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Abstract

We propose GAM-Agent, a game-theoretic multi-agent framework for enhanc-
ing vision-language reasoning. Unlike prior single-agent or monolithic models,
GAM-Agent formulates the reasoning process as a non-zero-sum game between
base agents—each specializing in visual perception subtasks—and a critical agent
that verifies logic consistency and factual correctness. Agents communicate via
structured claims, evidence, and uncertainty estimates. The framework introduces
an uncertainty-aware controller to dynamically adjust agent collaboration, trigger-
ing multi-round debates when disagreement or ambiguity is detected. This process
yields more robust and interpretable predictions. Experiments on four challenging
benchmarks—MMMU, MMBench, MVBench, and V*Bench—demonstrate that
GAM-Agent significantly improves performance across various VLM backbones.
Notably, GAM-Agent boosts the accuracy of small-to-mid scale models (e.g.,
Qwen2.5-VL-7B, InternVL3-14B) by 5-6%, and still enhances strong models like
GPT-40 by up to 2-3%. Our approach is modular, scalable, and generalizable,
offering a path toward reliable and explainable multi-agent multimodal reasoning.

1 Introduction

Recently, large language models (LLMs) [43] 31} 12} 19,150, 153 167] has made significant progress
in tasks such as complex reasoning, code generation, and knowledge integration, overcoming the
limitations of single models through multi-agent collaboration [72} |11} 128} [33} 4} [70]. In contrast,
although there have been advances in integrating visual perception with language understanding
in the field of vision language models (VLMs) [42, 27, 16, [10, 9} 168l 169], the potential of multi-
agent collaboration for VLMs remains largely untapped. Most existing VLM approaches rely on
single models or simple ensemble strategies, which struggle to address challenges like multi-step
reasoning and visual ambiguity in complex visual reasoning tasks [[17, [10]. Benefiting from the
development of multi-agent systems [8, 155, [7], some recent studies have proposed multi-agent
debate frameworks to compensate for the shortcomings of VLMs and have obtained promising
results[56} 11} 157, 25]. However, these methods typically adopt simple mechanisms such as averaging
or voting mechanisms and lack visual reasoning-based strategic interactions between agents [55} [18]].
Hence, they perform poorly in high-complexity visual reasoning scenarios (e.g., MMMU [64])).
Just as human experts reach consensus through strategic game-like interactions when they disagree
[47, 145|158, 3], introducing a deep collaborative game-theoretic mechanism into complex visual
reasoning is a valuable endeavor[/13]], which has already seen preliminary applications in some
LLM-based works [33}52].

However, current collaborative game-theoretic methods are often highly complex and heavily rely on
reasoning paths, clues, and the fusion of multiple information, making them difficult to apply directly
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to visual reasoning [54} [14, 12} [71} 148]]. To address this issue, this paper explores the underlying
architecture of existing VLMs, effectively utilizes important intermediate results in the reasoning
process, and extracts representations of uncertainty in reasoning outcomes [21]]. Specifically, we
propose a collaborative game-theoretic framework [37, 26} 44, [30], named GAM-Agent, based
on game-theoretic and uncertainty-aware inference. In this way, the complex visual reasoning
process can be modeled as a non-zero-sum game involving multiple agents collaborating to reach
a consensus[63} 26]. Specifically, we encourage agents to share their respective assessments of
reasoning uncertainty and engage in a progressive interactive game to guide GAM-Agent to evolve
step-by-step and ultimately reach a consensus.

To address these challenges, we introduce GAM-Agent, a novel agent collaboration framework
centered around a strategic interplay between two specialized agent cohorts: Base Agents and Critical
Agents. The Base Agents are tasked with initial visual interpretation and evidence generation from
distinct perspectives, such as object recognition, scene description, and textual analysis from images.
Concurrently, Critical Agents, acting as reasoning critique experts, scrutinize the outputs from Base
Agents and evaluate factual accuracy, logical coherence, and overall completeness. The core of
our GAM-Agent lies in modeling the interaction between these Base and Critical Agents as a non-
zero-sum game, fundamentally arbitrated by quantified uncertainty. In this game, agents iteratively
share and refine their uncertainty assessments regarding their claims and evidence, engaging in
a structured debate process aimed at progressively reducing ambiguity and converging toward a
consensus. This uncertainty-driven, game-theoretic collaboration allows for dynamic and strategic
integration of diverse insights, leading to more robust and reliable visual reasoning outcomes.
Specifically, Base Agents first generate diverse preliminary analyses and identify supporting evidence
for their claims. These outputs are then processed by a Claim Parser module, which deconstructs
the unstructured responses into structured information tuples, and an Evidence Mapping module,
which links these textual claims to specific visual regions in the input image, thereby grounding the
reasoning process. Besides, an Uncertainty Quantification mechanism continuously assesses the
confidence of each agent’s contribution. The entire process is orchestrated by a Debate Controller &
Integrator. This component first evaluates the initial consensus and system uncertainty. If significant
discrepancies or high uncertainty are detected, it initiates an iterative debate. During this debate,
Base Agents refine their arguments, while Critical Agents provide evaluations, with the Uncertainty
Quantification guiding the dynamic weighting and integration of information. This iterative loop
continues, progressively refining the collective understanding and reducing uncertainty until a robust
consensus is achieved or termination criteria are met. Extensive and comprehensive evaluations
on large-scale benchmarks demonstrate the superiority of our GAM-Agent. Experimental results
show that GAM-Agent achieves significant performance improvements on multiple complex visual
reasoning benchmarks such as MMMU, MMBench, MVBench, and V*Bench. For example, it boosts
the accuracy of small-to-mid scale VLMs by 5-6% and enhances the accuracy of top-tier models like
GPT-40 by up to 2-3%.

2 Methodology

Our GAM-Agent is defined as a six-tuple S = (E,A,®,M,P,D): E = 1,2,..., N represents
the set of IV expert agents, each possessing distinct cognitive perspectives. A = Ay, Ay, ..., An
defines the set of analysis capability mapping functions, where 4; : X x Pr — R maps an
input image X and a question P, to agent ¢’s response R;. ® = &, P,,..., Py is the set of
uncertainty assessment functions, where ®; : R — [0, 1] quantifies the uncertainty U; associated
with response R;. M = M, Ms,..., My represents the set of evidence localization mapping
functions, where M; : Ci x X — V x [0,1] associates a claim ¢ with a visual region r and a
confidence score o. Ci denotes the set of claims made by agent ¢, and V is the space of visual
regions. P : R — (¢;,05,e;,7;)j = 1™ is the claim and evidence parser, converting an unstructured
response R into a set of structured information tuples, each containing a claim c;, confidence o,

textual evidence e;, and visual region reference ;. D : X x Pr x R;,Uji = J R R final the
debate module aligns conflict and consensus for I ¢;y,4.

2.1 Base and Critical Agents

Our GAM-Agent employs two distinct categories of agents: Base Agents and Critical Agents, each
with specialized roles in the visual reasoning process. Base Agents[11] are conceived as specialized
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Figure 1: Our GAM-Agent pipeline processing a visual query: Initial responses from Base Agents(R;)
undergo Claim Parsing and Evidence Mapping before an Uncertainty Convergence Judgment assesses
consensus. If required, the Debate Controller & Integrator orchestrate an iterative loop, engaging
both Base Agents for argumentation and Critical Agents for verification, refining the response until
convergence or termination to produce the final output.

visual reasoning experts. Their primary function is to analyze the visual input and generate initial
interpretations or findings related to specific aspects of the scene or query. Examples of Base
Agents include: an Object Recognition Agent, tasked with identifying and localizing objects within
the visual input; a Scene Description Agent, focused on generating a textual description of the
overall scene, its context, and the relationships between entities; and an OCR Agent, specialized
in extracting textual information from images. Critical Agents function as specialized reasoning
critique experts. Their role is to scrutinize the outputs generated by the Base Agents (and potentially
other Critical Agents), identify inconsistencies, and assess factual accuracy, logical coherence, and
overall completeness. Examples of Critical Agents include: a Fact Checker Agent, which verifies
the factual claims made by other agents against known information or contextual understanding; a
Completeness Checker Agent, which assesses whether the information provided is sufficient and
comprehensive in addressing the query or task; and a Logic Checker Agent, which evaluates the
logical consistency and validity of the reasoning steps and conclusions presented. With these two tiers
of expert agents, our GAM-Agent introduces an iterative game-theoretic interplay and information
refinement process via uncertainty quantification to perform robust and accurate visual reasoning.

2.2 Uncertainty Quantification Function ()

We propose a dual-level ®; that models uncertainty from both response generation and overall
semantics. Generation-Process Based Uncertainty (®;4.,,) When the probability distribution

P; ; of the underlying VLM during the generation of the token sequence Y; = (y;.1,...,¥:,1;) is
accessible, we propose an integrated multi-feature uncertainty metric ®;gcr,+ (R;
T;
1
Digent (Ri) = = Y |a- H(Py) +B-max(0,1 - Awp(Pr)) e))
T; t=1 ~

Information Entropy
(Hesitation)

Probability Difference Inverse
(Lack of Conviction)

where H (P, ;) is the information entropy quantifying the dispersion of the token distribution, reflect-
ing the model’s hesitation, and Ay, (P; 1) = p;i (1) — p; +(2) is the difference between the top two
token probabilities, capturing the model’s conviction in its top choice. Parameters a and 3 balance



these complementary signals. This method captures microscopic uncertainty patterns during token
generation, shifting from output evaluation to generation process evaluation.

2.2.1 Semantic-Marker Based Uncertainty (®;;.,,)

When generation probabilities are unavailable, our GAM-Agent adopts a semantic marker-based
strategy, ®;sem (R;), to assess uncertainty. This strategy systematically identifies and quantifies
uncertainty markers within the text: ®;sen (R;) = Osigmoia (k - (p(R;) — offset)) , where W repre-
sents a multi-level lexicon of uncertainty markers. For each marker w € W, weight(w) reflects its
uncertainty intensity, count(w, R;) denotes its frequency in response R;, and |R;| is the length of
the response. The parameters k& and offset control scaling and bias, respectively, while asigmoid(-)
normalizes the score to the (0, 1) interval. By statistically analyzing semantic features in the text,
this strategy provides a reliable estimate of uncertainty. Moreover, the uncertainty U, for agent ¢ is
determined using a priority strategy: if generation probabilities are available, U; = ®;ger+ (R;), cap-
turing uncertainty inherent to the generation process. Otherwise, U; = ®;sem (R;) is used, reflecting
uncertainty inferred from semantic markers. This enables reliable uncertainty quantification for U; in
any setting, supporting response weighting, conflict detection, and iterative debate.

2.3 Initial Integration and Conflict Detection

After obtaining initial responses from expert agents, GAM-Agent introduces an adaptive weight
allocation and conflict assessment mechanism. This initial integration process efficiently aggregates
diverse viewpoints and precisely identifies cognitive disagreements requiring debate.

Initial Weight Allocation[72] and Response Integration. GAM-Agent dynamically assigns initial
(0)

weights w, ’ based on each agent’s uncertainty assessment U; and generates an integrated response

_su, N

R wz@) = % — R = IntegrateJudge(X, P,, (Ri,wgo))izl). The parameter 3
j=1

controls the sensitivity of weights to uncertainty. The IntegrateJudge function performs quality

assessment, mutual support analysis, and information merging, balancing high-confidence opinions

with diverse perspectives.

Conflict Detection and Debate Triggering. GAM-Agent calculates the weighted average uncertainty

U§22 and an inter-expert conflict score (Con flictScore) to decide whether to initiate the debate
process using a dual-criterion strategy:

N
Ue(;))e = Z w?))Ui —  TriggerDebate = (Ué(sz > 0u) V (ConflictScore > 6c¢) 2)
i— —
&,_/ System uncertainty Significant inter-expert

. . exceeds threshold conflict detected
‘Weighted average uncertainty

where C'on flictScore is computed from the consistency of key claims, evidence interpretation, and

agent logic. If USSZ > Oy or ConflictScore > 0¢, the system triggers an iterative debate. This
ensures quick consensus on easy cases while invoking deeper collaboration when needed.

2.4 Evidence Mapping (M) and Claim Parsing (P)

GAM-Agent incorporates an Evidence Mapping module (1/) and a Claim Parsing module (P) as core
components bridging visual and language reasoning. These modules construct a traceable network
linking textual claims to specific visual evidence, ensuring precise alignment between reasoning and
visual information. The collaborative mechanism of these modules can be formalized as follows:
the evidence mapping module M; establishes explicit links between an agent’s claim ¢ € C; and
a visual region 7 in image X (specified by bounding box, mask, or description), with o € [0, 1]
quantifying the confidence of this association, that is, M; : C; x X — (r, o). This creates a direct
“claim-visual evidence” link. The claim parsing module P transforms an unstructured response R;
into a set of structured tuples P(R;) — {(c;, 0;, €;, rj)};.zl, where each tuple consists of ¢; (the
specific textual claim), o; (the associated confidence), e; (a description of the supporting textual
evidence), and ; (a reference to the relevant visual region).

Working Mechanism of Evidence Mapping and Parsing. The evidence mapping process can
be represented as a conditional mapping function from the claim space to the visual region space:
p(rle, X) = M;(¢, X) — (r, o) where p(r|c, X) represents the probability distribution over visual



regions 7 being relevant evidence given claim c and image X, and o is the confidence of this mapping.
The claim parsing process can be formalized as text decomposition and structural reorganization:

P(R;) = M;({c;}, X) = {r;}7, o Associate({c;}, R;) — {e;}7%, o Assess({c;}) = {oj}7%) o Extract(R;) — {¢;}7,  (3)

Visual Region Mapping Evidence Association Confidence Assessment Claim Extraction

This decomposition highlights four steps: claim extraction, confidence assessment, evidence asso-
ciation, and visual region mapping, collectively transforming R; into structured tuples. This can
enhance transparency and evidence traceability in complex visual reasoning by grounding the visual
evidence, enabling precise conflict localization, and performing fine-grained debate focusing.

2.5 Iterative Debate Process: Dynamics, Termination, and Consensus

When initial integration reveals high uncertainty or critical disagreements, GAM-Agent initiates an it-
erative debate process (“Debating Uncertainty”). This structured interaction drives the agent collective
towards a high-quality consensus through a feedback loop focusing on key disputes, evidence sharing,
and dynamic weight adjustments. The iterative debate process is formalized as a sequence of state tran-
sitions. Each round of debate k involves five key steps forming a complete state evolution cycle: (a-b)
Disput focus and expert argumentation: Model identifies key points of contention and guides experts

to generate targeted arguments: Cy;z)mte — IdentifyDisputes((c;, o, ;,7;)j = 1™, RE=D U F)y

Arggk) = Ay(X, P, R*=1), Cé’;gate) The IdentifyDisputes function analyzes structured information

from the previous round to select key claims C’égate with low confidence o; or significant inter-
expert conflict. Each expert then generates an argumentation package including argumentative text
w® = exp(=AUM) or exp(zC{M)

v Z;\;l exp(fﬁUJ(,M) or Z;\;l exp(’yC](,m)
or confidence changes. This adaptive weighting incentivizes effective argumentation, aligning with
game-theoretic principles. (d-e) Iterative Response Generation and Uncertainty Evaluation: we
integrate updated expert views to generate the response of the current round and assess the consensus

Parameters (3 and ~ control sensitivity to uncertainty

) k=1 N k k) (k k)N k) N k
R® = Intcgrathudgc( x,p., RV ,{Rj}le,{Arg]( >,EJ< ),7]( ),Cj(v Yi=1s {w]< )}7:1, Csel)me) (@)

Original Input Prev. Round Base i poc

Current Expert Updates Dynamic Weights Dispute Focus

In this process, the IntegrateJudge function fuses the original input (X, P,.), the previous round’s

answer R*~1)_ each expert’s initial response Rjxj= 1V, and their structured debate updates
Argj(-k), EJ(-’C)7 r§k), Cj(.k) s j = 1%, along with dynamic weights w§-k)
disputed points C' debate™®, to produce the integrated decision R(*). This progressive integration
k)

ebate

% j = 1V and the current set of

focuses on resolving the present disputes Cé while preserving consensus from R*~1). The

overall system uncertainty Us(’;g = Zf\il wgk)Ui(k)quantiﬁes the level of consensus. Through
multiple iterations, GAM-Agent aggregates agreement and resolves conflict, steadily converging to a
high-confidence, low-uncertainty final answer. Debate Termination Decision Mechanism monitors

multiple criteria to decide whether to continue the debate. Termination occurs as follows:

Terminate Debate = (Uéfs) < 9U) vV (k > Kmax) \Y (AUb(;? < e) (5)
—_—— —_——— —_———
Uncertainty threshold condition Max iteration limit Convergence speed condition
: —1 . . .
where AU, 5(1]2 =1|U S";; — S(IJS ) | represents the change in system uncertainty between consecutive

rounds, and e is a convergence threshold. These conditions correspond to reaching satisfactory
certainty, resource limits, or debate stagnation. Upon termination at round K, the final response is
Ryina = R This multi-step, multi-round debate enables knowledge sharing and complementarity
among agents and forms a self-improving cognitive loop for complex visual scenarios.

3 Experiments
3.1 Image and Video Understanding Benchmarks
Experiment Setup To comprehensively evaluate our GAM-Agent on challenging image and

video benchmarks, we compare it with recent multi-agent methods using various state-of-the-art
vision-language models. We select five prominent VLMs: Qwen2.5VL[41] (7B and 72B parameter



Table 1: The evaluation of image and video understanding. Values in parentheses denote the
improvement in accuracy over the respective base model (Ori). The best performance for each base

model on each benchmark is bolded. Best is in red , and Base (Ori) data is in blue .

Base Model Framework ‘ MMMU MMBench_V11_Test MVBench_Test
Base (Ori) 53.82 82.61 69.62
DMAD 55.53 (+1.71) 85.62 (+3.01) 72.78 (+3.16)
DMPL 56.27 (+2.45) 86.24 (+3.63) 73.49 (+3.87)
Qwen2.5VL-7B (Small)  ChatEval 56.98 (+3.16) 86.93 (+4.32) 74.25 (+4.63)
MAD 55.01 (+1.19) 85.11 (+2.50) 72.17 (+2.55)
DebUnc 57.59 (+3.77) 87.65 (+5.04) 74.89 (+5.27)
GAM-Agent (Ours) | 58.93 (+5.11) 89.02 (+6.41) 76.15 (+6.53)
Base (Ori) 68.24 88.39 70.38
DMAD 68.98 (+0.74) 89.88 (+1.49) 71.85 (+1.47)
DMPL 69.43 (+1.19) 90.31 (+1.92) 72.36 (+1.98)
Qwen2.5VL-72B (Large) ~ ChatEval 69.81 (+1.57) 90.75 (+2.36) 72.81 (+2.43)
MAD 68.73 (+0.49) 89.47 (+1.08) 71.42 (+1.04)
DebUnc 70.15 (+1.91) 91.12 (+2.73) 73.19 (+2.81)
GAM-Agent (Ours) | 70.98 (+2.74) 91.82 (+3.43) 74.12 (+3.74)
Base (Ori) 67.09 83.54 76.59
DMAD 68.83 (+1.74) 86.63 (+3.09) 79.78 (+3.19)
DMPL 69.52 (+2.43) 87.35 (+3.81) 80.57 (+3.98)
InternVL3-14B (Small) ChatEval 70.27 (+3.18) 88.14 (+4.60) 81.39 (+4.80)
MAD 68.25 (+1.16) 86.01 (+2.47) 79.13 (+2.54)
DebUnc 70.94 (+3.85) 88.86 (+5.32) 82.15 (+5.56)
GAM-Agent (Ours) | 72.26 (+5.17) 90.15 (+6.61) 83.23 (+6.64)
Base (Ori) 72.18 87.65 78.81
DMAD 72.99 (+0.81) 89.21 (+1.56) 80.43 (+1.62)
DMPL 73.47 (+1.29) 89.68 (+2.03) 80.95 (+2.14)
InternVL3-78B (Large) ChatEval 73.88 (+1.70) 90.15 (+2.50) 81.41 (+2.60)
MAD 72.71 (+0.53) 88.83 (+1.18) 80.01 (+1.20)
DebUnc 74.24 (+2.06) 90.57 (+2.92) 81.83 (+3.02)
GAM-Agent (Ours) | 75.01 (+2.83) 91.53 (+3.88) 82.62 (+3.81)
Base (Ori) 68.97 83.13 75.48
DMAD 69.78 (+0.81) 84.77 (+1.64) 77.15 (+1.67)
DMPL 70.26 (+1.29) 85.29 (+2.16) 77.71 (+2.23)
GPT-40-0513 (Large) ChatEval 70.65 (+1.68) 85.73 (+2.60) 78.19 (+2.71)
MAD 69.42 (+0.45) 84.31 (+1.18) 76.73 (+1.25)
DebUnc 71.03 (+2.06) 86.15 (+3.02) 78.57 (+3.09)
GAM-Agent (Ours) | 71.91 (+2.94) 87.04 (+3.91) 79.52 (+4.04)

versions), InternVL3[74] (14B and 78B parameter versions), and GPT-40-0513]2]. On top of these
base models, we implemented our GAM-Agent framework and five other multi-agent frameworks:
DMAD|32], DMPLJ[25], ChatEval[5], MAD (Multi-Agent Debate)[29], and DebUnc[62]. The
evaluation is conducted on three challenging benchmarks: MMMUJ[64] (multi-discipline multimodal
understanding), MMBench_V11_Test (visual reasoning and perception), and MVBench_Test[34]]
(video temporal reasoning). For all experimental runs involving debate frameworks, we set a
maximum of 3 debate rounds (max_debate_round=3). Each framework utilized 3 expert agents
(N = 3) for generating initial responses and argumentation, and 3 critic agents (N = 3) for
frameworks requiring critique/verification, such as GAM-Agent. We used greedy decoding for
text generation. Open-source models (Qwen2.5VL, InternVL3) were deployed locally on NVIDIA
A100 GPUs, while the closed-source GPT-40-0513 was accessed via the OpenRouter API. Detailed
hyperparameter settings and other experimental configurations are provided in the Supplementary
Material. On each benchmark, our GAM-Agent achieves higher overall accuracy (Overall ACC, %)
than its corresponding base model, with improvements summarized in Table|l| Unless otherwise
stated, all experiments in this paper are performed on NVIDIA A100 GPU.

Experiment Results Table || summarizes the comparative performance of GAM-Agent and
other multi-agent frameworks across all base models and benchmarks. Results show that GAM-
Agent consistently achieves the highest overall accuracy. Improvements are especially notable for
smaller models (e.g., Qwen2.5VL-7B and InternVL3-14B), with gains of +5.8% to +6.7% on MM-
Bench_V11_Test and MVBench_Test (e.g., +6.61% on InternVL3-14B/MMBench). Larger models
(Qwen2.5VL-72B, InternVL3-78B, GPT-40-0513) also see consistent gains of +2.6% to +4.1% (e.g.,
+3.91% on GPT-40-0513/MMBench). On MMMU, improvements are about 1-1.5 percentage points
lower but GAM-Agent still leads, such as +5.11% for Qwen2.5VL-7B. The supplementary material
provides more detailed experimental analyses, including cost-effectiveness studies (Appendix [A),
cost dynamics during debates (Appendix [B), a comparative analysis of uncertainty handling ca-
pabilities (Appendix [C)), empirical analysis of debate termination conditions (Appendix [C.4), and
additional hyperparameter studies (Appendix [H). GAM-Agent consistently outperforms other multi-
agent frameworks (DMAD, DMPL, ChatEval, MAD, DebUnc), delivering larger accuracy gains



Table 2: Performance on V¥Bench (%). AR: Attribute Recognition, SR: Spatial Reasoning. Values
in parentheses denote the accuracy improvement over the respective base model (Ori). The best
performance for each base model is bolded. Best overall with GAM-Agent framework is highlighted

in red . Base (Ori) data is in ' blue .

Base Model Framework ‘ Attribute Rec. (%) Spatial Reas. (%) Overall (%)
Base (Ori) 57.39 67.11 61.26
DMAD 59.12 (+1.73) 69.03 (+1.92) 63.28 (+2.02)
DMPL 59.98 (+2.59) 70.15 (+3.04) 64.21 (+2.95)
Qwen2.5VL-7B (Small) ChatEval 60.73 (+3.34) 70.92 (+3.81) 65.03 (+3.77)
MAD 58.65 (+1.26) 68.44 (+1.33) 62.72 (+1.46)
DebUnc 61.54 (+4.15) 71.88 (+4.77) 65.87 (+4.61)
GAM-Agent (Ours) 62.38 (+4.99) 72.53 (+5.42) 66.51 (+5.25)
Base (Ori) 64.52 73.08 68.80
DMAD 65.88 (+1.36) 74.51 (+1.43) 70.19 (+1.39)
DMPL 66.57 (+2.05) 75.29 (+2.21) 70.93 (+2.13)
Qwen2.5VL-72B (Large)  ChatEval 67.12 (+2.60) 75.83 (+2.75) 71.48 (+2.68)
MAD 65.31 (+0.79) 74.02 (+0.94) 69.67 (+0.87)
DebUnc 67.93 (+3.41) 76.54 (+3.46) 72.24 (+3.44)
GAM-Agent (Ours) 68.77 (+4.25) 77.39 (+4.31) 72.78 (+3.98)
Base (Ori) 61.06 69.87 65.53
DMAD 62.97 (+1.91) 71.92 (+2.05) 67.50 (+1.97)
DMPL 63.78 (+2.72) 72.81 (+2.94) 68.35 (+2.82)
InternVL3-14B (Small) ChatEval 64.45 (+3.39) 73.55 (+3.68) 69.05 (+3.52)
MAD 62.24 (+1.18) 71.23 (+1.36) 66.80 (+1.27)
DebUnc 65.21 (+4.15) 74.38 (+4.51) 69.80 (+4.27)
GAM-Agent (Ours) 66.15 (+5.09) 75.32 (+5.45) 70.33 (+4.80)
Base (Ori) 68.90 76.45 7223
DMAD 70.02 (+1.12) 77.68 (+1.23) 73.85 (+1.62)
DMPL 70.63 (+1.73) 78.33 (+1.88) 74.48 (+2.25)
InternVL3-78B (Large) ChatEval 71.15 (+2.25) 78.82 (+2.37) 74.99 (+2.76)
MAD 69.58 (+0.68) 77.21 (+0.76) 73.40 (+1.17)
DebUnc 71.89 (+2.99) 79.57 (+3.12) 75.73 (+3.50)
GAM-Agent (Ours) 72.63 (+3.73) 80.24 (+3.79) 76.16 (+3.93)
Base (Ori) 71.15 78.30 74.72
DMAD 72.33 (+1.18) 79.58 (+1.28) 75.96 (+1.24)
DMPL 72.98 (+1.83) 80.29 (+1.99) 76.64 (+1.92)
GPT-40-0513 (Large) ChatEval 73.51 (+2.36) 80.77 (+2.47) 77.14 (+2.42)
MAD 71.92 (+0.77) 79.05 (+0.75) 75.49 (+0.77)
DebUnc 74.24 (+3.09) 81.49 (+3.19) 77.87 (+3.15)
GAM-Agent (Ours) 74.98 (+3.83) 82.15 (+3.85) 78.32 (+3.60)
SEAL (original work) | 74.78 76.31 75.39

over base models. For instance, on InternVL3-14B/MMBench_V11_Test, GAM-Agent achieves
90.15% (+6.61%), compared to DebUnc’s 88.86% (+5.32%). GAM-Agent’s game-theoretic design,
leveraging uncertainty, evidence, and iterative debate, boosts VLM performance across model sizes
and complex visual tasks, especially for smaller models, with consistent gains for larger ones.

3.2 Guided Visual Search Capabilities

Experiment Setup With the release of the 03 model, MLLMs have entered a new phase of
capability in high-resolution, information-dense visual scenes, bringing attention to the challenge
of fine-grained visual grounding. To evaluate such capabilities, we compare GAM-Agent and the
same set of comparative multi-agent frameworks (DMAD, DMPL, ChatEval, MAD, and DebUnc) to
the V*Bench benchmark. We utilized the identical five base VLMs as in Section 3.1} Qwen2.5VL
(7B and 72B), InternVL3 (14B and 78B), and GPT-40-0513. For all frameworks, including GAM-
Agent, we maintained the configuration of N = 3 base expert agents and N.,.;; = 3 critic agents
(when the debate is triggered), with a maximum of 3 debate rounds (max_debate_round=3).
The objective was to assess how these collaborative frameworks, particularly GAM-Agent with its
uncertainty-driven debate, enhance performance on tasks requiring guided visual search capabilities.

Experiment Results. The performance of GAM-Agent and other multi-agent frameworks on the
V#*Bench benchmark is presented in Table[2] The table details accuracy for Attribute Recognition
(AR), Spatial Reasoning (SR), and Overall scores. Base model (Ori) scores are derived from our
initial evaluations, and the SEAL framework’s reported performance is included as a reference.

The results in Table 2] demonstrate that GAM-Agent consistently enhances the performance of base
VLMs on the V*Bench tasks, which demand precise visual search and reasoning. For instance,
GAM-Agent improved the Qwen2.5VL-7B model by +5.25% overall, achieving 66.51%. Similar
significant gains are observed across other base models, such as InternVL3-14B (+4.80% overall
to 70.33%) and GPT-40-0513 (+3.60% overall to 78.32%). While other multi-agent frameworks
also yield improvements over the base models, GAM-Agent consistently achieves the highest scores
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Figure 2: Acc. vs. Max Debate Rounds Figure 3: Ablation study results on MMBench_TEST_V11.
among them. The gains are generally more pronounced for smaller models, yet remain substantial for
larger, more capable base VLMs. Notably, GAM-Agent’s performance with models like GPT-40-0513
(78.32%) approaches or surpasses SEAL performance (75.39%) on this challenging benchmark.

GAM-Agent’s uncertainty-driven debate mechanism shines on V*Bench, enabling VLMs to quantify
uncertainty, ground claims in visual evidence, and iteratively resolve disagreements for precise
visual understanding. This guided visual search directs agents to re-evaluate details and converge on
evidence-backed interpretations, boosting MLLMs’ reasoning, and rivaling visual search.

3.3 Ablation Experiments

To assess each component’s contribution, we conducted ablation studies by removing or sim-
plifying modules. Experiments were run on MMBench[34]_TEST_V11 using InternVL3-14B
as the base model with N = 3 agents (unless noted), and a maximum of 3 debate rounds
(max_debate_round=3) for setups involving iterative debate. We report overall accuracy (Acc.),
average debate rounds (Deb. Rounds), debate trigger rate (Deb. Trig.), and average LLM inference
cost (Cost). Additional parameter ablations are provided in Supplementary Material[3] We define
five ablation variants to assess key components of GAM-Agent: w/o Multi-Agent (N=1):
Single-agent, without collaboration or debate. w/o Uncertainty (®): Removes uncertainty;
uses uniform weights and simple heuristics. w/o P&M: Disables claim-evidence grounding; debate
operates on raw outputs. w/o Debate (D): No iterative refinement; uses only initial integration.
w/o Dynamic Weights: Debate with fixed agent weights. Reported metrics: Accuracy (Acc.
%), Avg. Debate Rounds (Deb. Rounds, max 3), Debate Trigger Rate (Deb. Trig. %), and Inference
Cost (tokens/instance). Experiment Results Figure|3[shows that the full GAM-Agent achieves the
highest accuracy (88.80%) with the fewest debate rounds (1.76), reflecting efficient convergence.
All ablations degrade performance: removing Uncertainty or Dynamic Weights increases
debate length and cost; disabling Tterative Debate cuts cost but reduces accuracy by 4.28%;
removing P&M causes a 4.72% drop and high debate triggers (80%). The w/o Multi-Agent
setup performs only slightly above the base model, confirming the necessity of all components.

3.4 Study on Maximum Debate Rounds

To assess the effect of debate length, we ablated the max_debate_round hyperparame-
ter using Qwen2.5VL-7B on the MMBench_V11_Test set. The core GAM-Agent compo-
nents—uncertainty modeling, claim parsing, and dynamic weighting—were kept unchanged. We
varied max_debate_round from 0 to 9 and recorded overall accuracy and average actual debate
rounds. The results presented in Figure 2] show that increasing max_debate_round improves
accuracy up to 3 rounds: from 82.97% (0 rounds) to 86.21% (1), 86.35% (2), and 86.53% (3). Beyond
this, accuracy plateaus around 86.52%—-86.57%, converging near 86.59%. Similarly, average actual
debate rounds grow with higher max_debate_round, from 0.00 (0) to 1.00 (1), 2.21 (3), and up
to 3.27 (9), showing early termination via internal convergence criteria. These results highlight that
3—4 debate rounds suffice for near-optimal accuracy with limited cost, as GAM-Agent adaptively
halts when uncertainty is resolved.

3.5 Expert Weight Trajectory and System Uncertainty Dynamics in Logical Reasoning Tasks
To analyze how GAM-Agent modulates expert influence and manages uncertainty during reasoning,
we tracked expert contributions across eight base VLMs—Qwen2.5VL (3B-72B) and InternVL3
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Figure 4: Evolution of Expert Weights (Relational Reasoning, Scene Description, OCR) and System
Uncertainty across three debate rounds for various Qwen2.5VL and InternVL3 series models in
logical reasoning tasks. The four bars for each round represent the weights of the Relation expert,
Scene expert, OCR expert, and the overall System Uncertainty, respectively.

(2B-78B). Each setup included three expert agents: Relational Reasoning, Scene Description,
and OCR (see Supplementary for prompts). We visualized uncertainty-based weights and system
uncertainty over three debate rounds (Figure ), revealing how GAM-Agent dynamically adjusts
expert influence to reduce uncertainty and drive consensus. Figure {4 illustrates GAM-Agent’s
dynamic expert modulation during reasoning. System uncertainty (purple bars) consistently decreases
over three rounds (e.g., Qwen2.5VL-72B: 0.64—0.54; InternVL3-78B: 0.66—0.55), indicating
effective convergence. Meanwhile, OCR expert weights (yellow) typically rise (e.g., Qwen2.5VL-
72B: 0.35—0.46), while Relational and Scene experts adjust downward. OCR provides stable cues;
expert-task alignment varies. Larger models reduce uncertainty, showing GAM-Agent’s capacity-
aware, uncertainty-driven coordination.

4 Related Works

Multi-agent Systems (MAS) [73} 124 4, [8,[15] have gained significant attention in artificial intelli-
gence, particularly with the integration of large language models (LLMs). These systems enhance
capabilities in areas such as complex reasoning, code generation, and knowledge integration by
leveraging collaborative agents [10]. For example, Du et al [11] demonstrated improved factuality
and reasoning in LLMs through multi-agent debates, while Li et al [28]] explored communicative
agents to simulate language model societies [40, 39, 60]. Despite these advances, the application of
multi-agent collaboration in vision-language models (VLMs) remains largely untapped. Existing
multi-agent debate frameworks often lack strategic interactions tailored for visual reasoning.

Uncertainty Quantification [30, [1| |61} |16} 51]] is a cornerstone of reliable decision-making in
machine learning, particularly in visual reasoning where ambiguities, such as occlusions or poor
lighting, frequently arise. Previous methods, including entropy-based measures and semantic analysis,
have been widely adopted [21} 30]. In VLMs, uncertainty stems from both visual and linguistic
sources, complicating accurate assessment [40].

Visual Reasoning entails interpreting and inferring from visual inputs and is a critical domain for
VLMs [136, 23] 16, [10L 9]]. Current VLM strategies often depend on single models or basic ensemble
methods, which struggle with multi-step reasoning and visual ambiguities [59, |65, 35]. Unlike
basic averaging or voting in VLM multi-agent debate, GAM-Agent introduces a game-theoretic
collaboration mechanism, leveraging uncertainty and intermediate reasoning for deeper agent synergy.

5 Conclusion

We presented GAM-Agent, a game-theoretic multi-agent reasoning framework designed to enhance
the robustness, interpretability, and accuracy of vision-language models on complex multimodal
tasks. GAM-Agent facilitates structured claim-evidence interactions guided by uncertainty-aware
collaboration by modeling reasoning as a non-zero-sum game among specialized base agents and a
critical verification agent. This design allows the system to identify ambiguities, trigger multi-round
debates, and dynamically adjust reasoning strategies based on agent confidence and disagreement.
Extensive experiments across four challenging benchmarks demonstrate that GAM-Agent consistently
improves performance across a wide range of VLM backbones, including both lightweight and strong
foundation models. Looking forward, we believe this work opens new directions in self-reflective and



multi-agent multimodal reasoning. Future research may explore tighter integration with external tools,
extending to dialog agents, or applying GAM-Agent to safety-critical and explainable Al systems.
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Supplementary Material

Supplementary Material Overview

The supplementary material provides detailed experimental setups, results, theoretical analyses,
and case studies to support the main paper’s claims on the GAM-Agent framework. It includes
cost-performance analyses, uncertainty handling evaluations, theoretical derivations, hyperparameter
studies, prompt configurations, and case analyses to demonstrate the framework’s robustness and
limitations.
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A Cost and Performance Balance Analysis

A.1 Experiment Setup

To evaluate the cost-performance balance of our proposed approach, we conducted a comparative
analysis on the MMbench_TEST_V11 benchmark. We measured the “Cost per Instruction on
MMbench_TEST_V11” and “Overall ACC (%)” for several leading Vision-Language Models (VLMs)
and configurations derived from our framework (denoted as “Ours”). The commercial models
benchmarked include Qwen2.5VL[41]] series (7B, 72B via API), Gemini 2.5 Pro Preview[49],
Gemini 2.0 Pro, GPT-40[2]], and Claude 3.7, with their respective costs per instruction sourced from
OpenRouter API pricing. For our configurations, leveraging models such as Qwen2.5VL (7B, 72B)
and InternVL3 (14B, 78B)[74], the cost per instruction was calculated based on the inference time on
a local NVIDIA A100 GPU. This local GPU cost was estimated using the on-demand price of an
AWS p4d.24xlarge instance, which includes 8 A100 40GB GPUs at approximately $32.77 per hour,
translating to about $4.10 per hour for a single A100 GPU. This setup allows for a direct comparison
of the economic efficiency of deploying VLMs via commercial APIs versus utilizing them within our
optimized framework on local hardware.

A.2 Experiment Result

The results of our cost and performance comparison on the MMbench_TEST_V11 benchmark
are summarized in Figure [5] The experimental results presented in Figure [5] reveal significant
disparities in cost-effectiveness across the evaluated models. Notably, our framework’s configurations
demonstrate exceptional performance with compelling cost benefits. InternVL3-78B (Ours) achieved
the highest accuracy of 92.2% with a competitive cost of approximately $0.00022 per instruction.
Closely following, Qwen2.5VL-72B (Ours) (one configuration) recorded 92.0% accuracy at a cost
of $0.00020 per instruction. Interestingly, another configuration of Qwen2.5VL-72B deployed with
our framework (labeled as “Qwen2.5VL-72B” on the “Ours” trend line in Figure |5) achieved 90.4%
accuracy at an even lower cost of $0.00011 per instruction. This particular configuration not only
surpasses the Qwen2.5VL-72B API (88.4% ACC at $0.00015) in accuracy but is also approximately
1.36 times more cost-effective. Other configurations, such as InternVL3-14B (Ours), delivered
91.4% accuracy at $0.00016 per instruction, while Qwen2.5VL-7B (Ours) achieved a strong 89.0%
accuracy at a cost of $0.000085 per instruction. This is a notable improvement in accuracy over its
API counterpart (Qwen2.5VL-7B API, 82.6% ACC at $0.00007), albeit at a slightly higher local
inference cost.

While Gemini 2.5 Pro Preview (API) ex-
hibited high accuracy (89.3%), its API cost e ey e o
($0.00075) is considerably higher than our © o
top-performing local configurations. For in- ©
stance, InternVL3-78B (Ours) and the higher-
performing Qwen2.5VL-72B (Ours) achieve su-
perior accuracy (92.2% and 92.0%, respectively)
and are approximately 3.4 to 3.75 times less ex- o
pensive than Gemini 2.5 Pro Preview. In con- *
trast, widely used models like GPT-40 (API) and ek |

Claude 3.7 (API), despite their capabilities, in- o
curred substantially higher costs per instruction A ( _*
($0.015 and $0.018, respectively) for accuracies Cost pr st 6 N

of 84.3% and 81.2% on this benchmark, accu-
racies which are surpassed by several of our
framework’s configurations at a fraction of the
cost.

Overall ACC (%)

Figure 5: Comparison of Cost per Instruction
and Overall Accuracy on MMbench_TEST_V11.
“Ours” denotes models run with our proposed
framework and local inference cost calculation.
This analysis underscores the substantial eco-

nomic advantages of leveraging optimized local inference strategies for state-of-the-art open-source
VLMs. The results indicate that our approach can achieve or even surpass the accuracy of expensive
commercial API-based services at significantly reduced costs. For example, our InternVL3-78B
(Ours) configuration not only outperforms Gemini 2.5 Pro Preview in accuracy (92.2% vs. 89.3%)
but does so at approximately 1/3.4th of the cost per instruction. Similarly, the Qwen2.5VL-72B
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(Ours) configuration achieving 92.0% accuracy does so at about 1/3.75th of the cost of Gemini
2.5 Pro Preview, while also delivering higher accuracy. This highlights a pathway to democratize
access to high-performance VLM capabilities, making advanced visual reasoning more accessible
and economically viable. The significant cost reductions and performance enhancements observed
for models like Qwen2.5VL and InternVL3 when run under our framework suggest that efficient
utilization of local compute resources can unlock dramatic improvements in cost-efficiency without
compromising.

B Experiment on Cost Dynamics During Multi-Round Debates

To investigate the economic implications of iterative debate, particularly how computational costs
evolve across multiple rounds, we conducted a dedicated experiment. This analysis aims to compare
the cumulative cost of our GAM-Agent framework against a baseline multi-agent debate scenario
where original models engage in self-correction or iterative refinement without GAM-Agent’s struc-
tured uncertainty-driven mechanisms. Understanding these cost dynamics is crucial for assessing the
practical viability and efficiency of multi-round debate strategies.

B.1 Experimental Setup

The experiments were performed on the MMBench_V11_Test benchmark. We selected four promi-
nent open-source Vision-Language Models (VLMs) as base models: Qwen2.5VL-7B, Qwen2.5VL-
72B, InternVL3-14B, and InternVL3-78B.

We compared two primary configurations:

1. GAM-Agent Framework: Our proposed GAM-Agent framework was applied using each
of the selected base VLMs. The setup involved N = 3 expert agents and N,,.;; = 3 critic
agents, consistent with other experiments.

2. Baseline Multi-Round Self-Debate (Base-Debate): For this configuration, we simulated
a multi-round debate scenario where instances of the original base VLM were prompted
to iteratively refine their answers based on their previous outputs or simple peer feedback,
without the structured uncertainty quantification, evidence mapping, or dynamic weighting
of GAM-Agent. This represents a more direct or naive approach to multi-round refinement.

For both configurations, we tracked the cumulative computational cost after 1, 2, and 3 rounds of
debate. The "cost" was quantified by the average number of tokens processed per instance (input
prompt tokens + generated output tokens) at the conclusion of each specified round. This metric
serves as a proxy for both local GPU computation time and potential API call expenses. The primary
goal of this experiment is to elucidate how GAM-Agent manages cost accumulation over successive
debate rounds compared to a less structured iterative debate, and to highlight the efficiency benefits
derived from its consensus mechanism which aims for early convergence.

B.2 Experimental Results

The average cumulative costs (in tokens per instance) for the GAM-Agent framework and the
Baseline Multi-Round Self-Debate (Base-Debate) configuration across 1, 2, and 3 rounds of debate
are presented in Figure[6]

Figure [f] illustrates that while costs for GAM-Agent increase with more debate rounds, this is
accompanied by significant accuracy improvements that consistently outperform the single-agent
baseline. For instance, with InternVL3-78B as the base, GAM-Agent’s average cost per instruction
after 3 rounds is $0.00033, at which point it achieves an accuracy of 91.90%. In contrast, the
Single-agent (Base-Debate) configuration with InternVL3-78B reaches an accuracy of 90.20% after
3 rounds. GAM-Agent achieves superior accuracy (e.g., +1.7 percentage points for InternVL3-
78B after 3 rounds) for a defined number of debate cycles. This trend is consistent across other
models. With Qwen2.5VL-72B, GAM-Agent achieves 91.82% accuracy at a cost of $0.00045 after 3
rounds, while the single-agent baseline reaches 90.20%. For Qwen2.5VL-7B, GAM-Agent reaches
89.02% accuracy for $0.00009 after 3 rounds, compared to the baseline’s 86.50%. Similarly, for
InternVL3-14B, GAM-Agent achieves 90.15% for $0.00017 after 3 rounds, surpassing the baseline’s
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Figure 6: Average cumulative cost (tokens per instance) on MMBench_V11_Test after 1, 2, and 3
rounds of debate for GAM-Agent (utilizing different base models) versus Baseline Multi-Round
Self-Debate (Base-Debate).

88.50%. The GAM-Agent’s structured debate, driven by uncertainty and conflict detection, aims to
terminate debates earlier if consensus is reached, contributing to an optimized balance between cost
and performance. While the Baseline Self-Debate might also incur increasing costs with more rounds,
it consistently achieves lower accuracy. This suggests that to reach the accuracy levels of GAM-
Agent, the baseline would likely require even more rounds, leading to significantly higher cumulative
costs, or may not reach such accuracy levels at all within a comparable number of iterations. Thus,
GAM-Agent’s mechanisms not only improve accuracy but also offer a more efficient pathway to
achieving high performance in multi-round visual reasoning by strategically focusing the debate and
adaptively managing its length and cost.

C Deepening Comparative Analysis of Multi-Agent Methods: Uncertainty
Handling Capability

To comprehensively evaluate the uncertainty handling capabilities of our proposed GAM-Agent
framework across various base models, we extended our analysis to include all major models from the
Qwen2.5VL series (3B to 72B) and the InternVL3 series (2B to 78B). This allows us to observe the
relationship between uncertainty processing capabilities and model scale, as well as the performance
of GAM-Agent across different architectures.

C.1 Comprehensive Analysis of Uncertainty Handling Capability
We continue to use three key metrics to evaluate uncertainty-handling capabilities:

* Uncertainty Accuracy (UAT): GAM-Agent’s ability to correctly identify instances of high
uncertainty (higher is better).

* Calibration Error (CE|): The consistency between the model’s predicted confidence and
its actual accuracy (lower is better).

* Dynamic Adaptability (DAT): The ability to adjust the decision-making process based on
uncertainty (higher is better).

Figures[7/{Qwen2.5 VL series) and (InternVL3 series) show the performance of different multi-agent
methods on these metrics and their MMBench accuracy.

C.2 Experimental Setup

The evaluation of uncertainty handling capabilities (UA, CE, DA) was conducted on the
MMBench[34] dataset, which is also used for reporting the final accuracy. The primary moti-
vation for this extended analysis is to systematically assess how different multi-agent frameworks,
including our GAM-Agent, manage and leverage uncertainty, and how these capabilities scale with
the underlying VLM’s size and architecture.

For each base model in the Qwen2.5VL series (3B, 7B, 32B, 72B) and InternVL3 series (2B, 8B,
38B, 78B), we applied GAM-Agent and the baseline multi-agent methods (DMAD, DMPL, ChatEval,
MAD, DebUnc). The baseline methods were adapted to the visual question answering task on
MMBench The metrics were measured as follows:
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Uncertainty Handling Performance on Qwen2.5VL and InternVL3 Series
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Figure 7: Comparison of uncertainty handling performance for various methods on the Qwen2.5VL
and InternVL3 model series. UA, DA higher is better; CE lower is better.

* Uncertainty Accuracy (UA): This metric was evaluated by defining a threshold for high
system-level uncertainty (e.g., based on entropy or semantic cues from the aggregated
response). We then assessed the proportion of instances correctly flagged as uncertain
(e.g., where the model’s prediction was incorrect or the question was inherently ambiguous)
against a ground truth or heuristic for uncertainty.

* Calibration Error (CE): We utilized an Expected Calibration Error (ECE) variant. Model
responses were binned by their expressed confidence scores (derived from uncertainty
metrics like 1 — Ugy,s). The ECE was then calculated as the weighted average difference
between the mean confidence and observed accuracy within each bin.

* Dynamic Adaptability (DA): This was qualitatively and quantitatively assessed by ob-
serving whether the framework modified its reasoning process or resource allocation (e.g.,
triggering debate rounds in GAM-Agent, or adjusting agent weighting) in response to
detected uncertainty, and whether such adaptations led to improved outcomes or more
cautious predictions in uncertain scenarios. For a quantitative proxy, we measured the corre-
lation between VLM’s internal uncertainty signals and its engagement of deeper reasoning
mechanisms or confidence adjustments.

The core idea is to investigate whether sophisticated uncertainty modeling, as implemented in GAM-
Agent, translates into more reliable and robust performance, especially as model complexity and task
difficulty increase.

C.3 Experimental Results and Analysis

The results presented in Figure [7] offer a detailed view of the uncertainty handling capabilities of
different multi-agent frameworks.

GAM-Agent Consistently Excels in Uncertainty Management: Across both the Qwen2.5VL and
InternVL3 series, and for all model sizes, GAM-Agent consistently outperforms the baseline methods
(DMAD, DMPL, ChatEval, MAD, DebUnc) on all three uncertainty metrics: Uncertainty Accuracy
(UA), Calibration Error (CE), and Dynamic Adaptability (DA). For example, with Qwen2.5VL-
72B, GAM-Agent achieves a UA of 0.82, CE of 0.04, and DA of 0.76, significantly surpassing
other approaches. A similar trend is observed with InternVL3-78B, where GAM-Agent scores 0.84
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(UA), 0.03 (CE), and 0.78 (DA). This suggests that GAM-Agent’s explicit uncertainty quantification,
evidence mapping, and uncertainty-driven debate mechanisms are highly effective.

Scalability with Model Size: A key observation is the positive scaling of GAM-Agent’s uncertainty
handling capabilities with increasing model size. For the Qwen2.5VL series, as the model size
increases from 3B to 72B, GAM-Agent’s UA improves from 0.72 to 0.82, CE reduces from 0.08 to
0.04, and DA increases from 0.65 to 0.76. Similarly, for the InternVL3 series (2B to 78B), GAM-
Agent’s UA rises from 0.70 to 0.84, CE drops from 0.09 to 0.03, and DA improves from 0.63 to 0.78.
This indicates that larger base models, when integrated into the GAM-Agent framework, not only
provide better raw capabilities but also become more adept at identifying, calibrating, and adapting to
uncertainty. While baseline methods also show some improvement with model size, their gains in
uncertainty metrics are generally less pronounced than those achieved by GAM-Agent.

Correlation with MMBench Accuracy: The data strongly suggests a positive correlation between
superior uncertainty handling and higher overall task performance on MMBench. GAM-Agent,
which consistently leads in UA, CE, and DA, also achieves the highest MMBench accuracy for
each respective base model. For instance, GAM-Agent with Qwen2.5VL-72B not only has the best
uncertainty scores but also the top MMBench accuracy of 90.56% in Figure|/| This underscores the
importance of robust uncertainty management for achieving reliable and accurate visual reasoning.
Frameworks that can better understand their own limitations and adapt accordingly are more likely to
succeed in complex tasks.

Performance of Baseline Methods: The baseline methods exhibit varied performance in uncertainty
handling. DebUnc, which also focuses on uncertainty, generally performs second best to GAM-Agent
on uncertainty metrics but still lags significantly. Other methods like DMAD, DMPL, ChatEval,
and MAD show more modest capabilities in these specific uncertainty-related assessments. Their
mechanisms for collaboration may not explicitly or effectively propagate and utilize fine-grained
uncertainty signals to the same extent as GAM-Agent.

In conclusion, this expanded comparative analysis demonstrates GAM-Agent’s superior and scalable
uncertainty-handling capabilities. Its architecture, designed to explicitly model and debate uncertainty,
enables it to achieve better calibration, more accurate identification of challenging instances, and more
effective adaptation of its reasoning processes. These strengths in managing uncertainty are critical
contributors to its leading performance on complex visual reasoning benchmarks like MMBench.

C.4 Experimental Analysis

The experimental results strongly confirm the effectiveness and robustness of the proposed debate
termination conditions. As shown in Figure 8] (your Figure 1, which you indicated is ‘boyil.pdf),
all tested models exhibited a consistent accuracy distribution pattern across the various tasks in
MMBench. Specifically, large-scale models (Qwen2.5VL-72B, InternVL3-78B) generally outper-
formed small-scale models (Qwen2.5VL-7B, InternVL3-14B) in terms of accuracy. When comparing
models of similar scale, the InternVL3 series demonstrated a slight performance advantage over the
Qwen2.5VL series. Regarding task types, text understanding tasks typically achieved the highest
accuracy, while relational reasoning problems proved to be relatively more challenging.
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100 Accuracy Comparison Across Task Types
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Figure 8: Performance and convergence dynamics under default termination conditions. This
figure shows model accuracy across MMBench tasks, general performance trends, and key debate
convergence statistics like average rounds and primary termination reasons.

Key experimental findings are summarized below:Natural Convergence and Efficiency: Under the
default termination conditions, a high proportion of samples, ranging from 88% to 94%, achieved
natural convergence before reaching the preset maximum number of debate rounds (K ax = 10).
On average, GAM-Agent required only 2.1 to 2.6 debate rounds to converge, with large-scale models
exhibiting faster convergence. Distribution of Termination Reasons: Triggering of the uncertainty
threshold (i.e., system uncertainty Uq(ykg) < Oy term) Was the primary reason for debate termination,
accounting for 63% to 72% of cases. The convergence speed threshold (i.e., change in system

uncertainty |AUg(ykq) | < €) was the second most common reason, responsible for approximately 22%
to 25% of terminations. Only a minority of instances terminated due to reaching the maximum
number of debate rounds. Task-Dependent Convergence Speed: The convergence speed varied
across different task types. Text understanding problems typically converged the fastest, requiring an
average of only 1.7 to 2.1 debate rounds. In contrast, relational reasoning problems, owing to their
complexity, converged relatively slowest, needing an average of 2.6 to 3.2 debate rounds. Figure 9]
(your Figure 2) further illustrates the impact of the uncertainty termination threshold 0y ¢erm On
model accuracy and the average number of debate rounds.

5.0 Accuracy vs. Uncertainty Threshold
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Uncertainty Threshold (6_U_term)
Figure 9: Sensitivity analysis of the uncertainty termination threshold (6 t¢rrm, ). This figure illustrates

the trade-off between prediction accuracy and average debate rounds when varying 0y ¢erm (0.10,
0.15, 0.20), with 8/ term = 0.15 identified as an optimal balance.
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When 0y term Was set to 0.10 (a stricter convergence requirement), there was a slight improvement
in accuracy (approximately +0.2% to +0.4%), but the average number of debate rounds increased
significantly (by about 25% to 31%), leading to higher computational costs. Conversely, when 8¢/ term,
was set to 0.20 (a looser convergence requirement), the average number of debate rounds decreased (by
about 22% to 26%), but accuracy also declined (by approximately -0.9% to -1.2%). The experimental
data indicate that all tested models achieve an optimal balance between prediction accuracy and
computational efficiency at the default setting of 0y term, = 0.15. Notably, large-scale models
(72B/78B parameter scale) demonstrated lower sensitivity to variations in the 8¢/ ;¢ parameter,
suggesting greater robustness under different termination conditions. In summary, these experimental
results clearly demonstrate that our designed debate termination mechanism can effectively balance
prediction accuracy and computational efficiency across vision language models of different scales
and architectures. This provides reliable parameter setting guidance and performance expectations
for the practical deployment of the GAM-Agent framework.

C.5 Theoretical Analysis of Termination Threshold 0y ;c,,, in Multi-Agent Debate

The termination criterion in GAM-Agent’s multi-agent debate framework plays a pivotal role in
balancing system performance and computational efficiency. Drawing on our main experimental
observations, this section provides a theoretical dissection of how the core uncertainty threshold
parameter, 0y ¢erm, influences the debate process. Three principal conditions govern the debate

termination mechanism (see Section 3.5.1 and Equation 5): (1) the system uncertainty U§’;Z drops
below the pre-set threshold ¢/ ;.1 ; (2) the debate reaches the maximum number of allowed iterations

Knaz; (3) the change in system uncertainty between consecutive rounds |AU, §§3| falls below a
convergence threshold e. Among these, 1/ ¢, theoretically defines the confidence requirement for
terminating deliberation. A deeper investigation into the 0y e, parameter reveals its multifaceted
role. From a Bayesian decision theory perspective, ¢ +crn, establishes a decision boundary, aiming
to balance Type I errors (e.g., prematurely accepting a sub-optimal consensus) against Type II errors
(e.g., unnecessarily prolonging the debate). Our primary experimental observations (see Section 4
and Appendix D.4) further expose several key convergence characteristics and sensitivities: First,

the system uncertainty U, 552 typically decays in an approximately exponential manner during debate;
Second, models with larger parameter scales (e.g., 72B/78B) exhibit lower sensitivity to changes in
0u term, indicating more robust uncertainty estimation in larger models; Third, more complex tasks
such as relational reasoning display higher sensitivity to the setting of 0y ¢y, compared to simpler
tasks like text comprehension. Despite the effectiveness of the current termination mechanism,
several theoretical limitations[22]] remain: (1) adopting a single global 8y tc,y, for all task types
may not be optimal; (2) the mechanism does not dynamically adjust 0 ¢crr, based on instance-
specific factors (e.g., problem difficulty); (3) employing a fixed 8¢/ ¢y, throughout the debate does
not account for the dynamic evolution of uncertainty. Based on the above theoretical analysis and
main experimental findings, we offer the following theoretical insights for setting 0y term: (1)
Reasonable upper and lower bounds should be established—an excessively low 0y ¢erm may lead to
unnecessary debate rounds and diminishing marginal returns, while an excessively high threshold
risks premature termination, undermining the benefits of iterative deliberation; (2) Model-adaptive
setting—in theory, as model capability increases, the optimal ¢ ¢, should decrease accordingly; (3)
Task-adaptive setting—the ideal implementation should adjust 0t s, based on task type, assigning
stricter thresholds for more complex tasks

D Derivation of Uncertainty Theory

To provide a rigorous theoretical foundation for the collaborative reasoning process within the GAM-
Agent framework, particularly concerning the role of uncertainty and dynamic consensus building[38]],
we model the interaction among expert agents as a consensus-driven non-zero-sum game. This game-
theoretic perspective elucidates how agents converge towards a final consensus through interaction
and dynamic adjustment of uncertainty. Empirically, we observe that the uncertainty of predictions
decays exponentially with debate rounds, which we quantify using a decay coefficient A. As shown
in Figure X, larger models such as InternVL3-78B exhibit higher \ values and faster per-round
uncertainty suppression (e.g., A = 0.51 with a 39.9% decay rate), supporting the view that iterative
multiagent consensus not only improves performance but also systematically reduces epistemic
uncertainty.
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Relationship Between A and Uncertainty Decay Rate

I
N

---- Linear Fit (r = 1.00) "
~AnternVL3-78B

N
o
T

2
-

_@wen2.5VL-72B
.

w
o
X

w
)]
T

\

w

N
X

\

i
3
X
N
=]
ERN
2
»
o
5
w

Uncertainty Decay Rate per Round (%)
w w
=) S

.
.
~Qwen2.5VL-7B

N
(e
T

.
.

N
o
T

0.30 0.35 0.40 0.45 0.50
A (Decay Coefficient)

Figure 10: Exponential decay of uncertainty with debate rounds across models. Larger models (e.g.,
InternVL3-78B) exhibit faster uncertainty suppression.

D.1 Mathematical Formalization of the Non-Zero-Sum Game

We consider a multi-agent system comprising N expert agents. The system processes an input
instance I, which consists of an image X and a question P,.. The input space is formalized as the
Cartesian product of the image space X and the question space P,, denotedas Z = & x P,.. A
specific input instance is I = (X, P.) € Z. Agent Set (£): The participants in the system form
the set of agents, denoted as £ = {1,2,..., N}. This corresponds to the set F in the GAM-Agent
framework definition.

Agent Function (Agent Mapping A;): Each agent i € £ is formalized as a function or mapping that
takes an input instance I and produces an output pair, consisting of a response R; and an associated
uncertainty U;. The response space is denoted by R, and the uncertainty space is the interval [0, 1].
The output space for agent ¢ is the Cartesian product O; = R x [0, 1]. Thus, the function of agent
can be represented as a mapping:

AT — 0O, (6)
For a given input I, the output of agent 7 is:
(Ri(I),U:(1)) = Ai(1) @)
———— ——

Output pair of Agent ¢ Mapping of Agent 7
applied to input 1
where R;(I) € R is the response and U;(I) € [0, 1] is the uncertainty. This aligns with the analysis

capability mapping A; and uncertainty assessment ®; described in the Method section (A; produces
Ri, and (I)l(RZ) yields Uz)

Joint Agent Output (Joint Agent Output Mapping A): The collective output of the entire agent set
for the same input I can be viewed as a combined mapping. Its output space is the Cartesian product
of all individual agent output spaces: O = Hf\]:l O; = (R x [0,1])". The joint output mapping A is
defined as:

A:T—-0 ®)
For input I, the joint output is:
(A1(1)7 s AN(I)) = ((Rl(l)a Ul(l))a R (RN(I)’ UN(I))> ©))
Joint Agent Output Tuple of individual Agent outputs

System Weight Allocation Protocol (P): The system dynamically assigns weights w =
(w1, ..., wx) based on the joint agent output, particularly their uncertainties U = (Uy,...,Uy) and
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potentially their responses { R;}. The weight vector w belongs to the standard (N — 1)-dimensional
simplex AV ~!. We formalize the weight allocation mechanism as a protocol function P that takes
the joint agent output as input and produces a weight vector:

P:0O— AN? (10)

Thus, for input I, the weights assigned by GAM-Agent are w(I) = P(A(I))
———
Weights computed by the protocol
based on Agent outputs

The weight vector must satisfy the constraints of the standard simplex:

N
wi(I)>0 Vie& and E wi(l)= _1 (11)
~—
Each weight =t equals 1
. ; ~—
18 non-negative Sum of

all weights

This protocol corresponds to the dynamic weighting mechanism used in the initial integration and
iterative debate phases of GAM-Agent.

System State (0): After receiving input I, the instantaneous state of GAM-Agent can be fully
described by the joint output of the agents and the corresponding weight vector computed by GAM-
Agentm. We define the system state as a tuple:

o(l) = (A1), ..., An(I)), P(Ar(I),. .., An(I))) (12)

Set of Agent output pairs and corresponding system weights

This state o (/) belongs to the state space S:

oI)e OxAN-! (13)
—_———
System State Space S

In the dynamic collaborative process (iterative debate), the agents’ internal mappings A; might adapt
based on interaction, leading to an evolution of the state o (1) across different rounds.

D.2 Utility Function Design

We design a utility function U; for each agent i € £ to quantify its "payoff" or "performance score"
in the current system state. Within the consensus-driven non-zero-sum game framework, an agent’s
individual objective is to maximize its utility value. Concurrently, because the utility function
incorporates inter-agent dependencies and the overall system state, improvements in total utility can
be achieved through effective collaboration among agents.

The input to the utility function U; reflects the critical information influencing agent i’s pay-
off: the responses {R;}’_, and uncertainties {U;}_, of all agents, along with the current sys-
tem weight distribution w. The utility function maps this information to a real value: U;
(Rx[0,1DY  xAN"L LR
—_— ~——

System

Joint Agent Outputs >
Weights

(Responses & Uncertainties)

We define the utility function ; for agent 7 as a weighted sum of three primary components:

Agent i Agent i Other Agent j Simi]aﬁtx between System Weighted
Weight Confidence Weight Agent ¢ and j Average Uncertainty
N N _ ~= ~~ 7. \ ~
URYL AU w) = T (1=U) +AY . 7w -Sim(Ri, R)—v Uy,
J#i

Term 3: System Penalty

Term 1: Individual Contribution Term 2: Collaboration Reward

where Semantic Similarity Function (Sim): Sim : R x R — [0, 1] measures the semantic relevance
or consistency between two responses. Sim(R;, R;) = 1 indicates perfect semantic agreement,
while Sim(R;, R;) = 0 signifies complete irrelevance. This function can be implemented using
various methods, such as cosine similarity based on text embeddings, analysis of overlapping key
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evidence or claims, or comparison of structured outputs. It is typically assumed to be symmetric:
SiIIl(?”l7 TQ) = Sim(’l"g, Tl) for all r1,T9 € R.

System Weighted Average Uncertainty (Ugys): This key metric quantifies the overall uncertainty of
the system’s current consensus, defined as the weighted average of all agent uncertainties using their

current weights:

Agent k UAgem_k
N Weight ncertainty

o~
Usys = Z Wk Uk
k=1

Weighted average of all Agent uncertainties

(since Z wr=1)
Usys € [0, 1], where lower values indicate higher system confidence in the integrated consensus result.

Hyperparameters (\,v): A € R+ is the weight coefficient for the collaboration reward term,
encouraging agents to align with the system consensus. v € Ry is the weight coefficient for the
system uncertainty penalty term, penalizing all agents when the overall system uncertainty is high.

Rationale and Significance of the Utility Function Design: This utility function design reflects the
core objectives and trade-offs in building a collaborative consensus system:

Individual Contribution (w;(1 — U;)): Rewards agents for providing high-quality (low uncertainty
U, thus high confidence 1 — U;) responses that are assigned high weight (w;) by the system. This
incentivizes agents to improve the quality and reliability of their responses.

Collaboration Reward (A i Wi Sim(R;, R;)): Rewards agents for providing responses that
are consistent (Sim(R;, R;) is high) with those of other agents who are considered reliable (high
weight w;). This drives consensus by encouraging agents to consider and align with the views of
highly weighted peers. A controls the importance of this collaborative alignment.

System Penalty (—vyUsys): Penalizes all agents based on the overall weighted average uncertainty of
the system. When the system as a whole is uncertain about the current consensus, every agent’s utility
decreases. This motivates agents not only to minimize their own uncertainty but also to contribute to
reducing the system’s overall uncertainty through effective collaboration (e.g., sharing evidence and
resolving conflicts), as the system’s health benefits everyone. ~y controls the focus on this systemic
uncertainty.

Non-Zero-Sum Characteristic: Unlike traditional voting or simple averaging schemes which can
implicitly resemble zero-sum scenarios (one agent’s gain is another’s loss), our design allows for
collective improvement:

* Increasing collaborative consistency (higher Sim(R;, R;)) can increase the collaboration
reward term for multiple agents simultaneously, boosting their utilities without necessarily
decreasing individual confidence.

* Reducing the overall system uncertainty (lower U, €.g., through effective evidence ex-
change) decreases the system penalty term —~Usy, thereby increasing the utility for all
agents.

These mechanisms allow the total utility Zf\; U; to potentially increase through effective inter-agent
collaboration, highlighting the positive-sum potential of the game. This aligns better with the nature
of multi-agent collaboration for complex problem-solving compared to zero-sum or fixed-sum games.

D.3 Exploration of Nash Equilibrium Existence

In formal game theory, the Nash Equilibrium (NE) is a central concept for predicting stable outcomes
of rational agent behavior. It describes a profile of pure strategies s* = (s7,...,sy) € S = Hfil Si,
where S; is the pure strategy space of agent 4, such that no agent ¢ can improve its utility I/;(s)
by unilaterally changing its strategy s; € S;, given that all other agents maintain their equilibrium

strategies s* ; = (s7,...,8/_1,5,1,...,5y). Formally, a NE s* satisfies:
k% * .
Ui(s;,s2;) > Ui(sissty) Vs, €S, Vi€l (14)
Utility of Agent 4 Utility of Agent for any strategy for all Agents
at equilibrium when deviating unilaterally of Agent 4
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The best response correspondence BR; : S_; — 25 maps the strategy profile of other agents s_; to
the set of agent ¢’s optimal pure strategies:

BRi(S_i) = {S; S Si | Z/{i(Sg,S_i) > L{i(si,s_i) VSl (S Sl} (15)

Set of Pure Best Responses of Agent ¢ givens_;

A pure strategy Nash equilibrium s* is a fixed point of the joint best response correspondence
BR: 8 — 25, where BR(s) = [[, BRi(s_;):
s*€ BR(s") (16)
N——

Joint Best Response

Theorem 1 (Existence of Pure Strategy Nash Equilibrium): Consider a game with a finite number
of agents N < oo. Under specific assumptions regarding the agents’ strategy spaces S; and utility
functions U;, the non-zero-sum game described above possesses at least one pure strategy Nash
equilibrium.

Proof Outline: The existence of a pure strategy NE is often established using Kakutani’s Fixed Point
Theorem applied to the joint best response correspondence BR : S — 25, This requires satisfying
the following conditions: 1. Properties of the Domain Space: The domain of B R, the joint pure
strategy space S = Hf\il S;, must be a non-empty, compact, and convex subset of a Euclidean space
R4,

S #£ 0, S is compact, S is convex
—— —~—

Joint strategy space Joint strategy space

This necessitates that each agent’s pure strategy space S; is non-empty, compact, and convex.

S; #0, &;iscompact, &;isconvex Vi€ €&
—— ~———

Non-empty Compact Convex for all Agents

In VLM systems, an agent’s pure strategy s; determines how it generates its response R; € R and
uncertainty U; € [0, 1]. The response space R (e.g., all possible text sequences) is typically discrete,
vast, and non-convex, making it challenging to define a compact and convex strategy space S; that
fully captures the agent’s complex behavior.

1. Simplified Strategy Spaces under Assumptions: To meet the theorem’s requirements, one
might model agent strategies more simply:

» Assumption 1.1 (Uncertainty Strategy): Agent i’s pure strategy s; is solely its choice
of reported uncertainty U; € [0, 1]. Then S; = [0, 1], which is non-empty, compact,
and convex.

* Assumption 1.2 (Low-Dimensional Continuous Strategy): Agent i’s pure strategy
5, is determined by a low-dimensional continuous vector §; € ©; C R?, representing
internal parameters influencing its response and uncertainty. If ©; is non-empty,
compact, and convex (e.g., a hypercube), and the agent’s output ( R;, U;) is a continuous
function of s;, this requirement is met.

2. Properties of the Mapped Values: The value of the mapping BR(s) (the joint best response
set) must be non-empty and convex. This means that for each agent 4, its best response set
BR;(s_;) must be non-empty and convex.

BR;(s_;) #0, BR;(s_;)isaconvex set Vs_; €8S_; , Viel& 17

Non-empty Convex Set for any strategy profile for all Agents
of other agents

This property can be established by analyzing the agent’s utility function U{; with respect to
its own strategy s;. Specifically, if S; is non-empty, compact, and convex, and U;(s;,s_;)
is continuous and quasi-concave in s;, then BR;(s_;) is guaranteed to be non-empty and
convex.
s; — U;(si,s_;) is quasi-concave Vi€ E,Vs_; € S_; (18)
————

Utility of Agent ¢
w.r.t. its own strategy
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Proving quasi-concavity for {4; w.r.t. s; is a central challenge, especially when s; determines
complex outputs (R;, U;). It requires analyzing the convexity of the upper level sets
{s; € S; | U;(si,s—;) > c}. Under simplifying assumptions (e.g., s; is choosing U; € [0, 1]
and U; is quasi-concave in U;), this condition can be met.

3. Continuity of the Mapping: The correspondence BR(s) must have a closed graph or,
more strongly, be upper hemi-continuous (UHC). This implies that if a sequence of strategy
profiles s™) — s and a corresponding sequence of best responses s'(™) € BR(s(™))
converge to s, then s’ must be a best response to s, i.e., s’ € BR(s).

BR has a closed graph (or is UHC) (19)

Closed Graph / Upper Hemi-continuous

If the strategy space S is compact and the utility functions U;(s) are continuous on S, then
the best response correspondence B R; is UHC, and consequently, the joint correspondence
BR is also UHC. Thus, continuity of the utility functions is key.

If all these conditions (non-empty, compact, convex joint strategy space; non-empty, convex-valued,
UHC joint best response correspondence) are satisfied, Kakutani’s Fixed Point Theorem guarantees
the existence of a fixed point s* € BR(s*), which is a pure strategy Nash equilibrium[37]]. Rigorously
verifying these conditions for complex VLM systems often requires simplified models or strong
assumptions about agent behavior and interaction functions.

Mixed Strategy Nash Equilibrium: When proving the existence of a pure strategy NE is difficult
(e.g., due to non-convex strategy spaces or non-quasi-concave utilities), one can consider mixed
strategy Nash equilibria. A mixed strategy o; for agent ¢ is a probability distribution over its pure
strategy space S;. The space of mixed strategies for agent i is ¥; = A(S;). Under mixed strategies,
agents maximize their expected utility. Nash’s Theorem guarantees that a mixed strategy NE always
exists for games with finite agents and finite pure strategy sets, or more generally, if pure strategy
spaces are compact metric spaces and utility functions are continuous.

E,ZA(SZ) 5 O':(O'l,...,O'N) (20)
Mixed strategy space Joint mixed
for Agent i strategy
A mixed strategy NE o* = (o7, ..., 0% ) exists such that for all agents i:
Eso[Ui(8)] = E(s;5_)~(o,00 ) [Ui(85,5-5)] Vo, €%, 21
for any mixed strategy
of Agent 7

For the VLM game, if we consider the agent pure strategy space as a compact metric space (e.g., via
representation learning mapping responses to a compact space) and utility functions are continuous,
Nash’s Theorem ensures the existence of a mixed strategy NE. While existence is more readily
guaranteed, the interpretation and practical relevance of mixed strategies in VLM collaborative
reasoning require further investigation.

In summary, proving the existence of a pure strategy NE in the VLM game requires rigorous
mathematical analysis of the agents’ pure strategy spaces and utility functions, often under simplifying
assumptions that satisfy specific mathematical properties.

D.4 Cooperative Game Objective and Dynamic Weighting Protocol
The dynamic process in our system aligns with the philosophy of cooperative game theory, where

agents collaborate to enhance the overall quality of the consensus. The system-level objective can be
framed as maximizing the sum of all agents’ utilities[20], i.e., the total utility J:

N
mae TURBL AU w) = max | Y U(R ) (Ushw) (22)
=1

System Total Utility
(Sum of Individual Utilities)
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Substituting the definition of ¢/; into the total utility J:

N
T = |wil=U)+ XD w;-Sim(R;, Ry) — yUsys
i=1 J#i

Expanding and rearranging terms, using Zf\;l w; = 1 and Ugys = fovzl wiUp:

N N N
J = E wi(l - Ul) + A E E wj - SlIIl(]%l7 R]) — E ’YUsys
i=1 i=1 j#i i=1
~—
Sum of Individual Sum of Collaboration Sum of System
Contributions Rewards Penalties
N N N
= E wW; — E w; Ui | + A E E wj - Slm(RZ,R]) - N’}/Usys
i=1 i=1 i=1 j#i

N
= (1= Uy) +AD > w;-Sim(R;, R;) — NyUsys
i=1 j#i

N
=14AY > w; - Sim(Ri, Ry) — (14 Ny)Usys
i=1 j#i

(23)

(24)

(25)

(26)

27)

Substituting Usys = Zszl wi U and ignoring the constant term 1, the optimization problem be-

comes:

N N
max )\Zij -Sim(R;, R;) —(1 + Nv) ZwkUk
k=1

wecAN-1 - .
i=1 j#i
———
Total Weighted Similarity Term System Weighted Uncertainty
Rearranging the summation terms to isolate wyg:
N N
i=1 j#i J=1 i
N
= Z W Z Sim(R;, R) (relabeling index j to k)
k=1 i#k

The objective function becomes:

N
Jmnax ]; wi | A ; Sim(R;, Ry) — (1 + Nv)Uy

Agent k’s "Cooperative Value Score"
Scorey,

(28)

(29)

(30)

€1V}

Let Scorey, = A, Sim(R;, Ry) — (1 + N~y)Uy. For fixed {R;} and {U;}, this is maximizing a

linear function ij:l wy, - Scorey, over the weight simplex AN ~1. To obtain a smooth, non-degenerate

weight distribution, we introduce an entropy regularization term —% Efcvzl wg, log wy, (with n > 0)

to the objective:

N 1
max E wy, - Score, — — E wg, log wy,
weANTt 1 =

Entropy-Regularized
Total Utility

29
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The solution to this standard convex optimization problem (found via KKT conditions) yields optimal
weights wj, in the form of a Softmax distribution:

exp(n - Scorey,)
27]:/1:1 exp(n - Score,,)

Static Optimal Weight Form
(depends on Score,)

wy =

(33)

Substituting the definition of Scorey:
e (n (AT Sim(R, R — (14 N)UL) ) »
wy, = -
St @0 (1 (A SIM(Rs, Rin) = (14 N7)Ui ) )

Optimal weight for Agent k
(depends on all R,U, and hyperparameters \,vy,n)

This static optimal weight distribution w;, depends on all agent responses, uncertainties, and hyperpa-
rameters, reflecting the full cooperative optimization goal.

Actual Dynamic Weighting Protocol Used in GAM-Agent: In our iterative GAM-Agent framework,
the weights are updated dynamically at each round & based primarily on the agents’ uncertainties
from that round. The protocol used is:
-pu®
e i
W+ S (8> 0) (35)
j=1¢ "’

Weight for round k+1
(based on uncertainty from round k)
Here, 8 > 0 controls the sensitivity to uncertainty. This corresponds to the weighting described in
Section[2.3]and used implicitly in Section [2.3]

Connecting Static Optimality and the Dynamic Protocol: We now demonstrate that the dynamic
weighting protocol (Eq. [33)) is not an arbitrary heuristic but corresponds to the optimal solution of a
simplified, entropy-regularized static optimization problem. Consider a simplification of the total
utility J where we ignore the collaboration reward (A = 0) and the system penalty (v = 0). The
objective becomes maximizing the weighted sum of individual agent confidences:
N N
max U; = max w; (1 = U; 36
weAN*IZ,:1 ! weAN*I; 2( 1) (36)
Let the "score" for agent 4 be its confidence s; = (1—U,). We want to maximize the weighted average
score Zf\il w;s; with entropy regularization % vazl w; log w; (note the sign change compared to
minimization; maximizing score + entropy):

N N
1
max E w;(1—U;) + 3 g w; log w; (37)
i=1 i=1

wEAN-1
The optimal solution w; for this entropy-regularized maximization problem takes the Softmax form
based on the score (1 — U;):
-(1-U;
wr = A‘?XP(B ( ) (38)
Zj:l exp(8- (1 -"Uj;))

Static optimal weight form
(based on confidence score)

_ ;Xp(ﬂ) exp(=pUi) (39)
> =1 exp(B) exp(—BU;)

Exponential form expansion
—BU;
e
- (40)
> j=1¢
N—————’
Simplified form
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The resulting optimal weight w; has exactly the same form as the dynamic weighting protocol used
in GAM-Agent (Eq. [35), with § playing the role of the inverse temperature parameter 7).

—_BU;
. e—BU:
Wy = &N _au.
~—~ Z e BU;
Static optimal weight based Nt ,

on regularized confidence Matches the dynamic

protocol form

This derivation shows that the dynamic weighting rule employed in GAM-Agent, wEkH)
exp(—pUM)
>, exp(=pUY)
the entropy-regularized weighted average of agent confidences (1 — Ui(k)) at each step k. While this
dynamic protocol simplifies the full cooperative objective (Eq. [34) by omitting explicit collaboration
rewards and system penalties in the weight calculation, it provides a computationally efficient and
theoretically grounded mechanism. It prioritizes influence for agents demonstrating lower uncertainty
(higher confidence) at each stage, driving the system towards a consensus state characterized by
reduced overall uncertainty, as explored in the convergence analysis related to the debate termination

condition (Eq. [5).

, corresponds precisely to the optimal weight distribution derived from maximizing

E Theorem I: Fundamental Game Theoretic Framework of GAM-Agent

The core mechanism of GAM-Agent is driven by a mathematically well-defined, non-zero-sum game
model centered on "uncertainty” as a key variable. This model derives its collaborative strategies and
influences allocation through the optimization of explicit utility functions[66].

Definition 1 (Mathematical Formalization of GAM-Agent S). Our GAM-Agent S is rigorously
defined as a sextuple:

S=(E, A , P , M , P ., D )
~~ ~~ ~~ ~~ ~~
Agent Analytical Capability Uncertainty Evidence Localization Claim Parsing Dynamic Debate
Set  Map Function Set  Assessment Function Set Function Set Function Set Mechanism

where:E = 1,2,..., N represents the set of N expert agents. A = A1, A, ..., Ay defines the
set of analytical capability mapping functions, where each function A; : X x P, — R; maps an
input image X and a question P, to agent i’s response R;. ® = ®1,Pq,..., Py is the set of
uncertainty assessment functions, where ®; : R; — [0, 1] quantifies the uncertainty U; associated
with response R;. M = My, Ms, ..., My represents the set of evidence localization functions, where
M; : C; x X =V x [0, 1] associates agent i’s claim ¢ with a visual region r and a confidence score
o. P:R— (¢cj,05,e5,75)j = 15 is the claim parsing function, converting unstructured responses
into structured information tuples (K is the number of tuples). D : X x P. x R;,U;i = JRANNEN Rnai
is the debate module that coordinates conflicts and consensus to generate a final response. This
formalization constructs a complete mathematical space, allowing for precise description and analysis
of the system’s components and their interactions.

Definition 2 (Mathematical Construction of Uncertainty Quantification Function ®;(R;)). GAM-
Agent provides two uncertainty quantification mechanisms for each agent e; € E:

* Uncertainty based on generation probability ®;ge,.(R;): When the token generation
probability distribution of the underlying VLM is accessible, it is defined as:

T

1
(I)igen+(Ri) = T Z - H(Pi}t) +ﬁ . HlaX(O, 1- Atap(Pi,t>)
=1 ——
Information Entropy Inverse Probability Difference
(Hesitation) (Lack of Confidence)

where: T} is the total number of tokens in response R;. P, ; is the probability distribution of
the t-th token. H(P; ;) = — > P; (x)log P; ;(x) is the entropy, quantifying the dispersion

or "hesitation" of the distribution. A,,(P; ;) = pglt) — pﬁ) is the difference between the
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probabilities of the top two tokens, where pgfc) is the k-th highest probability. « and 5 are
parameters balancing these two complementary signals. High entropy H (P, ;) indicates
model hesitation among multiple possible tokens, while small A,,,(P; ;) indicates a lack of

strong confidence in its preferred token.
By formally expanding the entropy calculation:
H(P;;) ==Y Piy(x)log P, 4(x)
zeV

where V is the vocabulary, we see that entropy is maximized when the probability distribu-
tion P; ; approaches a uniform distribution (highest hesitation), and minimized when the
distribution is concentrated on a single token (lowest hesitation).

Uncertainty based on semantic markers @, (R;): When generation probabilities are
unavailable, the system uses:

ight . t(w, R;
Disom(Ri) = Osigmoid <k (Zwew weight(w) - count(w, R;) B oﬁset))

| R

where: W is a multi-level lexicon of uncertainty markers. weight(w) reflects the uncertainty
intensity of marker w. count(w, R;) is the frequency of w in response R;. |R;| is the
response length. k and offset control scaling and bias. O’Sigmoid(l‘) = normalizes the
value to the (0, 1) interval.

_1
1+e—=

These two methods capture uncertainty from the generation process and semantic content, respectively,
providing key inputs for the subsequent game theory framework.

Definition 3 (Non-zero Sum Game Theoretic Formalization of GAM-Agent). The multi-agent
visual reasoning process is modeled as a non-zero-sum game with the following formal structure:
Players: Set of agents £ = 1,...,N. Input Instance: I = (X,P,) € T = X X Pr, where
X is the image and P, is the question. Action Qutput of Agent i: The action of agent e; is
to generate a response-uncertainty pair (R;(I),U;(I)), with the mapping function: A; : T —
Oi = R x [0,1], A;(I) = (Ri(I),®;(R;(I))). System Weight Allocation Protocol P: Rules
for assigning influence weights, formalized as: P : ON — AN=1 A key weight calculation
Sformula (initial weight wl(o)) is: wEO)(Ujj =1 = ijﬁf(efp{@ﬂm)'
based Softmax allocation: higher U; (greater uncertainty) leads to lower weight wEO). Parameter
B > 0 controls sensitivity to uncertainty differences. System State o: The instantaneous state of
the system is fully described by the joint outputs of the agents and the corresponding weight vector:
o(I) = ((AL(D),..., An(I)), P(AL(1), ..., Ax(]))), o(I) € ON x AN=L This game structure
formalizes the interactions among agents in GAM-Agent and clarifies how uncertainty affects weight
allocation and system state evolution.

This is an uncertainty-

Definition 4 (Mathematical Expansion of Agent Utility Function ;). A utility function u; : ON x
AN=1 5 R is defined for each agent e;, mapping joint agent outputs and weight allocation to a
real-valued utility:

N N _ :
ui({Rj}jzlv{Uj}jzlaw) = wi(l - Ui) +A E w 'Slm(Ri»Rj)* 'YUsys
~— —! ~——
Individual(%:ontrilb)ution Term J# System Cost Term
erm
Collaborative Benefit Term (Term 3)
(Term 2)

where: Individual contribution term (Term 1): w;(1 — U;) rewards the agent for providing high-
confidence (low uncertainty) judgments, reflecting its system-assigned influence. Collaborative
benefit term (Term 2): A Zj# w; - Sim(R;, R;) rewards the agent for consistency with other high-
influence agents, where Sim(R;, R;) € [0, 1] is the semantic similarity between responses, and
A > 0 is a weight coefficient. System cost term (Term 3): yUsy,, where Uy, = Zszl wr Uy, is the
system’s weighted average uncertainty, and v > 0 is a weight coefficient. All agents share the
system’s uncertainty. From a mathematical theory perspective, this utility function has the following
properties: Non-zero-sum nature: Agents can collectively increase total utility Zf\;l u; by reducing
collective uncertainty and improving consistency, without necessarily competing against each other.
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The incentive for collective reasoning: The collaborative benefit term incentivizes agents to agree with
other highly influential agents. Uncertainty management: Agents must reduce their own uncertainty
(Term 1) and contribute to reducing overall system uncertainty (Term 3). By detailing the system

cost term:yUsys = 7y Zk 1 WUy, we see that even if an agent’s own uncertainty U; is low, it will
be negatively affected if the overall system still has high uncertainty (high Usy,), further promoting
cooperative behavior.

Proposition 5 (Analytic Optimal wy, for Regularized Utility). Our GAM-Agent seeks optimal influ-
ence weights w* = (wy, ..., wk) that maximize the total utility:

§ : N N
utotal R]j 1 UJJ 1 )
=1

Expanding with Definition 1.4:

N
Uroral(w) = Z |:w1(1 -U;)+ Aij Sim(R;, R;) ZwkUk}
i=1

J#i

Further expansion:

Using the constraint Zj\il w; = 1to simplify'

N
Urprar(w) = 1 — szU + )\ZZU)] Sim(R;, R;) N'wakUk
i=1 j#i k=1
N
:1+/\Zij Slm(R“Rj) — (1+N’Y)ZwkUk
i=1 j#i k=1

Rearranging the summation order:

N N N

Z Z wy - Sim(Ri, R]> = Z wy Z Slm(R“ RJ) = Z W Z SlWl(Rl7 R}c)

i=1 j#i =1 i#j k=1 ik
Substituting into the above equation and ignoring the constant term 1, we get the optimization
problem:

max. wg | A Sim(R;, R 1+ Nv)U,
g, o [Vt )= 0+ N

Define agent k’s "cooperative value score':
Score, = A Z Sim(R;, Ri) — (1 + Nv)Uy
i#k
To avoid degenerate solutions (all weight assigned to the agent with the highest score), an entropy regu-
larization ter —% ZIJLI wy, log wy, (where n > 0 is a temperature parameter) is introduced, yielding

the regularized optimization problem: max ,c an—1 [Eszl wg, - Scorek — % k= 1N wy, log wk}

This is a standard convex optimization problem. Using the Lagrange multiplier method, the analytical

. . P exp(n-Scorek)
Sform of the optimal weights is: wj, = S =1 exp(n-Scorers)

Substituting the full expression for

Scorey,:

exp (77 : [A D ik Sim(Ry, By) — (1 + N’Y)Uk])
S exp (1 [N, Sim(Ri, Bn) = (14 NY)U | )

From this analytical solution, it is clear that: Weight w}; decreases exponentially with an increase in

agent k’s uncertainty Uy,. Weight wy, increases exponentially with an increase in agent k’s semantic
consistency with other agents, Z#k Sim(R;, Ry,). Parameter 1 controls the sensitivity of weight

allocation to differences in Scorei,—high n values lead to a more "winner-take-all" allocation.

wy, =

This proves that agent influence allocation in GAM-Agent is an analytical solution with a clear
mathematical basis, rather than a simple heuristic rule.
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GAM-Agent establishes a mathematically self-consistent and mechanistically interpretable non-
zero-sum game framework through rigorous mathematical definitions and derivations of the system,
uncertainty, game interactions, utility functions, and optimization objectives. Its core mathematical
contributions are: Transforming "uncertainty” from an abstract cognitive concept into a precisely
quantifiable mathematical variable (via ®;gens and Pyger). Designing a three-part utility function
u; that balances individual contribution, collaborative consistency, and system risk. Analytically
deriving the mathematical expression for agent influence weights wj, by maximizing the regularized
total utility Uiora. Demonstrating that the system’s game mechanism is endogenously generated from
utility optimization principles, rather than externally imposed.

F Theorem II: Comparative Analysis with the DMAD Framework

The mathematical formalism of DMAD (Diverse Multi-Agent Debate) is primarily manifested as an
algorithmic flow based on externally preset diversification strategies. Its core mechanism, "breaking
cognitive fixation," mathematically lacks an endogenous, agent-centric utility optimization model
equivalent to GAM-Agents to drive it.

Definition 6 (Mathematical Representation of the DMAD Algorithm Flow). The core of the DMAD
framework guides n agent instances { M;}_, to each adopt a distinct reasoning method (prompting
strategy) R; assigned from a preset collection R = {Ry,...,R,}. Its mathematical flow can
be formalized for each round j of debate as:Individual Solution Generation: Vi € 1,...,n :
(si,5:Yi,;) = Execute(Mi,x, h;, Ri) where: Mi is the i-th agent model. x is the input task. h;
is agent i’s historical information. Ri is the preset, fixed reasoning method/prompting strategy.
(si,4,yi,j) is the output pair, containing the reasoning process si, j and answer yi, j. Information
Propagation and History Update: Let Hj = (sk, j, y;w-)Z:l be the set of outputs from all agents
inround j. Vi € 1,...,n: h; < UpdateFunction(h;,H;) This step propagates the outputs of all
agents to each agent, updating their historical information.

Analysis 1 (Comparative Analysis of DMAD’s Mathematical Form — The Missing Endogenous
Game Optimization Aspect). Compared to GAM-Agent (Theorem 1), DMAD exhibits the following
substantial differences in the mathematical formalization of its core mechanisms: Compared to
GAM-Agent (Theorem 1), DMAD exhibits the following substantial differences in the mathematical
Jormalization of its core mechanisms: Lack of an optimizable, agent-level mathematical utility
Junction: The DMAD framework does not define a mathematical utility function for each agent Mi
similar to u; in GAM-Agent. Formally, there is no mapping: uPMAP . System State — R Therefore,
when agent M executes its assigned reasoning method ®Ri, its behavior (e.g., how it interprets and
utilizes information h; from other agents to improve its own si, j + 1,yi, j + 1) is not driven by a
clear optimization process aimed at maximizing its own mathematical utility. Its "improvement"
relies more on the LLM’s inherent context-learning capabilities and adherence to "critical feed-
back." In GAM-Agent, every decision can be traced back to the maximization of utility function u;:
max a;u;(a;, a—;, Ujj = 1V, R;j = lN) In DMAD, agent behavior is solely determined by the fixed
strategy SR; and historical information h;, lacking this explicit optimization structure. Mathematical
implementation of the "'diversity' mechanism: DMAD’s core idea, "breaking cognitive fixation
through diverse reasoning," is achieved by externally enforcing different reasoning methods ‘R;
upon different agents. Mathematically, this is represented as a mapping: Assign : 1,...,n — R
Assign(i) = R; such that R; # Rj if i # j This "diversity" is a system-level structural design, not
a result of individual agents selecting strategies based on some intrinsic mathematical incentive
(like a "diversity contribution utility"). In contrast, the uncertainty and utility-driven mechanisms in
GAM-Agent allow diversity to emerge naturally from the game—different agents gain higher weights in
different aspects where their uncertainty is low, forming complementary rather than preset specializa-
tions. Non-explicit mathematical modeling of ''breaking cognitive fixation'': "Cognitive fixation"
itself and the process of it "being broken" are core cognitive science assumptions and desired out-
comes in DMAD, but they are not directly modeled mathematically as variables or objective functions
that can be quantified or optimized in agent decision-making or system evolution. Formally, there is
no function: fmindset : System State — R Its effect is indirectly validated through experiments (e.g.,
performance improvements on different benchmarks), rather than predicted or explained through the
analysis of a clearly defined mathematical objective function.

To more clearly illustrate the fundamental differences in mathematical construction between DMAD
and GAM-Agent, we can compare their mathematical derivation processes for the same task:
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For a visual reasoning task (X, P,.):

DMAD’s Processing Flow:

1. Preset different reasoning methods: {R1,...,R,}
2. Assign to agents: M; uses R;
3. Execute multi-round interaction: (s; j,v; ;) = Execute(M;, x, h;,R;)
4. Final aggregation: Ypina = ¢({vi,7}71)
GAM-Agent’s Processing Flow:

1. Calculate uncertainty: U; = ®;(R;)

2. Optimize weights based on utility function u;: w;} = %
; “Score,

3. Trigger debate based on uncertainty and conflict: TriggerDebate = (Ué? > 0y) V
(ConflictScore > 0¢)

. _gy®
4. Dynamically adjust weights until convergence: wgk"'l) = %Ui()m
>, exp(=pU;")

5. Generate output based on final weights: Ry = IntegrateJudge(. . ., {wZ(K)}lN:17 o)

Conclusion of Theorem II: DMAD’s mathematical form is mainly reflected in its clear, procedural
algorithmic steps and information flow structure. Its core mechanism—Ieveraging preset, diverse
reasoning strategies {9; } to enhance reasoning performance—is a heuristic design based on cognitive
insights. Its mathematical description serves the execution of this process, but it lacks a mathematical
game model equivalent to GAM-Agent’s, which is agent-centric and uses explicit utility function op-
timization to endogenously drive agent behavior and system mechanisms (especially how "diversity"
affects decisions).

G Theorem III: Differences in Mathematical Construction between
GAM-Agent and Traditional Multi-Agent Methods

GAM-Agent’s mathematical framework fundamentally differs in its mathematical construction from
traditional multi-agent reasoning and debate methods that do not rely on explicit game-theoretic
optimization (hereinafter "traditional methods"), particularly in handling uncertainty, mechanism
derivation, and collaborative optimization.

Definition 7 (Mathematical Characteristics of Traditional Multi-Agent Reasoning). Simple Ag-
gregation Methods: Mathematical core: Typically involves direct, non-interactive mathematical
operations on outputs yi, . ..,yn independently generated by N agents. Yy = fage(yit = IR )
where fagg can be: Mode(-): Majority voting, selecting the most frequent answer. Average(-): Mean,
for numerical outputs. ), c;y;: Fixed weighted average, where «; are preset, non-dynamically
optimized weights. Mathematical limitations: Such methods mathematically do not include: (a) An
interaction model among agents. (b) Explicit consideration of individual output confidence or uncer-
tainty. (c) A dynamic influence adjustment mechanism based on (a) and (b). Rule-Based/Scripted
Debate Frameworks: Mathematical core: Agent behavior and interaction are controlled by a set
of predefined, deterministic rules Srules, such as turn-taking or role-playing. Agent e;’s action a'
in its turn t follows: al = Policyrole(i), state(t)(history|Srules) where: role(i) is the preset role
of agent i (e.g., questioner, answerer, judge). state(t) is the system state at turn t. history is the
prior interaction history. Srules is the set of rules governing interaction. Mathematical limitations:
Interaction mechanisms (like who speaks or has influence) are hard-coded by external rules Syyjes,
rather than endogenously derived from a mathematical optimization problem based on all agents’
current internal states (especially quantified uncertainty U;) and collaborative goals (like u;).
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Elaboration on Core Mathematical Differences with GAM-Agent: Mathematization and Mech-
anistic Integration of Uncertainty Handling: GAM-Agent:

input to used for optimizing %
Uzz@L(Rz) ’U,q;(...,UfL',...) —_— wk(,Uk,)
—_—— ~—_—————— —_———
Mathematically Quantified Uncertainty Utility Function Optimal Weights
(Definition 1.2) (Definition 1.4) (Proposition 1.1)

GAM-Agent’s uncertainty handling can be detailed as:

1. First, precise mathematical quantification of uncertainty via ®;eens Or @jeem:

£ S [aH (Pry) + Bmax(0,1 — Ap(Pi))] i Pigens is used

UZQ(R): weight(w)-count(w, R;
PP T G - (2w S ) offset) if @ e is used

2. Then, direct integration of this quantified uncertainty into the agent’s utility function:
ui(Rj,Uj,w) = wi(1 = U;) + XD, wy - Sim(R;, R;) — v wiUi

3. Finally, analytical derivation of optimal weight allocation by maximizing the utility function
that includes uncertainty:

exp(n - [AD2, 2, Sim(Ry, Ri,) — (1 + Nv)Uy])
S exp(n - A, Sim(Ri, Ry,) — (1+ N7)Up)

wy, =

This forms a complete, end-to-end mathematical processing chain for uncertainty, from quantification
to utility calculation and mechanism design.

Traditional Methods: Typically lack such end-to-end mathematical modeling and mechanistic
integration of uncertainty. For simple aggregation methods, uncertainty information is entirely miss-
ing, formalized as: Yy = J. agg(yifil) (does not depend on any uncertainty quantification U;) For
rule-based debates, even if agents can express "confidence," this expression is often qualitative
or heuristic: Confidence; = Qualitative_Expression(y;) (e.g., “T am very sure,” “Possibly,” etc.)
Moreover, there is no unified mathematical framework (like GAM-Agent’s utility theory and opti-
mization framework) to convert these discrete, potentially heterogeneous confidence signals into
precise, derivable mathematical impacts on debate dynamics (like speaking rights, influence) or final
consensus.

D.4.2 Mathematical Basis of Interaction Mechanisms and Influence Allocation: GAM-Agent:
Influence weights wj; (Proposition 1.1) are the analytical solution to the mathematical optimization
problem of maximizing the system’s overall regularized utility:

exp(n - Scorey,)
Zgzl exp(n - Score,,)

wi =

where Score, = A 37, Sim(R;, R) — (1 4+ Nv)Uy, is agent k’s "cooperative value score.” This
analytical solution has the following significant characteristics:
» It is continuous, with weights w}, € (0, 1) precisely reflecting the relative value of agents.
e Itis dynamic, changing with Score (which includes Uy, and Sim terms).
* It is derived from first principles (maximizing total system utility), not preset.
* It considers two key factors: uncertainty Uy, and semantic consistency Sim(R;, Ry,).
* It provides flexible adjustment mechanisms through parameters 7, A, 7.
Traditional Methods: Influence allocation (if it exists) is often based on preset rules or heuristics:
For majority voting, each agent’s influence is equal (implicitly w; = 1/N):

N

Yvﬁnal = arg m3X Z 1(yi = y)
’ =1
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Or in some cases, it is binary (vote or not vote):

N
Yfina = arg max Z 1(y; = y) - 1(Qualification,)
Y oim
In role-playing debates, if a judge role exists, its "influence" is conferred by the rules Syyjes:
Yina = Decision(Judge) (where Judge is a preset role)

Mathematically, the "influence" in these methods lacks the mathematical properties of GAM-Agent’s
weights wj: it is not a continuous, dynamic variable derivable from first principles like utility
maximization.

D.4.3 Mathematical Form and Explicitness of Collaborative Optimization Objectives: GAM-
Agent: The system’s optimization objective is to maximize ) _, u, (regularized). Each term of the
utility function u; (Definition 1.4) has a clear mathematical form and corresponding collaborative
goal:

S—— Y
Pursuing own high certainty 7 _k —_—
Aligning with trusted peers Jointly reducing system uncertainty

This utility function explicitly:
* Quantifies three dimensions of collaboration: individual certainty, mutual consistency, and
system uncertainty.

* Establishes precise mathematical trade-offs between these three dimensions (via parameters
A and 7).

¢ Directly links utility maximization to system design goals (high-quality consensus).

Traditional Methods: Usually lack such a unified, explicit mathematical optimization objective
function that includes uncertainty management and fine-grained measures of collaboration quality.
For example, in voting methods, the implicit "objective function" might be:

N
max Z 1(y; = y) (maximize the number of agents supporting a specific answer)
Y
i=1

This objective function does not include:

1. Explicit consideration of uncertainty.
2. Measurement of the quality of inter-agent consistency.

3. Evaluation of the overall system state.

In rule-based debates, the "collaborative" goal (like reaching the correct answer) is implicit, and
the means to achieve it (like debate rules Syyes) are preset, not derived by optimizing an explicit
mathematical function.

Conclusion 1 (Conclusion of Theorem IV). GAM-Agent’s mathematical framework, through its:

* Precise mathematical quantification of agent uncertainty (e.g., ®;gens formula) and its use
as a core game variable,

* Analytical derivation of key interaction mechanisms (like the Softmax form of influence
weights wy,) from an optimization problem involving a mathematical utility function (u;)
that includes uncertainty terms and explicit collaboration terms,

fundamentally diverges in theoretical rigor of mathematical construction, mechanistic endogeneity,
and optimization explicitness from “traditional” multi-agent reasoning and debate methods that rely
on simple aggregation, preset rules, or lack equivalent mathematical optimization objectives. GAM-
Agent offers a mathematically-driven solution where each component and mechanism can be traced
back to an explicit, uncertainty-based mathematical model, rather than just a procedurally-defined
framework. This mathematical rigor enables GAM-Agent to more effectively coordinate uncertainty
in multi-agent systems, achieving more flexible, adaptive, and interpretable visual reasoning.
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H Hyperparameter Ablation

To provide a deeper understanding of GAM-Agent’s sensitivity to its internal settings, we conduct
further ablation studies on key hyperparameters. These experiments supplement the component-level
ablations presented in Section [3.3]of the main paper. All experiments in this section were performed
using GAM-Agent (InternVL3-14B) with V = 3 expert agents on the MMBench_TEST_V11
dataset. The maximum number of debate rounds (K,,,,) was set to 3, consistent with the setup
in Section [3.3] of the main paper. We report Overall Accuracy (Acc. %), Average Actual Debate
Rounds (Deb. Rounds), Debate Trigger Rate (Deb. Trig. %), and Average Inference Cost (Cost,
tokens/instance).

Our default hyperparameter configuration for GAM-Agent (InternVL3-14B), which achieved 88.80%
accuracy in the main paper (see Figure[3), is as follows:

* Uncertainty weighting sensitivity (Buweight): 1.5

* Debate trigger threshold for system uncertainty (6y7): 0.45

* Debate trigger threshold for conflict score (6¢): 0.55

* Generation-process uncertainty ®; 4., 4 parameters: ag = 0.5, Bp = 0.5
Table 3] presents the results of varying these hyperparameters.
Table 3: Hyperparameter ablation study for GAM-Agent (InternVL3-14B, N = 3, K4 = 3) on

MMBench_TEST_V11. The Default row corresponds to the configuration used to achieve the main
paper’s reported 88.80% accuracy for this model in Figure [3|(main paper).

Hyperparameter Value Acc. (%) Deb. Rounds Deb. Trig. (%) Cost (tokens/inst.)
Uncertainty Weighting Sensitivity (Buweight in w; < exp(—PuweightUs))
0.5 88.15 (10.65) 1.85 68 2650
1.0 88.62 (10.18) 1.80 66 2580
Buweight (Default) 1.5 88.80 1.76 65 2500
2.0 88.71 (10.09) 1.73 64 2450
3.0 88.45 (10.35) 1.69 62 2380
Debate Trigger Threshold - System Uncertainty (0y)
0.35 88.92 (10.12) 2.10 75 2850
0y (Default) 0.45 88.80 1.76 65 2500
0.55 88.31 (10.49) 1.42 50 2100
0.65 87.93 (10.87) 1.15 35 1800
Debate Trigger Threshold - Conflict Score (6¢)
0.45 88.85 (10.05) 1.95 72 2750
0c (Default) 0.55 88.80 1.76 65 2500
0.65 88.53 (10.27) 1.50 53 2200
0.75 88.10 (40.70) 1.25 40 1950
Generation Uncertainty ®;gen4 Parameter ag (given ag + fo = 1)
0.1 (B =0.9) 88.42(]0.38) 1.78 65 2520
0.3 (B =0.7) 88.68 (10.12) 1.77 65 2510
ag (Default) 0.5 (B = 0.5) 88.80 1.76 65 2500
0.7 (B = 0.3) 88.59 (]0.21) 1.75 64 2490
0.9 (B =0.1) 88.27 (10.53) 1.74 64 2480
Combined Debate Trigger Thresholds (0y,0¢)
(0.35, 0.45) 88.98 (10.18) 2.25 82 3050
(Default Combination) (0.45, 0.55) 88.80 1.76 65 2500
(0.55, 0.65) 88.15 (10.65) 1.30 45 1900

Discussion of Hyperparameter Sensitivity

* Uncertainty Weighting Sensitivity (3,,cign¢): This parameter controls the sharpness of the
softmax function used for allocating agent weights based on their uncertainty U;. Our results
suggest that a moderate value (Default: 1.5) provides a good balance. Very low values
(e.g., 0.5) make the weights too uniform, diminishing the impact of precise uncertainty
quantification and slightly reducing accuracy (88.15%). Higher values (e.g., 2.0, 3.0) make
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the weighting more "winner-take-all," potentially overly relying on a single agent if its uncer-
tainty is marginally lower, which can also slightly degrade performance (88.71% and 88.45%
respectively) by reducing diversity in the integration. The cost tends to decrease slightly
with higher ¢ign¢ as more decisive initial weighting might lead to quicker convergence or
fewer contentious points triggering prolonged debates.

* Debate Trigger Thresholds (6;/,0c): Lowering the system uncertainty threshold 6,
(e.g., t0 0.35) or the conflict score threshold 6¢ (e.g., to 0.45) increases the debate trigger
rate (Deb. Trig. to 75% and 72%, respectively). This leads to more debate rounds and
higher computational cost, but can sometimes yield marginal accuracy improvements (e.g.,
88.92% for Ay = 0.35) by allowing the system to resolve more nuanced disagreements.
Conversely, higher thresholds (e.g., 0y = 0.65 or 8- = 0.75) significantly reduce the
debate frequency, rounds, and cost, but at the expense of accuracy (87.93% and 88.10%,
respectively), as critical conflicts might be overlooked. Ablating them in combination
(e.g., 0y = 0.35,0¢c = 0.45) shows an even higher debate trigger rate (82%) and cost,
with a small potential accuracy gain (88.98%), indicating that more debate is not always
cost-effective for the performance gained. The default values (0.45, 0.55) provide a good
trade-off.

* Generation-Process Uncertainty Parameters (o, 53): These parameters balance the
contribution of information entropy (hesitation) and top probability difference (lack of
conviction) in the ®; 4., 4 uncertainty metric (Equation 1 in the main paper). We assumed
ag + Bg = 1 for this ablation. The results indicate that an approximately equal weighting
(Default: g = 0.5,86 = 0.5) performs best (88.80%). Overly relying on just one
component (e.g., g = 0.1 heavily weights probability difference, or ag = 0.9 heavily
weights entropy) leads to a noticeable drop in accuracy, suggesting that both signals are
valuable for a comprehensive uncertainty assessment. The impact on debate rounds and cost
is minimal in this ablation, implying these parameters primarily affect the quality of the
uncertainty scores rather than the frequency of debates, assuming the scores still fall within
similar ranges.

In summary, these ablations highlight that while GAM-Agent is robust across a reasonable range of
hyperparameter settings, optimal performance is achieved by carefully tuning the balance between
uncertainty sensitivity, debate triggers, and the composition of uncertainty metrics. The default
parameters chosen for InternVL3-14B in the main paper represent a well-balanced configuration for
MMBench.

I Hyperparameter Setting

This section outlines the specific hyperparameter configurations employed for GAM-Agent throughout
the experiments detailed in the main paper. Our goal is to provide clarity for reproducibility and
understanding of the conditions under which our reported results were achieved.

Common GAM-Agent Settings Unless explicitly stated otherwise in the subsections below, the
following common hyperparameter settings were applied across all GAM-Agent instantiations:

* Number of Base Expert Agents (/V): Typically 3 for all reported experiments. This N

corresponds to the number of agents in summations such as Zfil wgo)Ui and refers to

the agents responsible for generating initial responses (R;) and participating directly in

argumentation (Arggk)) during debates. These agents were derived from the same base

Vision-Language Model (VLM) for each experiment.

* Number of Critical Expert Agents (/V..;;): Maintained at 3 by default throughout all
experiments that involved the iterative debate mechanism. As illustrated in Figure[T] (main
paper), these agents are engaged by the Debate Controller specifically for verification and
providing critical feedback on contentious claims. Critical agents typically use the same
underlying VLM but initialized with specialized prompts to foster critical assessment.

* Uncertainty Weighting Sensitivity (3,cign:): 1.5. This parameter is used in the entropy-
regularized softmax for both initial weight allocation (wz(o) o exp(—LPuweightUi)) and
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dynamic weight updates during the iterative debate (w§k) ox exp(—ﬁweightUi(k)) when
uncertainty-based weighting is active).
Generation-Process Uncertainty (®;,.,) Parameters (used when token-level logprobs
were accessible, e.g., for Qwen2.5VL, InternVL3, InternVideo2.5):

— ag: 0.5 (weight for information entropy component).

- Ba: 0.5 (weight for top-K probability difference component).

Semantic-Marker Based Uncertainty (®;;.,,) Parameters (used when logprobs were
not accessible, e.g., for GPT-40-0513, or as a fallback):

— Lexicon (W): A predefined multi-level lexicon of uncertainty markers (e.g., “might”,
“possibly”, “unsure”, “confident”, and “clear”) with associated weights. (Specific
lexicon details are part of prompt engineering).

— Sigmoid scaling k: 1.0.

— Sigmoid offset: 0.3.

Debate Termination Criteria:
— System uncertainty threshold (6 «mm): 0.15. Debate terminates if U§"3 < 00 term-

— Convergence speed threshold (¢): 0.01. Debate terminates if |AU£§S) | <e.
Evidence Mapping ()/) and Claim Parsing (P): These modules were active in all con-
figurations involving debate, utilizing the base VLM to perform claim extraction, evidence
association, and visual grounding tasks as described in Section [2.4] (main paper).

I.1 Settings for Image Understanding Experiments (MMBench and MMMU)

These settings correspond to the experiments detailed in Section 4.1 of the main paper

I.1.1 Qwen2.5VL Series (3B, 7B, 32B, 72B) and InternVL3 Series (2B, 8B, 14B, 38B, 78B)

Base VLMs: As listed.

Datasets: MMBench (TEST_EN), MMMU (test set).

Number of Base Expert Agents (N): 3.

Number of Critical Expert Agents (/V.,;;): 3 (when debate triggered).
Uncertainty Quantification: ®;,., was prioritized.

Maximum Debate Rounds (K,,,,.): 3.

Debate Trigger Thresholds:

— System uncertainty (6y): 0.45.
— Inter-expert conflict score (f¢): 0.55.

For instance, GAM-Agent(InternVL3-14B) using these settings achieved an accuracy of 88.80% on
MMBench (TEST_EN), and GAM-Agent(Qwen2.5VL-72B) achieved 90.86%.

I.1.2 GPT-40-0513

Base VLM: GPT-40-0513 (via OpenRouter API).

Datasets: MMBench (TEST_EN), MMMU (test set).

Number of Base Expert Agents (/V): 3.

Number of Critical Expert Agents (/V..;;): 3 (When debate triggered).

Uncertainty Quantification: ®;,.,,, was used due to the lack of direct access to token-level
generation probabilities from the API.

Maximum Debate Rounds (K,,,,.): 3.
Debate Trigger Thresholds:

— System uncertainty (fy;): 0.50 (adjusted slightly due to different uncertainty scale from
(I)isem)'
— Inter-expert conflict score (0¢): 0.60.

With these settings, GAM-Agent(GPT-40-0513) achieved 86.53% on MMBench (TEST_EN).
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L.2 Settings for Video Understanding Experiments (MVBench)

These settings correspond to the experiments detailed in Section 4.2 of the main paper.

I.2.1 Qwen2.5VL Series (3B, 7B, 32B, 72B), InternVL3 Series (2B, 8B, 38B), and
InternVideo2.5

* Base VLMs: As listed. InternVideo2.5 is a video-specialized model.

e Dataset: MVBench.

¢ Number of Base Expert Agents (N): 3.

* Number of Critical Expert Agents (/V..;;): 3 (when debate triggered).

* Uncertainty Quantification: ®;,.,,, was prioritized. For InternVideoZ2.5, if logprobs were
accessible, ®;4¢,,4+ Was used; otherwise, ®;.,,, was adapted.

¢ Maximum Debate Rounds (K,,,,.): 3.
* Debate Trigger Thresholds:

— System uncertainty (6;7): 0.50 (video tasks often present higher inherent ambiguity).
— Inter-expert conflict score (6¢): 0.60.

¢ Visual Preprocessing: Please refer to the official parameter configuration provided by
MVbench, for example, select fps=1.

GAM-Agent (InternVL3-38B) achieved an overall average of 78.47% on MVBench with these
settings.

1.2.2 GPT-40-0513 (for MVBench)
¢ Base VLM: GPT-40-0513.
* Dataset: MVBench.
e Number of Base Expert Agents (/V): 3.
* Number of Critical Expert Agents (/V..;+): 3 (when debate triggered).
¢ Uncertainty Quantification: ®;,,.
¢ Maximum Debate Rounds (K,,..): 3.
* Debate Trigger Thresholds:

— System uncertainty (6y): 0.55.
— Inter-expert conflict score (f¢): 0.65.

GAM-Agent(GPT-40-0513) achieved 70.58% on MVBench.

L3 Settings for Comparison with Existing Multi-Agent Methods (MMBench)

These settings apply to the GAM-Agent configurations used in the comparisons presented in Sec-
tion 4.3

* Base VLMs: Qwen2.5VL (7B, 32B, 72B), InternVL3 (8B, 14B, 78B).

* Dataset: MMBench (TEST_EN).

* Number of Base Expert Agents (V): 3.

* Number of Critical Expert Agents (/V..;+): 3 (when debate triggered).

 Uncertainty Quantification: ®;,.,, was prioritized.

¢ Maximum Debate Rounds (K,,,,.): 3.

¢ Debate Trigger Thresholds:

— System uncertainty (6y7): 0.45.
— Inter-expert conflict score (0¢): 0.55.

These are consistent with the primary MMBench settings for these models.
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LI.4 Settings for Ablation Studies Base Configuration (MMBench_TEST_V11)

The default configuration for GAM-Agent (InternVL3-14B) in the ablation studies (Section 4.4 and
Figure [3| of the main paper), before individual components or parameters were ablated, used the
following:

Base VLM: InternVL3-14B.

Dataset: MMBench_TEST_V11.

Number of Base Expert Agents (N): 3.

Number of Critical Expert Agents (/V..;;): 3 (when debate triggered).
Uncertainty Quantification: ®;,.,, with ap = 0.5, 8y = 0.5.
Uncertainty Weighting Sensitivity (5,eign): 1.5.

Maximum Debate Rounds (K,,,,.): 3.

Debate Trigger Thresholds: 6y = 0.45, 6 = 0.55.

Debate Termination Criteria: 0y ;m = 0.15, € = 0.01.

This configuration achieved 88.80% accuracy and served as the baseline for both the component
ablations in Figure [3|(main paper) and the hyperparameter ablations in Section [H]of this supplement.

L5 Settings for Study on Maximum Debate Rounds (MMBench_V11_Test)

For the experiment analyzing the impact of ‘max_debate_round’ (Section 4.5, Figure 2] of the main

paper):

Base VLM: Qwen2.5VL-7B.

Dataset: MMBench V11 Test.

Number of Base Expert Agents (/V): 3.

Number of Critical Expert Agents (/V.,;;): 3 (when debate triggered).
Uncertainty Quantification: ®;4,, with g = 0.5, o = 0.5.
Uncertainty Weighting Sensitivity (8,cigne): 1.5.

Debate Trigger Thresholds: 6y = 0.45, 6 = 0.55.

Debate Termination Criteria (other than K,,,.): 0y em = 0.15, € = 0.01.
Varied Parameter: K,,,, was varied from 0 to 9.

1.6 Settings for Expert Weight Trajectory Analysis (Logical Reasoning Tasks)

For the analysis of expert weight dynamics (Section 4.6, Figure ] of the main paper):

Base VLMs: Qwen2.5VL (3B-72B), InternVL3 (2B-78B).
Dataset: A subset of MMBench focusing on logical reasoning tasks.

Number of Base Expert Agents (/V): 3 (Relational Reasoning, Scene Description, OCR
experts).

Number of Critical Expert Agents (/V.;:): 3 (when debate triggered).
Uncertainty Quantification: ®;.,, with ag = 0.5, 6 = 0.5.
Uncertainty Weighting Sensitivity (B.eigne): 1.5.

Maximum Debate Rounds (K ,,.): 3 (analysis shown over three rounds).

Debate Trigger Thresholds: Assumed to be active if debate occurred, e.g., 0y = 0.45,
Oc = 0.55.

Debate Termination Criteria: 0y m = 0.15, € = 0.01.

The focus of this experiment was on observing weight and system uncertainty evolution under these
typical settings.
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J Prompt Setting Statement

This section outlines the prompt configurations for various agents within the GAM-Agent framework.
The prompts are crucial for guiding the behavior of the Large Language Models (LLMs) acting as
expert agents and the aggregators.

J.1 General Prompts for Expert Roles and the Aggregator

In this subsection, we provide some examples of general persona prompts that can be used to initialize
different experts and the aggregator. These illustrate how roles can be defined within the system. The
actual task execution would typically involve combining such persona prompts with more specific
task instructions, like those detailed in Section[J.2]

Illustrative Analysis Expert Persona

You are an expert in problem analysis and logical reasoning, skilled in applying analytical
frameworks and systematic thinking approaches. Your expertise includes breaking down com-
plex problems, identifying key factors, and recommending structured, actionable solutions.
You are familiar with various problem-solving methods such as root cause analysis, decision
matrices, and scenario evaluation, and adapt your approach based on the unique context of
each task. Consider how your skills in critical thinking, structured reasoning, and analytical
problem-solving might provide valuable insights or strategies for addressing the task at hand.

| r
\

[lustrative Strategy Expert Persona

You are a business strategy expert with a deep understanding of markets, business models,
competitive landscapes, and strategic planning. Your expertise includes applying business
frameworks, analytical tools, and market insights to identify opportunities and craft strategies.
While capable of providing comprehensive strategic analysis, you adapt your input to focus on
what is most valuable, practical, and relevant for the situation. Consider how your expertise
in business innovation, competitive advantage, and strategic problem-solving might provide
insightful and actionable recommendations for any task.

Aggregator Prompt

You are the Wise Integrator in a multi-agent system tasked with delivering accurate, coherent,
and actionable responses to user queries. Your role is to:

» Understand the user’s intent and main question(s) by carefully reviewing their query.

 Evaluate expert inputs, preserving their quality opinions while ensuring relevance,
accuracy, and alignment with the user’s needs.

* Resolve any contradictions or gaps logically, combining expert insights into a single,
unified response.

» Synthesize the most appropriate information into a clear, actionable, and user-
friendly answer.

* Add your own insight if needed to enhance the final output.

Your response must prioritize clarity, accuracy, and usefulness, ensuring it directly addresses
the user’s needs while retaining the value of expert contributions. Avoid referencing the
integration process or individual experts.

J.2 Prompts for VLM Experts in Benchmark Evaluations

For the experiments conducted on MMBench, MVBench, and MMMU datasets, a specific set of
Vision-Language Model (VLM) based experts were utilized. These include three Base Experts for
initial analysis and argumentation and three Critic Experts for the debate and verification stages.
The prompts for these experts are detailed below. Note that placeholders like { instruction},
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{response}, etc., are dynamically filled during runtime. The ‘keywords’ listed in the configuration
(not shown here) were used to potentially aid in expert selection or routing for more complex
multi-faceted queries, though for single-task evaluations, experts often processed all relevant inputs.

J.2.1 Base Expert Prompts

The following Base Experts are primarily responsible for generating initial analyses and partici-
pating in argumentation by providing evidence-backed claims. Their ‘critique_template’ and ‘revi-
sion_template’ (shown below each main prompt) are used during the iterative debate process.

Object Recognition Expert

Role Definition: You are an expert in object recognition. Prompt Template
(prompt_template): As an object recognition expert, identify and list all significant
objects visible in the image(s). Provide details about their appearance, count if possible,
and relative location. For key claims, mention the visual evidence. Original question:
{instruction}

Critique Guiding Template (critique_template): Evaluate the object recognition
part of the analysis:

{response}

Are the objects correctly identified? Are there any missed objects or incorrect descriptions?
Base your critique strictly on the visual evidence.

Revision Guiding Template (revision template): Based on the critique
"{critique}’, please revise your object recognition analysis: {original_response}.
Focus on accuracy and completeness according to the visual evidence. Original question:
{instruction}

Scene Description Expert

Role Definition: You are an expert in the scene description. Prompt Template
(prompt_template): As a scene description expert, describe the overall scene shown in
the image(s), including the location, environment, lighting, atmosphere, and spatial relation-
ships between elements. For key claims, mention the visual evidence. Original question:
{instruction}

Critique Guiding Template (critique_template): Evaluate the scene description part
of the analysis:

{response}

Is the description accurate and comprehensive? Does it capture the main elements and
atmosphere of the scene? Base your critique strictly on the visual evidence.

Revision Guiding Template (revision_template): Based on the critique
’{critique}’, please revise your scene description: {original_response}. Fo-
cus on capturing the visual details accurately. Original question: {instruction}

44



Text/OCR Analysis Expert

Role Definition: You are an expert in OCR and text analysis from images. Prompt Template
(prompt_template): As an OCR expert, identify and transcribe any text visible in the
image(s). Pay attention to signs, labels, documents, or any written content. Note the location
of the text if possible. For key claims, mention the visual evidence. Original question:
{instruction}

Critique Guiding Template (critique_template): Evaluate the OCR/text transcrip-
tion part of the analysis:

{response}

Is the transcribed text accurate? Is any text missed? Is the location noted correctly? Base
your critique strictly on the visual evidence.

Revision Guiding Template (revision template): Based on the critique
"{critique}’, please revise your OCR analysis: {original_response}. Ensure
accuracy and completeness of the transcribed text based on the visual evidence. Original
question: {instruction}

J.2.2  Critic Expert Prompts
The following Critic Experts are engaged during the debate phase to verify claims, check for

completeness, and ensure logical consistency. Their primary input is a ‘critique_template’ that guides
their evaluation.

Fact Checker (Image) - Critic

Role Definition: You are an expert in fact-checking claims against visual evidence. Critique
Guiding Template (critique_template): Act as a fact-checking expert focusing on
visual evidence. Original Question: {instruction} Current Answer: {response}
Critique Request: {critique_request} Please evaluate the factual accuracy of the
claims based *only* on the image content provided. Point out inaccuracies and suggest
corrections. State your confidence (0-100%).

Completeness Checker - Critic

Role Definition: You are an expert in assessing the completeness of image-based analysis.
Critique Guiding Template (critique_template): Act as a completeness analysis
expert for image descriptions. Original Question: {instruction} Current Answer:
{response} Critique Request: {critique_request} Evaluate if the analysis fully
addresses the question based on the *entire* image content. Are there missing details
or aspects from the image(s) that are relevant and should have been included? Provide
suggestions. State your confidence (0-100%).

Logic Checker - Critic

| r

Role Definition: You are an expert in evaluating the logical consistency of an analysis.
Critique Guiding Template (critique_template): Act as a logical consistency expert
for image analysis. Original Question: {instruction} Current Answer: {response}
Critique Request: {critique_request} Evaluate the logical consistency of the analysis.
Are there any contradictions or unsupported conclusions based on the visual evidence and the
question? Provide suggestions for improving logical flow. State your confidence (0-100%).

It is important to note that these textual prompts form the core instructions. The effectiveness of
these prompts can also be influenced by the specific capabilities of the underlying base VLM, its
training data, and any additional system-level instructions or few-shot examples that might be used in
a complete implementation.



K Case Analysis

In this section, we present a series of case studies, including four successful and two unsuccessful
examples, to illustrate how multiple experts collaboratively analyze images in response to correspond-
ing questions. The expert configuration consists of three analysis experts—an Object Recognition
Expert, a Scene Description Expert, and a Text/OCR Analysis Expert—as well as three critique
experts: a Fact Checker (Image), a Completeness Checker, and a Logic Checker. For each analysis
expert, we report both their analytical response and the associated uncertainty score. For each critique
expert, we provide their evaluative feedback. To enhance clarity and conciseness given the length of
the responses, key excerpts are highlighted using colored underlines.

K.1 Successful Case

tables[d]to[7]demonstrate that our method, by assigning clearly defined roles to each expert—including
object recognition, scene understanding, and text/OCR analysis—facilitates comprehensive analysis
across multiple modalities and semantic dimensions of the input. This structured task decomposition
enhances both the depth and breadth of information processing by enabling each analysis expert to
focus on a specific sub-task and generate high-quality outputs along with corresponding uncertainty
estimates. A key strength of this approach lies in its explicit quantification of uncertainty, allowing
the system to weigh and prioritize more reliable expert responses. The outputs from analysis experts
are subsequently evaluated by critique experts—namely, a Fact Checker (Image), a Completeness
Checker, and a Logic Checker—whose feedback further refines the final answer. This multi-expert
architecture promotes factual accuracy, contextual completeness, and logical consistency, thereby
improving the system’s robustness, interpretability, and overall stability across diverse question types
and input formats.

K.2 Unsuccessful Case

While our multi-expert framework generally yields effective results, table [§]exposes several critical
limitations that warrant further investigation. In this case, all three analysis experts—ODbject Recogni-
tion, Scene Description, and Text/OCR Analysis—produced responses with low uncertainty scores,
yet the final aggregated output was incorrect. This outcome suggests that high internal confidence
among individual experts does not necessarily correlate with overall prediction accuracy.

A central issue stems from the subjective nature of the question, “Which image is more colorful?”
The term “colorful” admits multiple interpretations, including color diversity, saturation intensity, and
perceptual vividness. Both the Object Recognition and Scene Description experts focused predomi-
nantly on the saturated blue tones of the underwater image, interpreting it as more visually striking.
However, they failed to consider color diversity—a more appropriate metric in this context—for
determining "colorfulness." This divergence in interpretation highlights a key limitation of the current
framework: the absence of a shared semantic grounding among experts when addressing subjective
or ambiguous queries.

Moreover, the inclusion of the Text/OCR expert, despite the absence of textual content in the image,
underscores the need for a more adaptive expert selection strategy. The existing mechanism lacks the
ability to dynamically suppress irrelevant expert responses, potentially diminishing the influence of
pertinent analysis during the final aggregation phase.

In addition, the critic experts—Fact Checker, Completeness Checker, and Logic Checker—did
not effectively intervene despite the misaligned interpretations provided by the analysis experts.
This exposes another weakness in the framework: the critic module’s limited capacity to identify
and correct semantic inconsistencies when expert outputs are confidently wrong yet semantically
misgrounded. Without sufficient oversight from the critics, the model fails to detect the misapplication
of key concepts like "colorfulness," leading to unverified and ultimately incorrect conclusions.

Finally, the model is vulnerable to systemic bias amplification when multiple experts converge on
incorrect reasoning patterns. In the absence of higher-level semantic validation or external verification
mechanisms (e.g., feature-level consistency checks), such coordinated errors can propagate unchecked,
undermining the reliability and robustness of the system.
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table 9] similarly reveals additional limitations of the current framework, centering on the experts’
overreliance on superficial visual cues. In this case, both the Object Recognition and Text/OCR
experts emphasized the “grayish-brown” skin tone of the two rhinoceroses and concluded that
the animals were of the same color. However, this assessment overlooked subtle factors that can
influence the perceived coloration of animals, such as lighting, shadows, and texture variations. These
experts failed to account for environmental influences—such as the soft sunlight noted by the Scene
Description expert—which may introduce perceptual discrepancies due to illumination shifts.

Although the Scene Description expert analyzed contextual elements such as background vegetation
and natural lighting, their focus on the “tranquil atmosphere” of the scene did not directly address
the core question—whether the rhinoceroses are indeed the same color. This mismatch between the
expert’s focus and the semantic intent of the question illustrates a critical limitation of the framework:
when an expert’s domain emphasis is misaligned with the specific query, the resulting conclusions
may be incomplete or misleading.

Furthermore, despite the absence of textual content in the image, the Text/OCR expert was nonetheless
activated and contributed to the color judgment. This highlights the lack of a fine-grained expert
selection mechanism. Although this expert commented on the consistency of skin tones, they failed
to recognize the complex interplay of visual cues—such as lighting and surface texture—that are
essential for accurate color perception.

Notably, critique modules such as the Completeness Checker and Logic Checker failed to identify
and rectify these semantic misalignments. For instance, the Completeness Checker did not emphasize
the role of illumination and texture in color evaluation, while the Logic Checker did not flag the
deviation of expert reasoning from the core question as a logical flaw.

This failure case underscores the necessity of improving the expert selection mechanism to ensure
alignment between the activated experts and the task-relevant semantics. Moreover, incorporating
advanced visual analysis capabilities—such as precise color comparison algorithms or illumination-
invariant models—could mitigate such errors. The aggregation process should also become more
sensitive to contextual, lighting, and texture variations in visual data to enhance the overall accuracy
and robustness of the system.
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Table 4: Case: Successful Expert Collaboration Example 1

Image
-
ae o
>
seedling adult tree
fruit
Question

Which part of an apple tree might grow into a new tree?

Expert Uncertainty

Output

Object Recognition 0.1838

Scene Description 0.1245

Text/OCR Analysis 0.0832

1.Identified the seedling stage and the seeds inside the
fruit.

2.Highlighted that seeds are labeled inside the fruit, indi-
cating their role in starting a new tree’s life cycle.

1.Emphasized the educational and instructional nature of
the image.

2.Noted the spatial relationships and the cyclical arrows
connecting each stage, reinforcing that seeds are crucial

for new growth.

1.Confirmed the labels "seeds" inside the fruit and
"seedling" as the initial growth stage.

2.Supported the conclusion that seeds are the part that
grows into a new tree.

Fact Checker (Image) No

Completeness Checker No

Logic Checker No

1.Seeds as Tree Origin: Correct. The image labels
seeds inside the fruit and shows the cycle beginning with
seedlings.

2.Life Cycle: Correct. Arrows and stages illustrate the
cyclical growth process starting from seeds.

1.Pollination Explanation: Briefly describe how pollina-
tion by bees leads to fertilization and seed development.
2.Flower Importance: Explain the role of flowers in the

reproductive process.

1.0bject Recognition Expert: Accurately identified the
seedling stage and the seeds inside the fruit.

2.Scene Description Expert: Highlighted the educational
nature and the cyclical arrows, which effectively support
the conclusion.

3.Text/OCR Analysis Expert: Confirmed the labels and
supported the conclusion with textual evidence. T

Answer

The part of an apple tree that might grow into a new tree is a seed.




Table 5: Case: Successful Expert Collaboration Example 2

Image

Question

Is this place crowded?

Expert Uncertainty

Output

Object Recognition 0.1665

Scene Description 0.2126

Text/OCR Analysis 0.0832

1. The image shows an empty movie theater with multiple
rows of black seats arranged in a typical theater layout,
facing a large, blank projection screen.

2. The majority of the seats are unoccupied, with only two
individuals seated in the middle of the theater.

3. These individuals are spaced out with ample room
around them, and there are no other visible patrons.

1. The dim lighting is consistent with a theater setting, but
it does not directly indicate the absence of a crowd.
2. The overall scene appears quiet and still, supporting the

impression of emptiness.

1.The image doesn’t contain any text or symbols, so it’s
recommended to skip the Text/OCR analysis

Fact Checker (Image) No

Completeness Checker No

Logic Checker No

1.Empty Seats: Correct. The image shows mostly empty
seats, with only two people present.

2.Seating Arrangement: Correct. The seating layout re-
sembles that of a typical movie theater.

3.Projection Screen: Correct. The blank screen reinforces
the sense of emptiness.

1.Seat Count Detail: Briefly mention the number of seats
or rows to clarify the theater’s capacity and how full it is.
2.Seating Context: Describe whether the two individuals
are seated together or apart to enhance the scene’s detail.
3.Lighting Description: Indicate whether the lighting is
typical for a theater or unusually dim to provide more
context for the ambiance.

1.0bject Recognition: Accurately identified the theater
layout, empty seats, and presence of only two spaced indi-
viduals, clearly showing low occupancy.

2.Scene Description: Appropriately noted typical dim
lighting and a quiet, still atmosphere that support the im-
pression of emptiness.

3.Text/OCR Analysis: Correctly recognized there is no
text to analyze, avoiding unnecessary processing. -

Answer

This cinema is not crowded at all.
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Table 6: Case: Successful Expert Collaboration Example 3

Image

| et

[ “Spp——. N
Question

Which image is brighter?

Expert

Uncertainty

Output

Object Recognition

Scene Description

Text/OCR Analysis

0.1342

0.0832

0.0832

1. The left image (beach scene) is significantly brighter
due to its clear, sunny environment with a bright blue sky
and light blue ocean.

2. The right image (underwater scene) is darker, typical
of underwater environments where light is absorbed and
scattered, resulting in a greenish hue.

1. The left image features a bright, natural lighting sce-
nario with minimal cloud cover, enhancing its brightness.
2. The right image has dimmer lighting and a greenish
tint, characteristic of underwater scenes with less light
penetration.

1.The image doesn’t contain any text or symbols, so it’s
recommended to skip the Text/OCR analysis

Fact Checker (Image)

Completeness Checker

Logic Checker

No

1.Brightness Levels: Correct. The left image is noticeably
brighter with a clear sky and light-colored ocean.
2.Lighting Environment: Correct. The right image is
darker, reflecting the typical low-light conditions under-
water.

1.Brightness Metrics: Briefly mention specific metrics
or tools (e.g., average pixel brightness) used to quantify
brightness, clarifying the basis of the comparison.
2.Color Context: Describe the dominant colors in each im-
age and how they influence perceived brightness, such as
blues and whites brightening the left image versus greens
and darker tones dimming the right one.

1.0bject Recognition: Correctly identified the bright
beach scene and darker underwater scene with greenish
tones.

2.Scene Description: Accurately noted bright natural light
in the beach image and dim, greenish light underwater.
3.Text/OCR Analysis: Properly skipped text analysis due

to no text nresent.

Answer

Compared to the image on the right, the image on the left is clearly brighter.
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Table 7: Case: Successful Expert Collaboration Example 4

Image

Question

Which one is the correct caption of this image?

Expert Uncertainty

Output

Object Recognition 0.1670

Scene Description 0.5213

Text/OCR Analysis 0.1651

1. The image features the following key objects: Motor-
cycle: Black with chrome details, located in the center,
ridden by a person. Person: Wearing a black helmet,
dark shirt, jeans, and carrying a brown bag, riding the
motorcycle. Red Car: A red sedan, partially in motion,
to the left of the motorcycle. Building: A brick building
with green shutters, in the background. Street Elements:
Multiple street signs, a streetlight, and a sidewalk along
the road.

1. The image depicts a city street scene with a person
riding a black motorcycle, wearing a helmet, dark shirt,
and jeans. A red car is visible in the background, along
with a brick building featuring green shutters.

2. The setting includes trees and a sidewalk, suggesting
an urban environment. The scene takes place during the
day, with a casual and busy atmosphere.

1.There is a sign visible on the left side of the image, but
the text on it is not clear enough to transcribe accurately.

Fact Checker (Image) No

Completeness Checker No

Logic Checker No

1.Motorcycle Color: Correct. The motorcycle is clearly
black with chrome details and a large front fairing.
2.Background Details: Correct. The background includes
ared car and a brick building with green window shutters,
matching the description.

1.Minor Background Elements: Briefly mention the per-
son near the building to add context to the scene.
2.Accessory Details: Describe the rider’s bag and shoes
to enrich the overall depiction.

1.0bject Recognition: Clearly identified the motorcycle,
rider, car, building, and street elements.

2.Scene Description: Concisely described the urban set-
ting, people, vehicles, and daytime atmosphere.
3.Text/OCR Analysis: Correctly noted a sign is present
but text is unreadable, so no transcription attempted.

Answer

The correct caption for the image is: "A woman is riding a motorcycle down the street."
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Table 8: Case: Unsuccessful Expert Collaboration Example 1

Image

Question

Which image is more colorful?

Expert Uncertainty

Output

Object Recognition 0.0991

Scene Description 0.2553

Text/OCR Analysis 0.0832

1. Left Image (Kitchen/Dining Area): The left image
shows a kitchen/dining area with neutral tones, featuring a
dining table, cabinets, stove, and a blue rug. Natural light
brightens the space.

2. Right Image (Underwater Scene): The right image
displays a stingray in vibrant blue water, creating a color-
ful and lively underwater scene.

3. The right image features a deep blue underwater scene,
which is significantly more vibrant compared to the neu-
tral tones of the kitchen and dining area on the left. The
blue water and the contrast with the stingray enhance the
overall colorfulness.

1.The right side has a rich, deep blue background, creating
a vivid and striking visual effect. The left side, while
bright, has a muted and natural color palette dominated
by light wood and neutral tones. The underwater scene’s
intensity and saturation make it more colorful.

1.Since the image does not contain any text, labels, or
szmbols, it is advisable to exclude Text/OCR analysis.

Fact Checker (Image) No

Completeness Checker No

Logic Checker No

1.Underwater Scene: Correct. The right image clearly
shows a deep blue underwater environment.

2.Color Contrast: Correct. The deep blue tones in the right
image are more vivid and intense compared to the muted,
neutral tones of the kitchen on the left.

1.Color Details: Briefly mention the dominant colors and
their saturation in both images to add clarity.

2.Lighting Effects: Describe how lighting and natural ele-
ments influence color perception in each scene.

1.0bject Recognition: Accurately identified key elements
in both images—the kitchen/dining area on the left and
the vibrant underwater scene with a stingray on the right.
2.Scene Description: Effectively contrasted the muted,
neutral tones of the kitchen with the vivid, saturated col-
ors of the underwater environment. -
3 Text/OCR Analysis: Appropriately noted the absence of
text, correctly skipping text analysis.

Answer

Compared to the image on the left, the image on the right is obviously more colorful.
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Table 9: Case: Unsuccessful Expert Collaboration Example 2

Image

Question

Are the two animals in the picture the same color?

Expert

Uncertainty

Output

Object Recognition

Scene Description

Text/OCR Analysis

0.1213

0.9481

0.2315

1. Two rhinoceroses standing side by side, facing slightly
left.

2. Both have a grayish-brown skin tone, prominent horns,
and large ears.

3. A yellow bird with red markings is perched near the
horn of each rhinoceros.

1.Environment: The two rhinoceroses in the image are
in a natural environment, possibly a forest or savanna,
with green vegetation in the background. The lighting
is natural, suggesting it might be early morning or late
afternoon, with soft sunlight. The atmosphere is calm and
serene.

2.Position and Pose: The two rhinoceroses are standing
side bz side, facing forward, with similar poses, indicating
they may belong to the same group.

1.There is no visible text or written content in the image.
Both animals appear to be the same color, which is a
typical grayish-brown hue for rhinos. The visual evidence
supporting this conclusion includes the consistent col-
oration and texture visible on both animals” skin.

Fact Checker (Image)

Completeness Checker

Logic Checker

No

1.Presence of Birds: The small birds on the rhinos’ heads
are clearly separate and do not affect the color evaluation
of the rhinos.

2.Color Consistency: Both rhinos show a similar grayish-
brown color, as confirmed by the visual evidence.
3.Impact of Birds: The birds do not influence the per-
ceived color of the rhinos.

1.Texture and Lighting: Mention how texture and lighting
conditions affect color perception and visual impact.
2.Background Elements: Briefly describe background fea-
tures like green foliage to add context.

1.Object Recognition: Correctly identified the two rhinos,
their color, and the birds on their horns.

2.Scene Description: Described the natural setting, light-
ing, and rhinos’ positions.

3. Text/OCR Analysis: Noted absence of text and consis-
tent rhino coloration.

Answer

The two rhinoceroses in the picture are indeed the same color.
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