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ABSTRACT

A growing trend in solving inverse problems is to use pre-trained score-based
generative models (SGMs) as plug-and-play priors. This paradigm retains the
generative power of SGMs while allowing adaptation to different forward models
without requiring re-training. In parallel, derivative-free posterior sampling algo-
rithms have gained increasing attention for solving inverse problems where the
derivative, pseudo-inverse, or full knowledge of the forward model is unavailable
or impractical to compute. Despite their success, these methods lack principled
foundations and provide no convergence guarantees to the true posterior distribu-
tion or to its ε-accurate approximation. We propose zeroth-order annealed plug-
and-play Monte Carlo (ZO-APMC), the first principled derivative-free framework
for solving general inverse problems that requires only forward-model evaluations
and a pre-trained SGM prior. We derive complexity bounds for obtaining samples
with ε-relative Fisher information under a non-log-concave likelihood distribu-
tion and, under a Poincaré inequality assumption, ε-accuracy in total variation
distance, and we establish weak convergence of ZO-APMC to the target posterior.
We verify our theory with numerical experiments and demonstrate its performance
on both linear and nonlinear inverse problems.

1 INTRODUCTION

The use of pre-trained score-based generative models (SGMs) (Song et al., 2020; Ho et al., 2020)
as plug-ang-play priors for tackling inverse problems has become increasingly prominent, show-
ing strong effectiveness across diverse domains such as image restoration (Wang et al., 2022; Rout
et al., 2023), medical imaging (Song et al., 2021; Sun et al., 2024), and image and music generation
(Rout et al., 2024). A primary advantage of this framework is its flexibility. It can be applied to
various inverse problems without re-training, while preserving the expressive capacity of SGMs to
capture complex, high-dimensional priors. In a parallel direction, recently, derivative-free posterior
sampling methods with SGM priors (Tang et al., 2024; Huang et al., 2024; Zheng et al., 2024) has
attracted growing interest to solve inverse problems where the privileged knowledge of the forward
model such as its derivative (Song et al., 2023b; Chung et al., 2022), pseudo-inverse (Song et al.,
2023a), or its parametrization (Chung et al., 2023) is unavailable or computationally prohibitive.
For example, in many scientific applications (Oliver et al., 2008; Iglesias et al., 2013; Evensen &
Van Leeuwen, 1996), forward models are systems of partial differential equations whose derivatives
or pseudo-inverse are typically inaccessible or undefined. Despite their empirical success in recon-
structing images, they lack theoretical convergence guarantees to the target posterior distribution or
to ε-accurate approximation. In fact, even among posterior sampling methods with gradient access
of a forward-model, rigorous guarantees are rare; when provided, they typically assume a linear for-
ward operator, which is an assumption often violated in practice (Daras et al., 2024). Appendix ??,
Table 3 provides a conceptual comparison of prior work, highlighting the gap our method fills.

The goal of this work is to develop a theoretically grounded method for solving inverse problems
that uses only black-box access to the forward model together with a pre-trained SGM prior. We
position this as an important step toward posterior sampling in black-box settings that offers an
algorithm with formal convergence guarantees and a solid foundation for future advances. A key
challenge in this direction is that, although existing posterior sampling solvers employ principled
formulations, they often rely on heuristic, intuition-driven approximations of the forward model’s
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score function (Iglesias et al., 2013; Huang et al., 2024; Tang et al., 2024), which makes rigorous
convergence analysis difficult.

To tackle this issue, we develop a zeroth-order (ZO) Markov chain Monte Carlo (MCMC) sampling
algorithm (Iglesias et al., 2013; Huang et al., 2024; Tang et al., 2024), in which the forward-model
score is approximated from noisy function evaluations. In developing this approach, we face two
key challenges. First, Langevin methods are known to exhibit mode collapse and slow convergence
when sampling high-dimensional multimodal distributions; motivated by annealed importance sam-
pling (Neal, 2001; Sun et al., 2024), we incorporate a weighted annealing scheduler to enhance
exploration. Second, conventional zeroth-order methods are computationally expensive in high di-
mensions: accurately approximating the forward-model score requires large batch sizes due to the
“curse of dimensionality”. Additionally, the intricacy of posterior sampling renders simple random-
ized zeroth-order estimators impractical given their high variance and, thereby, large per-iteration
cost. To make our approach practical for high-resolution image reconstruction, we adopt a PAGE-
inspired variance-reduction strategy from the optimization literature (Li et al., 2021), which reduces
estimator variance and maintains a fixed per-iteration cost without sacrificing accuracy. Our main
contributions are the following:

• We propose zeroth-order annealed plug-and-play Monte Carlo (ZO-APMC), a completely
derivative-free method that utilizes a pre-trained SGM prior in a plug-and-play fashion to
tackle general inverse problems. ZO-APMC needs only black-box access to the forward
model and works with different forward models without re-training.

• For general non-log-concave likelihood distributions, we establish that the averaged ZO-
APMC algorithm exhibits weak convergence to the target distribution under decaying hy-
perparameters, and we provide non-asymptotic convergence guarantees showing that it at-
tains ε-relative Fisher information after O(1/ε4) iterations with fixed per-iteration cost,
and, assuming the target distribution satisfies the Poincaré inequality, ε-accuracy after
O(1/ε4) iterations in total variation distance as well.

• We substantiate our theoretical findings through comprehensive numerical and statistical
evaluations, and further demonstrate that our method achieves performance comparable
to state-of-the-art gradient-free baselines across diverse inverse problems, including MRI
reconstruction, black hole imaging, and Navier-Stokes equation.

2 BACKGROUND

Problem setting. We consider a general inverse problem modeled as

y = A(x) + ξ, x ∈ Rd, y, ξ ∈ Rm, (1)

where the objective is to recover the unknown signal x from noisy measurements y. The forward
operator A : Rd → Rm characterizes the response of the imaging system, while ξ ∈ Rm denotes
the measurement noise, typically modeled as Gaussian or Laplacian distribution. Recovering x
from y amounts to inverting (1), which can be viewed as estimating either the most probable x or its
full posterior distribution π(x|y) from Bayesian perspective. This inference problem is commonly
expressed as π(x|y) ∝ ℓ(y|x)p(x), where p(x) denotes the prior distribution over source signal,
implemented here via a pre-trained SGM, and ℓ(y|x) is the likelihood distribution defined by (1).
In this work, we address the inverse problem using Bayesian inference based on MAP estimation,
x̂ = argmaxx ℓ(y|x)p(x). However, because we have only black-box access to A(·), we can
generate samples from ℓ(y|x) but lack its explicit functional form.

Score-based generative models (SGMs). SGMs have emerged as a powerful deep learning (DL)
framework for sampling from complex, high-dimensional distributions. At their core, they learn
the perturbed score function ∇ log pσ(x), where pσ(x) =

∫
Rd p(z)ϕσ(z − x) dz and ϕσ is the

probability density function of N (0, σ2I). This score is learned using the score matching tech-
nique (Hyvärinen & Dayan, 2005; Vincent, 2011) and estimated via Tweedie’s formula (Efron,
2011). The resulting score estimates are then integrated into MCMC samplers to perform itera-
tive draws for unconditional image generation (Song & Ermon, 2020; 2019). In particular, sampling
proceeds via a discretization of the Langevin diffusion process

dxt = ∇ log p(xt) dt+
√
2 dBt, (2)
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where {Bt}t≥0 denotes an n-dimensional Brownian motion and the learned score function
Sθ(xt, σ) approximates ∇ log p(xt) for sufficiently small 0 < σ ≪ 1. For posterior sampling,
applying Bayes’ rule and substituting the prior term with its estimate provided by Sθ(x, σ) yields

dxt = [∇ log ℓ(y|xt)− Sθ(xt, σ)] dt+
√
2dBt (3)

as used in (Sun et al., 2024). Similarly, diffusion models (DMs), a class of SGMs, can be used to
draw samples from the posterior π(x|y) by reversing a diffusion process from π(x|y) to a simple
distribution (Yang et al., 2023) and approximating the time-dependent score∇ log ℓt(y|xt) (Chung
et al., 2022). One limitation of these approaches is their reliance on full acess to gradient
∇ log ℓ(y|x), which is not possible for many scientific inverse problems (Knape & De Valpine,
2012; Zheng et al., 2025). Another limitation is that, despite their empirical success, these methods
rely on heuristic approximations of ∇ log ℓt(y|xt), which hinders rigorous theoretical analysis.

Derivative-free diffusion guidance for inverse problems. Recent studies increasingly explore
derivative-free strategies for guiding SGMs in inverse problems. Three DM-based approaches have
been proposed to date: Stochastic Control Guidance (SCG) (Huang et al., 2024) and Diffusion
Policy Gradient (DPG) (Tang et al., 2024), which cast diffusion guidance in a stochastic control
framework and steer the sampling process via an estimated value function, and Ensemble Kalman
Guidance (EnKG) (Zheng et al., 2024), which uses statistical linearization to guide the diffusion
process without explicit gradients. Although these methods have shown encouraging empirical re-
sults, they face a fundamental trade-off between broad applicability to highly nonlinear, black-box
systems and the availability of rigorous convergence guarantees. In fact, even among gradient-based
posterior sampling algorithms with SGM prior, only a few offer formal convergence results (Sun
et al., 2024). This tension motivates our proposed approach, which seeks to combine the practical
scope of derivative-free guidance with strong theoretical foundations.

Zeroth-order sampling. A zeroth-order (ZO) gradient estimator of a function f can be obtained
using a forward finite difference along a random direction (Nesterov & Spokoiny, 2017):

∇̃f(x) = f(x+ µu)− f(x)
µ

u, u ∼ N (0, I), (4)

where µ > 0 is a small smoothing parameter. In our formulation, f represents the negative log-
likelihood (or potential) function, with ℓ(y|x) ∝ e−f(x). By discretizing (3) and replacing the
negative log-likelihood with its ZO estimator from (4), we obtain a zeroth-order Langevin sam-
pling algorithm with SGM prior. (Roy et al., 2022) establish convergence guarantees for generating
ε-approximate samples in Wasserstein distance under convex and smooth f ; however, their analy-
sis is purely theoretical, considers only settings without a prior, and assumes log-concave forward
model distribution, an assumption typically violated in inverse problems. (He et al., 2024) estab-
lish asymptotic KL convergence but neither demonstrate the method on real-world problems nor
consider posterior sampling.

More recently, (Sun et al., 2024) proposed annealed plug-and-play Monte Carlo (APMC), the closest
work to ours in the literature, and derived an upper bound on the Fisher information, albeit under
the assumption of access to the forward model’s score function. In contrast, we prove convergence
to stationary point in ε-relative Fisher information, to the total variation distance (assuming that the
potential function of the forward model satisfies Poincaré inequality), and weak convergence to the
posterior distribution π(x|y). Further discussion of the related work is available in Appendix ??.

3 METHOD

To develop our ZO-APMC method, we first provide an interpretation of annealed Langevin dy-
namics and intuition behind the variance-reduction mechanism for zeroth-order estimate. Then, we
present our algorithm with its convergence guarantees.

Annealed Langevin dynamics. As discussed in Section 2, given a SGM prior Sθ(x, σ) ≈
∇ log p(x), we can discretize the Langevin diffusion in (3) and get the update rule as

xk+1 := xk + γ
(
∇̃f(xk)− Sθ(xk, σ)

)
+
√
2γZk, (5)

where Zk ∼ N (0, I) and f(xk) := − log ℓ(y|xk) is the negative log-likelihood. Recall also
that since we assume black-box setting, we replace ∇f(x) with its ZO estimate ∇̃f(x) =

3
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Algorithm 1 ZO-APMC

Input: initial point x0, stepsize γ, minibatch size b, b′ < b, probability p ∈ (0, 1], and annealing
parameters α0 > 0, σ0 > 0.

1: g0 = 1
b

∑
i∈I ∇̃fµ(x0,ui) // I denotes random minibatch samples with |I| = b.

2: for k = 0, 1, . . . , N − 1 do
3: Zk ← N (0, I)
4: σk, αk ←WeightedAnnealing(σ0, α0, k)
5: Gk(xk)← gk − αkSθ(xk, σk)
6: xk+1 ← xk − γGk(xk) +

√
2γZk

7: gk+1 =

{
1
b

∑
i∈I ∇̃fµ(xk+1,ui), with prob. p

gk + 1
b′

∑
i∈I′ ∇̃fµ(xk+1,ui)− ∇̃fµ(xk,ui), with prob. 1− p

8: end for
Output: xN

(1/bµ)
∑N−1

i=0 (f(x+ µui)− f(x))ui where b is the batch size. In practice, Langeving algorithms
often experience slow convergence and mode collapse when sampling from high-dimensional, mul-
timodal distributions. Inspired by annealed importance sampling (Neal, 2001; Sun et al., 2024), we
consider a sequence of posterior distributions for each step

π(αk)
σk

(x|y) ∝ ℓ(y|x)pαk
σk

(x), pσk
(x) =

∫
Rd

p(z)ϕσk
(z − x) dz, (6)

where α0>α1>. . .>αK = · · ·=αN−1=1, σ0>σ1>. . .>σK = · · ·=σN−1≈0, and ϕσk
is the

probability density function of N (0, σ2
kI). {αk}N−1

k and {σk}N−1
k=0 are generally initialized with

large values in practice and they decay to one and almost zero, respectively. Initially, the weighted
posterior, is dominated by a smoothed prior, enabling rapid escape from gradient plateaus where
∇ log π(x)≈ 0. As iterations proceed, the likelihood influence grows and the smoothed posterior
π
(αk)
σk sharpens toward the true posterior distribution π. This annealing accelerates burn-in by first

flattening and then gradually restoring distributional complexity. This process is illustrated with
Figure 5 in Appendix A inspired by (Sun et al., 2024). With the annealing parameters, we can write
the new update rule as

xk+1 := xk + γ
(
∇̃f(xk)− αkSθ(xk, σk)

)
+
√
2γZk. (7)

3.1 PROPOSED METHOD: ZO-APMC

We now introduce our ZO-APMC algorithm and give an intuitive explanation of its variance-
reduction mechanism. ZO gradient estimates (finite-difference, random direction, or coordinate
sampling) are well-known for their high variance, especially in high-dimensional settings (Nes-
terov & Spokoiny, 2017). While despite this high variance, convergence guarantees are typically
attainable in optimization problems (Nesterov & Spokoiny, 2017; Lan, 2020), our analysis unveils
that the high variance prevents achieving strong convergence guarantees in the posterior sampling
setting without requiring growing batch sizes, thereby rendering the resultant methods prohibitive
in terms of their memory requirements. To resolve this critical issue, we replace the ZO estimate
in (6) with a variance-reduced estimate gk given in line 7 of ZO-APMC inspired by (Li et al., 2021)
where |I| = b, |I ′| = b′ denote the large and small batch sizes, respectively, and ui ∼ N (0, I).
In practice, we set b′ < b, which significantly lowers the average number of function evaluations
per iteration thanks to the reduced variance. With the variance-reduction mechanism inplace, we
present the pseudocode for ZO-APMC in Algorithm 1. Moreover, while we provide the conver-
gence results in Section 3.3, we now present an upper bound on the estimation error illustrating the
variance-reduction mechanism for ZO posterior sampling.

Assumption 1 We assume that the log-likelihood log ℓ(x|y) is Lipschitz continuous with constant
Lf2 , namely, for any x1, x2 ∈ Rn, ∥ log ℓ(y|x1)− log ℓ(y|x2)∥ ≤ Lf2∥x1 − x2∥.

Remark 1. Assumption 1 is not satisfied under Gaussian noise, where the log-likelihood involves
the squared residual ∥A(x)−y∥22 and is not Lipschitz. By contrast, with Laplacian noise the log-
likelihood becomes log ℓ(y|x) ∝ ∥A(x)−y∥1, whose absolute-value residual can admit a global
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Lipschitz bound. In addition, Laplacian noise modeling is widely used in sparse modeling and
imaging to robustly handle heavy-tailed errors and outliers (Chan & Esedoglu, 2005; Boyd & Van-
denberghe, 2004; Rousseeuw & Hubert, 2011).

Proposition 1 Under Assumption 1, let {xk}Nk=0 denote the iterates produced by ZO-APMC for
N > 0 steps. Define the estimation error of the forward-model score as ek := gk − ∇fµ(xk).
Then, for each step k, the error variance satisfies

E
[
∥ek∥2

]
≤ (1− p2)E

[
∥ek−1∥2

]
+

4d(1− p)L2
f2

b′µ2
E
[
∥xk − xk−1∥2

]
+
pE
[
∥∇̃fµ(xk,ui)∥2

]
b

.

The detailed derivation using the law of total covariance can be found in Appendix A.1.2. Propo-
sition 1 provides an intuition that, thanks to the variance-reduction mechanism, larger batch sizes
and smaller step sizes tend to make the bound dominated by the previous-step error variance with
a contraction factor, which in turn yields progressively reduced estimator variance across iterations.
For clarity, note that our ZO gradient estimator is biased (∇fµ(x) ̸= ∇f(x)), but the bias vanishes
as µ→ 0. However, this raises the upper bound on the error variance and violates the contraction
property. With an appropriate choice of the step size γ, this can be solved. We make this trade-off
explicit in the main results, which follow after the discussion of our convergence criteria.

3.2 OPTIMIZATION VIEW OF LANGEVIN DIFFUSION

Consider the minimization of the Kullback–Leibler (KL) divergence over the Wasserstein space of
probability distributions.

ν̂ = argmin
ν

KL(ν∥π) where KL(ν∥π) =
∫
Rd

log
ν(x)

π(x)
dx, (8)

where ν and π denote the estimate and desired posterior, respectively. Similar to the gradient con-
cept in Euclidean space, we can write the Wasserstein gradient of KL(ν∥π) as ∇νKL(ν∥π) =
∇ log(ν(x)/π(x)) (Ambrosio et al., 2008) and its expected square norm gives us the relative Fisher
information (FI) FI(ν∥π) =

∫
Rn ∥∇ log ν(x)−∇ log π(x)∥22ν(x) dx. If νt evolves under Langevin

diffusion in (3), then d
dtKL(νt∥π) = −FI(νt∥π) (Ambrosio et al., 2008; Villani, 2009), showing

that Langevin diffusion is a gradient flow in probability space. From an optimization viewpoint,
FI(νt∥π) serves as the analogue of the squared ℓ2 gradient norm in Rd (Balasubramanian et al.,
2022). Leveraging this analogy, we analyze the convergence of FI(νt∥π) under a “linear interpo-
lation” of the distributions generated by ZO-APMC, which in turn implies the stationarity of the
discrete updates.

3.3 GENERAL CONVERGENCE RESULTS

In this section, we state our main theoretical results establishing the convergence of ZO-APMC. We
first state our assumptions.

Assumption 2 The log-prior log p(x) is differentiable and ∇ log p(x) is Lf1 -Lipschitz, i.e.
∥∇ log p(x1)−∇ log p(x2)∥ ≤ Lf1∥x1 − x2∥ for all x1,x2 ∈ Rn.

Assumption 3 Let pσk
(x) =

∫
Rd p(z)ϕσk

(x − z)dz denote the smoothed prior, where ϕσk
is

the probability density function of N (0, σ2
kI). We assume that for any σk > 0 and x ∈ Rd,

∥∇ log pσk
(x)−∇ log p(x)∥ ≤ σkC.

Assumption 4 We assume that the log-likelihood log ℓ(x|y) is differentiable and has a Lipschitz
continuous gradient with constant Lf1 > 0 for any x1, x2 ∈ Rn, that is, ∥∇ log ℓ(y|x1) −
∇ log ℓ(y|x2)∥ ≤ Lf1∥x1 − x2∥.

Assumption 5 For any σk > 0 and all x ∈ Rd, the score network satisfies ∥Sθ(x, σk) −
∇ log pσk

(x)∥ ≤ εσk
<∞ and ∥Sθ(x, σk)∥ ≤ Rs.

Assumptions 2 and 4 correspond to standard conditions commonly adopted in the non-log-concave
sampling literature (He & Zhang, 2025; Guo et al., 2024; Balasubramanian et al., 2022), and As-
sumption 3 captures the perturbation of the prior as in (Sun et al., 2024). Assumption 5 imposes
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boundedness on both the score-network error and its output. The bounded error is a standard and
essential requirement for the theoretical analysis of sampling with SGM priors (Sun et al., 2024;
Lee et al., 2023; Wu et al., 2024; Lee et al., 2022; Chen et al., 2023), and the bounded output can be
easily implemented in practice via simple clipping. Notably, unlike related works (Sun et al., 2024;
Yang & Wibisono, 2022; Lee et al., 2022), we do not assume Lipschitz continuity of the SGM prior.
Moreover, none of our assumptions restricts the likelihood distribution to be log-concave. Under
these standard assumptions, we prove the convergence of ZO-APMC.

Theorem 1 Let {αk}N−1
k=0 , {σk}N−1

k=0 be decreasing annealing schedules with αK,...,N−1 = 1, and
let {νt}t≥0 denote the law of the continuous interpolation of {xk}Nk=0 produced by ZO-APMC with
N > 0 iterations under Assumptions 1–5. For any step size γ ∈

(
0, 1/(Lm

√
85ϕ(µ))

]
, where

ϕ(µ) = 1 + 4(1− p)d/pµ2b′, the Fisher information satisfies

1

Nγ

∫ Nγ

0

FI(νt∥π) dt≤
C0

Nγ
+8γL2

mdϕ(µ)+
17d(d+ 2)L2

f2

2b
+
17µ2L2

f1
(d+ 3)3

8
+σ̄2+ε̄2σ +ᾱ

2
−1,

(9)
where Lm = max{Lπ, Lf2}, C0 = 2KL(ν0∥π) + 10γE∥g0 − ∇fµ(x0)∥2/pLm

√
85ϕ(µ), σ̄2 =

51C
2N

∑N−1
k=0 σ

2
k, ε̄

2
σ = 51

2N

∑N−1
k=0 ε

2
σk
, and ᾱ2

−1 = 51
2N

∑N−1
k=0 (αk − 1)2R2

s . Furthermore, suppose
the parameters and schedules are chosen as γ =

√
C0/(2Lm

√
Ndϕ(µ)), b = ⌈51d(d+ 2)L2

f2
/ε⌉,

p = 1/b, µ = 2
√
ε/
√
51Lf1(d+3)3/2 with annealing schedules σn = O(n−β), αn = 1+O(n−β)

for β > 1/2, and score-network error satisfying εσn
= O(n−β) for β>1/2. Then an ε-approximate

solution to (9) can be obtained with N = O
(
d7L6

m/ε
4
)

forward-model evaluations, using a fixed
evaluation budget pb = O(1) per iteration on average.

Theorem 1 (proof provided in Appendix A.1.3) shows ZO-APMC achieves ε-approximate solution
in the Fisher information sense with N = O

(
d7L6

m/ε
4
)

forward-model evaluations and using a
fixed evaluation budget pb = O(1) per iteration.

Remark 2. In practice, the annealing schedules {αn}N−1
k=0 and {σn}N−1

k=0 are typically implemented
using geometric decay (Sun et al., 2024; Song & Ermon, 2019), which decreases more rapidly than
the polynomial rates selected for our analysis. Moreover, the condition εσn = O(n−β) with β > 1

2
characterizes the decay of the SGM generalization complexity across each noise level at step n.
Recent studies on the generalization of SGMs report similar rates as the one used in our analysis (Fu
& Lee, 2025; Zhang et al., 2024; Oko et al., 2023).

Leveraging the results of Theorem 1, we show that if the target posterior π further satisfies the
Poincaré inequality, ZO-AMPC enjoys stronger sampling guarantees in total variation distance.

Assumption 6 For every smooth, compactly supported function f : Rd→R, the posterior distribu-
tion π(x|y) satisfies the Poincaré inequality Varπ(f) ≤ CPIFI(ν∥π).

Corollary 1 Let {νt}t≥0 denote the law of the continuous interpolation {xk}Nk=0 of ZO-APMC,
and let the Assumptions Assumptions 1–6 hold. Then, if we choose γ =

√
C0CPI/2Lm

√
Ndϕ(µ),

we have

∥ν̄Nγ − π∥TV ≤ 16Lm

√
C0CPIdϕ(µ)

N
+

34d(d+ 2)CPIL
2
f2

b
+

17

2
µ2CPIL

2
f1(d+ 3)3

+ 4CPI(σ̄
2 + ε2σ + ᾱ2

−1) (10)

where ν̄Nγ := (Nγ)−1
∫ Nγ

0
νtdt. If we choose b = ⌈204d(d + 2)CPIL

2
f2
/ε⌉, p = 1/b, µ =

√
ε/Lf1(d + 3)3/2

√
51CPI with annealing schedules σn = O(n−β), αn = O(n−β) for β > 1/2

and assuming εσn
= O(n−β) for β > 1/2, an ε-approximate solution to (10) requires N =

O(d7L6
mC

3
PI/ε

4) forward model evaluations, using a fixed (pb = O(1)) evaluation per iteration.

Theorem 1 (proof provided in Appendix A.1.4) shows ZO-APMC achieves ε-approximate solution
in the stronger total variation sense with N = O

(
d7L6

mC
3
PI/ε

4
)

forward-model evaluations and
using a fixed evaluation budget pb = O(1) per iteration.
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Remark 3. To generate a sample from ν̄Nγ , one may proceed as follows. First, draw a time t ∈
[0, Nγ] uniformly at random and determine the largest integer k such that kγ ≤ t. Then perform a
linear interpolation between the interval [kγ, t] to produce xt according to the update rule in line 7
of ZO-APMC. The resulting xt is sample from ν̄Nγ .

Lastly, we establish the asymptotic convergence of the averaged ZO-APMC algorithm, with appro-
priately decaying hyperparameters, to the target posterior distribution under mild conditions.

Theorem 2 Let {νt}t≥0 denote the law of the continuous interpolation {xk}Nk=0 produced by ZO-
APMC, and suppose Assumptions 1–5 hold for π; if ZO-APMC is initialized at a measure ν0 with
KL(ν0∥π) < ∞ and uses γn =

√
b′/(nLm

√
680d), bn = ⌈n1/2⌉, pn = n−1/2, µn = n−1/8, and

σn = O(n−β) and if ε̄2σ = O(n−β) for β > 0, then ν̄τn → π weakly, where τn =
∑n

k=1 γk and
ν̄τn = τ−1

n

∫ τn
0
νt dt.

We present the complete proof in Appendix A.1.5. To the best of our knowledge, this is the first
work to establish weak convergence of ZO Langevin MC and ZO posterior sampling algorithms for
non-log-concave distributions. This result follows directly from Theorem 1 together with the fact
that FI(µ∥π) = 0 implies µ = π. We also emphasize the key role of our proposed estimator (7) in
establishing this result with a fixed evaluation budget pb = O(1) per iteration.

4 EXPERIMENTS

Baselines. Our primary focus is on gradient-free methods, which assume only black-box access
to the forward model. We therefore benchmark against three gradient-free baselines: SCG (Huang
et al., 2024), DPG (Tang et al., 2024), and EnKG (Zheng et al., 2024). We also include the Forward-
GSG and Central-GSG baselines, introduced by (Zheng et al., 2024). These methods resemble
Diffusion Posterior Sampling (DPS) (Chung et al., 2022) but approximate the forward-model gra-
dient using Tweedie’s formula together with forward and central ZO estimates of the forward score
function. For completeness, we also evaluate gradient-based methods in settings where the forward-
model gradient is available. Specifically, we compare our algorithm with DPS (Chung et al., 2022),
PnPDM (Wu et al., 2024), and APMC (Sun et al., 2024), which is an annealed Langevin MC poste-
rior sampling algorithm with gradient access and the closest approach to ours.

4.1 TOY EXPERIMENTS

Numerical Validation. We test our theory that ZO-APMC converges in FI with fixed per-
iteration cost on a synthetic bimodal 2D Gaussian-mixture prior with random A with ξ∼N (0, I).

Figure 1: (a) Convergence of ZO-APMC with b = 10, b′ = 5, and
εk∗ = 2.5 for various p, alongside APMC convergence with gradient
access. (b) Convergence results for fixed-budget per-iteration. Each
red “x” marks cases where the FI falls below 0.01 after 2000 iterations
for the corresponding p and b. (c) Comparison of sample statistics
obtained by ZO-APMC and APMC versus the ground-truth posterior.

Using the analytical score
with added Gaussian noise
εk∗ = 2.5 to mimic SGM
error, we generate 1000
samples with ZO-APMC
from 20 random initializa-
tions and report the mean
FI relative to the analyt-
ical posterior. Fig. 1a
shows that with b =
10, b′ = 5, ZO-APMC
converges near zero for
p ∈ {1, 0.75, 0.5}, match-
ing gradient-based APMC
but becoming unstable at
p = 0.3 due to fixed
b. Fig. 1b shows that in-
creasing b while keeping
pb = 10 restores stability
and achieves convergence
(FI ≤ 0.01), confirming
our theoretical results.
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Table 1: Quantitative comparison with baselines.
The best values of each metric for black-box and
gradient-access settings are highlighted in bold
and underline, respectively.

PSNR (dB)↑ SSIM↑ NRMSE↓ SD↓ MSE↓
PnPDM 30.81 0.946 3.76e-2 2.16e-2 8.46e-4
DPS 34.38 0.965 2.54e-2 2.06e-2 4.07e-4
APMC 36.55 0.973 1.99e-2 2.0e-2 2.55e-4
Forward-GSG 27.8 0.918 5.42e-2 3.26e-2 19.1e-4
Central-GSG 27.78 0.917 5.43e-2 3.27e-2 19.2e-4
SCG 7.1 0.711 7.67 1.38 0.21
DPG 32.17 0.953 5.4e-2 2.69e-2 6.5e-4
EnKG 31.32 0.934 5.72e-2 2.92e-2 6.72e-4
ZO-APMC (ours) 35.29 0.966 2.28e-2 2.99e-2 3.29e-4

Figure 2: Visual comparison of pathological
brain MRI with corresponding PSNR values ob-
tained using APMC with gradient access and
ZO-APMC in the black-box setting.

Statistical Validation. We assess ZO-APMC’s ability to sample from multiple modes of a multi-
modal distribution under black-box conditions. Using the same setup as our previous validation with
random A ∈ R115×1024, we construct a two-mode Gaussian mixture prior from CelebA (Liu et al.,
2018) images normalized to [0, 1], where the “male” and “female” attributes define the modes. To
ensure clear separation between the modes, we shift them by +1 and −1, respectively. A shallow
SGM is then trained by customizing the U-Net from (Nichol & Dhariwal, 2021) for this data. As
shown in Fig. 1c, ZO-APMC with p=0.5, b=50, b′=5, accurately recovers the posterior statistics
of both modes, comparable to APMC with gradient access, though with slightly higher variance due
to ZO estimation, which can be mitigated by increasing b. For extended results and further details
of validations, see Appendix A.2.

4.2 MAGNETIC RESONANCE IMAGING (MRI)

Image inverse problems (i.e., MRI recon.) are widely used benchmarks. Although we focus on
more challenging black-box forward models, we also evaluate our method on the linear MRI recon.
problem for completeness and demonstrate the capability of our variance-reduction mechanism on
high-resolution data.

Problem Setting We consider the radial subsampling mask with acceleration factor of 4×. For
evaluation, we use the SGM prior from Sun et al. (2024), which was pre-trained on the FastMRI
brain dataset (Zbontar et al., 1811), and evaluate all algorithms on a separate test set provided in that
work to ensure a consistent comparison. We randomly select 40 images at a resolution of 256× 256
pixels and generate 20 reconstructions per algorithm. For each method, we report the mean image-
quality metrics along with the average per-pixel standard deviation (SD). In this experiment, we use
p = 0.2, b = 104, and b′ = 103 to run ZO-APMC.

Results Table 1 shows that ZO-APMC consistently achieve higher reconstruction quality than other
black-box baselines in all image quality metrics and closely matches the APMC with gradient ac-
cess. Fig. 2 further demonstrates that both ZO-APMC and APMC yield visually indistinguishable
pathological brain MRI reconstructions, with ZO-APMC accurately capturing fine details without
gradient information. Our method yields slightly higher standard deviation than DPG but this can
be alleviated by increasing p, albeit at increased computational cost.

4.3 BLACK-HOLE IMAGING

Problem Setting The black-hole interferometric imaging system reconstructs images of black holes
from “visibility” measurements collected by Earth-based telescope arrays. We adopt the SGM prior
(pre-trained on the GRMHD dataset at 64×64 resolution), the highly non-linear forward model,
and the 100-sample test set, as provided by the InverseBench benchmark (Zheng et al., 2025; Wong
et al., 2022). For each method, we generate five samples and report their mean results. Since the
resolution of the images are low, we use p = 1 with b = 1024. Evaluation is based on the chi-
square errors of the closure phases (χ2

cph) and closure amplitudes (χ2
camp), which quantify how well

the reconstructions fit the measurements. Because the black-hole imaging system captures only low
spatial frequencies, we follow Akiyama et al. (2019) and compute PSNR for both the original and
blurred reconstructions at the system’s intrinsic resolution.

Results Fig. 3 shows two examples of black-hole reconstructions of our ZO-APMC method and
other gradient-free baselines against the ground truth. ZO-APMC yields black-hole reconstructions

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Visualization of samples generated for the black-hole imaging inverse problem. Recon-
structions of two examples by gradient-free methods are shown in the top and bottom rows.
Table 2: Quantitative evaluation of reconstructed
black-hole images (SD: sample standard deviation).

PSNR↑ Blurred PSNR↑ χ2
cph ↓ χ2

camp ↓ SD↓
PnPDM 26.48 32.31 11.48 23.54 4.5e-2
DPS 25.61 30.84 12.39 17.72 4.32e-2
APMC 26.23 31.32 11.78 19.23 4.34e-2
Forward-GSG 26.21 31.47 6.77 14.06 2.99e-2
Central-GSG 21.63 23.73 80.31 78.5 4.5e-2
SCG 22.21 25.51 23.72 14.23 1.7e-2
DPG 12.33 14.02 8.17 30.44 1.6e-2
EnKG 22.86 27.69 64.37 33.44 0.925
ZO-APMC (Ours) 26.71 32.86 5.42 11.23 3.02e-2

Figure 4: Visualization of results on
Navier-Stokes inverse problem.

with visual characteristics most closely match the ground truth among other baselines. Table 2
shows the quantitative comparison. ZO-APMC outperforms all baselines across metrics except SD,
which can be mitigated by increasing batch size b at additional cost.

4.4 NAVIER-STOKES EQUATION

Problem Setting The Navier–Stokes equation is a standard fluid-dynamics benchmark (Iglesias
et al., 2013), widely used from ocean dynamics to climate modeling, where atmospheric observa-
tions calibrate initial conditions for numerical forecasts. Computing forward-model gradients via
auto-differentiation is impractical because it requires differentiating through a PDE solver. We eval-
uate the gradient-free methods on 10 test samples from InverseBench using the SGM prior provided
by the benchmark, generating five reconstructions per method and reporting the mean performance.
We report the NRMSE (relative ℓ2 error) to evaluate the accuracy of reconstructions with sample
SD. For additional details on the experiments, and ablation studies, please refer to Appendix ??.

Results. Fig. 4 demonstrates that ZO-APMC produces solutions that qualitatively preserve key flow
features, comparable to EnKG and DPG, while SCG fails. Moreover, EnKG yields noticeably nois-
ier reconstructions than ZO-APMC. Additional quantitative results and more representative cases,
showing our algorithm’s performance comparable to the baselines, are provided in Appendix ??.

5 CONCLUSION

We proposed ZO-APMC, the first provable derivative-free framework for posterior sampling with
a pre-trained SGM prior. It provides non-asymptotic complexity guarantees for reaching an ε-
relative Fisher information stationary point and provably converges to the target posterior under mild
assumptions using only forward-model evaluations. Toy experiments confirm that our variance-
reduction scheme with fixed per-iteration cost ensures convergence in Fisher information across
batch sizes, while the annealing mechanism enables accurate sampling from multimodal distribu-
tions. On both linear and highly non-linear inverse problems, ZO-APMC matches the performance
of state-of-the-art gradient-free methods. The main limitations are higher runtime than gradient-
based methods due to Langevin diffusion and the absence of manifold projection as in Chung
et al. (2022). Future work includes extending our theoretical analysis with Riemannian zeroth-order
derivative estimation (Li et al., 2023) and incorporating faster sampling methods (Yin et al., 2024;
Song et al., 2023c).
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6 REPRODUCIBILITY STATEMENT

The full design of the toy experiments is detailed in Appendix A.2. For image-based experi-
ments, we employed publicly available datasets. For all inverse problems other than brain MRI,
we adopted the forward models from the reference implementations provided by the InverseBench
benchmark Zheng et al. (2025), while for brain MRI experiments we followed the implementation
of Sun et al. (2024). Furthermore, we use the original implementations of all baseline methods and
include our code as supplementary material with the submission.
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A APPENDIX

Figure 5: Illustrating how weighted annealing improves the convergence of PMC algorithms by
introducing weighted posteriors {π(αk)

σk }. The solid lines and shaded regions indicate the mean
and probability density of the distribution, respectively, while the unshaded area corresponds to
∇ log p(x)=0. Weighted annealing helps the vanilla PMC algorithm escape plateaus in∇ log p(x)
by gradually reducing the prior’s smoothing parameter σk and its weight w.r.t. the likelihood ℓ.

A.1 PROOFS

Notation. Throughout the proof, we work within the probability space (Ω,F ,P), where Ω denotes
the sample space, F the σ-algebra, and P the probability measure. For a random variable X : Ω→
Rn, we write its expectation as

E[X] =

∫
Ω

ζ(ω)P(dω).

The posterior distribution of interest is of the form

π(x|y) ∝ ℓ(y|x)p(x),

where we define f(x) = − log ℓ(y|x) and h(x) = − log p(x). Moreover, the gradient of the
perturbed log-prior is denoted by ∇hσk

(x) := −∇ log pσk
(x). For simplicity, we omit the explicit

dependence on y. Recall that

−∇ log π(x) = ∇f(x) +∇h(x). (11)

We denote the zeroth-order approximation of the forward model gradient as follows

∇̃fµ(xkγ ,u) :=
f(xkγ + µu)− f(xkγ)

µ
u, (12)

where u ∼ N (0, I) and µ > 0. The expectation of the zeroth-order approximation is denoted as
∇fµ(xkγ) := Eu

[
∇̃fµ(xkγ ,u)

]
. For notational convenience, we also define

∆k := E
[
∥x(k+1)γ − xkγ∥2

]
, (13)

as the expected squared ℓ2-distance between consecutive iterates. For convenience, we recall the
definition of the Kullback–Leibler (KL) divergence between two probability densities ν and π:

KL(ν∥π) =
∫
Rn

ν(x) log
ν(x)

π(x)
dx.
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Table 3: A conceptual overview of posterior sampling approaches for probabilistic imaging. The
“Annealing” column highlights distinctions among MCMC-based methods. The “Black-box ac-
cess” column shows whether the corresponding method assumes black-box access and works when
gradients of the forward model is unavailable. The A(·) column shows the assumption on the type
of forward model. This table extends that of Sun et al. (2024) by incorporating additional black-box
posterior sampling algorithms.

Category Reference Generative
prior Model agnostic A(·) Convergence

guarantees Annealing Black-box
access

Variational
Bayesian

(Sun &
Bouman,
2021)

✗ ✗ General ✗ – ✗

(Feng et al.,
2023)

✓ ✗ General ✗ – ✗

DM-based
(Song et al.,
2021)

✓ ✓ Linear ✗ – ✗

(Chung
et al., 2022)

✓ ✓ General ✗ – ✗

(Liu et al.,
2023)

✓ ✗ Linear ✗ – ✗

(Tang et al.,
2024)

✓ ✗ General ✗ – ✓

(Huang
et al., 2024)

✓ ✗ General ✗ – ✓

(Zheng
et al., 2024)

✓ ✗ General ✗ – ✓

MCMC-based

(Jalal et al.,
2021)

✓ ✓ Linear ✓1 ✓ ✗

(Kawar
et al., 2021)

✓ ✓ Linear ✗ ✓ ✗

(Laumont
et al., 2022)

✗ ✓ General ✓ ✗ ✗

(Coeurdoux
et al., 2024)

✓ ✓ Linear ✗ ✗ ✗

(Bouman
& Buzzard,
2023)

✗ ✓ Linear ✓2 ✗ ✗

(Sun et al.,
2024)

✓ ✓ General ✓ ✓ ✗

MCMC-based Ours ✓ ✓ General ✓ ✓ ✓

1Requires A(·) to be a Gaussian random matrix. 2Guarantees on asymptotic convergence.

The Fisher information (FI) is given by

FI(ν∥π) =
∫
Rn

∥∥∇ log ν(x)
π(x)

∥∥2
2
ν(x) dx =

∫
Rn

∥∇ log ν(x)−∇ log π(x)∥22ν(x) dx.

The Total Variation (TV) distance between two probability measures µ and ν on a measurable space
(X ,F) is given b by

∥µ− ν∥TV := sup
A∈F

∣∣µ(A)− ν(A)∣∣ =
1

2

∫
X

∣∣dµ− dν∣∣.
Unless otherwise stated, ∥ · ∥2 denotes the squared ℓ2-norm, i.e. ∥ · ∥22.

A.1.1 LEMMAS

We begin by reviewing the key lemmas from the zeroth-order optimization and non-log-concave
sampling literature. The following section summarizes the fundamental properties of zeroth-order
approximations that will be used in our analysis.
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Lemma 1 ((Lan, 2020)) Suppose that f(x) ∈ C1,1
L , and let fµ(x) := Eu[f(x+ µu)]. Then the

following statements hold:

(a) fµ ∈ C1,1
µ (Rd), where Lµ ≤ L,

(b) ∥∇fµ(x)−∇f(x)∥ ≤ 1
2µL(d+ 3)

3
2 ,

(c) Eu[∥∇̃fµ(x,u)∥2] ≤ 1
2µ

2L2(d+ 6)3 + 2(d+ 4)∥∇f(x)∥22,

where ∇̃fµ(x,u) := f(x+µu)−f(x)
µ u for u ∼ N (0, Id) and any x ∈ Rd, µ > 0.

The following lemma concerns the density evolution of an interpolated diffusion process.

Lemma 2 ((Balasubramanian et al., 2022)) Consider the stochastic process defined by

xt := x0 − tg0 +
√
2Bt, with g0 = g(x0), x0 ∼ ν0 (14)

where g0 is integrable and {Bt}t≥0 is a standard Brownian motion in Rd independent of (x0, g0).
Then, writing νt for the probability density of xt, we have

d

dt
KL(νt∥π) ≤ −

3

4
FI(νt∥π) + E

[
∥∇f(xt)− g0∥2

]
, (15)

where we recall that π ∝ e−f , and the expectation in the last term is with respect to x0 ∼ ν0 and
xt ∼ νt.

We also used the following lemma to bound the Fisher information, which is taken from (Chewi
et al., 2024).

Lemma 3 ((Chewi et al., 2024)) Assume that∇ log π(x) isLπ-Lipschitz. For any probability mea-
sure ν, it holds that

Eµ

[
∥∇ log π(x)∥2

]
≤ FI (ν∥π) + 2dLπ. (16)

We use the following lemma to derive an upper bound on Total Variation (TV) distance.

Lemma 4 ((Guillin et al., 2009)) If π satisfies a Poincaré inequality, i.e. for every smooth, com-
pactly supported f : Rd → R,

Varπ(f) ≤ CPI Eπ

[
∥∇f∥2

]
,

then for any probability measure µ,

∥µ− π∥2TV ≤ 4CPI FI(µ∥π).

A.1.2 PROOF OF PROPOSITION 1

For simplicity, let our PAGE estimator be defined as

gk :=


1

b

∑
i∈I

∇̃fµ(xk,ui), Bk = ref,

gk−1 +
1

b′

∑
i∈I′

(
∇̃fµ(xk,ui)− ∇̃fµ(xk−1,ui)

)
, Bk = corr,

(17)

where “ref” and “corr” denote the “refresh” and “correction” branches of the estimate and Bk ∈
{corr, ref} is a random variable such that P(Bk= ref) = p and P(Bk=corr) = 1− p. Additionally,
define the mini-batch estimators as

ṽb(xk) =
1

b

∑
i∈I

∇̃fµ(xk,ui) and δk =
1

b′

∑
i∈I′

(
∇̃fµ(xk,ui)− ∇̃fµ(xk−1,ui)

)
, (18)

where |I| = b and |I ′| = b′. Then, gk can be written as

gk :=

ṽb(xk), Bk = ref,

gk−1 + δk, Bk = corr.
(19)
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Let Fk := σ(x0,B1,Z1,u1, . . . ,xk,Bk,Zk,uk) be the sigma-algebra generated by all the ran-
dom variables revealed up to the end of iteration k. From (6), recall that Zk is due to the discretiza-
tion of the Langevin diffusion. Then, conditioning on the history Fk−1 and on xk, we have

E[ṽb(xk)|Fk−1,xk] = ∇fµ(xk), E[δk|Fk−1,xk] = ∇fµ(xk)−∇fµ(xk−1). (20)

Then, we have E[gk|Fk−1,xk] = ∇fµ(xk). Using this property inductively, we can obtain E[gk] =
E[∇fµ(xk)] after taking the expectation of both sides. Therefore, if we define the error as ek :=
gk − ∇fµ(xk), then E[ek] = 0, which implies that gk is unbiased estimate of ∇fµ(xk). Let’s
consider the error propagation at each branch separately.

For the correction branch, assume Bk = corr is true. We can define zero-mean fluctuation at step
k as

δ̃k := δk − E[δk|Fk−1,xk], (21)

where E[δ̃k|Fk−1|xk] = 0. Then,

ek = gk −∇fµ(xk) = gk−1 −∇fµ(xk−1)︸ ︷︷ ︸
ek−1

+δk − (∇fµ(xk)−∇fµ(xk−1))

= ek−1 + δ̃k. (22)

Note that ui ∼ N (0, I) random vectors selected at step k are independent of the ones selected at
step k − 1. Therefore, δ̃k is conditionally independent of ek−1, so we can write

Cov(ek|Fk−1,xk,Bk = corr) = Cov(ek−1|Fk−1) + Cov(δ̃k|Fk−1,xk). (23)

In the refresh branch, we have Bk = ref. Then, the error term can be written as ek = ṽb(xk) −
∇fµ(xk) and its covariance is

Cov(ek|Fk−1,xk,Bk = corr) = Σb(xk), (24)

where Σb(xk) :=
1
bCov(∇̃fmu(xk,ui)). Furthermore, using the definition of ek, we have

E[ek|Fk−1,xk,Bk = corr] = ek−1 and E[ek|Fk−1,xk,Bk = ref] = 0. (25)

Using the law of total variance, we can write the covariance matrix conditioned on the history
Fk−1 and xk as

Cov(ek|Fk−1,xk) = E[Cov(ek|Fk−1,xk,Bk)] + Cov (E[ek|Fk−1,xk,Bk]) . (26)

If we plug (23) and (24) with the conditional means in (25), we get

Cov(ek|Fk−1,xk) = (1−p)
(
Cov(ek−1|Fk−1) + Cov(δ̃k|Fk−1,xk)

)
+pΣb(xk)+p(1−p)ek−1e

T
k−1.

(27)
Taking the expectation of both sides, we get

Cov(ek) = (1− p2)Cov(ek−1) + (1− p)E[Cov(δ̃k)] + pE[Σb(xk)]. (28)

The factor (1− p2) is the contraction on the previous error covariance in expectation. Note that ui

are i.i.d. and recalling the definition of δ̃k, we have

Cov(δ̃k) ⪯ Cov(δk) ⪯
4dL2

f1

b′µ2
∥xk − xk−1∥2I, (29)

where we use the Assumption 1 to get the second inequality. This shows that the correction-step
noise is small when the iterate moves only a little between steps. Taking the trace of both sides
in (28) and plugging (29), we get

Cov(ek) ⪯ (1− p2)Cov(ek−1) +
4d(1− p)L2

f2

b′µ2
E[∥xk − xk−1∥2]I + pE[Σb(xk)]. (30)

Equivalently, this can be written as

E[∥ek∥2] ≤ (1− p2)E[∥ek−1∥2] +
4d(1− p)L2

f2

b′µ2
E[∥xk − xk−1∥2] +

p

b
σ2, (31)

where σ2
g ≤ σ2 and σ2

g(x) := Tr
(
Cov(∇̃fµ(x,ui))

)
.
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A.1.3 PROOF OF THEOREM 1

We can construct the following interpolation for ZO-APMC

xt = xkγ − (t− kγ)G(xkγ) +
√
2(Bt −Bkγ) for t ∈ [kγ, (k + 1)γ] (32)

where G(xkγ) = gk−αkSθ(xkγ), gk is an estimate of the forward model gradient with zeroth-order
approximation and variance-reduction mechanism, αk and σk are annealing parameters. By As-
sumption 2 and 4 and triangle inequality, we know that the target posterior score function∇ log π(x)
is Lipschitz continuous with Lipschitz constant Lπ = Lp + Lf1 . Furthermore, by Assumptions 3
and 5, the error between the prior score function and the score estimate scaled by annealing param-
eter can be bounded by

∥∇h(xkγ) + αkSθ(xkγ)∥ ≤ σkC + εσk
+ (αk − 1)Rs, (33)

where we recall ∇h(xkγ) = −∇ log p(xkγ). Note that we add and subtract ∇hσk
(xkγ) and use

triangle inequality. Now we can provide the proof for Theorem 1. Combining Lemma 2 with the
interpolation argument in (32), it follows that for every t ∈ [kγ, (k + 1)γ],

d

dt
KL(νt∥π) ≤ −

3

4
FI(νt∥π) + E

[
∥∇ log π(xt) + gk − αkSθ(xkγ , σk)∥2

]
. (34)

Adding and subtracting the following values∇fµ(xt),∇fµ(xkγ),∇h(xkγ),∇hσk
(xkγ) inside the

expectation and using the convexity of ℓ2 norm with the upper bound in (33), we get

d

dt
KL(νt∥π) ≤−

3

4
FI(νt∥π) + 4E

[
∥gk −∇fµ(xkγ)∥2

]
+ 4L2

πE
[
∥xt − xkγ∥2

]
+ µ2L2

f1(d+ 3)3 + 4(σkC + εσk
+ (αk − 1)Rs)

2. (35)

Let e2k := E
[∥∥gk −∇fµ(xkγ)

∥∥2] , which quantifies the squared error between the zeroth-order
estimate gk and the true score ∇fµ(xkγ) of the µ-perturbed forward model. Here the expectation
is taken with respect to both the randomness of the zeroth-order approximation and the measure Fk

associated with the data xkγ . Note that the bias term due to the zeroth-order approximation appears
as the fourth term of the previous inequality. Using the definition of gk, we can expand the error
term as

e2k+1 = pE

∥∥∥∥∥∇fµ(x(k+1)γ)−
1

b

b∑
i=1

∇̃fµ
(
x(k+1)γ ,ui

)∥∥∥∥∥
2


+ (1− p)E


∥∥∥∥∥∥∇fµ(x(k+1)γ)− gk −

1

b′

b′∑
i=1

(
∇̃fµ(x(k+1)γ ,ui)− ∇̃fµ(xkγ ,ui)

)∥∥∥∥∥∥
2


(36)

where b′, b denote the small and large batch sizes, respectively, and ui ∼ N (0, I) in Rd. We can
upper bound the first expectation as

E

∥∥∥∥∥∇fµ(x(k+1)γ)−
1

b

b∑
i=1

∇̃fµ(x(k+1)γ,,ui)

∥∥∥∥∥
2
 ≤ 1

b
E
[∥∥∥∇fµ(x(k+1)γ)− ∇̃fµ(x(k+1)γ ,ui)

∥∥∥2]
(37)

≤ 1

b
E
[∥∥∥∇̃fµ(x(k+1)γ ,ui)

∥∥∥2] (38)

≤
L2
f2

b
E
[
∥ui∥4

]
(39)

=
d(d+ 2)L2

f2

b
. (40)

In (37), we use the fact that the random variables ui are i.i.d. In (38), we use the second-moment
bound on the variance. Finally, in (39), we use the zeroth-order definition of ∇̃fµ(xkγ ,ui) with the
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Assumption 1 and evaluate the expectation under ui ∼ N (0, I) to get (40). Plugging this upper
bound into (36), we get

e2k+1 ≤
pd(d+ 2)L2

f2

b
+ (1− p)E

[∥∥∥∇fµ(x(k+1)γ)− gk

− 1

b′

b′∑
i=1

(
∇̃fµ(x(k+1)γ ,ui)− ∇̃fµ(xkγ ,ui)

)∥∥∥2] (41)

=
pd(d+ 2)L2

f2

b
+ (1− p)E

[∥∥∥∇fµ(xkγ)− gk +∇fµ(x(k+1)γ)−∇fµ(xkγ)

− 1

b′

b′∑
i=1

(
∇̃fµ(x(k+1)γ ,ui)− ∇̃fµ(xkγ ,ui)

)∥∥∥2] (42)

=
pd(d+ 2)L2

f2

b
+ (1− p)e2k +

1

b′
E

[∥∥∥∇fµ(x(k+1)γ)−∇fµ(xkγ)

−
(
∇̃fµ(x(k+1)γ ,ui)− ∇̃fµ(xkγ ,ui)

)∥∥∥2]
(43)

≤
pd(d+ 2)L2

f2

b
+ (1− p)e2k +

1

b′
E

[∥∥∥∇̃fµ(x(k+1)γ ,ui)− ∇̃fµ(xkγ ,ui)
∥∥∥2] (44)

=
pd(d+ 2)L2

f2

b
+ (1− p)e2k +

1

µ2b′
E

[∥∥∥(f(x(k+1)γ + µui)− f(xkγ + µui)
)

−
(
f(x(k+1)γ)− f(xkγ)

)∥∥∥2∥∥∥ui

∥∥∥2]
(45)

≤
pd(d+ 2)L2

f2

b
+ (1− p)e2k +

4L2
f2
∆k

µ2b′
E
[
∥ui∥2

]
(46)

=
pd(d+ 2)L2

f2

b
+ (1− p)e2k +

4dL2
f2
∆k

µ2b′
(47)

where ∆k := E
[
∥x(k+1)γ − xkγ∥2

]
. Note that we add and subtract∇fµ(xkγ) in (42). To get (43),

we use the fact that random variables ui ∼ N (0, I) are i.i.d., and calculate conditional expectation
conditioned with respect to Fk and then use the definition of e2k. We use second-moment bound
on variance in (44) and use the zeroth-order definition to get (45). Following that, we first apply
Assumption 1 and then exploit the independence between xkγ , x(k+1)γ , and ui to obtain (46).
Dividing both sides by p and rearranging the terms, we get an upper bound on the error term

e2k ≤
d(d+ 2)L2

f2

b
+

(
1− p
p

)
4dL2

f2

µ2b′
∆k −

1

p
(e2k+1 − e2k) (48)

Plugging this upper bound into (35), we get

d

dt
KL(νt∥π) ≤ −

3

4
FI(νt∥π) + 4L2

πE
[
∥xt − xkγ∥2

]
+ µ2L2

f1(d+ 3)2 +
4d(d+ 2)L2

f2

b

+

(
1− p
p

)
16dL2

f2

µ2b′
E
[
∥x(k+1)γ − xkγ∥2

]
− 4

p
(e2k+1 − e2k)

+ 4(σkC + εσk
+ (αk − 1)Rs)

2 (49)
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By the interpolation argument in (32), we have

E[∥xt − xkγ∥2] = (t− kγ)2E
[
∥G(xkγ)∥2

]
+ 2(t− kγ)d (50)

≤ γ2E
[
∥G(xkγ)∥2

]
+ 2γd (51)

= E[∥x(k+1)γ − xkγ∥2] (52)

for t ∈ [kγ, (k + 1)γ] because dimensionality of vectors d > 0 and E
[
∥G(xkγ)∥2

]
≥ 0. We use the

bound on (52) in (49) and get

d

dt
KL(νt∥π) ≤ −

3

4
FI(νt∥π) + µ2L2

f1(d+ 3)2 +
4d(d+ 2)L2

f2

b
− 4

p
(e2k+1 − e2k)

+ 4L2
m

[
1 +

(
1− p
p

)
4d

µ2b′

]
∆k + 4(σkC + εσk

+ (αk − 1)Rs)
2 (53)

where Lm := max{Lf2 , Lπ}. We use the interpolation argument given in (32) to put an upper
bound on ∆k as

∆k = γ2E[∥gk − αkSθ(xkγ , σk)∥2] + 2γd (54)

≤ 5γ2e2k +
5γ2µ2L2

f1
(d+ 3)3

4
+ 5γ2L2

π∆k + 5γ2E
[
∥∇ log π(xt)∥2

]
+ 5γ2(σkC + εσk

2 + (αk − 1)Rs)
2 + 2γd (55)

where we add and subtract ∇fµ(xkγ), ∇f(xkγ), ∇f(xt), ∇h(xt), ∇h(xkγ), and ∇hσk
(xkγ) in-

side the expectation, and then apply the convexity of the ℓ2 norm together with the part (b) of
Assumption 5 to obtain (55). Using the bound on e2k in (48), we get

∆k ≤ 5γ2L2
m

[
1 +

(
1− p
p

)
4d

µ2b′

]
∆k +

5γ2d(d+ 2)L2
f2

b
+

5γ2µ2L2
f1
(d+ 3)3

4

+ 5γ2E
[
∥∇ log π(xt)∥2

]
− 5γ2

p

(
e2k+1 − e2k

)
+ 5γ2(σkC + ε2σk

+ (αk − 1)Rs)
2 + 2γd

(56)

Assume that γ2 ≤
[
85L2

m

(
1 +

(
1−p
p

)
4d
µ2b′

)]−1

, then we have

16

17
∆k ≤

5γ2d(d+ 2)L2
f2

b
+

5γ2µ2L2
f1
(d+ 3)3

4
+ 5γ2E

[
∥∇ log π(xt)∥2

]
− 5γ2

p

(
e2k+1 − e2k

)
+ 5γ2(σkC + ε2σk

+ (αk − 1)Rs)
2 + 2γd (57)

Multiplying both sides by 17
16 , we get

∆k ≤
85γ2d(d+ 2)L2

f2

16b
+

85γ2µ2L2
f1
(d+ 3)3

64
+

85

16
γ2E

[
∥∇ log π(xt)∥2

]
− 85γ2

16p

(
e2k+1 − e2k

)
+

85

16
γ2(σkC + ε2σk

+ (αk − 1)Rs)
2 +

17

8
γd (58)

We can use Lemma 3 to put an upper bound to the third term

∆k ≤
85γ2d(d+ 2)L2

f2

16b
+

85γ2µ2L2
f1
(d+ 3)3

64
+

85

16
γ2FI(νt∥π) +

85

8
γ2Lπd

− 85γ2

16p

(
e2k+1 − e2k

)
+

85

16
γ2(σkC + ε2σk

+ (αk − 1)Rs)
2 +

17

8
γd. (59)

We can combine the fourth and the last term by using γ ≤
[
85L2

m

(
1 +

(
1−p
p

)
4d
µ2b′

)]− 1
2

and
concavity of the square root. Note that

γ ≤ 1√
85L2

m

(
1 +

(
1−p
p

)
4d
µ2b′

) ≤ 2

Lm

√
170 +

√(
1−p
p

)
8d
µ2b′

. (60)
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We can use this and get

85

8
γ2dLπ ≤

85γd

4

 Lm

Lm

√
170 +

√(
1−p
p

)
8d
µ2b′

 ≤ 85

4
√
170

γd. (61)

Finally, we get the upper bound for ∆k as

∆k ≤
85γ2d(d+ 2)L2

f2

16b
+

85γ2µ2L2
f1
(d+ 3)3

64
+

85

16
γ2FI(νt∥π) + 4γd

− 85γ2

16p

(
e2k+1 − e2k

)
+

85

16
γ2(σkC + ε2σk

+ (αk − 1)Rs)
2. (62)

We define ϕ(µ) := 1 +
(

1−p
p

)
4d
µ2b′ for convenience. Plugging (62) into (53), we get

d

dt
KL(νt∥π) ≤

(
−3

4
+

85γ2L2
mϕ(µ)

2

4

)
FI(νt∥π) +

(
1 +

85γ2L2
mϕ(µ)

16

)
4d(d+ 2)L2

f2

b

+

(
1 +

85γ2L2
mϕ(µ)

16

)
µ2L2

f1(d+ 3)3 − 4

p

(
1 +

85γ2L2
mϕ(µ)

16

)(
e2k+1 − e2k

)
+ 4

(
1 +

85γ2L2
mϕ(µ)

16

)
(σkC + εσk

+ (αk − 1)Rs)
2 + 4γdL2

mϕ(µ) (63)

≤ −1

2
FI(νt∥π) +

17d(d+ 2)L2
f2

4b
+

17

16
µ2L2

f1(d+ 3)3 + 4γdL2
mϕ(µ)

− 4

p

(
1 +

85γ2L2
mϕ(µ)

16

)(
e2k+1 − e2k

)
+

17

4
(σkC + εσk

+ (αk − 1)Rs)
2, (64)

where we use the fact that 85γ2L2
mϕ(µ) ≤ 1 to get (64). Integrating both sides between

[kγ, (k + 1)γ], we get

KL(ν(k+1)γ∥π)−KL(νkγ∥π) ≤ −
1

2

∫ (k+1)γ

kγ

FI(νt∥π)dt+
17γd(d+ 2)L2

f2

4b
+

17

16
γµ2L2

f1(d+ 3)3

+ 4γ2dL2
mϕ(µ)−

γ

p

(
4 +

85γ2L2
mϕ(µ)

16

)(
e2k+1 − e2k

)
+

51γ

4
(σ2

kC
2 + ε2σk

+ (αk − 1)2R2
s) (65)

Note that for the last term, we use Jensen’s inequality. Let Lk := KL(νkγ∥π) +
γ
p

[
4 + 85

16γ
2L2

mϕ(µ)
]
e2k, iterating for k = 0, . . . , N−1, multiplying both sides by 2

Nγ , rearranging
the terms and using the fact that Lk ≥ 0, we get

1

Nγ

∫ Nγ

0

FI(νt∥π)dt ≤
2L0

Nγ
+

17d(d+ 2)L2
f2

2b
+

17

8
µ2L2

f1(d+ 3)3 + 8γL2
mdϕ(µ)

+ σ̄2 + ε̄2σ + ᾱ2
−1, (66)

where σ̄2 := 51C
2N

∑N−1
k=0 σ

2
k, ε̄2σ := 51

2N

∑N−1
k=0 ε

2
σk

, and ᾱ−1 := 51
2N

∑N−1
k=0 (αk − 1)2R2

s . Since
γ2L2

mϕ(µ) ≤ 1
85 , we have

L0 = KL(ν0∥π) +
4γ

p

(
1 +

85

64
γ2L2

mϕ(µ)

)
e20 ≤ KL(ν0∥π) +

5γe20
p

. (67)

We can letC0 = 2KL(ν0∥π)+ 10γe20
p be a constant and this completes the proof of the first statement.

To find an ε-approximate solution, we choose the step size as

γ =
1

2Lm

√
C0

Ndϕ(µ)
(68)
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so that we get

1

Nγ

∫ Nγ

0

FI(νt∥π)dt ≤ 6Lm

√
C0dϕ(µ)

N
+

17d(d+ 2)L2
f2

2b
+

17

8
µ2L2

f1(d+ 3)3 + σ̄2 + ε̄2σ + ᾱ2
−1.

(69)

We know that {α}N−1
k=0 and {σ}N−1

k=0 are nonincreasing sequences such that

α0>α1>. . .>αK= · · ·=αN−1=1 and σ0>σ1>. . .>σK= · · ·=σN−1≈0. (70)

Thus, we can choose the annealing schedules as σn = O(n−β), αn = 1 + O(n−β) for β > 1/2 so
that we have σ̄2 ≤ ε

6 and ᾱ2
−1 ≤ ε

6 . In addition, if the training error is εσn = O(n−β) for β > 1/2,
then

ε̄2σ =
51

2N

N−1∑
k=0

ε2σk
=

51S

2N
= O

(
1

N

)
, (71)

where sum converges to a constant S. For the convergence of other terms, we can choose a suffi-
ciently large batch size b and sufficiently small smoothing parameter µ for the zeroth-order estimate
as

b =

⌈
51d(d+ 2)L2

f2

ε

⌉
and µ2 =

4ε

51L2
f1
(d+ 3)3

(72)

where ⌈.⌉ rounds the value to the larger closest integer. Using these values, we get

1

Nγ

∫ Nγ

0

FI(νt∥π)dt ≤ 6Lm

√
C0dϕ(µ)

N
+

5ε

6
. (73)

To make the per-iteration complexity constant, we can choose p = 1
b so that we have pb = O(1).

We can find the lower bound on N by using the following inequality

6Lm

√√√√C0d
(
1 +

(
1−p
p

)
4d
µ2b′

)
N

≤ 6Lm

√√√√C0d
(
1 + 4d

pµ2b′

)
N

≤ ε

6
. (74)

Plugging the chosen values for p and µ, we get

N ≥ C1dL
2
m

ε2
+
C2(d+ 2)7L6

m

ε4
, (75)

where C1 = 1296KL(ν0∥π) + 6480γ
p and C2 = 362 × 512 are numerical constants. That implies

N = O

(
d7L6

m

ε4

)
(76)

number of iteration complexity, which is also equivalent to number forward model evaluations be-
cause per-iteration complexity is fixed pb = O(1). That concludes the proof of Theorem 1. □

A.1.4 PROOF OF COROLLARY 1

Recall that from Theorem 1 proof, we have inequality (66) as

1

Nγ

∫ Nγ

0

FI(νt∥π)dt ≤
C0

Nγ
+

17d(d+ 2)L2
f2

2b
+

17

8
µ2L2

f1(d+ 3)3 + 8γL2
mdϕ(µ)

+ σ̄2 + ε̄2σ + ᾱ2
−1, (77)

where C0 = 2KL(ν0∥π) + 10γe20
p . By the convexity of the Fisher information, we have

FI(ν̄∥π) ≤ 1

Nγ

∫ Nγ

0

FI(νt∥π)dt

≤ C0

Nγ
+

17d(d+ 2)L2
f2

2b
+

17

8
µ2L2

f1(d+ 3)3 + 8γL2
mdϕ(µ)

+ σ̄2 + ε̄2σ + ᾱ2
−1 (78)
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where ν̄ := 1
Nγ

∫ Nγ

0
νtdt. By Assumption 6, we can invoke Lemma 4 and get

∥ν̄ − π∥TV ≤ 4CPIFI(ν̄∥π)

≤ 4C0CPI

Nγ
+

34d(d+ 2)CPIL
2
f2

b
+

17

2
µ2CPIL

2
f1(d+ 3)3 + 32γCPIL

2
mdϕ(µ)

+ 4CPI(σ̄
2 + ε̄2σ + ᾱ2

−1). (79)

If we let

γ =
1

2Lm

√√√√ C0CPI

Nd(1 +
(

1−p
p

)
4d
µ2b′ )

b =

⌈
204d(d+ 2)CPIL

2
f2

ε

⌉
, µ =

√
ε

51CPIL2
f1
(d+ 3)3

p =
1

b
and σ̄2 + ε̄2σ + ᾱ2

−1 ≤ ε/8CPI,

plugging these values in (79), we get

∥ν̄ − π∥TV ≤ 24Lm

√
CpCPId

N

(
1 +

(
1− p
p

)
4d

µ2b′

)
+

5ε

6
. (80)

We can bound the first term with ε
6 if we choose the number of iteration as

N ≥ C1CPIL
2
md

ε2
+
C2C

3
PIL

6
m(d+ 3)7

ε4
, (81)

where C1 = 36×162C0 and C2 = 36×162×24×34×51C0 are numerical constants. This yields
a forward model complexity of

N = O

(
d7L6

mC
3
PI

ε4

)
,

with a fixed per-iteration cost pb = O(1) to achieve ∥ν̄ − π∥TV ≤ ε. That proves Corollary 1. □

A.1.5 PROOF OF THEOREM 2

Given step–dependent parameters γn, bn, pn, µn, define

τn :=

n∑
k=1

γk, ν̄τn :=
1

τn

∫ τn

0

νt dt,

where νt denotes the law of the process xt specified by

xt := xτn−1 − (t− τn−1)G
(
xτn−1

)
+
√
2
(
Bt −Bτn−1

)
, t ∈ [τn−1, τn]. (82)

Here, γn denotes the step size used at iteration n, while τn denotes the cumulative time elapsed up
to iteration n. We note that the steps up to (65) in the proof of Theorem 1 hold for t ∈ [τn−1, τn]
with step-dependent parameters. Then, we can write the one-step recursion of ZO-APMC as

KL(ντn∥π)−KL(ντn−1
∥π) ≤ −1

2

∫ τn

τn−1

FI(νt∥π)dt+
17γnd(d+ 2)L2

f2

4b
+

17

16
γnµ

2
nL

2
f1(d+ 3)3

+ 4γ2ndL
2
mϕ(µ)−

γn
pn

(
4 +

85γ2nL
2
mϕn(µn)

16

)(
e2n − e2n−1

)
+

51γ

4
(σ2

nC
2 + ε2σn

+ (αn − 1)2R2
s) (83)

for t ∈ [τn−1, τn]. We choose the parameters as follows

γn =
1

n

√
b′

680L2
md

, b = ⌈n 1
2 ⌉, p = n− 1

2 , µn = n−
1
8 . (84)
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We emphasize that the chosen step size for γn, namely γn ∈
(
0, 1/

(
85L2

mϕn(µn)
)]

, satisfies this
condition for all n ∈ N+. Plugging these selected values into (83), we get

KL(ντn∥π)−KL(ντn−1
∥π) ≤ −1

2

∫ τn

τn−1

FI(νt∥π)dt+
A1

n
3
2

+
A2

n
5
4

+
A3

n2

(
1 +

4dn
3
4

b′

)

− cn
(
e2n − e2n−1

)
+

51γn
4

(σ2
nC

2 + ε2σn
+ (αn − 1)2R2

s), (85)

where

A1 =
17d(d+ 2)L2

f2

4

√
b′

680L2
md

, A2 =
17L2

f1
(d+ 3)3

16

√
b′

680L2
md

, A3 = 4dL2
m

√
b′

680L2
md

,

(86)
and all of them are constant. Moreover, we define

cn :=
γn
pn

(
4 +

85γ2nL
2
mϕn(µn)

16

)(
e2n − e2n−1

)
, (87)

for n ∈ N+. Iterating the bound in (85), we obtain

KL(ντn∥π) ≤ KL(ν0∥π)−
1

2

∫ τn

0

FI(νt∥π)dt+A1S1 +A2S2 +A3S3 −
n∑

k=1

ck
(
e2k − e2k−1

)
+

51

4

n∑
k=1

γk(σ
2
kC

2 + ε2σk
+ (αk − 1)2R2

s), (88)

where we have

S1 =

n∑
k=1

k−3/2 ≤
∞∑
k=1

k−3/2 <∞, S2 =

n∑
k=1

k−5/4 ≤
∞∑
k=1

k−5/4 <∞.

S3 =

n∑
k=1

(
k−2 +

4dk−5/4

b′

)
≤

∞∑
k=1

(
k−2 +

4dk−5/4

b′

)
<∞.

Thus, A1S1, A2S2, and A3S3 are bounded constants and are independent of n. Furthermore, if we
assume that cn is nonnegative and nonincreasing sequence (i.e. 0 ≤ cn+1 ≤ cn), we can bound the
summation of difference of the error terms in (88) as follows

−
n∑

k=1

ck
(
e2k − e2k−1

)
= c1e

2
0 +

n1∑
k=1

(ck+1 − ck)e2k − cne2n ≤ c1e0. (89)

Thus, we need to prove that cn is nonnegative and nonincreasing sequence. Plugging the variables
in (84) into the definition of cn, we get

cn =
1

n1/2

√
b′

680L2
md

[
4 +

85

12n2
b′

680d

]
+

1

n9/4

(
1− 1

n1/2

)√
b′

680L2
md

85b′

12× 680d
. (90)

Therefore, cn ≥ 0 for any n ∈ N+ and we have cn = O(n−1/2) so it’s a nonnincreasing sequence.
Using this upper bound on the differences of error terms in (85), we get

KL(ντn∥π) ≤ KL(ν0∥π)−
1

2

∫ τn

0

FI(νt∥π)dt+A1S1 +A2S2 +A3S3 + c1e
2
0

+
51

4

n∑
k=1

γk(σ
2
kC

2 + ε2σk
+ (αk − 1)2R2

s) (91)

We need to upper bound the last term related to the annealing parameters and the score network.
Note that {αk}N−1

k=0 is a decreasing sequence with αK,...,N−1 = 1 for some K. Hence, we have

51

4

n∑
k=1

γk(αk − 1)2R2
s ≤

51

4

∞∑
k=1

γk(αk − 1)2R2
s =

51

4

K∑
k=1

γk(αk − 1)2R2
s = Cα, (92)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where Cα is bounded constant. Additionally, we can choose a schedule for σn such that σ2
n =

O(n−β) for β > 0. For example, in practice, one often uses an exponentially decaying schedule
σn = σ0 ξ

n (Sun et al., 2024; Song & Ermon, 2019), where ξ denotes the decay rate. Then, we get

51

4

n∑
k=1

γnσ
2
kC

2 ≤ 51

4

∞∑
k=1

γnσ
2
kC

2 = Cσ <∞. (93)

Lastly, if we assume that ε2σn
= O(n−β) for some β > 0, then

51

4

n∑
k=1

γnε
2
σk
≤ 51

4

∞∑
k=1

γnε
2
σk

= Cεσ < ∞. (94)

This assumption implies that, as the noise level decreases, the test error of the score network forms a
monotonically decreasing sequence of orderO(n−β) with β > 0. Such a decay pattern is commonly
observed in diffusion models, where networks trained across noise scales exhibit progressively lower
errors at finer (less noisy) levels (Song et al., 2020; Ho et al., 2020). Combining (92), (93), and (94)
in (91), we get

KL(ντn∥π) ≤ KL(ν0∥π)−
1

2

∫ τn

0

FI(νt∥π)dt+A1S1 +A2S2 +A3S3 + c1e
2
0

+ Cα + Cεσ + Cσ (95)

Rearranging the terms, using the convexity of Fisher information and dividing both sides by τn, we
get

FI(ν̄τn∥π) ≤
1

τn

∫ τn

0

FI(νt∥π) dt

≤ 2KL(ν0∥π)
τn

+
2

τn

(
A1S1 +A2S2 +A3S3 + c1e

2
0 + Cα + Cεσ + Cσ

)
(96)

where A1S1 + A2S2 + A3S3 + c1e
2
0 + Cα + Cεσ + Cσ < ∞. Alternatively, if t ∈ [τn, τn+1],

integrating (64) between τn and t and dropping the negative integral over the Fisher information
give us

KL(νt∥π) ≤ KL(τn∥π) +
17(t− τn)d(d+ 2)L2

f2

4b
+

17

16
(t− τn)µ2L2

f1(d+ 3)3

+ 4(t− τn)γdL2
mϕ(µ)−

4(t− τn)
p

(
1 +

85γ2L2
mϕ(µ)

16

)
e2n+1

+
17(t− τn)

4
(σkC + εσk

+ (αk − 1)Rs)
2 (97)

≤ KL(ν0∥π) + 2A1S1 + 2A2S2 + 2A3S3 + 2Cα + 2Cεσ + 2Cσ + c1e
2
0. (98)

where, in the second inequality, for positive terms, we use the fact that 1
n+1 ≤

∑n
k=1

1
kβ for β > 1.

With (98), we show that {KL(νt∥π)}t≥0 is bounded. By the convexity of the KL divergence, this
implies that the sequence {KL(µ̄τn∥π)}n∈N is uniformly bounded as well. Since the sublevel sets
of KL(·∥π) are weakly compact, (ν̄τn)n∈N is tight. To establish that ν̄τn ⇀ π weakly, it suffices to
verify that every cluster point of (ν̄τn)n∈N equal to π.

Take a subsequence (ν̄τn)n∈N converging to some limit ν̄. Sending n → ∞ in (96) and using
τn → ∞ gives FI(ν̄τn∥π) → 0, so the same holds along the subsequence. By the weak lower
semicontinuity of the Fisher information along the subsequence, we have FI(ν̄∥π) = 0. Writing
ψ := dν̄

dπ , this means
√
ψ ∈ dom E and E(

√
ψ) = 0. Since ∇ log π is Lipschitz by Assumption 1, π

has a continuous and strictly positive density on Rd, so E(
√
ψ) = 0, which implies that ψ must be a

constant π-a.e., hence ν̄ = π. □

A.2 EXTENDED EXPERIMENTAL RESULTS

A.2.1 NUMERICAL VALIDATION

In this section, we give more details on our numerical validation experiments. Similar to the related
works (Sun et al., 2024; Song & Ermon, 2020), we run ZO-APMC with an exponential annealing
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schedule:
σk := max{σ0rk, σmin}, αk = max{α0σ

2
k, 1}, (99)

where r is the decay factor and k is the step number. We always choose α0 ≤ 1/σ2
min so that

{αk} converges to 1. For our numerical validation results, we set σ0 = 10, α0 = 10, r = 0.975,
σmin = 0 and γ = 0.1. For ZO estimator, we choose the smoothing parameter as µ = 10−4.
We run ZO-APMC with 1000 sample points initialized with uniform distribution U[−50, 50]2 on
[−50, 50]2 grid for N = 2000 iterations. At each step, we use a Gaussian mixture model (GMM)
to fit a distribution to the samples at intermediate steps, which allows us to compute the probability
of an arbitrary value on [−50, 50]2 grid. Then, for each intermediate distribution, we calculate the
empirical Fisher information relative to target posterior whose analytical posterior can be calculated.
We discretize the grid to 1000× 1000 unit areas in [−50, 50]2 and calculate the Fisher information
for each unit area. The total sum over the grid gives us the approximate relative Fisher information.
We perform additional experimental results for showing the effect of p on the convergence with
mean and standard deviation values in Fig. 6.

Figure 6: Effect of p on the convergence of ZO-APMC to the true posterior distribution in terms
of relative Fisher information. The solid lines show the mean values and shaded areas show the
standard deviations.

At each iteration, ZO-APMC performs a zero-order estimate with a large batch size b = 10 with
probability p, while with probability 1−p it uses a smaller batch size b′ = 1, whose gradient estimate
is aggregated with the previous step’s update.

A.2.2 STATISTICAL VALIDATION

The SGM used in this experiment is U-Net taken from (Nichol & Dhariwal, 2021) with some of its
layers removed to process the 32×32 images, which are taken from CelebA (Liu et al., 2018) dataset.
Each image is normalized to [−1, 1] and downscaled to 32 × 32 pixels for simplicity. The forward
operator is generated as random Gaussian matrix and for each test image, we inject a Gaussian noise
with variance 0.01 as a measurement noise. We construct a bimodal distribution by selecting male
and female images from the CelebA dataset and fitting a Gaussian mixture model (GMM) to the
combined data. To ensure adequate separation, the two modes are shifted by +1 and −1. The SGM
prior is then trained on samples drawn from this synthetic multimodal distribution. Because the
synthetic Gaussian images lack the structural richness of natural images, the score network’s results
on this dataset should not be taken as representative of its performance on real-world data. For
comparison, we compute the target modes and posterior statistics using the statistics derived from
male and female images in the CelebA dataset.

A.3 ADDITIONAL DETAILS FOR INVERSE PROBLEM EXPERIMENTS

A.3.1 MRI EXPERIMENT DETAILS

We evaluate the reconstruction quality of the samples generated by ZO-APMC and other baselines
methods by using peak signal to noise (PSNR) ratio, structural similarity index measure (SSIM),
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Figure 7: Comparison of the ground-truth brain MRI with APMC and ZO-APMC reconstructions
for various probabilities p ∈ {0.1, 0.2, 0.4, 0.5}, using a large batch size of b = 104 and a small
batch size of b′ = 103. PSNR values for each reconstruction are displayed in the lower-left corner
of the corresponding image.

normalized root mean square (NRMSE), and standard deviation (SD). Given an estimate x̂ ∈ Rd

and the ground truth xGT ∈ Rd, we define the error metrics as

MSE(x̂,xGT) =
1

d
∥x̂− xGT∥22, NRMSE(x̂,xGT) =

∥x̂− xGT∥2
∥xGT∥2

,

PSNR(x̂,xGT) = 10 log10

(
max(xGT)

2

MSE(x̂,xGT)

)
.

where d is the number of elements in x, and max denotes the maximum possible value of the signal
(e.g., 1 for normalized data or 255 for 8-bit images).

Ablation Study. Among the inverse problems considered in this work, MRI reconstruction involves
the largest image size (256 × 256), which necessitates a larger batch size in our ZO estimator to
accurately compute the forward-model gradient. To identify the optimal value of p, we subsample
examples from the validation set of FastMRI (Zbontar et al., 1811) and evaluate reconstruction
quality across different values, p ∈ {0.1, 0.2, 0.4, 0.5}, as illustrated in Fig. 7. As indicated by
the orange arrow, reducing p excessively while keeping b fixed produces visible artifacts in the
generated samples. ZO-APMC maintains reasonable reconstruction quality down to p = 0.2. Even
when using a smaller batch size of b′ = 103, an order of magnitude lower than b, in about half
of the iterations on average, ZO-APMC maintains high reconstruction quality that is very close
both visually and quantitatively to the reconstruction of APMC. As opposed to APMC, ZO-APMC
achieves this without any gradient information and uses only forward model function evaluations.
Because the performance gain beyond p = 0.2 is not significant and the gap between p = 0.5 and
p = 0.2 can be further reduced by averaging multiple parallel outputs, we set p = 0.2 for our brain
MRI inverse problem experiments.

Moreover, ZO estimators are widely recognized in the literature for exhibiting high variance in
high-dimensional settings, as they rely on first-order approximations of the function along random
directions. To evaluate our proposed variance-reduction mechanism, we compare the reconstructions
of our method with DPS and APMC, which do not assume black-box setting and have access to
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Figure 8: Comparison of the ground-truth brain MRI with reconstructions from ZO-APMC and
the gradient-based approaches DPS and APMC. Each method generates 20 samples from the same
measurements; the first row shows the mean reconstructions and the second row shows the corre-
sponding variance maps. Owing to its variance-reduction mechanism, ZO-APMC produces variance
maps comparable to those of the gradient-based algorithms despite relying on noisy evaluations of
the forward model.

gradients of the forward model. Results in Fig. 8 show that although our proposed method ZO-
APMC assumes black-box setting and uses noisy forward model evaluations to approximate the
gradient of the forward model, it has similar variance compared to DPS and APMC, which assumes
access to the gradients, thanks to our proposed variance-reduction mechanism.

A.3.2 BLACK-HOLE IMAGING EXPERIMENT DETAILS

In black-hole imaging, very long baseline interferometry (VLBI) uses an array of ground-based
telescopes. Each telescope pair (a, b) at time t produces a complex visibility V a,b

t . To mitigate
atmospheric and thermal phase errors, visibilities are combined into noise-robust closure measure-
ments (Chael et al., 2018): closure phases ycph

t,(a,b,c) and log-closure amplitudes ycamp
t,(a,b,c,d). Follow-

ing Sun & Bouman (2021); Zheng et al. (2024), we use the following likelihood model:

ℓ(y | x) =
∑
t

∥∥Acph
t (x)− ycph

t

∥∥2
2

2β2
cph

+
∑
t

∥∥Acamp
t (x)− ycamp

t

∥∥2
2

2β2
camp

+
ρ

2

∥∥∥∑
i

xi− yflux
∥∥∥2
2
. (100)

Here, Acph
t and Acamp

t map an image x to predicted closure phases and log-closure amplitudes,
respectively; βcph and βcamp are instrument-specific noise scales. The first two sums act as chi-
squared penalties for the closure measurements, while the final term enforces the total-flux constraint
with weight ρ and target flux yflux. For our experiments, we adopted the dataset, pre-trained SGM
prior, forward model implementation, and baseline methods provided by Zheng et al. (2025). For
EnKG, we adopt the hyperparameters recommended by Zheng et al. (2024), and for the baseline
methods we use the hyperparameters provided by Zheng et al. (2025).

A.3.3 NAVIER-STOKES EQUATION EXPERIMENT DETAILS

In our experiments, we study the two-dimensional Navier–Stokes equations for a viscous, incom-
pressible fluid in vorticity form on a torus. Let u ∈ C([0, T ];Hr

per((0, 2π)
2,R2)) for any r > 0

denote the velocity field, and let w = ∇ × u be the vorticity. The initial vorticity is w0 ∈
L2
per((0, 2π)

2;R), the viscosity coefficient is ν ∈ R+, and the forcing term is f ∈ L2
per((0, 2π)

2;R).
The solution operator G maps the initial vorticity to the vorticity at time T , i.e. G : w0 7→ wT . In
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our experiments, we implement G using a pseudo-spectral solver following He & Sun (2007):

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 2π)2, t ∈ (0, T ], (101)

∇ · u(x, t) = 0, x ∈ (0, 2π)2, t ∈ (0, T ], (102)

w(x, 0) = w0(x), x ∈ (0, 2π)2. (103)

The task is to infer the initial vorticity field from noisy and sparsely observed vorticity data at time
T = 1. Since Eq. (21) admits no closed-form solution, the corresponding derivative of the solution
operator is also unavailable. Furthermore, the computation of accurate numerical derivatives via
automatic differentiation through the solve is challenging since the extensive computation graph can
span thousands of discrete time steps.

We follow the approach in Zheng et al. (2024; 2025) and first solve the equation up to time T = 5
starting from random Gaussian initial conditions, which are highly nontrivial due to the nonlin-
earity of the Navier–Stokes equations. We use the SGM-prior, which was pre-trained over 20,000
vorticity fields, and use the test set consisting of 10 samples from InverseBench. For EnKG, we
use the hyperparameters recommended by Zheng et al. (2024), and for the baseline methods we
adopt the hyperparameters provided by Zheng et al. (2025). Quantitative results are presented in
Fig. 4. Our method demonstrates a performance comparable to most black-box posterior samplers,
while distinctively providing rigorous theoretical guarantees of convergence to the target posterior
guarantees, which is not established for the baseline methods.

Table 4: Quantitative results for the Navier–Stokes equation benchmark. For each case, the best-
performing method is shown in bold. Baseline results are taken from Zheng et al. (2024).

NRMSE (σnoise = 0)↓ NRMSE (σnoise = 1)↓ NRMSE (σnoise = 2)↓
Forward-GSG 1.687 1.612 1.454
Central-GSG 2.203 2.117 1.746
SCG 0.908 0.928 0.966
DPG 0.325 0.408 0.466
EnKG 0.120 0.191 0.294
ZO-APMC (Ours) 0.459 0.463 0.472
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