we employ both random search and Bayesian optimization to suggest
potential skipped layer set candidates, striking a balance between optimization performance and ef-
ficiency. The context window γ is set to 32. The maximum draft length ND is set to 25. For random
sampling in code generation tasks, we apply a temperature of 0.6 and top p = 0.95. The maxi-
mum number of layer set optimization steps S is set to 1000, with Bayesian optimization performed
every β = 25 steps. The optimization phase is set to be early stopped if the matchness score
does not improve after 300 steps or exceeds 0.95. The layer skip ratio r is fixed at 0.45 for the 13B
model and 0.5 for the 34B and 70B models. All experiments were conducted using Pytorch 2.1.0 on
4×NVIDIA RTX A6000 GPU (40GB) with CUDA 12.1, and an Intel(R) Xeon(R) Platinum 8370C
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CPU with 32 cores. Inference for our method and all baselines was performed using the Hugging-
face transformers package. Following prior work, we adopt speculative sampling (Leviathan et al.,
2023) as our acceptance strategy, and the batch size is set to 1.

B.3 EVALUATION METRICS

This subsection provides a detailed illustration of our evaluation metrics, which are mean generated
length M and token acceptance rate α. Specifically, the mean generated length M refers to the
average number of output tokens produced per forward pass of the target LLM; the acceptance rate
α is defined as the ratio of accepted tokens to the total number of draft steps. In other words,
it represents the expected probability of the target LLM accepting a potential token from a forward
pass of the draft model. These two metrics are independent of computational hardware and, therefore
considered as more objective metrics. Given the mean generated length M , acceptance rate α,
and the layer skip ratio r, the mathematical formula for the expected wall-time speedup during the
acceleration phase is derived as follows:

E(Spd.) =
M

(M − 1)× c
α + 1

=
Mα

(M − 1)c+ α
, c = 1− r, (6)

where c is defined as the cost coefficient in Leviathan et al. (2023). It is calculated as the ratio
between the single forward time of the draft model and that of the target LLM. In summary, the
ideal speedup will be higher with the larger M and α and smaller c.

C EXPERIMENTAL DETAILS

C.1 DETAILS OF MAIN RESULTS

We present the detailed statistics of our main experimental results in Table 4. SWIFT consistently
achieves a token acceptance rate α exceeding 90% across all evaluation settings, with the mean
generated length M ranging from 2.99 to 8.21. These statistics indicate strong behavior alignment
between the target LLM and its layer-skipping draft variant, as discussed in Section 5.2. Addition-
ally, we report the expected speedup E(Spd.) calculated using Eq (6), indicating that the current
implementation of SWIFT has significant potential for further optimization to boost its efficiency.

Models Methods CNN/DM GSM8K TinyStories Expected
SpeedupM α E(Spd.) M α E(Spd.) M α E(Spd.)

LLaMA-2-13B VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 4.34 0.99 1.52× 3.13 0.98 1.43× 8.21 1.00 1.65× 1.53×

LLaMA-2-13B
-Chat

VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 3.54 0.90 1.39× 2.95 0.92 1.36× 7.42 0.99 1.62× 1.46×

LLaMA-2-70B VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 3.85 0.99 1.58× 2.99 0.98 1.48× 6.17 0.99 1.71× 1.59×

Table 4: Detailed results of SWIFT on text generation tasks using LLaMA-2 series. We report the
mean generated length M, token acceptance rate α, and the expected speedup E(Spd.) calculated by
Eq (6) under the setting of greedy decoding with FP16 precision.

C.2 ADDITIONAL RESULTS ON LLAMA-70B MODELS

In addition to the main results presented in Table 2, we provide further experimental evaluations
of SWIFT on LLaMA-70B models, including LLaMA-2-70B and LLaMA-3-70B, along with their
instruction-tuned variants, under the same experimental settings. The results demonstrate that
SWIFT consistently achieves a 1.4×∼1.5× wall-clock speedup across both the LLaMA-2 and
LLaMA-3 series. Notably, SWIFT achieves a token acceptance rate α exceeding 85% across var-
ious evaluation settings, with the mean generated length M ranging from 3.43 to 7.80. Although
differences in layer redundancy are observed between models (e.g., skip ratio r for LLaMA-2-70B
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vs. LLaMA-3-70B3), SWIFT demonstrates robust adaptability, maintaining consistent acceleration
performance regardless of model version.

Models Methods CNN/DM GSM8K TinyStories Overall
SpeedupM α Speedup M α Speedup M α Speedup

LLaMA-2-70B VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 3.85 0.99 1.43× 2.99 0.98 1.39× 6.17 0.99 1.62× 1.48×

LLaMA-2-70B
-Chat

VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 3.43 0.85 1.31× 3.12 0.89 1.32× 5.45 0.95 1.53× 1.37×

LLaMA-3-70B VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 5.43 0.99 1.41× 4.11 0.99 1.37× 7.80 0.99 1.51× 1.43×

LLaMA-3-70B
-Instruct

VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 3.76 0.95 1.33× 3.92 0.93 1.31× 5.87 0.97 1.43× 1.36×

Table 5: Experimental results of SWIFT on text generation tasks using the LLaMA-70B series. We
report the mean generated length M, token acceptance rate α, and speedup ratio under the setting of
greedy decoding. The skip ratio r is set to 0.5 for LLaMA-2 models and 0.4 for LLaMA-3 models.

C.3 DETAILED RESULTS OF LLM BACKBONES

To further validate the effectiveness of SWIFT, we conducted experiments using additional LLM
backbones beyond the LLaMA series. Specifically, we select two recently representative LLMs:
Yi-34B for text generation and DeepSeek-Coder-33B for code generation tasks. The experimental
results are illustrated in Table 6 and 7, demonstrating the efficacy of SWIFT across these LLM
backbones. SWIFT achieves a consistent 1.2×∼1.3× wall-clock speedup on the Yi-34B series and
a 1.3×∼1.5× on the DeepSeek-Coder-33B series. Notably, for the DeepSeek-Coder-33B series,
SWIFT attains a mean generate length M ranging from 3.16 to 4.17, alongside a token acceptance
rate α exceeding 83%. These findings substantiate the utility of SWIFT as a general-purpose, plug-
and-play SD method, offering promising inference acceleration across diverse LLM backbones.

Models Methods CNN/DM GSM8K TinyStories Overall
SpeedupM α Speedup M α Speedup M α Speedup

Yi-34B VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 2.74 0.94 1.30× 2.65 0.97 1.28× 3.25 0.98 1.34× 1.31×

Yi-34B-Chat VANILLA 1.00 - 1.00× 1.00 - 1.00× 1.00 - 1.00× 1.00×
SWIFT 2.84 0.91 1.29× 2.77 0.89 1.27× 2.52 0.80 1.21× 1.26×

Table 6: Experimental results of SWIFT on text generation tasks using Yi-34B series. We report
the mean generated length M, token acceptance rate α and speedup ratio under the setting of greedy
decoding with FP16 precision. The skip ratio r is set to 0.45.

D FURTHER ANALYSIS AND DISCUSSION

D.1 ABLATION STUDY

Table 8 presents the ablation study of SWIFT using LLaMA-2-13B on CNN/DM. The experimen-
tal results demonstrate that each component of SWIFT contributes to its overall speedup of SWIFT.
Specifically, early-stopping drafting effectively reduces the number of ineffective draft steps, im-
proving the token acceptance rate α by 55%. Dynamic verification further enhances efficiency by
selecting suitable draft candidates from the top-k predictions based on their confidence scores; re-
moving this component leads to a decrease in both the mean generated length (M) and the overall
speedup ratio. Additionally, the optimization phase refines the set of skipped layers, improving

3During the optimization phase, the layer skip ratio r for LLaMA-3-70B was automatically adjusted from
0.5 to 0.4 as the token acceptance rate α remained below the tolerance threshold of 0.7.
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speedup by 34% compared to the initial uniform layer-skipping strategy. In summary, these results
confirm the effectiveness of each proposed innovation in SWIFT.

Datasets Methods DS-Coder DS-Coder-Instruct

M α Speedup M α Speedup

HumanEval (pass@1) VANILLA 1.00 - 1.00× 1.00 - 1.00×
SWIFT 4.97 0.99 1.54× 3.80 0.88 1.39×

HumanEval (pass@10) VANILLA 1.00 - 1.00× 1.00 - 1.00×
SWIFT 3.16 0.91 1.36× 3.74 0.83 1.31×

Table 7: Experimental results of SWIFT on code generation tasks using DeepSeek-Coder-33B series.
The skip ratio r is set to 0.5. We use greedy decoding for pass@1 and random sampling with a
temperature of 0.6 for pass@10. “DS” denotes the abbreviation of DeepSeek.

Methods M α Speedup

Vanilla 1.0 - 1.000×
SWIFT 5.82 0.98 1.560×

w/o early-stopping 11.16 0.43 0.896×
w/o dynamic ver. 4.39 0.90 1.342×
w/o optimization 2.15 0.90 1.224×

Table 8: Ablation study of SWIFT. “ver.” denotes
the abbreviation of verification.

γ M α Speedup Latency

16 3.91 0.95 1.341× 0.242ms
32 5.82 0.98 1.560× 0.244ms
64 5.56 0.99 1.552× 0.312ms
128 5.61 0.98 1.550× 0.425ms

Table 9: Speedups of SWIFT across differ-
ent context window γ. The latency of the
optimization step is reported to illustrate the
associated overhead.

D.2 CONTEXT WINDOW

In Table 9, we show a detailed analysis of context window γ, which determines the number of
LLM-generated tokens used in the layer set optimization process. A smaller γ introduces greater
randomness in the matchness score calculation, resulting in suboptimal performance, while a
larger γ increases the computational overhead of the optimization step. The results indicate that γ =
32 provides an optimal balance between optimization performance and computational overhead.

D.3 COMPARISONS WITH PRIOR LAYER-SKIPPING METHODS

In this subsection, we compare SWIFT with two representative layer-skipping speculative decoding
(SD) methods: LayerSkip (Elhoushi et al., 2024) and Self-SD (Zhang et al., 2024). Specifically,
LayerSkip (Elhoushi et al., 2024) introduces an innovative approach to self-speculative decoding by
implementing early-exit drafting, where the LLM generates drafts using only its earlier layers. How-
ever, this method necessitates a time-consuming pretraining or finetuning process, which modifies
the original output distribution of the target LLM. Such alterations may compromise the reliability
of the generated outputs; Self-SD (Zhang et al., 2024) proposed to construct the compact draft model
by skipping intermediate layers, using an extensive Bayesian Optimization process before inference
to determine the optimal skipped layers within the target LLM. As illustrated in Section 3.1, while
effective, Self-SD suffers from significant optimization latency (nearly 7.5 hours for LLaMA-2-13B
and 20 hours for LLaMA-2-70B). This prolonged optimization process limits its practicality and
generalizability across diverse models and tasks.

Tables 10 and 11 summarize the comparative results in terms of acceleration performance and train-
ing/optimization costs, respectively. Below, we detail the advantages of SWIFT over these methods:

• Comparison with LayerSkip: LayerSkip achieves an aggressive skip ratio (r = 0.8),
resulting in an average generated length of 2.42 and a token acceptance rate of 0.64. How-
ever, its reliance on pretraining or finetuning alters the original distribution of the target
LLM, potentially reducing reliability. In contrast, SWIFT preserves the original distribu-
tion of the target LLM while delivering a comparable 1.56× speedup without requiring
additional training.
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Methods Plug&Play Original r M α Speedup

LAYERSKIP ✗ ✗ 0.80 2.42 0.64 1.64×
SELF-SD ✗ ✓ 0.43 4.02 0.85 1.29×
SELF-SD w/ dynamic ver. ✗ ✓ 0.43 5.69 0.98 1.52×
SWIFT (Ours) ✓ ✓ 0.45 5.82 0.98 1.56×

Table 10: Comparison of SWIFT and prior layer-skipping SD methods. We report the skip ratio r,
mean generated length M, token acceptance α, and speedup ratio under greedy decoding. The results
are obtained with LLaMA-2-13B on CNN/DM. “ver.” denotes the abbreviation of verification.

Methods Training Cost Optimization Latency

LAYERSKIP 50× 103 training steps with 64 A100 (80GB) -
SELF-SD 1000 Bayesian Optimization Iterations Before inference ∼7.5 hours
SWIFT (Ours) N/A ∼2 minutes

Table 11: Comparison of SWIFT and prior layer-skipping SD methods in terms of training cost
and optimization latency for LLaMA-2-13B. Training costs are sourced from the original papers,
while optimization latency is measured from our re-implementation on an A6000 GPU. SWIFT
demonstrates a ∼200× reduction in optimization latency compared to previous methods without
requiring additional training, establishing it as an efficient plug-and-play SD method.

• Comparison with Self-SD: Self-SD relies on a time-intensive Bayesian Optimization pro-
cess, which incurs substantial latency before inference. SWIFT eliminates this bottleneck
through an on-the-fly optimization strategy, achieving an approximately 200× reduction
in optimization latency while maintaining the same 1.56× speedup. We further augmented
Self-SD with our Confidence-aware Inference Acceleration strategy (Self-SD w/ dynamic
ver.). Even compared to this augmented version, SWIFT achieves competitive speedups.

These findings highlight the efficiency and practicality of SWIFT over previous layer-skipping SD
methods. As the first plug-and-play layer-skipping SD approach, we hope that SWIFT could provide
valuable insights and inspire further research in this area.

D.4 DETAILED COMPARISONS WITH SELF-SD
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Figure 11: Comparison of SWIFT and Self-
SD in terms of optimization latency and
speedup. SWIFT achieves a 1.56× speedup
with an optimization latency of 116 seconds.

In this subsection, we provide a detailed compar-
ison of SWIFT and Self-SD (Zhang et al., 2024).
Figure 11 presents the speedups of Self-SD across
varying optimization latencies, reflecting the in-
crease in Bayesian Optimization iterations. As
shown, Self-SD achieves minimal speedup improve-
ment – almost equivalent to unified skipping – with
fewer than 50 Bayesian iterations, corresponding to
an optimization latency below 1474 seconds. At
100 Bayesian iterations, Self-SD achieves a 1.19×
speedup; however, its optimization latency is nearly
25 times longer than that of SWIFT (2898s vs. 116s).

Table 12 compares SWIFT and Self-SD (first two rows) under similar optimization latencies. The
results highlight SWIFT’s superiority in both optimization efficiency (116s vs. 155s) and speedup
(1.56× vs. 0.97×). Even when compared to the augmented version of Self-SD (w/ dynamic verifi-
cation), SWIFT achieves a substantial 30% relative improvement in speedup. Below, we analyze the
factors contributing to this advantage (elaborated in Section 3.1):

• Optimization Objective Granularity: Self-SD calculates its optimization objective at a
multi-sample level, requiring sequential decoding of all selected training samples (e.g.,
8 samples with 32 tokens each) for every iteration to optimize Equation 1. In contrast,
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Methods #Random
Optimization

#Bayesian
Optimization

Optimization
Latency (s) r M α Speedup

SELF-SD - 5 155 0.50 1.80 0.57 0.97×
SELF-SD w/ dynamic ver. - 5 155 0.50 2.07 0.86 1.17×
SELF-SDc - 30 199 0.45 2.08 0.70 1.04×
SELF-SDc w/ dynamic ver. - 30 199 0.45 2.44 0.93 1.22×
SWIFT (Ours) 552 23 116 0.45 5.82 0.98 1.56×

Table 12: Comparison of SWIFT and Self-SD at similar optimization latencies. We report the skip
ratio r, mean generated length M, token acceptance rate α, and speedup under greedy decoding. The
results are obtained with LLaMA-2-13B on CNN/DM, with “ver.” indicating verification.

SWIFT adopts a step-level optimization objective, optimizing the layer set dynamically at
each decoding step.

• Bayesian Optimization Complexity: The computational complexity of Bayesian opti-
mization increases significantly with the number of iterations. SWIFT mitigates this bur-
den by combining random search with interval Bayesian optimization, accelerating conver-
gence of the optimization process while reducing computational overhead.

To further examine optimization trade-offs, we reduce Self-SD’s sequential optimization require-
ment to a single sample with 8 tokens, enabling more Bayesian Optimization iterations within a
comparable latency. The corresponding results, denoted as Self-SDc (rows 3-4), are presented in
Table 12. Even with these optimized settings, SWIFT demonstrates substantial superior speedup and
efficiency, highlighting the effectiveness of our proposed strategies.

D.5 THE NECESSITY OF PLUG-AND-PLAY SD METHODS

There has been a surge of recent interest in Speculative Decoding (SD), leading to the development
of numerous promising strategies in the field, which can be broadly categorized into two directions:

• Training-required SD. These methods require additional pretraining or fine-tuning to im-
prove speculative accuracy, often involving the integration of extra parameters. For in-
stance, Medusa (Cai et al., 2024) and Eagle (Li et al., 2024a;b) incorporate lightweight
draft heads into target LLMs and fine-tune them, achieving 3×∼4× speedups.

• Plug-and-play SD. These approaches offer immediate acceleration of LLM inference with-
out relying on auxiliary models or additional training. Notable examples include Parallel
Decoding (Santilli et al., 2023) and Lookahead (Fu et al., 2024), which leverage Jacobi-
based drafting, achieving 1.2×∼1.4× speedups across various LLMs.

While training-required SD methods generally deliver higher speedups, their reliance on additional
training and parameters limits both their generalizability and practicality. This has sparked debate
within the academic community regarding the value of plug-and-play SD methods. To address
these concerns, we present a detailed analysis below to highlight the necessity of plug-and-play SD
approaches and underscore the contributions of our proposed SWIFT:

1) Training costs of training-required SD methods are often prohibitive. Training-required
methods such as Medusa (Cai et al., 2024) and Eagle (Li et al., 2024a;b), while achieving higher
speedups, incur substantial training costs. Despite efforts to reduce training overhead, these methods
still require extensive computational resources (e.g., GPU time and datasets) to deliver valid accel-
eration performance. For example, Eagle requires 1–2 days of training with 8 RTX 3090 GPUs for
LLaMA-33B or up to 2 days on 4 A100 (40G) GPUs for LLaMA-2-Chat-70B, using a dataset of 70k
dialogues from ShareGPT. Such computational burdens introduce challenges in several scenarios:

• Users must train new draft models for unsupported target LLMs. For example, if the user’s
target LLM is not among the released checkpoints or if the base model is updated (e.g.,
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LLaMA-3.x), users are forced to train a new draft model, which may exceed their available
GPU resources (e.g., GPU time).

• Users with small-scale acceleration needs face inefficiencies. For instance, a researcher
needing to evaluate a small set of samples (e.g., 10 hours of evaluation) would find the 1–2
day training requirement disproportionate and hinder overall research efficiency.

2) Plug-and-play SD fills critical gaps unaddressed by training-required methods. Plug-and-
play SD methods, including SWIFT, are model-agnostic and training-free, providing immediate ac-
celeration without requiring additional computational overhead. These attributes are particularly
critical for large models (70B–340B) and for use cases requiring rapid integration. The growing
adoption of plug-and-play SD methods, such as Lookahead (Fu et al., 2024), further underscores
their importance. These methods cater to scenarios where ease of use and computational efficiency
are paramount, validating their research significance.

3) SWIFT pioneers plug-and-play SD with layer-skipping drafting. SWIFT represents the
first plug-and-play SD method to incorporate layer-skipping drafting. It consistently achieves
1.3×∼1.6× speedups over vanilla autoregressive decoding across diverse models and tasks. Ad-
ditionally, it demonstrates 10%∼20% higher efficiency compared to Lookahead (Fu et al., 2024).
Despite its effectiveness, SWIFT introduces a complementary research direction for existing plug-
and-play SD. Its approach is orthogonal to Lookahead Decoding, and combining the two could fur-
ther amplify their collective efficiency. We believe this study provides valuable insights and paves
the way for future SD advancements, particularly for practical and cost-effective LLM acceleration.

To sum up, while training-required SD methods achieve higher speedups, their high computational
costs and limited flexibility reduce practicality. Plug-and-play SD methods, like SWIFT, offer
training-free, model-agnostic acceleration, making them ideal for diverse scenarios. We hope this
clarification fosters greater awareness and recognition of the value of plug-and-play SD research.

D.6 ADDITIONAL DISCUSSIONS WITH RELATED WORK

In this work, we leverage the inherent layer sparsity of LLMs through layer skipping, which selec-
tively bypasses intermediate layers within the target LLM to construct the compact draft model. In
addition to layer skipping, there has been another research direction in SD that focuses on early ex-
iting, where inference halts at earlier layers to improve computational efficiency (Yang et al., 2023;
Hooper et al., 2023; Bae et al., 2023; Elhoushi et al., 2024). Particularly, LayerSkip (Elhoushi et al.,
2024) explores early-exit drafting by generating drafts using only the earlier layers of the target
LLM, followed by verification with the full-parameter model. This approach requires training in-
volving layer dropout and early exit losses. Similarly, PPD (Yang et al., 2023) employs early exiting
but trains individual classifiers for each layer instead of relying on a single final-layer classifier.
Although effective, these methods rely on extensive fine-tuning to enable early-exiting capabilities,
incurring substantial computational costs. Moreover, the training process alters the target LLM’s
original output distribution, potentially compromising the reliability of generated outputs. In con-
trast, our proposed SWIFT does not require auxiliary models or additional training, preserving the
original output distribution of the target LLM while delivering comparable acceleration benefits.

There has been a parallel line of training-required SD research focusing on non-autoregressive draft-
ing strategies (Stern et al., 2018; Cai et al., 2024; Gloeckle et al., 2024; Kim et al., 2024). These
methods integrate multiple draft heads into the target LLM, enabling the parallel generation of draft
tokens at each decoding step. Notably, Kim et al. (2024) builds on the Blockwise Parallel Decod-
ing paradigm introduced in Stern et al. (2018), accelerating inference by refining block drafts with
task-independent n-grams and lightweight rescorers using smaller LMs. While these approaches
achieve notable acceleration, they also necessitate extensive training of draft models. SWIFT com-
plements these efforts by pioneering plug-and-play SD that eliminates the need for auxiliary models
or additional training, offering a more flexible and practical solution for diverse use cases.

D.7 OPTIMIZATION STEPS

We present the detailed configuration of SWIFT across various optimization steps in Figure 10. As
the process continues, the skipped layer set is gradually refined toward the optimal configuration.
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(d) Optimization Step 512

Figure 12: Visualization of skipped layer set configurations of LLaMA-2-13B optimized by SWIFT
on different optimization steps. Gray squares indicate retained layers, red squares denote skipped
attention layers, and blue squares signify skipped MLP layers.

D.8 CASE STUDY

We present examples from CNN/DM and Humaneval in Table 13 and 14, respectively, comparing to-
ken acceptance between SWIFT and prior plug-and-play approach, Lookahead (Fu et al., 2024). The
results demonstrate that SWIFT accepts a higher number of drafts, which are uniformly distributed
in the outputs, highlighting the effectiveness of our approach.

Table 13: CNN/DM example using LLaMA-2-13B; red tokens indicate accepted drafts.

User Input
Article: An Alberta student who’d accidentally left his headlights on all day
was greeted by what may have been the world’s friendliest note from a stranger
when he returned to his car. But Derek Murray, a University ... Summary:

LOOKAHEAD
A Canadian law student was greeted by a friendly note from a stranger when
he returned to his car after leaving the headlights on all day .

SWIFT
A Canadian law student was greeted by a friendly note from a stranger when
he returned to his car after leaving the headlights on all day .

Table 14: Humaneval example using CodeLLaMA-13B; red tokens indicate accepted drafts.

User Input
from typing import List def has close elements(numbers: List[float], thresh-
old: float) ->bool: ””” Check if in given list of numbers, are any two numbers
closer to each other than given threshold. >>>has close elements ...

LOOKAHEAD

for i in range(len(numbers) - 1): if abs(numbers[i] - numbers[i + 1]) <= thresh-
old: return True return False def has close elements 2(numbers: List[float],
threshold: float) ->bool: ””” Check if in given list of numbers, are any two
numbers closer to each other than given threshold. >>>has close elements 2

SWIFT

for i in range(len(numbers) - 1): if abs(numbers[i] - numbers[i + 1]) <= thresh-
old: return True return False def has close elements 2(numbers: List[float],
threshold: float) ->bool: ””” Check if in given list of numbers, are any two
numbers closer to each other than given threshold. >>> has close elements 2
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