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Abstract

Tabular data is abundant in critical applications such as science, healthcare, finance,
energy, and many other industries, making advances in tabular learning highly
influential and interesting for the research community. However, in heavy indus-
try applications we are often presented with a special class of tabular regression
problems which are not commonly studied. These multi-instance single-target
tabular data problems, originate from the difficulty and cost of taking regular
measurements during a production process. In this setting, we have to deal with
high-dimensional inputs, in combination with scarce labels. While foundation
models such as TabPFN show strong results on suitable datasets, their applicability
and performance on multi-instance single-target data is limited by memory and
runtime constraints when the number of instances grows. In this paper, we pro-
pose a cluster-based dimensionality reduction, which compresses multi-instance
measurements by splitting them according to the most relevant cluster constructed
from the training set. This approach reduces computational overhead while pre-
serving predictive performance, enabling inference for multi-instance datasets. Our
experiments demonstrate that the proposed method extends the practical reach of
TabPFN, achieving improved performance across multiple datasets.

1 Introduction

Tabular data remains one of the most common data modalities across science and industry. Although
deep learning has achieved breakthroughs in vision and language tasks, its success in tabular problems
has been limited, often outperformed by conventional methods such as boosting methods or random
forest [Shwartz-Ziv and Armon, 2022]]. Recently, the second generation of a foundation model for
tabular data, i.e. TabPFNv2, has been introduced [Hollmann et al., [2025]], substantially improving on
its predecessor TabPFN [Hollmann et al.| 2022]. It leverages a vast pretraining corpus of synthetic
datasets, i.e. a learned prior, to achieve state-of-the-art performance on tabular data without the need
for retraining or fine-tuning.

However, TabPFN was not designed with multi-instance single-target problems in mind, i.e. sequence-
to-one tasks, which is a common setting in heavy industry, where taking measurements is challenging
and/or expensive. In this setting, the model has to deal with very high-dimensional input data, that
can either be reduced via pooling or other methods, or split into a series of independent input-output
pairs with duplicated targets. Here, dimensionality reduction is the favored variant, as TabPFN
performance has been shown to deteriorate when the training set consists of too many input-output
pairs and memory constraints limit the support set size [Zhou et al) 2025]. The issue becomes
particularly pronounced in our label-scarce setting, when the number of features far exceeds the
number of available targets. The setting of high-dimensional low-sample size datasets is especially
relevant in industrial settings where thousands of process parameters are often recorded and only a
few hundred data samples are available [Viertauer et al.,2019alb, Mutsam et al., 2024]).
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Since TabPFN can only capture input-output relationships when the effective sample size is on the
order of the feature dimension, dimensionality reduction methods, such as hand-crafted descrip-
tors [Fuadah et al., 2024} Zhou et al.|[2017]], pooling operations [[Samih et al.|[2023] Meng| 2024], or
learned embeddings [Zhou et al.,[2025] are commonly applied. While pooling approaches effectively
reduce the dimensionality of the data, they are prone to destroy value information. On the other
hand, learned embeddings can be more expressive, but require sufficiently many training samples
themselves. Therefore, low-data scenarios with high input dimensionality are especially challenging
for existing methods.

Our proposed method address these scenarios by employing a cluster-based reduction strategy.
To create this cluster-based pooling, we first create cluster instances and then individually assign
them to the support- and query set of their respective clusters. Using the proposed method we can
improve prediction performance on our industrial steel vessel datasets, as well as benchmark datasets.
We compare our method against sum-pooling, Deep Sets [Zaheer et al., 2017 and unsupervised
dimensionality reduction using autoencoders.

2 Related work

The introduction of TabPFN by |[Hollmann et al.| [2025]] marked an important step for deep learning
in tabular data. Its capabilities have been rigorously analyzed [Ye et al., 2025, Zhang et al.,[2025]],
also showing its limitations, including the applicability to small datasets [Zhou et al.| [2025]]. Several
dimensionality or data reduction approaches have been proposed to extend TabPFN to larger datasets,
such as combining it with a feature encoder [Liu and Ye, 2025], or selecting support set samples
that are closest to the query [Feuer et al., [2024] Koshil et al., 2024]]. To directly reduce feature
dimensionality, approaches such as feature selection [Hua et al.,2009] and feature transformation
have been extensively studied [|Ayesha et al.,|2020]. Dimensionality reduction can be further enhanced
using unsupervised learning methods, such as autoencoder architectures [Mahmud et al., 2021]], or
neural networks including certain inductive biases as in convolutional neural networks, Behler-
Parinello networks, or tailored descriptors [Behler and Parrinello}, 2007} Zhou et al., 2017} [Fuadah
et al.,2024].

3 Methodology

We consider supervised regression settings in which we need to predict a target y,, given a sample
consisting of [,, instances X,, = {xnyi}ﬁ‘:l, where x,, ; € R and F is the number of features
per instance. In other words, we want to model a dataset of the form D = {(X,,,y,)}Y, with N
being the amount of samples. Additionally, the amount of data per sample greatly exceeds the
amount of targets. A simple approach to deal with this high dimensionality is by sum pooling it’s
instances X', = ngl Xn,i» and use them to form support and query set. We improve this method
by partitioning the instances into multiple clusters, creating a support and query set for each of them,
and aggregating the predictions of TabPFN. This is related to methods studied in literature, where
the support set includes samples close to the query set [Feuer et al.,[2024]]. Note, that in contrast to
existing literature, we split samples by partitioning their instances into multiple clusters, and then
form, for each cluster, a support and query set using only instances belonging to that cluster.

For simplicity, we will denote the sample indices for training and test using n € {1,2,..., N, } and
n € {1,2,..., Ny}, respectively. Context will make the distinction clear.

3.1 K-means pooling

Let’ denote the matrix containing all instances of the training set D, as

N,
Xoi= [X11 - Xun o XNea o XNadw, ] T e RO In)xF
We first partition X,); into K clusters using k-means, then we form a separate support-query set pair
for each cluster. Denoting by Z,, . the set of instances of sample n that belong to cluster k, we write
the support and query sets as

Ny Nte
Sk 5 Xn,iy Yn 5 § Xn 7 . (1)
‘In k| €T, |I”l k‘
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Table 1: MAE performance of the TabPFN v2 for all analyzed methods, averaged across 5 folds.

Dataset Naive pooling CAE Deep Set KMeans KMeans-C KMeans-F KMeans-FC
Metal 13.5 £ 1.7 14.9+1.9 14.3£1.0 15.3 £ 1.6 134+ 1.6 15.5+2.9 14.2 £ 3.5
Slag 18.0£1.3 21.3+ 2.6 1954+1.6 20.1+1.6 18.0£1.2 21.3+1.2 177+ 1.4
Bottom in 24.8+1.9 264+ 1.9 27.6+4.0 24.0+2.9 25.3+2.0 23.0+2.0 23.0+1.6
Bottom out 289+ 3.5 31.2+4.5 326 3.9 30.3+£4.8 28.7+ 4.2 29.2+ 5.4 28.8 +4.8
MS5 food 249 +5.1 24.7 + 3.7 26.5+5.2 23.6+£3.9 23.6 £4.1 23.6 +4.4 23.5+4.7
MS5 hobbies 25.6 £ 6.7 25.1+5.6 27.7+7.2 23.6+4.5 22.6 £4.7 249449 23.6 + 4.2

MS household 24.2+4.5 23.9+44 273+22 24.0+£3.1 23.9+38 26.4 £6.5 25.6 £6.4

We scale the pooled instances by I,,/|Z, | such as the target y,, is the aggregation of all instances.
Note that some samples may not be represented in every cluster. Each support—query set pair generates
a prediction for every test sample which has at least one instance in the respective cluster. To obtain
the final ensemble prediction for a given test sample, we average all query predictions which the
sample was part of.

Constructing support—query set pairs as in Equation[Tamounts to describing each sample by multiple
selectively pooled representations, one for each cluster. Since the instances of a sample are not
distributed uniformly across clusters, these representations may not well describe the sample. Thus
we also experiment scaling targets instead of pooled instances to learn the relationship between
instances and their contribution to the target. The support and query set are constructed as

Nir Nte

Sy = Z Xn,i, |I;’k|yn , Q= Z Xn,i . ()

€Ly K €Ly K

n=1 n=1

Since each support-query set pair now predicts only a fractional contribution to the target, the final
ensemble prediction for a test sample is obtained by summing over the individual predictions.

Given that pooling reduces each sample to an F'-dimensional vector, and F' is typically smaller than
the number of training samples N,, we have the additional option to concatenate the selectively
pooled instances with the pooled instances (all instances of sample) for both the support- and query
sets. This gives us four methods: KMeans and KMeans-F use Equations [T]and [2] for support-query set
pair construction, respectively, and KMeans-C and KMeans-FC are the respective variants, where the
feature space is extended by the pooled instances. Aggregation details are explained in Appendix [B]

4 Experimental setup

We use four industrial datasets from steel-processing [Mutsam et al., 2024]. To expand our analysis,
we adapt the public dataset M5 [Howard et al., |2020] to our multiple-instance setting, creating 3
separate datasets. Dataset details and how they were created is summarized in Appendix |A] All
methods are evaluated using 5-fold cross-validation with a shared set of folds. Regarding M5 datasets,
which exhibit temporal and seasonal patterns, each fold consists of consecutive samples to preserve
the temporal structure.

We compare the TabPFN v2 performance for our dimensionality reduction method against naive
pooling (pooling all instances), a convolutional autoencoder-based (CAE-based) preprocessing model,
and against Deep Set regressors [Zaheer et al., 2017]. We performed a hyperparameter search for
CAEs and Deep Sets, where we tested different regularization strengths, and our k-means based
method, where we varied the number of clusters. We optimized hyperparameters for each training
fold separately. Both the autoencoders and Deep Set networks were trained with AdamW, using early

stopping.

5 Results

Table E] shows the TabPFN v2 performance of all methods across datasets, we see that all methods
exhibit high variance between folds, limiting the reliability of comparisons. This variability arises
from small sample sizes, causing substantial shifts in the sample distribution across folds. Nonetheless,
some trends can be observed. The Deep Sets model and the CAE are generally outperformed by
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Figure 1: KMeans and KMeans-C applied to the three datasets: Metal, Slag, and M5 hobbies. On
the left, the MAE is plotted over the number of used clusters. The three right column show the
corresponding statistics of cluster assignments. Cluster density p in total shows the distribution across
clusters of all instances in the training sets, displayed in descending order. Cluster density p per
sample shows the average assignment distribution of instances within a sample.

simpler pooling strategies. While KMeans tends to perform worse than naive pooling on industrial
datasets, it improves results on the M5 datasets. This suggests that its clustering-based instance
selection may be more effective if the underlying data distribution is more structured and less noisy.
KMeans-C, in contrast, benefits from combining the two approaches, consistently achieving results
that are comparable or better than those of naive pooling and standard KMeans. Interestingly,
KMeans-F and KMeans-FC generally perform worse than their respective counterparts, despite their
invariance to the fraction of instances assigned to each cluster.

Figure [T] shows an ablation study of KMeans and KMeans-C conducted on three datasets. On the
industrial datasets we observe that performance does not improve with more clusters. We argue
that these datasets are relatively noisy, where using a fine-grained clustering becomes unreliable.
Additionally, the spread in MAE between KMeans-C and KMeans is high on industrial datasets,
while it is low on M5 hobbies (a dataset on which it performs well). This suggests that KMeans-C
only works well on industrial datasets because of the access to sum-pooled instances. Furthermore,
we see that the entropy of sample-wise cluster assignments is lower, while the entropy of total cluster
assignments is higher for M5 compared to the industrial datasets. This indicates that many samples
of the M5 datasets contain instances that belong to a small number of clusters, which may be critical
for improved performance. We argue that the more deterministic the sample-wise cluster assignments
become, the more our method resembles context optimization techniques from literature
2024]). We thus suspect, that the limited performance on industrial data could originate from
insufficient separation of instances, or samples, when using the k-means—based methods.

Overall, our findings suggest that ensemble predictions based on selective pooling can boost perfor-
mance. However, KMeans-C’s gains may be partly attributed to ensemble prediction and an expanded
feature space (see Appendix [C). It is conceivable, that the k-means algorithm is not be the best suited
method for this task. Generally, our analysis is limited by few benchmarks and results with high
variance.

6 Conclusion

We introduced a method to reduce the dimensionality of multi-instance data by clustering and
constructing support-query pairs for each cluster, enabling predictions with TabPFN v2. Our approach
shows promising results, though for now the analysis is limited by few datasets and high variance.
Future work could explore alternative clustering strategies, analyze dropping problematic clusters,
and extend the method to categorical features. In particular, while our approach relies on Euclidean
distance in feature space, future work may explore more suitable similarity measures or clustering on
transformed representations, as well as richer, ways of summarizing clusters beyond average pooling.
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Table 2: Statistics of the datasets, including number of samples N, number of features /' and the
average number of instances per samples I,,.

Dataset N F 1,

Metal 230 15 113.8
Slag 449 20 58.8
Bottom in 164 40 160.6
Bottom out 166 40 160.6
M5 food 163 25 70.3

M5 hobbies 156 25 73.5
M5 household 161 25 71.3

A Datasets

Each industrial dataset consists of samples representing a vessel’s usage period, called campaigns.
A campaign consists of multiple operational steps (instances). The goal is to predict the refractory
wear at the end of a vessel’s usage period, given feature vectors for each step. This naturally creates a
multiple-instance learning scenario, with the aggregated wear over all instances as target.

We further adapted the M5 dataset to our multi-instance settings. Each instance corresponds to a
single product sold at a particular store, characterized by features including a cosine—sine encoding of
the month, seven binary weekday indicators, four binary event-type indicators, a one-hot encoding of
the store, a binary SNAP flag, and the store’s sell price. For each product category (food, household,
hobbies), we randomly select one product to form three datasets. Samples are constructed by
partitioning the time series into intervals of 7—15 days. For each interval, we create one sample
containing all instances from six randomly selected stores. The target associated with each sample is
the total sales across these stores during that interval.

Features were first scaled to a normal distribution by a quantile transformation, fitted to instances of
the training set {Xy, ; }n ;. Table shows some statistics of all datasets.

B Support set construction

In this section, we clarify how we create the support set for each method. Note that the query set is
constructed analogously, except that the target is omitted. Whenever we refer to pooling instances
without using the term selective, we mean pooling over all instances belonging to a sample. In
contrast, selective pooling refers to pooling only over instances that belong to a specific cluster.

B.1 KMeans

Here we scale the selectively pooled instances such that they preserve information about the total
target magnitude (see also Equation [T}

Ntr

Se=4 {2 3 % v . 3)

|In,k| €Ly k

n=1
B.2 KMeans-F

With KMeans-F, we attempt to learn the fractional contribution of selected instances to the target.
Thus, we sum-pool the selected instances and scale the target by the fraction of instances belonging
to the respective cluster (see also Equation [2}

Ntr

Ink
Sk = Z Xn,iy | Ir; |yn . (4)
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n=1



B.3 KMeans-C

When concatenating selectively pooled instances with sum-pooled instances, we no longer need to
scale the former. Thus, the support set becomes

N

5 = {([Iik' > xuis é_;x} y)} , )

1€Ln K n=1

where [-; -] denotes concatenation.

B.4 KMeans-FC

Since the goal of KMeans-F is to model the fractional target contribution, concatenating with the
sum-pooled representation is not meaningful. To see this, consider augmenting a sample by adding
more instances that do not belong to a given cluster—this should not affect the corresponding
support—query pair. Therefore, we construct the support set as

1 & |Z0, x| A
S = { <[ Z Xn,i T an,i:|7 ;—L7 yn> } . ©6)
n i n n

1€Ln =1

C Additional baseline comparisons

In this section we want to expand the baseline comparisons. To this end, we study four more baselines,
two of which serve as dummies. DummyRegressor always predicts the mean target value found in
the training set and LinearRegressor is trained by receiving only the number of instances as input.
LinearRegressor can be understood as a dummy regressor, when the target value is decorrelated
from the number of instances I,,. We further also introduce a randomized version of KMeans and
KMeans-C, which we call RCluster and RCluster-C, respectively. These methods are similar with
respect to their counterparts, with the only change that they assign instances to clusters randomly.
Table 3] shows the results of these baselines together with KMeans and KMeans-C.

Our main interest lies in comparing KMeans-C to RCluster-C to assess whether KMeans-C’s improve-
ments stem primarily from its expanded feature space and ensemble predictions. Indeed, RCluster-C
performs better than naive pooling and even surpasses KMeans-C on some datasets. We speculate
that this phenomenon occurs, because RCluster-C does something similar to data augmentation:
By training multiple predictors on different training sets, the effective training set size is increased.
Additionally, averaging over many randomly selected samples resembles noisy average-pooling.

The results raise the question whether clustering itself matters at all. As shown in Table [3| RCluster-
C’s mean MAE differs from KMeans-C’s by at most 0.5 on most datasets, though it performs worse
by 1.3 and 2.4 points on two others. Though the high variance prevents reliable conclusions, it appears
that k-means can indeed help on specific datasets and that its advantage on others could largely stem
from indirect data augmentation effects. Figure|l|also shows that clustering behaves differently on
MS5 hobbies, a dataset where KMeans-C is strong, than on Metal and Slag: First, on M5 hobbies,
KMeans-C gains performance as the number of clusters increases. Second, the MAE achieved by
KMeans and KMeans-C shows very little spread - in stark contrast to the industrial datasets. Third,
instances are more uniformly distributed across clusters, whereas the instances belonging to a given
sample tend to fall into fewer clusters. It is conceivable that clustering in feature space does not yield
optimal separation. Further, using Euclidean distance with mean or sum aggregation might fail to
capture instance-level structure effectively. Extensive experiments are needed to clarify this.



Table 3: Mean and standard deviation of the MAE for each method, evaluated using 5-fold cross-
validation.

Dataset DummyRegressor  LinearRegressor RCluster RCluster-C KMeans KMeans-C
Metal 16.9+0.9 15.5 £ 2.2 14.34+20 135+16 153+16 13.44+1.6
Slag 23.8+1.5 23.3£1.3 195+16 181£1.1 201+16 18.0+£1.2
Bottom in 30.1 £2.6 28.6 £ 2.7 248+1.8 248+18 24.0+£29 253420
Bottom out 32.0+£5.3 30.0£6.5 29.7+3.8 284+34 30.3+4.8 287442
M5 food 37.4+£3.5 25.5+£5.5 24.3+44 249+48 23.6+£39 23.6+4.0
M5 hobbies 41.4+6.9 29.7+£6.1 23.9+£52 25.0+6.3 23.6+£45 22.6+4.7
M5 household 36.8 £ 7.1 27.5£3.3 23.6£3.1 235+45 24.0+£3.1 239438
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