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ABSTRACT

A growing trend in solving inverse problems is to use pre-trained score-based
generative models (SGMs) as plug-and-play priors. This paradigm retains the
generative power of SGMs while allowing adaptation to different forward models
without requiring re-training. In parallel, derivative-free posterior sampling algo-
rithms have gained increasing attention for solving inverse problems where the
derivative, pseudo-inverse, or full knowledge of the forward model is unavailable
or impractical to compute. Despite their success, these methods lack principled
foundations and provide no convergence guarantees to the true posterior distribu-
tion or to its e-accurate approximation. We propose zeroth-order annealed plug-
and-play Monte Carlo (ZO-APMC), the first principled derivative-free framework
for solving general inverse problems that requires only forward-model evaluations
and a pre-trained SGM prior. We derive complexity bounds for obtaining samples
with e-relative Fisher information under a non-log-concave likelihood distribu-
tion and, under a Poincaré inequality assumption, -accuracy in total variation
distance, and we establish weak convergence of ZO-APMC to the target posterior.
We verify our theory with numerical experiments and demonstrate its performance
on both linear and nonlinear inverse problems.

1 INTRODUCTION

The use of pre-trained score-based generative models (SGMs) (Song et al., [2020; |Ho et al.| [2020)
as plug-ang-play priors for tackling inverse problems has become increasingly prominent, show-
ing strong effectiveness across diverse domains such as image restoration (Wang et al.| 2022 Rout
et al.,2023), medical imaging (Song et al.,[2021} Sun et al.,2024), and image and music generation
(Rout et al.| [2024). A primary advantage of this framework is its flexibility. It can be applied to
various inverse problems without re-training, while preserving the expressive capacity of SGMs to
capture complex, high-dimensional priors. In a parallel direction, recently, derivative-free posterior
sampling methods with SGM priors (Tang et al.| 2024} |Huang et al.| 2024} |Zheng et al., [2024) has
attracted growing interest to solve inverse problems where the privileged knowledge of the forward
model such as its derivative (Song et al., [2023b; [Chung et al., 2022), pseudo-inverse (Song et al.,
2023a)), or its parametrization (Chung et al.| [2023) is unavailable or computationally prohibitive.
For example, in many scientific applications (Oliver et al.| [2008; [Iglesias et al., 2013 Evensen &
Van Leeuwen, |1996), forward models are systems of partial differential equations whose derivatives
or pseudo-inverse are typically inaccessible or undefined. Despite their empirical success in recon-
structing images, they lack theoretical convergence guarantees to the target posterior distribution or
to e-accurate approximation. In fact, even among posterior sampling methods with gradient access
of a forward-model, rigorous guarantees are rare; when provided, they typically assume a linear for-
ward operator, which is an assumption often violated in practice (Daras et al.| 2024)). Appendix ??,
Table 3] provides a conceptual comparison of prior work, highlighting the gap our method fills.

The goal of this work is to develop a theoretically grounded method for solving inverse problems
that uses only black-box access to the forward model together with a pre-trained SGM prior. We
position this as an important step toward posterior sampling in black-box settings that offers an
algorithm with formal convergence guarantees and a solid foundation for future advances. A key
challenge in this direction is that, although existing posterior sampling solvers employ principled
formulations, they often rely on heuristic, intuition-driven approximations of the forward model’s
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score function (Iglesias et al.l [2013; |Huang et al.l [2024; |Tang et al., 2024), which makes rigorous
convergence analysis difficult.

To tackle this issue, we develop a zeroth-order (ZO) Markov chain Monte Carlo (MCMC) sampling
algorithm (Iglesias et al., 2013} [Huang et al., [2024; Tang et al., [2024), in which the forward-model
score is approximated from noisy function evaluations. In developing this approach, we face two
key challenges. First, Langevin methods are known to exhibit mode collapse and slow convergence
when sampling high-dimensional multimodal distributions; motivated by annealed importance sam-
pling (Neal, 2001; Sun et al., [2024)), we incorporate a weighted annealing scheduler to enhance
exploration. Second, conventional zeroth-order methods are computationally expensive in high di-
mensions: accurately approximating the forward-model score requires large batch sizes due to the
“curse of dimensionality”. Additionally, the intricacy of posterior sampling renders simple random-
ized zeroth-order estimators impractical given their high variance and, thereby, large per-iteration
cost. To make our approach practical for high-resolution image reconstruction, we adopt a PAGE-
inspired variance-reduction strategy from the optimization literature (L1 et al.,[2021]), which reduces
estimator variance and maintains a fixed per-iteration cost without sacrificing accuracy. Our main
contributions are the following:

* We propose zeroth-order annealed plug-and-play Monte Carlo (ZO-APMC), a completely
derivative-free method that utilizes a pre-trained SGM prior in a plug-and-play fashion to
tackle general inverse problems. ZO-APMC needs only black-box access to the forward
model and works with different forward models without re-training.

* For general non-log-concave likelihood distributions, we establish that the averaged ZO-
APMC algorithm exhibits weak convergence to the target distribution under decaying hy-
perparameters, and we provide non-asymptotic convergence guarantees showing that it at-
tains e-relative Fisher information after O(1/e%) iterations with fixed per-iteration cost,
and, assuming the target distribution satisfies the Poincaré inequality, e-accuracy after
O(1/£*) iterations in total variation distance as well.

* We substantiate our theoretical findings through comprehensive numerical and statistical
evaluations, and further demonstrate that our method achieves performance comparable
to state-of-the-art gradient-free baselines across diverse inverse problems, including MRI
reconstruction, black hole imaging, and Navier-Stokes equation.

2 BACKGROUND

Problem setting. We consider a general inverse problem modeled as
y=A@)+¢ zeR!, yLeR™ (D

where the objective is to recover the unknown signal & from noisy measurements y. The forward
operator A : R? — R™ characterizes the response of the imaging system, while ¢ € R™ denotes
the measurement noise, typically modeled as Gaussian or Laplacian distribution. Recovering
from y amounts to inverting (I, which can be viewed as estimating either the most probable x or its
full posterior distribution 7(x|y) from Bayesian perspective. This inference problem is commonly
expressed as 7(x|y) x {(y|z)p(x), where p(x) denotes the prior distribution over source signal,
implemented here via a pre-trained SGM, and ¢(y|x) is the likelihood distribution defined by .
In this work, we address the inverse problem using Bayesian inference based on MAP estimation,
& = argmax, {(y|x)p(x). However, because we have only black-box access to A(:), we can
generate samples from £(y|x) but lack its explicit functional form.

Score-based generative models (SGMs). SGMs have emerged as a powerful deep learning (DL)
framework for sampling from complex, high-dimensional distributions. At their core, they learn
the perturbed score function Vlogp, (), where py(x) = [p4 p(2)do(z — ) dz and ¢, is the
probability density function of A'(0,02I). This score is learned using the score matching tech-
nique (Hyvirinen & Dayanl 2005; [Vincent, [2011) and estimated via Tweedie’s formula (Efron,
2011). The resulting score estimates are then integrated into MCMC samplers to perform itera-
tive draws for unconditional image generation (Song & Ermon} 2020;2019)). In particular, sampling
proceeds via a discretization of the Langevin diffusion process

dx; = Vlogp(x;) dt + V2dB;, 2)
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where {B;};>0 denotes an n-dimensional Brownian motion and the learned score function
Syp(x+,0) approximates V log p(x;) for sufficiently small 0 < ¢ < 1. For posterior sampling,
applying Bayes’ rule and substituting the prior term with its estimate provided by Sy (x, o) yields

dz, = [Vlog l(y|x,) — Sy(x¢,0)] dt + V2d B, 3)

as used in (Sun et al.| [2024). Similarly, diffusion models (DMs), a class of SGMs, can be used to
draw samples from the posterior 7(x|y) by reversing a diffusion process from 7 (x|y) to a simple
distribution (Yang et al., 2023)) and approximating the time-dependent score V log ¢;(y|x:) (Chung
et al. 2022). One limitation of these approaches is their reliance on full acess to gradient
V log ¢(y|x), which is not possible for many scientific inverse problems (Knape & De Valpinel
2012; Zheng et al., 2025). Another limitation is that, despite their empirical success, these methods
rely on heuristic approximations of V log ¢;(y|x:), which hinders rigorous theoretical analysis.

Derivative-free diffusion guidance for inverse problems. Recent studies increasingly explore
derivative-free strategies for guiding SGMs in inverse problems. Three DM-based approaches have
been proposed to date: Stochastic Control Guidance (SCG) (Huang et al., |2024) and Diffusion
Policy Gradient (DPG) (Tang et al.| |2024)), which cast diffusion guidance in a stochastic control
framework and steer the sampling process via an estimated value function, and Ensemble Kalman
Guidance (EnKG) (Zheng et al.l 2024), which uses statistical linearization to guide the diffusion
process without explicit gradients. Although these methods have shown encouraging empirical re-
sults, they face a fundamental trade-off between broad applicability to highly nonlinear, black-box
systems and the availability of rigorous convergence guarantees. In fact, even among gradient-based
posterior sampling algorithms with SGM prior, only a few offer formal convergence results (Sun
et al., 2024). This tension motivates our proposed approach, which seeks to combine the practical
scope of derivative-free guidance with strong theoretical foundations.

Zeroth-order sampling. A zeroth-order (ZO) gradient estimator of a function f can be obtained
using a forward finite difference along a random direction (Nesterov & Spokoiny, [2017):

Vix) = f(w—i_/“;) f(@) u, u~N(0,1I), 4)
where p > 0 is a small smoothing parameter. In our formulation, f represents the negative log-
likelihood (or potential) function, with £(y|x) o e~/(®). By discretizing and replacing the
negative log-likelihood with its ZO estimator from (@), we obtain a zeroth-order Langevin sam-
pling algorithm with SGM prior. (Roy et al., 2022) establish convergence guarantees for generating
e-approximate samples in Wasserstein distance under convex and smooth f; however, their analy-
sis is purely theoretical, considers only settings without a prior, and assumes log-concave forward
model distribution, an assumption typically violated in inverse problems. (He et al., [2024) estab-
lish asymptotic KL. convergence but neither demonstrate the method on real-world problems nor
consider posterior sampling.

More recently, (Sun et al.,[2024) proposed annealed plug-and-play Monte Carlo (APMC), the closest
work to ours in the literature, and derived an upper bound on the Fisher information, albeit under
the assumption of access to the forward model’s score function. In contrast, we prove convergence
to stationary point in e-relative Fisher information, to the total variation distance (assuming that the
potential function of the forward model satisfies Poincaré inequality), and weak convergence to the
posterior distribution 7 (x|y). Further discussion of the related work is available in Appendix ??.

3 METHOD

To develop our ZO-APMC method, we first provide an interpretation of annealed Langevin dy-
namics and intuition behind the variance-reduction mechanism for zeroth-order estimate. Then, we
present our algorithm with its convergence guarantees.

Annealed Langevin dynamics.  As discussed in Section [2} given a SGM prior Sy(zx,0) ~
V log p(x), we can discretize the Langevin diffusion in (3 and get the update rule as

Tppy1 =T+ (@f(wk) - Se(wkﬂ)) + 272k, ®)
where Z;, ~ N(0,1) and f(xz)) = —logl(y|x) is the negative log-likelihood. Recall also

that since we assume black-box setting, we replace Vf(x) with its ZO estimate Vf(x) =
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Algorithm 1 ZO-APMC

Input: initial point x, stepsize ~, minibatch size b, b’ < b, probability p € (0, 1], and annealing
parameters ag > 0, o9 > 0.
1: go =1+ 3c; Vful@o,u;) /I denotes random minibatch samples with |I| = b.
2: fork=0,1,...,N —1do
3 Zy < N(0,)

4: ok, o, +— WeightedAnnealing(og, ag, k)
5 Gr(mg) < gr — arxSp(xr, Uk)
6: Tpy1 ¢ T — ’ygk(mk) + /2 Zk
7. — { 2261 vfu(wk+1;uz) with prob. p
: gk+1 = = .
gk + 5 Zlel/ Vfu(:vkﬂ,ul) V fu(xr, uw;), withprob. 1 —p
8: end for

Output:

(1/bu) SN SH(f (@ + pwi) — f(2))u; where b is the batch size. In practice, Langeving algorithms
often experience slow convergence and mode collapse when sampling from high-dimensional, mul-
timodal distributions. Inspired by annealed importance sampling (Neal, [2001; Sun et al., |2024), we
consider a sequence of posterior distributions for each step

T aly) x Ayle)ps @), po(@) = [ p()on (2~ @) dz, ©

where g > a1 >...>ax=--=an_1=1,00>01>... >0 =---=0ny-1~0, and ¢, is the
probability density function of N'(0,021). {ax}n ' and {04 };_, are generally initialized with
large values in practice and they decay to one and almost zero, respectively. Initially, the weighted
posterior, is dominated by a smoothed prior, enabling rapid escape from gradient plateaus where

Vlogm(x) ~ 0. As iterations proceed, the likelihood influence grows and the smoothed posterior

m(,—f’“) sharpens toward the true posterior distribution 7. This annealing accelerates burn-in by first

flattening and then gradually restoring distributional complexity. This process is illustrated with
Figure[5]in Appendix [A]inspired by (Sun et al.,[2024). With the annealing parameters, we can write
the new update rule as

Tpt1 = T + Y (Vf(il:k) - Oéks.g iL‘k70k ) + /27 Z. 7

3.1 PROPOSED METHOD: ZO-APMC

We now introduce our ZO-APMC algorithm and give an intuitive explanation of its variance-
reduction mechanism. ZO gradient estimates (finite-difference, random direction, or coordinate
sampling) are well-known for their high variance, especially in high-dimensional settings (Nes-
terov & Spokoiny, [2017). While despite this high variance, convergence guarantees are typically
attainable in optimization problems (Nesterov & Spokoinyl 2017} |Lan, 2020), our analysis unveils
that the high variance prevents achieving strong convergence guarantees in the posterior sampling
setting without requiring growing batch sizes, thereby rendering the resultant methods prohibitive
in terms of their memory requirements. To resolve this critical issue, we replace the ZO estimate
in (6) with a variance-reduced estimate g;, given in line[7]of ZO-APMC inspired by (Li et al., 2021)
where |I| = b, |I’'| = b’ denote the large and small batch sizes, respectively, and u; ~ N(0, ).
In practice, we set b’ < b, which significantly lowers the average number of function evaluations
per iteration thanks to the reduced variance. With the variance-reduction mechanism inplace, we
present the pseudocode for ZO-APMC in Algorithm [T, Moreover, while we provide the conver-
gence results in Section we now present an upper bound on the estimation error illustrating the
variance-reduction mechanism for ZO posterior sampling.

Assumption 1 We assume that the log-likelihood log ¢(x|y) is Lipschitz continuous with constant
Ly,, namely, for any a1, (yl@1) — log £(y|@2)|| < Ly, [lz1 — a2|.

Remark 1. Assumption [T]is not satisfied under Gaussian noise, where the log-likelihood involves
the squared residual | A(x) —y/||3 and is not Lipschitz. By contrast, with Laplacian noise the log-
likelihood becomes log ¢(y|x) x ||A(x)—yl|1, whose absolute-value residual can admit a global
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Lipschitz bound. In addition, Laplacian noise modeling is widely used in sparse modeling and
imaging to robustly handle heavy-tailed errors and outliers (Chan & Esedoglul 2005} |Boyd & Van-
denberghel 2004; |Rousseeuw & Hubert, |2011)).

Proposition 1 Under Assumption |l| let {$k};1€V:0 denote the iterates produced by |ZO-APMC| for
N > 0 steps. Define the estimation error of the forward-model score as ey, = g, — V f,(xx).
Then, for each step k, the error variance satisfies

4d(1 — p)L3
( p) f g
b/,LLQ

]+pE[qu(wk,ui)ll2]

Efllex|’] < (1—p*)E[lles—1] + b

[k — zp—1|?

The detailed derivation using the law of total covariance can be found in Appendix [A.T.2] Propo-
sition [1| provides an intuition that, thanks to the variance-reduction mechanism, larger batch sizes
and smaller step sizes tend to make the bound dominated by the previous-step error variance with
a contraction factor, which in turn yields progressively reduced estimator variance across iterations.
For clarity, note that our ZO gradient estimator is biased (V f, () # V f(x)), but the bias vanishes
as it — 0. However, this raises the upper bound on the error variance and violates the contraction
property. With an appropriate choice of the step size -, this can be solved. We make this trade-off
explicit in the main results, which follow after the discussion of our convergence criteria.

3.2 OPTIMIZATION VIEW OF LANGEVIN DIFFUSION

Consider the minimization of the Kullback—Leibler (KL) divergence over the Wasserstein space of
probability distributions.

v =argmin KL(v||7) where KL(v|7)= / log Mal:c, 8)
v R4 ﬂ-(w)

where v and 7 denote the estimate and desired posterior, respectively. Similar to the gradient con-
cept in Euclidean space, we can write the Wasserstein gradient of KL(v||7) as V,KL(v|7) =
Vlog(v(x)/m(x)) (Ambrosio et al.L 2008) and its expected square norm gives us the relative Fisher
information (FI) F1(v||w) = j]‘sz [V logv(z) — Viog m(z)||3v(z) dz. If v; evolves under Langevin
diffusion in , then £KL(1||) = —FI(|/w) (Ambrosio et al.| 2008; Villani, 2009), showing
that Langevin diffusion is a gradient flow in probability space. From an optimization viewpoint,
FI(v;||7) serves as the analogue of the squared £, gradient norm in R? (Balasubramanian et al.,
2022)). Leveraging this analogy, we analyze the convergence of FI(v;||7) under a “linear interpo-
lation” of the distributions generated by ZO-APMC, which in turn implies the stationarity of the
discrete updates.

3.3 GENERAL CONVERGENCE RESULTS

In this section, we state our main theoretical results establishing the convergence of ZO-APMC. We
first state our assumptions.

Assumption 2 The log-prior logp(z) is differentiable and Vlogp(x) is Ly, -Lipschitz, i.e.
[IV1ogp(x1) — Vieg p(x2)|| < Ly, |1 — @2 for all 1,22 € R™.

Assumption 3 Let po, () = [pap(2)do, (x — 2)dz denote the smoothed prior, where ¢, is

the probability density function of N (0, O’,%I). We assume that for any o, > 0 and ¢ € R,
IV log py, () — Viogp(x)|| < oxC.

Assumption 4 We assume that the log-likelihood log ¢(x|y) is differentiable and has a Lipschitz
continuous gradient with constant Ly, > 0 for any x1, ©2 € R", that is, ||Vlog{(y|x,) —
Viog l(yl@2)[| < Ly [la1 — 2.

Assumption 5 For any o, > 0 and all © € RY the score network satisfies ||Sp(x, o) —
Viogpe, ()| < €5, < 00 and ||Sg(z,0k)|| < Rs.

Assumptions [2] and ] correspond to standard conditions commonly adopted in the non-log-concave
sampling literature (He & Zhang|, 2025} |Guo et al., [2024; [Balasubramanian et al., 2022)), and As-
sumption [3| captures the perturbation of the prior as in (Sun et al.l 2024). Assumption [5] imposes
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boundedness on both the score-network error and its output. The bounded error is a standard and
essential requirement for the theoretical analysis of sampling with SGM priors (Sun et al., 2024;
Lee et al.,|2023; |Wu et al., 2024} [Lee et al., 20225 |Chen et al., 2023, and the bounded output can be
easily implemented in practice via simple clipping. Notably, unlike related works (Sun et al.| 2024;
Yang & Wibisono), 2022; |Lee et al.,[2022)), we do not assume Lipschitz continuity of the SGM prior.
Moreover, none of our assumptions restricts the likelihood distribution to be log-concave. Under
these standard assumptions, we prove the convergence of ZO-APMC.

Theorem 1 Let {ak}g;ol, {ak}g:’ol be decreasing annealing schedules with o, ny—1 = 1, and
let {v4}+>0 denote the law of the continuous interpolation of {x } ¥_, produced by|ZO-APMC with

N > 0 iterations under Assumptions For any step size v € (0,1/(Ly+/85¢(1))], where

é(p) =1+ 4(1 — p)d/puV/, the Fisher information satisfies

17d(d +2)L%, 1715 (d+ 3)°
2b + 8

1
N~

=2 | =2 | =2
+0° +&, +a q,

)
where Ly, = max{L,, Ls,}, Co = 2KL(1p||7) + 10vE||go — V fu(0)||>/pLm /856 (), 52 =
e ff;ol of, &2 =2L ZQEOI g2 anda* | = 2% kN;Ol (g — 1)2R2. Furthermore, suppose
the parameters and schedules are chosen as v = \/Cy/(2L/Ndg(p)), b = [51d(d + 2)Lff2 /€],
p = 1/b, u=2y/e/V/51Ly, (d+ 3)%? with annealing schedules o, = O(n™"), a;, = 1+0(n=F)
for B > 1/2, and score-network error satisfying ¢,, = O(n=?) for 3>1/2. Then an e-approximate
solution to @) can be obtained with N = O(d7Lg1 / 54) forward-model evaluations, using a fixed
evaluation budget pb = O(1) per iteration on average.

N~ CO )
Fl(v||m) dt < —— +8yL;,do(u) +
0 N~

Theorem [I] (proof provided in Appendix [A.1.3)) shows ZO-APMC achieves e-approximate solution
in the Fisher information sense with N = O(d7L9n / 54) forward-model evaluations and using a
fixed evaluation budget pb = O(1) per iteration.

Remark 2. In practice, the annealing schedules {an},i\:ol and {an}fc\:ol are typically implemented
using geometric decay (Sun et al.| 2024; Song & Ermon| 2019), which decreases more rapidly than
the polynomial rates selected for our analysis. Moreover, the condition ¢, = O(n=") with 8 > %
characterizes the decay of the SGM generalization complexity across each noise level at step n.
Recent studies on the generalization of SGMs report similar rates as the one used in our analysis (Fu
& Lee, [2025 |Zhang et al., |2024; |Oko et al., [2023)).

Leveraging the results of Theorem [T} we show that if the target posterior 7 further satisfies the
Poincaré inequality, ZO-AMPC enjoys stronger sampling guarantees in total variation distance.

Assumption 6 For every smooth, compactly supported function f : R* =R, the posterior distribu-
tion w(x|y) satisfies the Poincaré inequality Var, (f) < CpiFI(v||).

Corollary 1 Let {vi},-, denote the law of the continuous interpolation {xi}N_, of ZO-APMC,
and let the Assumptions Assumptionshold. Then, if we choose v = /CoCp1/2L+/Ndo(p),

we have

CoCp1de(11) n 34d(d + 2)Ce1L7,
N b

17
|on~ — 7|lTv < 16Ly, + ?/,LQCPILQI(d—F 3)3

+4Cp1(5'2+53+@2,1) (10)

where Uy, = (Nv)™* fON’y vdt. If we choose b = [204d(d + 2)CpiL3, /e], p = 1/b, p =
VE/Ly, (d + 3)3/2\/51Cp; with annealing schedules o, = O(n™?), a,, = O(n=?) for § > 1/2
and assuming ,, = O(n=P) for B > 1/2, an e-approximate solution to requires N =
O(d"LS,C3, /) forward model evaluations, using a fixed (pb = O(1)) evaluation per iteration.

Theorem [I] (proof provided in Appendix [A.T.4) shows ZO-APMC achieves e-approximate solution
in the stronger total variation sense with N = O(d"L8 C2,/e*) forward-model evaluations and
using a fixed evaluation budget pb = O(1) per iteration.
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Remark 3. To generate a sample from 7., one may proceed as follows. First, draw a time ¢ €
[0, Ny] uniformly at random and determine the largest integer & such that ky < ¢. Then perform a
linear interpolation between the interval [k+, t] to produce x; according to the update rule in line 7

of The resulting @, is sample from oy

Lastly, we establish the asymptotic convergence of the averaged ZO-APMC algorithm, with appro-
priately decaying hyperparameters, to the target posterior distribution under mild conditions.

Theorem 2 Let {1, };>0 denote the law of the continuous interpolation {xy }¥_, produced by ZO-
APMC, and suppose Assumptions [IH3 hold for ; if ZO-APMC is initialized at a measure vy with
KL(v||7) < 0o and uses v, = V' /(nLym\/680d), b, = [n'/?], pp = n= 2, p, = n= /%, and
on = O(n~P) and if 2 = O(n=P) for B > 0, then v, — m weakly, where 7, = > _j_, vk and
Ur, = Tn_l OTn v dt.

We present the complete proof in Appendix [A.1.5] To the best of our knowledge, this is the first
work to establish weak convergence of ZO Langevin MC and ZO posterior sampling algorithms for
non-log-concave distributions. This result follows directly from Theorem [I] together with the fact
that FI(u||7) = 0 implies ;» = 7. We also emphasize the key role of our proposed estimator (7) in
establishing this result with a fixed evaluation budget pb = O(1) per iteration.

4 EXPERIMENTS

Baselines. Our primary focus is on gradient-free methods, which assume only black-box access
to the forward model. We therefore benchmark against three gradient-free baselines: SCG
et al}[2024), DPG (Tang et al.| [2024), and EnKG 2024). We also include the Forward-
GSG and Central-GSG baselines, introduced by 2024). These methods resemble
Diffusion Posterior Sampling (DPS) (Chung et al.| 2022) but approximate the forward-model gra-
dient using Tweedie’s formula together with forward and central ZO estimates of the forward score
function. For completeness, we also evaluate gradient-based methods in settings where the forward-
model gradient is available. Specifically, we compare our algorithm with DPS (Chung et al,[2022),
PnPDM 2024), and APMC [2024), which is an annealed Langevin MC poste-

rior sampling algorithm with gradient access and the closest approach to ours.

4.1 Toy EXPERIMENTS

Numerical Validation. We test our theory that ZO-APMC converges in FI with fixed per-
iteration cost on a synthetic bimodal 2D Gaussian-mixture prior with random A with £ ~ N(0, T).
Using the analytical score
with added Gaussian noise
e+ = 2.5 to mimic SGM
error, we generate 1000
samples with ZO-APMC e
from 20 random initializa- 2w
tions and report the mean

FI relative to the analyt- P o ‘ ey "

ical posterior. ~ Fig. [[h © Ol Fome M Ownl  Femie  we  owan Fomie e
shows that with b = X \
10, ¥ = 5, ZO-APMC
converges near zero for
p € {1,0.75,0.5}, match-
ing gradient-based APMC
but becoming unstable at
p = 0.3 due to fixed
b. Fig. [Ib shows that in-
creasing b while keeping
pb = 10 restores stability
and achieves convergence
(FI < 0.01), confirming
our theoretical results.

(a) effect of p on convergence (b) fixed-budget per-iteration results

Figure 1: (a) Convergence of ZO-APMC with b = 10, b’ = 5, and
ek~ = 2.5 for various p, alongside APMC convergence with gradient
access. (b) Convergence results for fixed-budget per-iteration. Each
red “x”” marks cases where the FI falls below 0.01 after 2000 iterations
for the corresponding p and b. (c) Comparison of sample statistics
obtained by ZO-APMC and APMC versus the ground-truth posterior.
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Table 1: Quantitative comparison with baselines. Ground-truth APMC ZO-APMC
The best values of each metric for black-box and
gradient-access settings are highlighted in bold
and underline, respectively.

PSNR (dB)t SSIM{ NRMSE| SD|  MSE|

PnPDM 30.81 0946  3.76e-2 2.16e2 8.46c-4
DPS 34.38 0965  254e-2  2.06e2 4.07c-4 s

APMC 36.55 0.973 1.99e-2 2.0e-:2  2.55e-4 gradient-access black-box
Forward-GSG 27.8 0918 5422 32602 19.1ed 1o . . . .
Central-GSG 2778 0917 5432 32702 19204 Figure 2: Visual comparison of pathological
SCG 7.1 0711 7.67 138 021 ; ; ; _
Bt 217 0053 sah a6z sy Drain MRIwith corresponding PSNR values ob
EnkKG 3132 0934 5722 2922 6724 tained using APMC with gradient access and

ZO-APMC (ours) 35.29 0966 2282 2992 3294 7(O)-APMC in the black-box setting.

Statistical Validation. We assess ZO-APMC'’s ability to sample from multiple modes of a multi-
modal distribution under black-box conditions. Using the same setup as our previous validation with
random A € R'15x1024 'we construct a two-mode Gaussian mixture prior from CelebA (Liu et al.|
2018) images normalized to [0, 1], where the “male” and “female” attributes define the modes. To
ensure clear separation between the modes, we shift them by +1 and —1, respectively. A shallow
SGM is then trained by customizing the U-Net from (Nichol & Dhariwal, 2021) for this data. As
shown in Fig. , Z0O-APMC with p=0.5, b=50, b’ =5, accurately recovers the posterior statistics
of both modes, comparable to APMC with gradient access, though with slightly higher variance due
to ZO estimation, which can be mitigated by increasing b. For extended results and further details
of validations, see Appendix[A.2]

4.2 MAGNETIC RESONANCE IMAGING (MRI)

Image inverse problems (i.e., MRI recon.) are widely used benchmarks. Although we focus on
more challenging black-box forward models, we also evaluate our method on the linear MRI recon.
problem for completeness and demonstrate the capability of our variance-reduction mechanism on
high-resolution data.

Problem Setting We consider the radial subsampling mask with acceleration factor of 4x. For
evaluation, we use the SGM prior from |Sun et al.| (2024), which was pre-trained on the FastMRI
brain dataset (Zbontar et al.,|[1811]), and evaluate all algorithms on a separate test set provided in that
work to ensure a consistent comparison. We randomly select 40 images at a resolution of 256 x 256
pixels and generate 20 reconstructions per algorithm. For each method, we report the mean image-
quality metrics along with the average per-pixel standard deviation (SD). In this experiment, we use
p=0.2,b=10% and ¥ = 102 to run ZO-APMC.

Results Table[I]shows that ZO-APMC consistently achieve higher reconstruction quality than other
black-box baselines in all image quality metrics and closely matches the APMC with gradient ac-
cess. Fig.|2| further demonstrates that both ZO-APMC and APMC yield visually indistinguishable
pathological brain MRI reconstructions, with ZO-APMC accurately capturing fine details without
gradient information. Our method yields slightly higher standard deviation than DPG but this can
be alleviated by increasing p, albeit at increased computational cost.

4.3 BLACK-HOLE IMAGING

Problem Setting The black-hole interferometric imaging system reconstructs images of black holes
from “visibility” measurements collected by Earth-based telescope arrays. We adopt the SGM prior
(pre-trained on the GRMHD dataset at 64 x 64 resolution), the highly non-linear forward model,
and the 100-sample test set, as provided by the InverseBench benchmark (Zheng et al.| 2025} [Wong
et al., [2022). For each method, we generate five samples and report their mean results. Since the
resolution of the images are low, we use p = 1 with b = 1024. Evaluation is based on the chi-
square errors of the closure phases (Xfph) and closure amplitudes (Xfamp), which quantify how well
the reconstructions fit the measurements. Because the black-hole imaging system captures only low
spatial frequencies, we follow |Akiyama et al. (2019) and compute PSNR for both the original and
blurred reconstructions at the system’s intrinsic resolution.

Results Fig. 3] shows two examples of black-hole reconstructions of our ZO-APMC method and
other gradient-free baselines against the ground truth. ZO-APMC yields black-hole reconstructions
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Ground-truth Z0O-APMC EnKG Forward-GSG Central-GSG SCG DPG
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Figure 3: Visualization of samples generated for the black-hole imaging inverse problem. Recon-
structions of two examples by gradient-free methods are shown in the top and bottom rows.
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Figure 4: Visualization of results on
Navier-Stokes inverse problem.
with visual characteristics most closely match the ground truth among other baselines. Table 2]
shows the quantitative comparison. ZO-APMC outperforms all baselines across metrics except SD,
which can be mitigated by increasing batch size b at additional cost.

4.4 NAVIER-STOKES EQUATION

Problem Setting The Navier—Stokes equation is a standard fluid-dynamics benchmark (Iglesias
et al., 2013)), widely used from ocean dynamics to climate modeling, where atmospheric observa-
tions calibrate initial conditions for numerical forecasts. Computing forward-model gradients via
auto-differentiation is impractical because it requires differentiating through a PDE solver. We eval-
uate the gradient-free methods on 10 test samples from InverseBench using the SGM prior provided
by the benchmark, generating five reconstructions per method and reporting the mean performance.
We report the NRMSE (relative {5 error) to evaluate the accuracy of reconstructions with sample
SD. For additional details on the experiments, and ablation studies, please refer to Appendix ??.

Results. Fig. d]demonstrates that ZO-APMC produces solutions that qualitatively preserve key flow
features, comparable to EnKG and DPG, while SCG fails. Moreover, EnKG yields noticeably nois-
ier reconstructions than ZO-APMC. Additional quantitative results and more representative cases,
showing our algorithm’s performance comparable to the baselines, are provided in Appendix ??.

5 CONCLUSION

We proposed ZO-APMC, the first provable derivative-free framework for posterior sampling with
a pre-trained SGM prior. It provides non-asymptotic complexity guarantees for reaching an e-
relative Fisher information stationary point and provably converges to the target posterior under mild
assumptions using only forward-model evaluations. Toy experiments confirm that our variance-
reduction scheme with fixed per-iteration cost ensures convergence in Fisher information across
batch sizes, while the annealing mechanism enables accurate sampling from multimodal distribu-
tions. On both linear and highly non-linear inverse problems, ZO-APMC matches the performance
of state-of-the-art gradient-free methods. The main limitations are higher runtime than gradient-
based methods due to Langevin diffusion and the absence of manifold projection as in Chung
et al.|(2022). Future work includes extending our theoretical analysis with Riemannian zeroth-order
derivative estimation (Li et al., 2023)) and incorporating faster sampling methods (Yin et al.| 2024;
Song et al., [2023c).
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6 REPRODUCIBILITY STATEMENT

The full design of the toy experiments is detailed in Appendix [A.2] For image-based experi-
ments, we employed publicly available datasets. For all inverse problems other than brain MRI,
we adopted the forward models from the reference implementations provided by the InverseBench
benchmark Zheng et al.| (2025)), while for brain MRI experiments we followed the implementation
of [Sun et al.| (2024). Furthermore, we use the original implementations of all baseline methods and
include our code as supplementary material with the submission.

REFERENCES

Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azulay, Anne-Kathrin
Baczko, David Ball, Mislav Balokovié, John Barrett, Dan Bintley, et al. First m87 event horizon
telescope results. iv. imaging the central supermassive black hole. The Astrophysical Journal
Letters, 875(1):L4, 2019.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows in Metric Spaces and in the
Space of Probability Measures. Lectures in Mathematics ETH Ziirich. Birkhduser Verlag, Basel,
2nd edition, 2008.

Krishna Balasubramanian, Sinho Chewi, Murat A Erdogdu, Adil Salim, and Shunshi Zhang. To-
wards a theory of non-log-concave sampling: first-order stationarity guarantees for langevin
monte carlo. In Conference on Learning Theory, pp. 2896-2923. PMLR, 2022.

Charles A Bouman and Gregery T Buzzard. Generative plug and play: Posterior sampling for
inverse problems. In 2023 59th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 1-7. IEEE, 2023.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Andrew A Chael, Michael D Johnson, Katherine L Bouman, Lindy L Blackburn, Kazunori
Akiyama, and Ramesh Narayan. Interferometric imaging directly with closure phases and closure
amplitudes. The Astrophysical Journal, 857(1):23, 2018.

Tony F Chan and Selim Esedoglu. Aspects of total variation regularized 1 1 function approximation.
SIAM Journal on Applied Mathematics, 65(5):1817-1837, 2005.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735-4763. PMLR, 2023.

Sinho Chewi, Murat A Erdogdu, Mufan Li, Ruoqi Shen, and Matthew S Zhang. Analysis of langevin
monte carlo from poincare to log-sobolev. Foundations of Computational Mathematics, pp. 1-51,
2024.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

Hyungjin Chung, Jeongsol Kim, Sehui Kim, and Jong Chul Ye. Parallel diffusion models of operator
and image for blind inverse problems. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6059-6069, 2023.

Florentin Coeurdoux, Nicolas Dobigeon, and Pierre Chainais. Plug-and-play split gibbs sampler:
embedding deep generative priors in bayesian inference. IEEE Transactions on Image Processing,
33:3496-3507, 2024.

Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Ye, Peyman Milan-
far, Alexandros G. Dimakis, and Mauricio Delbracio. A survey on diffusion models for inverse
problems, 2024. URL https://arxiv.org/abs/2410.00083|

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Associa-
tion, 106(496):1602-1614, 2011.

10


https://arxiv.org/abs/2410.00083

Under review as a conference paper at ICLR 2026

Geir Evensen and Peter Jan Van Leeuwen. Assimilation of geosat altimeter data for the agulhas
current using the ensemble kalman filter with a quasigeostrophic model. Monthly weather review,
124(1):85-96, 1996.

Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, and
William T Freeman. Score-based diffusion models as principled priors for inverse imaging. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10520-10531,
2023.

Guoji Fu and Wee Sun Lee. Approximation and generalization abilities of score-based neural net-
work generative models for sub-gaussian distributions. arXiv preprint arXiv:2505.10880, 2025.

Arnaud Guillin, Christian Léonard, Liming Wu, and Nian Yao. Transportation-information inequal-
ities for markov processes. Probability theory and related fields, 144(3):669—695, 2009.

Wei Guo, Molei Tao, and Yongxin Chen. Provable benefit of annealed langevin monte carlo for
non-log-concave sampling. arXiv preprint arXiv:2407.16936, 2024.

Ye He, Kevin Rojas, and Molei Tao. Zeroth-order sampling methods for non-log-concave distribu-
tions: Alleviating metastability by denoising diffusion. Advances in Neural Information Process-
ing Systems, 37:71122-71161, 2024.

Yinnian He and Weiwei Sun. Stability and convergence of the crank—nicolson/adams—bashforth
scheme for the time-dependent navier—stokes equations. SIAM Journal on Numerical Analysis,
45(2):837-869, 2007.

Yuchen He and Chihao Zhang. On the query complexity of sampling from non-log-concave distri-
butions. arXiv preprint arXiv:2502.06200, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli S Sas-
try, Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with non-
differentiable rule guided diffusion. arXiv preprint arXiv:2402.14285, 2024.

Aapo Hyvirinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Marco A Iglesias, Kody JH Law, and Andrew M Stuart. Ensemble kalman methods for inverse
problems. Inverse Problems, 29(4):045001, 2013.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. Robust
compressed sensing mri with deep generative priors. Advances in neural information processing
systems, 34:14938-14954, 2021.

Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochas-
tically. Advances in Neural Information Processing Systems, 34:21757-21769, 2021.

Jonas Knape and Perry De Valpine. Fitting complex population models by combining particle filters
with markov chain monte carlo. Ecology, 93(2):256-263, 2012.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.
Springer, 2020.

Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and Marcelo
Pereyra. Bayesian imaging using plug & play priors: when langevin meets tweedie. STAM Journal
on Imaging Sciences, 15(2):701-737, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with

polynomial complexity. Advances in Neural Information Processing Systems, 35:22870-22882,
2022.

11



Under review as a conference paper at ICLR 2026

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for
general data distributions. In International Conference on Algorithmic Learning Theory, pp.
946-985. PMLR, 2023.

Jiaxiang Li, Krishnakumar Balasubramanian, and Shigian Ma. Stochastic zeroth-order riemannian
derivative estimation and optimization. Mathematics of Operations Research, 48(2):1183-1211,
2023.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtdrik. Page: A simple and optimal prob-
abilistic gradient estimator for nonconvex optimization. In International conference on machine
learning, pp. 6286-6295. PMLR, 2021.

Jiaming Liu, Rushil Anirudh, Jayaraman J Thiagarajan, Stewart He, K Aditya Mohan, Ulugbek S
Kamilov, and Hyojin Kim. Dolce: A model-based probabilistic diffusion framework for limited-
angle ct reconstruction. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 10498-10508, 2023.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15(2018):11, 2018.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125-139, 2001.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527-566, 2017.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162-8171. PMLR, 2021.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distri-
bution estimators. In International Conference on Machine Learning, pp. 26517-26582. PMLR,
2023.

Dean S Oliver, Albert C Reynolds, and Ning Liu. Inverse theory for petroleum reservoir character-
ization and history matching. 2008.

Peter J Rousseeuw and Mia Hubert. Robust statistics for outlier detection. Wiley interdisciplinary
reviews: Data mining and knowledge discovery, 1(1):73-79, 2011.

Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay Shakkot-
tai. Solving linear inverse problems provably via posterior sampling with latent diffusion models.
Advances in Neural Information Processing Systems, 36:49960-49990, 2023.

Litu Rout, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai,
and Wen-Sheng Chu. Rb-modulation: Training-free personalization of diffusion models using
stochastic optimal control. arXiv preprint arXiv:2405.17401, 2024.

Abhishek Roy, Lingqging Shen, Krishnakumar Balasubramanian, and Saeed Ghadimi. Stochastic
zeroth-order discretizations of langevin diffusions for bayesian inference. Bernoulli, 28(3):1810—
1834, 2022.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023a.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pp. 32483-32498. PMLR, 2023b.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438-12448, 2020.

12



Under review as a conference paper at ICLR 2026

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
with score-based generative models. arXiv preprint arXiv:2111.08005, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023c.

He Sun and Katherine L. Bouman. Deep probabilistic imaging: Uncertainty quantification and multi-
modal solution characterization for computational imaging. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 35, pp. 2628-2637, 2021.

Yu Sun, Zihui Wu, Yifan Chen, Berthy T Feng, and Katherine L Bouman. Provable probabilistic
imaging using score-based generative priors. [IEEE Transactions on Computational Imaging,
2024.

Haoyue Tang, Tian Xie, Aosong Feng, Hanyu Wang, Chenyang Zhang, and Yang Bai. Solving gen-
eral noisy inverse problem via posterior sampling: A policy gradient viewpoint. In International
Conference on Artificial Intelligence and Statistics, pp. 2116-2124. PMLR, 2024.

Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
2009.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661-1674, 2011.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490, 2022.

George N Wong, Ben S Prather, Vedant Dhruv, Benjamin R Ryan, Monika Moscibrodzka, Chi-kwan
Chan, Abhishek V Joshi, Ricardo Yarza, Angelo Ricarte, Hotaka Shiokawa, et al. Patoka: Simu-
lating electromagnetic observables of black hole accretion. The Astrophysical Journal Supplement
Series, 259(2):64, 2022.

Zihui Wu, Yu Sun, Yifan Chen, Bingliang Zhang, Yisong Yue, and Katherine Bouman. Princi-
pled probabilistic imaging using diffusion models as plug-and-play priors. Advances in Neural
Information Processing Systems, 37:118389-118427, 2024.

Kaylee Yingxi Yang and Andre Wibisono. Convergence of the inexact langevin algorithm and score-
based generative models in kl divergence. arXiv preprint arXiv:2211.01512, 2022.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1-39, 2023.

Tianwei Yin, Micha€l Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 6613-6623, 2024.

J Zbontar, F Knoll, A Sriram, T Murrell, Z Huang, MJ Muckley, A Defazio, R Stern, P Johnson,
M Bruno, et al. fastmri: An open dataset and benchmarks for accelerated mri. arxiv 2018. arXiv
preprint arXiv:1811.08839, 1811.

Kaihong Zhang, Caitlyn H Yin, Feng Liang, and Jingbo Liu. Minimax optimality of score-based dif-
fusion models: Beyond the density lower bound assumptions. arXiv preprint arXiv:2402.15602,
2024.

Hongkai Zheng, Wenda Chu, Austin Wang, Nikola Kovachki, Ricardo Baptista, and Yisong Yue. En-

semble kalman diffusion guidance: A derivative-free method for inverse problems. arXiv preprint
arXiv:2409.20175, 2024.

13



Under review as a conference paper at ICLR 2026

Hongkai Zheng, Wenda Chu, Bingliang Zhang, Zihui Wu, Austin Wang, Berthy T Feng, Caifeng
Zou, Yu Sun, Nikola Kovachki, Zachary E Ross, et al. Inversebench: Benchmarking plug-and-
play diffusion priors for inverse problems in physical sciences. arXiv preprint arXiv:2503.11043,
2025.

A APPENDIX
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Figure 5: Illustrating how weighted annealing improves the convergence of PMC algorithms by

introducing weighted posteriors {m,if’“)}. The solid lines and shaded regions indicate the mean
and probability density of the distribution, respectively, while the unshaded area corresponds to
V log p(a) =0. Weighted annealing helps the vanilla PMC algorithm escape plateaus in V log p(x)
by gradually reducing the prior’s smoothing parameter o, and its weight w.r.t. the likelihood ¢.

A.1 PROOFS

Notation. Throughout the proof, we work within the probability space (2, F,P), where (2 denotes
the sample space, F the o-algebra, and P the probability measure. For a random variable X : 2 —
R™, we write its expectation as

E[X] = /Q ¢ (w) P(dw).

The posterior distribution of interest is of the form

m(z|y) < L(y|z)p(zx),

where we define f(xz) = —logl(y|x) and h(x) = —logp(x). Moreover, the gradient of the
perturbed log-prior is denoted by Vh,, () = —V log p,, (x). For simplicity, we omit the explicit
dependence on y. Recall that

—Vlegn(x) = Vf(x) + Vh(x). (11)

We denote the zeroth-order approximation of the forward model gradient as follows

@fy(mk'yyu) — f(xk'y + N'l;) B f(wk’y)u’ (12)

where u ~ N(0,7) and 1 > 0. The expectation of the zeroth-order approximation is denoted as

Viu(@ry) =E, [ﬁfﬂ (T, u)} . For notational convenience, we also define

A = E[| g1y — 214 1% (13)

as the expected squared /5-distance between consecutive iterates. For convenience, we recall the
definition of the Kullback-Leibler (KL) divergence between two probability densities v and 7:

KL(v|7) = / v(z)log Zg; dz.
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Table 3: A conceptual overview of posterior sampling approaches for probabilistic imaging. The
“Annealing” column highlights distinctions among MCMC-based methods. The “Black-box ac-
cess” column shows whether the corresponding method assumes black-box access and works when
gradients of the forward model is unavailable. The A(-) column shows the assumption on the type
of forward model. This table extends that of |Sun et al.|(2024) by incorporating additional black-box
posterior sampling algorithms.

Category Reference Generatlve Model agnostic A(-) Convergence Annealing Black-box
prior guarantees access
Variational (Sun & X X General X - X
Bayesian Bouman)
2021)
(Feng et al., v/ X General X - X
2023)
(Song et al., v v Linear X - X
DM-based 2021)
(Chung v v General X - X
et al.|2022)
(Liu et all v X Linear X - X
2023)
(Tang et al., v X General X - v
2024)
(Huang v/ X General X - v
et al.,|2024)
(Zheng v X General X - v
et al.,[2024)
(Jalal et al.l v v Linear Ve v X
2021)
MCMC-based (Kawar v v Linear X v X
et al.,|2021)
(Laumont X v General v X X
et al.,|2022)
(Coeurdoux v v Linear X X X
et al.| [2024)
(Bouman X v Linear Ve X X
& Buzzard|
2023)
(Sun et al. v v General v v X
2024)
MCMC-based Ours v v General v v v

'Requires A(-) to be a Gaussian random matrix. 2Guarantees on asymptotic convergence.

The Fisher information (FI) is given by

v(x 2
Fl(v|m) = / |V log W%qﬂ; HQV(I') dzx = / |V logv(z) — Vg n(x)||3v(x) dx.
R R”

The Total Variation (TV) distance between two probability measures © and v on a measurable space
(X, F) is given b by
1
In=vllay = suplud) = o(A)] = 3 [ |du—av].
AeF X
[

Unless otherwise stated, || - || denotes the squared f3-norm, i.e. || - ||3.

A.1.1 LEMMAS

We begin by reviewing the key lemmas from the zeroth-order optimization and non-log-concave
sampling literature. The following section summarizes the fundamental properties of zeroth-order
approximations that will be used in our analysis.
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Lemma 1 ((Lan}2020)) Suppose that f(x) € C}", and let f,(x) = Ey[f(x + pu)]. Then the
following statements hold:

(a) fu € CLYRY), where L, < L,

(b) IV fu(@) - VI(@)| < LuL(d+3)2,

() EulllVfu(e,w)|?] < 30°L3(d+6)° +2(d + 4)[|V f (@)

2
2

where V f,,(z,u) := Muforu ~ N(0,1,) and any = € R?, i > 0.

The following lemma concerns the density evolution of an interpolated diffusion process.

Lemma 2 ((Balasubramanian et al., 2022))) Consider the stochastic process defined by
Ty = Ty — tg() + \/éBt, with go = g(:co), g ~ 1 (14)
where gq is integrable and { B, };>¢ is a standard Brownian motion in R4 independent of (o, go).

Then, writing v for the probability density of x:, we have

d 3
T KLwillm) < =2Fl(n|m) + B [V f(0) - g0l (15)

where we recall that ™ « e~ 7, and the expectation in the last term is with respect to xo ~ vy and
Ty ~ V.

We also used the following lemma to bound the Fisher information, which is taken from (Chew1
et al., 2024).

Lemma 3 ((Chewi et all,[2024)) Assume that V log w(x) is L-Lipschitz. For any probability mea-
sure v, it holds that
E, [|[Vlogw(z)|?] < FI(v|7) + 2dL,. (16)

We use the following lemma to derive an upper bound on Total Variation (TV) distance.

Lemma 4 ((Guillin et al., 2009)) If 7 satisfies a Poincaré inequality, i.e. for every smooth, com-
pactly supported f : R* — R,

Varr(f) < CpiE[[|Vf?],

then for any probability measure [,
|

A.1.2 PROOF OF PROPOSITION 1

p—rlty < 4CprFI(p|m).

For simplicity, let our PAGE estimator be defined as

1 .
EZVfM(:L'k,ui), By, = ref,
g =< €y 3 N (17)
gr—1+ v Z (Vfu(fck,ui) - Vfu(mk—l,ui)), By, = corr,
el

where “ref” and “corr” denote the “refresh” and “correction” branches of the estimate and B, €
{corr, ref} is a random variable such that P( By, =ref) = p and P(Bj, =corr) = 1 — p. Additionally,
define the mini-batch estimators as

vp()) = %Zﬁfu(a’kvui) and dj = %Z (@fp(fﬂk,ui) - 6JCM(iITICA,UJi)) ,  (18)

i€l i€l
where |I| = band |I'| = V. Then, gj, can be written as

ﬁb(xk)a By, = ref,
gi = (19)
gk—1+ 0k, By = corr.

16
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Let Fi = o(xo, B1, Z1,u1,. .., Tk, B, Z, ui) be the sigma-algebra generated by all the ran-
dom variables revealed up to the end of iteration k. From @, recall that Z;, is due to the discretiza-
tion of the Langevin diffusion. Then, conditioning on the history F;_1 and on xj, we have

E[Oy(zr)| Fr-1, k] = Vu(xr), Elop|Fr1,2k] = Viu(xr) = ViTr-1). (20

Then, we have E[gy|Fr—1, xr] = V f. (). Using this property inductively, we can obtain E[g;| =
E[V f. ()] after taking the expectation of both sides. Therefore, if we define the error as ej, =
gr — Vfu(xk), then E[eg] = 0, which implies that g;, is unbiased estimate of V f,,(x). Let’s
consider the error propagation at each branch separately.

For the correction branch, assume Bj, = corr is true. We can define zero-mean fluctuation at step
k as
Oy, = O — E[0p| Fr—1, 1], (21)

where E[0y|Fj,_1|@x] = 0. Then,
er =gk — Viuxr) = g1 — Viu(®r-1) +0x — (Viu(zr) = VS u(xr-1))
ep_1
= ex—1+ 0. (22)

Note that u; ~ N(0, I) random vectors selected at step k are independent of the ones selected at
step k — 1. Therefore, &y, is conditionally independent of ej_1, so we can write

Cov(eg|Fk—1, Tk, Br, = corr) = Cov(eg—1|Fr—1) + Cov(5k|fk_1,a:k). (23)

In the refresh branch, we have By, = ref. Then, the error term can be written as e, = 0p(xy) —
V f.(xx) and its covariance is

Cov(e|Fr—1,xk, B = corr) = Xp(xy), (24)
where Xy, (xy) = %Cov(@fmu(wk, u,;)). Furthermore, using the definition of ej,, we have
Elex|Fr—1,xk, By, = cort] = e, and Elex|Fi—1,xk, By, = ref] = 0. (25)

Using the law of total variance, we can write the covariance matrix conditioned on the history
Fr_1 and x;, as

COV(6k|]:/C_1, wk) = E[Cov(ek\fk_l, T, Bk)] + Cov (E[€k|fk_1, Tk, Bk]) . (26)
If we plug (23) and (24) with the conditional means in (23), we get

Cov(eg|Fr—1,zx) = (1-p) (COV(ek—ﬂ]:k—ﬁ + COV(Skl]:k—l,wk))+p2b(ﬂ%)+p(1—p)6k—16£_1-
(27
Taking the expectation of both sides, we get
Cov(er) = (1 —p?)Cov(er_1) + (1 — p)E[Cov(ds)] + pE[Ss ()] (28)
The factor (1 — p?) is the contraction on the previous error covariance in expectation. Note that u;

are i.i.d. and recalling the definition of Sk, we have

2

- 4dL?, )
COV((S]@) j COV((sk) j WH:B;C — :Bk,1|| I, (29)

where we use the Assumption [I| to get the second inequality. This shows that the correction-step
noise is small when the iterate moves only a little between steps. Taking the trace of both sides

in (28) and plugging (29), we get

Cov(er) =< (1 — p?)Cov(er_1) + 4d(1 —p)Lj,

2
gz Bl — @1+ pES @) G0

Equivalently, this can be written as

4d(1 — p)L3

( p) hy
b/ﬂ'2

where o7 < 0% and o (x) := Tr (Cov(@f#(a:, uz))>

Efllex ] < (1 = p*)E[llex—1]*] + [l — ax—1]1?] + %02, G

17



Under review as a conference paper at ICLR 2026

A.1.3 PROOF OF THEOREM 1
We can construct the following interpolation for ZO-APMC
Ty = Xy — (t — k7)G (k) + V2(By — By,) for t € [ky, (k+1)7] (32)

where G () = gr —arSo(xx~), gk is an estimate of the forward model gradient with zeroth-order
approximation and variance-reduction mechanism, «j and oy are annealing parameters. By As-
sumption. and.and triangle inequality, we know that the target posterior score function V log 7 ()
is Lipschitz continuous with LlpSChltZ constant L, = L, + Ly,. Furthermore, by Assumptions [3|
and[3] the error between the prior score function and the score estimate scaled by annealing param-
eter can be bounded by

Vh(xry) + arSo(Try)|| < 0kC + e6y, + (i — 1) Ry, (33)

where we recall Vh(xy,) = —V log p(xy). Note that we add and subtract Vh,, (k) and use
triangle inequality. Now we can provide the proof for Theorem 1. Combining Lemma [2] with the
interpolation argument in (32), it follows that for every ¢ € [kv, (k + 1)7],

d 3
%KL(VtHW) < —ZFI(VtHW) +E[[[Viogm(z:) + gr — arSo (i, on)|?] - (34)

Adding and subtracting the following values V f,, (), V f (kv ), VA(Zky), VAo, (1) inside the
expectation and using the convexity of ¢ norm with the upper bound in (33)), we get

d 3
Z KL(llm) < = - Fl(we|m) + 4E [llgr = V fu(@iy)|I?] +4L2E [[|@; — @4y ]
+ pPL% (d+ 3)* + 4(0,C + €4, + (a — 1)Ry)?. (35)

Lete? = E [H gk — Vfu(Xiy) HQ} , which quantifies the squared error between the zeroth-order

estimate gj and the true score V f,,(xy+) of the p-perturbed forward model. Here the expectation
is taken with respect to both the randomness of the zeroth-order approximation and the measure Fy
associated with the data . Note that the bias term due to the zeroth-order approximation appears
as the fourth term of the previous inequality. Using the definition of g, we can expand the error
term as

2

b
Z (@1t 1)y wi)

c~\>—l

ei+1 =pE

‘Vfu T (1)) —

b’ 2

1 ~ -
+ (L= P E| | Vhu@r1) =96 = 55 2 (VEu@r 1y wi) = Vi@, w))
i=1
(36)
where b, b denote the small and large batch sizes, respectively, and u; ~ N(0, ) in R, We can
upper bound the first expectation as
2

b
1 ~ 1 -
E vau(w(lwrl)w) 3 > Vi@t wi)| | < E [vau(w(lHI)W) = Vu(®ks1)y> i)
=1
(37)
1 _ 2
< E [va(m“)wui) } (38)
L2
f2 4
< .
< —L2E [l (39)
d(d+2)L>
— ﬂ (40)

b

n (37), we use the fact that the random variables u; are i.i.d. In (38), we use the second-moment
bound on the variance. Finally, in (39), we use the zeroth-order definition of V f,, (., ;) with the

18
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Assumptioand evaluate the expectation under u; ~ N(0,1) to get (40). Plugging this upper
36]

bound into (36)), we get
pd(d+2)L3,
i1 < ff +(1-pE vau(m(k-i-l)v) — 9k
1 - 2
— 2 D (VHu@pes 1) = V(@) | ] (4D
i=1
pd(d+2)L3,
=+ 1= PE|||Vhu@r) = g0+ VIu@s1) — Vul@ir)
1L - 2
Y Z(Vfu(w(k+1)»y7ui) - vf/t(wk’yaui)> H ] (42)
i=1
pd(d+2)L3, 1
BTk (1) + R HVfH(m(Hm) — V(@)

_ (@fu(w(kﬂ)%“i) - @fu(m’w’ui)) Hzl

(43)
pd(d+2)L2, o 1 e _ 2
< — + (1 —p)e; + EE HVfM(w(k_,_l)w,ui) — Vi (Try, u;) (44)
pd(d + 2)L2 1
_ sz + (1 —p)e; + WE H (f(w(kﬂm + pug) = f(@py + Mui))
2 2
- (f(w(kzﬂ)«,) - f(:z:,m)) H ‘ u;
(45)
pd(d +2) L2 AT2 A,
< () b ] (46)
pd(d + 2)L2 4dL2 A,
= AP — 7)

where Ay, = E [||@(4+1), — T]|?]. Note that we add and subtract V f,, () in . To get ,
we use the fact that random variables u; ~ AN (0, I) are i.i.d., and calculate conditional expectation
conditioned with respect to F, and then use the definition of eZ. We use second-moment bound
on variance in (44) and use the zeroth-order definition to get (5). Following that, we first apply
Assumptiong and then exploit the independence between Ty, € (r41)y, and u; to obtain @

Dividing both sides by p and rearranging the terms, we get an upper bound on the error term
d(d +2)L? 1—p)\ 4dL3 1
2 f: p f: 2 2
e T (50) e et “

Plugging this upper bound into (33), we get

d 3 4d(d + 2)L>
ZKL(|m) < —SFL0nm) + 4L2E [}z — @i, 2] + 1213, (d+ 3)° + %
1-p\ 16dL3 4
+(22) 22 lowian - o] - Sk — D
+ 4(0xC + €4, + (ap — 1)R,)? (49)

19
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By the interpolation argument in (32)), we have

Elllze — @iy [I?] = (t — k9)°E [|1G(@ry) 1] + 2(t — ky)d (50)
<Y°E [IG(zx)[1?] + 27d (51)
= E[l©(ks1)y — TrylI’] (52)

for ¢ € [k, (k + 1)7] because dimensionality of vectors d > 0 and E [[|G(zx)[|?] > 0. We use the
bound on (52) in {@9) and get
2
4d(d+2)L3, 4

3
L) < = TFI ) 2L, (4 3 4 = ed iy~ e])

1- 4d
+4L2, {1 + (pp) #%,] Ag +4(01,C + €4, + (o, — 1)R,)? (53)

where L,, = max{Ly,,L.}. We use the interpolation argument given in to put an upper
bound on Ay, as

Ay = VE[llgr — STy, ox)[|*] + 27d (54)
5y2u2 L3 (d + 3)°
< 5’eri + TH fi( ) + 572L72rAk +5v°E [HVIogﬂ(azt)HQ]
+ 572 (0kC + 5,2 + (g — 1)R,)* 4+ 27vd (55)

where we add and subtract V f,,(Xiy), Vf(Xky), Vf(x¢), VA(x¢), VR(Xp), and Vi, (Xp) in-
side the expectation, and then apply the convex1ty of the {5 norm together with the part (b) of
Assumpt10nlt0 obtain (55). Using the bound on €3 i in (48), we get

_ 572d(d +2)L2  5v2u2L2 (d+ 3)3
Ak<5szi{1+(l p) 4d]A y2d( )f2+ Y u Lt ( )

2y b 4

5
+ 5v°E [HVIogw(a:t)Hz] ’y (ekH ei) + 572 (0xC + Eik + (ap — 1)Rs)* + 2vd
(56)
Assume that ’yQ < [85Lfn (1 + (ﬂ) S )} , then we have
16 5v2d(d+2)L3, 5y p*L3 (d+3)° 5
A S T 45 [V logn(en)|?] ~ 7L (ef. — )
+5v%(0kC + €2, + (ar — 1)Ry)? + 2vd (57)
Multiplying both sides by 17 16> e get
85v2d(d + 2)[& 85v2u?L2 (d+3)® 85
< 2 f1 2E 1 2
k< 160 + 6 167 [IV 1og m(+)]|?]
857 85 17
Top (2,1 —e?)+ Tt Y (0xC + €2, + (an — 1)Ry)* + —~d (58)
We can use Lemma3]to put an upper bound to the third term
85v%d(d +2)L3, 857*u’L3 (d+3)* 85 85
< 2 1 2FI e 2L
k< 6b + o + — 167 (ve]|m) + 57 xd
857 85 17
~ Top (€hpr —€i) + 167 YV (opC 42 4 (ap — 1)Rs)* + gvd. (59)

1
2

We can combine the fourth and the last term by using v < {85L3n (1 + (1%1”) #42%,)} - and

concavity of the square root. Note that
1 2

7 < < .
1— d d
\/851:%1 (1+(52) &) LavTo+,/(52) %

(60)
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We can use this and get

85+d L., S
: <
L, /170 + ( ) 8 AVITO0

uzb/

85

Finally, we get the upper bound for Ay, as

8572d(d +2)L%,  85y°u2L2 (d+ 3)° 85
< 2 f1 2
p < 6 + ol + 167 FI(v||7) + 4vd

8592 85
T6p (eh1 —€p) + T Y (o,C +e2, + (ar — 1)Ry)%. (62)

We define ¢(p) =1+ ( = ) 2 for convenience. Pluggmg into (53), we get

2
LKL lr) < <3 N WW) FI( ) + (1 L 57 leggb(u)) 4d(d+b 212,

dt 4 4
859 Ly (1) 4 859 Ly (1)
+ <1+ — e pAL3% (d+3)° - o (2., —¢?)
85y L7, d(1)
16
1 17d(d + 2)L> 17
< = Flw|m) + % + 3t LF A+ 3)° + 4ydLT,6(p)

4 (1 . 8572L?n¢<u>) (20—

+4 (1 + ) (0kC + €4y, + ( — 1)Rg)? + 4yd L2, (1) (63)

17
; T a1 —€}) + Z(Ukc + €0, + (ar — 1)R,)?, (64)

where we use the fact that 85v2L2 ¢(u) < 1 to get (64). Integrating both sides between
[y, (k + 1)), we get

1 [FDy 17yd(d +2)L% 17
KL )~ KL ) < =5 [ Fllonllmdt + == =0 4 1L 0+ 3)°
ky
8572 L2
atardon - 1 (4+ Lm0 ()
P 16
51
+ 2007 + 22, + (an — 1)?R2) (65)
Note that for the last term, we use Jensen’s inequality. Let L, = KL(vg,|m) +

[4 + 16 'yQLfngb(u)] e?, iterating for k = 0, ..., N — 1, multiplying both sides by le rearranging
the terms and using the fact that £, > 0, we get

1 [N 2. 17d(d + 2)L> 17
[ i < 220y TS 1T

dt < =22 d+3) +8vL2d
N,y+ (d+3)” + 8L, do (1)

N~y 2b 8
+a2 &2 +o72_1, (66)
where 52 = 31C S V-1 52 22— 2 and a_; = 2L SV (ay, — 1)°R2. Since
VL2 ¢(n) < 5=, we have
4 85 5yed
Lo = KL(vp|7) + % (1 o L )) €2 < KL(vo||7) + %. 67)

2
We can let Cp = 2KL(vp||7)+ 10% be a constant and this completes the proof of the first statement.
To find an e-approximate solution, we choose the step size as

1 Co
2L \| Ndo(n)

\ = (68)
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so that we get

I Codg(p) | 17d(d + Q)L? 17 5.5 3, 22, 22, -2
(69)

We know that {a}; ;' and {o};"_;' are nonincreasing sequences such that
ap>a1>...>ag=---=any_1=1 and oc9g>01>...>0x=---=on_1~0. (70)

Thus, we can choose the annealing schedules as o, = O(n™?), a,, = 1 + O(n=?) for 8 > 1/2 so0
that we have 6% < £ and %, < £. In addition, if the training error is £, = O(n~") for 8 > 1/2,

then N1
51 3= 515 1
52 = — 2 = — = —_ 71

fo T ON — 0. = oy — ¢ <N) ) 7D

where sum converges to a constant S. For the convergence of other terms, we can choose a suffi-
ciently large batch size b and sufficiently small smoothing parameter p for the zeroth-order estimate

as
51d(d + 2)L} 4e
b= | ———=2 and p? = —5———— (72)
{ € 51Lfc1 (d+3)3
where [.] rounds the value to the larger closest integer. Using these values, we get
1 [N Codo(p) — 5e
— FI dt <6Lp\| ———— + —. 7
o [ e < oz, ST 1 73

To make the per-iteration complexity constant, we can choose p = % so that we have pb = O(1).
We can find the lower bound on N by using the following inequality

Cod (1+ (52) 4

4d

) <o,

€
Ly, —. 74
0 N N 6 74)
Plugging the chosen values for p and p, we get
CidL2,  Co(d+2)"LS
N> 12m+ 2( +4) m. (75)
€ €
where Cy = 1296KL(vy||7) + 648% and Cy = 362 x 512 are numerical constants. That implies
d"LS
N=0 ( 4m> (76)
€

number of iteration complexity, which is also equivalent to number forward model evaluations be-
cause per-iteration complexity is fixed pb = O(1). That concludes the proof of Theorem 1. ]

A.1.4 PROOF OF COROLLARY 1

Recall that from Theorem 1 proof, we have inequality (66) as

1 N Co 17d(d+2)L}, 17

— FI dt < —L 4 ——— "~ 24 212 (d 3 L? d

o [ Flma < G+ =S R 3 sy Lo
+a2+e24+a2, (77

where Cy = 2KL(vp||7) + wpﬁ. By the convexity of the Fisher information, we have

1 v
— FI dt
e

G, DB, 1
= Ny 2b 8
+al e +at, (78)

FI(7||m)

IN

pLG, (d+3)* + 8yL;,do ()
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where v := J\% fONV vdt. By Assumption@ we can invoke Lemmaand get

Hl7 — 7T||TV S 4CPIFI(E||7T)
< 4CyCpr n 34d<d + 2)01)1[/%2

17
+5 p2Cp1L3, (d+ 3)* + 327Cp1 L2, dp (1)

N~ b
+4Cp1(a? + 22 + a2 ). (79)
If we let
1 CoCp1 204d(d + 2 C’pIL2 B c
T 2o\ Va1 (:2) TGk
1
p:g and &2 +€ +Oé 1<€/80p1,

plugging these values in (79), we get

_ C Cpld 1 —p 4d 5e
|7 = mllTv < 24Lm\/ N (1 + (p) Mzb,) 5 (80)

‘We can bound the first term with % if we choose the number of iteration as

C1Cp1L2,d n CoC3 LS (d + 3)7
3

N >
= o

, (81)

where C; = 36 x 162Cj and Cy = 36 x 162 x 24 x 34 x 51C} are numerical constants. This yields
a forward model complexity of
L4, Ch
of 2%

with a fixed per-iteration cost pb = O(1) to achieve |7 — ||y < €. That proves Corollary 1. [

A.1.5 PROOF OF THEOREM 2

Given step—dependent parameters ,,, by, , Pn, fin, define

n

1 Tn
T = , Uy = — v dt,
n Z Yk Tn T /0 t

k=1

where 1, denotes the law of the process x; specified by

=2, — (t—Tn-1)G(xr, ) +V2(Bi — B, ),  t€ [Tn_1,Tnl. (82)

Here, ~,, denotes the step size used at iteration n, while 7,, denotes the cumulative time elapsed up
to iteration . We note that the steps up to (65)) in the proof of Theorem [1| hold for ¢ € [7,—1, Ts]
with step-dependent parameters. Then, we can write the one-step recursion of ZO-APMC as

1 [ 17v,d(d + 2)L? 17
KL(v,, |7) — KL(v,. . |7) < —5/ FI(vy | 7)dt + % -

Tn—1

YVapa L3, (d+3)

+a402dL2 () — 22 (4 4 B LmOnltin) (11n) (e2—e2))
Dn 16
51
+ 47(0 C?+e2 + (an—1)°R2) (83)

fort € [1,—1,7n]. We choose the parameters as follows

1 b 1 1
n— b=[n2], = z, n =
5. 68012 4’ [n2], p=n fn =1

m

oo

(84)
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We emphasize that the chosen step size for ~,,, namely ~,,

€ (0, 1/(85 L2, ¢n(pn))]. satisfies this

condition for all n € N*. Plugging these selected values into (83), we get
1 (™ A A
KL(vr, ) = KL(r, ) < —5 [ Fllalmde+ 55 + 22

As 4dnt
—|— 5 + — (1 + N )
2 2 51% 2 2 2 2 2
—cn (el —el_y)+ < (07C% +e2 + (an —1)’RZ), (85)
where
17d(d + 2)L> b 17L2% (d+3)3 v /
Al = ( ) f2 ) 2 = ) ) A3 = 4dL2 )
4 680L2,d 16 680L2,d 680L2,d
and all of them are constant. Moreover, we define

(86)
8572 L2
Cp = In (4 + 220 Zm Onlfin) ¢"('un)) (en —é?
Dn 16
for n € N Tterating the bound in we obtain

(87)
K (1/7— ||’/T) < KL(V()Hﬂ') — */ FI(Z/t”ﬂ')dt + A151 -+ AQSQ =+ AgSg — ch ( k ek 1)
0 k=1
+ Ei%(a%ﬂ +e5, + (ar —1)%R2)
4 k=1 *
where we have

(88)
Zk‘3/2 < Zk‘3/2 <00, S5
k=1 =

POVSLID IR
k=1 k=1
- 4dk—>/4 = 4dk—>/4
2 -2
53:Z(k = ) gZ(k = ) < .
k=1 k=
Thus, A1.51, A2S2, and A3.S5 are bounded constants and are independent of n. Furthermore, if we
assume that c,, is nonnegative and nonincreasing sequence (i.e. 0 < ¢,4+1 < ¢,), we can bound the
summation of difference of the error terms in (88)) as follows
ni
ST
k=1

—Ck 1) = 016(2) + Z(Ck+1 —ck)er — cner < creg

(89)
k=1
in (84) into the definition of ¢,,, we get
1
Cp =

Thus, we need to prove that c,, is nonnegative and nonincreasing sequence. Plugging the variables
b A 85 bV
ni/2\| 680L2 d

1
12n2 680d

1 1 o 850
+ nd/4 T opl/2 6
Therefore, ¢,, > 0 for any n € N* and we have ¢,, = (ol

80L2,d 12 x 680d’
= n-
Using this upper bound on the differences of error terms in (85)), we get

(90)

1/2 50 it’s a nonnincreasing sequence
KL(vs, ||7) < KL(vo /) — 5/0 FI(v||m)dt + A1S: + ApSy + AsSs + e12

51 —
+ T ’;%(0202 + EQk + (ax — 1)*R?)

on
We need to upper bound the last term related to the annealing parameters and the score network
Note that {cy } k—o 1s a decreasing sequence with ax . n_1 = 1 for some K. Hence, we have

512’}%0%—1 R2 Z’ykak—l R2—i§: Oék—].
4k:

= Cq, (92)
24
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where C,, is bounded constant. Additionally, we can choose a schedule for o,, such that ofL =
O(n=P) for # > 0. For example, in practice, one often uses an exponentially decaying schedule
on = 09 &™ (Sun et al., |2024; |Song & Ermonl 2019)), where £ denotes the decay rate. Then, we get
51 w— 51
y 2 17ncr,%02 < T l;%a,i()? =C, < 0. (93)

Lastly, if we assume that e2 = O(n~?) for some 3 > 0, then

5l e~ o 5l o~ o
T TnEy, < T Z Yn€y, = Ce, < 0. (94)
k=1 k=1

This assumption implies that, as the noise level decreases, the test error of the score network forms a
monotonically decreasing sequence of order O(n~") with 3 > 0. Such a decay pattern is commonly

observed in diffusion models, where networks trained across noise scales exhibit progressively lower
errors at finer (less noisy) levels (Song et al.| 2020; Ho et al., 2020). Combining (92), (93)), and (94)

in (91), we get
KL(v-,

1 [™
7T) < KL(V0||7T) — 5 / FI(VtHﬂ')dt + A1S7 + AySy; + A3Ss + 016(2)
0

+Coa+C;, +C4 (95)

Rearranging the terms, using the convexity of Fisher information and dividing both sides by 7,,, we
get

1
Fl(7,, ||7) < —/ FI(v||7) dt
Tn 0

2KL(v||m 2
< %H) + — <A151 + AsSo + A3S3 + 616(2) +Cy+C, + Cg’) (96)
n n
where A1S1 + A28y + A383 + c1ed + Co + C, + C, < oco. Alternatively, if t € [1,,, Tn11],
integrating between 7,, and ¢ and dropping the negative integral over the Fisher information
give us

17(t — 1,)d(d + 2)L> 17
KL (1 ||7) < KL(7||7) + ( ) )L, + =

(t — o)’ L3, (d + 3)°

4b 16
4(t — 1 8572 L2
= o) - T (14 B
17(t — 7,
%(Ukc + Eoy + (Oék — 1)R5)2 (97)

< KL(vp||7) + 24181 + 24585 + 243853 + 2C,, + 2050 +2C, + cleg. (98)

where, in the second inequality, for positive terms, we use the fact that +1 <> kﬁ for 5 > 1.

With (98)), we show that {KL(v4||7)}+>0 is bounded. By the convexity of the KL divergence, this
1mphes that the sequence {KL(fi, H7r)}neN is uniformly bounded as well. Since the sublevel sets
of KL(:||w) are weakly compact, (7., )nen is tight. To establish that 7, — 7 weakly, it suffices to
verify that every cluster point of (7, ),en equal to 7.

Take a subsequence (7, )nen converging to some limit 7. Sending n — oo in and using
T, — oo gives FI(7, ||m) — 0, so the same holds along the subsequence. By the weak lower
semicontinuity of the Fisher information along the subsequence, we have FI(7|7) = 0. Writing

¢ == 92 this means /%) € dom & and £(,/4) = 0. Since V log 7 is Lipschitz by Assumptionm T

has a continuous and strictly positive density on R%, so £(1/4)) = 0, which implies that 1) must be a
constant w-a.e., hence v = 7. O

A.2 EXTENDED EXPERIMENTAL RESULTS

A.2.1 NUMERICAL VALIDATION

In this section, we give more details on our numerical validation experiments. Similar to the related
works (Sun et al., 2024; |Song & Ermon, 2020), we run ZO-APMC with an exponential annealing
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schedule:

oL = max{aork, Omin}, ap = max{agoy, 1}, (99)
where 7 is the decay factor and k is the step number. We always choose ag < 1/02, so that
{ay} converges to 1. For our numerical validation results, we set oo = 10, ap = 10, r = 0.975,
omin = 0 and v = 0.1. For ZO estimator, we choose the smoothing parameter as y = 10~

We run ZO-APMC with 1000 sample points initialized with uniform distribution U[—50, 50]% on
[—50, 50]? grid for N = 2000 iterations. At each step, we use a Gaussian mixture model (GMM)
to fit a distribution to the samples at intermediate steps, which allows us to compute the probability
of an arbitrary value on [—50, 50]2 grid. Then, for each intermediate distribution, we calculate the
empirical Fisher information relative to target posterior whose analytical posterior can be calculated.
We discretize the grid to 1000 x 1000 unit areas in [—50, 50]? and calculate the Fisher information
for each unit area. The total sum over the grid gives us the approximate relative Fisher information.
We perform additional experimental results for showing the effect of p on the convergence with
mean and standard deviation values in Fig.[6]

10°
— p=1 — p=075 — p=05

Ve
0010 010 0.0505

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Iteration ation Iteration teration

— p=01

0.9354

0.1057

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Tteration Tteration Tteration

Figure 6: Effect of p on the convergence of ZO-APMC to the true posterior distribution in terms
of relative Fisher information. The solid lines show the mean values and shaded areas show the
standard deviations.

At each iteration, ZO-APMC performs a zero-order estimate with a large batch size b = 10 with
probability p, while with probability 1—p it uses a smaller batch size b’ = 1, whose gradient estimate
is aggregated with the previous step’s update.

A.2.2 STATISTICAL VALIDATION

The SGM used in this experiment is U-Net taken from (Nichol & Dhariwall, 2021) with some of its
layers removed to process the 32 x 32 images, which are taken from CelebA (Liu et al.}[2018) dataset.
Each image is normalized to [—1, 1] and downscaled to 32 x 32 pixels for simplicity. The forward
operator is generated as random Gaussian matrix and for each test image, we inject a Gaussian noise
with variance 0.01 as a measurement noise. We construct a bimodal distribution by selecting male
and female images from the CelebA dataset and fitting a Gaussian mixture model (GMM) to the
combined data. To ensure adequate separation, the two modes are shifted by 4+-1 and —1. The SGM
prior is then trained on samples drawn from this synthetic multimodal distribution. Because the
synthetic Gaussian images lack the structural richness of natural images, the score network’s results
on this dataset should not be taken as representative of its performance on real-world data. For
comparison, we compute the target modes and posterior statistics using the statistics derived from
male and female images in the CelebA dataset.

A.3 ADDITIONAL DETAILS FOR INVERSE PROBLEM EXPERIMENTS
A.3.1 MRI EXPERIMENT DETAILS

We evaluate the reconstruction quality of the samples generated by ZO-APMC and other baselines
methods by using peak signal to noise (PSNR) ratio, structural similarity index measure (SSIM),
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Ground-truth

Figure 7: Comparison of the ground-truth brain MRI with APMC and ZO-APMC reconstructions
for various probabilities p € {0.1,0.2,0.4,0.5}, using a large batch size of b = 10* and a small
batch size of ' = 10%. PSNR values for each reconstruction are displayed in the lower-left corner
of the corresponding image.

normalized root mean square (NRMSE), and standard deviation (SD). Given an estimate & € R¢
and the ground truth gt € R9, we define the error metrics as

|2 — zarll2

. 1, .
MSE(%, xgr) = g||as—a.sGTH§, NRMSE(&, zgr) = Tzarls

R max(zgr)?
PSNR =101 — " ].
(m)wGT) Oglo(MSE(i,qu“))
where d is the number of elements in &, and max denotes the maximum possible value of the signal
(e.g., 1 for normalized data or 255 for 8-bit images).

Ablation Study. Among the inverse problems considered in this work, MRI reconstruction involves
the largest image size (256 x 256), which necessitates a larger batch size in our ZO estimator to
accurately compute the forward-model gradient. To identify the optimal value of p, we subsample
examples from the validation set of FastMRI (Zbontar et al. [1811) and evaluate reconstruction
quality across different values, p € {0.1,0.2,0.4,0.5}, as illustrated in Fig. As indicated by
the orange arrow, reducing p excessively while keeping b fixed produces visible artifacts in the
generated samples. ZO-APMC maintains reasonable reconstruction quality down to p = 0.2. Even
when using a smaller batch size of b’ = 103, an order of magnitude lower than b, in about half
of the iterations on average, ZO-APMC maintains high reconstruction quality that is very close
both visually and quantitatively to the reconstruction of APMC. As opposed to APMC, ZO-APMC
achieves this without any gradient information and uses only forward model function evaluations.
Because the performance gain beyond p = 0.2 is not significant and the gap between p = 0.5 and
p = 0.2 can be further reduced by averaging multiple parallel outputs, we set p = 0.2 for our brain
MRI inverse problem experiments.

Moreover, ZO estimators are widely recognized in the literature for exhibiting high variance in
high-dimensional settings, as they rely on first-order approximations of the function along random
directions. To evaluate our proposed variance-reduction mechanism, we compare the reconstructions
of our method with DPS and APMC, which do not assume black-box setting and have access to
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Figure 8: Comparison of the ground-truth brain MRI with reconstructions from ZO-APMC and
the gradient-based approaches DPS and APMC. Each method generates 20 samples from the same
measurements; the first row shows the mean reconstructions and the second row shows the corre-
sponding variance maps. Owing to its variance-reduction mechanism, ZO-APMC produces variance
maps comparable to those of the gradient-based algorithms despite relying on noisy evaluations of
the forward model.

gradients of the forward model. Results in Fig. [§] show that although our proposed method ZO-
APMC assumes black-box setting and uses noisy forward model evaluations to approximate the
gradient of the forward model, it has similar variance compared to DPS and APMC, which assumes
access to the gradients, thanks to our proposed variance-reduction mechanism.

A.3.2 BLACK-HOLE IMAGING EXPERIMENT DETAILS

In black-hole imaging, very long baseline interferometry (VLBI) uses an array of ground-based

telescopes. Each telescope pair (a, b) at time ¢ produces a complex visibility Vf’b. To mitigate
atmospheric and thermal phase errors, visibilities are combined into noise-robust closure measure-

ments (Chael et al., 2018): closure phases ;" ( ,c) @nd log-closure amplitudes ycimg a)- Follow-
ing [Sun & Bouman| (2021);|Zheng et al. (2024), we use the following likelihood model:
HAcph cph|| HAcamp camp” P
Uy | x) 2 4 243 H z; —y™|| . (100)
Z 7 Z T Z

Here, ASP" and A™™P map an image x to predicted closure phases and log-closure amplitudes,
respectively; Bcpn and Beamp are instrument-specific noise scales. The first two sums act as chi-
squared penalties for the closure measurements, while the final term enforces the total-flux constraint
with weight p and target flux 3", For our experiments, we adopted the dataset, pre-trained SGM
prior, forward model implementation, and baseline methods provided by [Zheng et al. (2025). For
EnKG, we adopt the hyperparameters recommended by [Zheng et al.| (2024)), and for the baseline
methods we use the hyperparameters provided by |Zheng et al.| (2025)).

A.3.3 NAVIER-STOKES EQUATION EXPERIMENT DETAILS

In our experiments, we study the two-dimensional Navier—Stokes equations for a viscous, incom-
pressible fluid in vorticity form on a torus. Let u € C([0,T}; H],,((0,27)* R?)) for any r > 0
denote the velocity field, and let w = V x wu be the vorticity. The initial vort1city is wy €
L2..((0,27)?; R), the viscosity coefficientis v € R, and the forcing term is f € L2_.((0,27)%* R).
The solution operator G maps the initial vorticity to the vorticity at time 7, i.e. G : wg — wr. In
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our experiments, we implement G using a pseudo-spectral solver following [He & Sun|(2007):

Oyw(z,t) + u(z,t) - Vw(z,t) = vAw(z,t) + f(z), x € (0,2m)% t € (0,7, (101)
V -u(z,t) =0, z € (0,2m)% t € (0,7, (102)
w(x,0) = wo(z), x € (0,27)2 (103)

The task is to infer the initial vorticity field from noisy and sparsely observed vorticity data at time
T = 1. Since Eq. (21) admits no closed-form solution, the corresponding derivative of the solution
operator is also unavailable. Furthermore, the computation of accurate numerical derivatives via
automatic differentiation through the solve is challenging since the extensive computation graph can
span thousands of discrete time steps.

We follow the approach in|Zheng et al.| (2024} [2025) and first solve the equation up to time 7" = 5
starting from random Gaussian initial conditions, which are highly nontrivial due to the nonlin-
earity of the Navier—Stokes equations. We use the SGM-prior, which was pre-trained over 20,000
vorticity fields, and use the test set consisting of 10 samples from InverseBench. For EnKG, we
use the hyperparameters recommended by [Zheng et al.| (2024), and for the baseline methods we
adopt the hyperparameters provided by |Zheng et al.| (2025). Quantitative results are presented in
Fig.[d Our method demonstrates a performance comparable to most black-box posterior samplers,
while distinctively providing rigorous theoretical guarantees of convergence to the target posterior
guarantees, which is not established for the baseline methods.

Table 4: Quantitative results for the Navier—Stokes equation benchmark. For each case, the best-
performing method is shown in bold. Baseline results are taken from Zheng et al.| (2024).

NRMSE (0noise = 0)l  NRMSE (0noise = 1)  NRMSE (0oise = 2)J

Forward-GSG 1.687 1.612 1.454
Central-GSG 2.203 2.117 1.746
SCG 0.908 0.928 0.966
DPG 0.325 0.408 0.466
EnKG 0.120 0.191 0.294
Z0O-APMC (Ours) 0.459 0.463 0.472
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