
Preference Alignment with Flow Matching

Minu Kim1∗ Yongsik Lee1∗ Sehyeok Kang1 Jihwan Oh1

Song Chong1† Se-Young Yun1†

1KAIST AI
{minu.kim, dldydtlr93, kangsehyeok0329, ericoh929,

songchong, yunseyoung}@kaist.ac.kr

Abstract

We present Preference Flow Matching (PFM), a new framework for preference
alignment that streamlines the integration of preferences into an arbitrary class of
pre-trained models. Existing alignment methods require fine-tuning pre-trained
models, which presents challenges such as scalability, inefficiency, and the need
for model modifications, especially with black-box APIs like GPT-4. In contrast,
PFM utilizes flow matching techniques to directly learn from preference data,
thereby reducing the dependency on extensive fine-tuning of pre-trained models.
By leveraging flow-based models, PFM transforms less preferred data into preferred
outcomes, and effectively aligns model outputs with human preferences without
relying on explicit or implicit reward function estimation, thus avoiding common
issues like overfitting in reward models. We provide theoretical insights that
support our method’s alignment with standard preference alignment objectives.
Experimental results indicate the practical effectiveness of our method, offering a
new direction in aligning a pre-trained model to preference. Our code is available
at https://github.com/jadehaus/preference-flow-matching.

1 Introduction

Preference-based reinforcement learning (PbRL) has emerged as a groundbreaking approach with
significant contributions to performance improvement [Akrour et al., 2011, Wilson et al., 2012],
particularly in the realm of artificial intelligence where understanding and incorporating human
preferences are crucial. Unlike traditional reinforcement learning, which struggles due to the absence
of explicit reward functions or the infeasibility of defining comprehensive environmental rewards,
PbRL leverages a variety of feedback forms from humans to guide the learning process. This class of
PbRL method is often referred to as reinforcement learning from human feedback (RLHF) [Ziegler
et al., 2019, Levine et al., 2018, Ouyang et al., 2022].

Despite their effectiveness, these methods necessitate fine-tuning pre-trained models to align with
user preferences, introducing several challenges such as scalability, accessibility, inefficiency, and the
need for model modifications. For instance, with black-box APIs like GPT-4 [OpenAI et al., 2024],
customization based on user preferences is constrained due to restricted access to the underlying
model. Moreover, even if fine-tuning were feasible, the large model size results in inefficient training
and high resource consumption. Aligning black-box models with user preferences remains an
under-explored area in research, despite its critical importance and growing demand.

In this line of research, we propose Preference Flow Matching (PFM), which redefines the integration
of human preferences by directly learning a preference flow from the less preferred data to the more
preferred ones. This direct modeling of preference flows allows our system to better characterize

∗Equal contribution. †Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jadehaus/preference-flow-matching

Sampling

y− y+

SFT Model
πref(⋅ |x)

Final Model
πθ(⋅ |x)

Fine-tune

Train

Reward Model
̂r ϕ(x, y)

For training

y− y+

Sampling

vθ(t, y |x)

Flow Matching Model
vθ(t, y |x)

Train

SFT Model
πref(⋅ |x)

y− y+

Sampling

Flow Matching Model
vθ(t, y |x)

Solve

SFT Model
πref(⋅ |x)

RLHF Methods Flow Matching (Training) Flow Matching (Inference)

Figure 1: Illustration of our PFM framework. In the typical RLHF scenarios (left), we first sample preference
data from the supervised fine-tuned (SFT) reference model. A reward model is learned from the collected dataset,
either implicitly (as in DPO) or explicitly. The reward model is then used to fine-tune the reference policy to
obtain the final model. Our method directly learns the preference flow from the collected preference data, where
the flow is represented as a vector field vθ (middle). For inference, we again sample a point from the reference
policy, and improve the quality of alignment by using the trained flow matching model, without the need of
fine-tuning the existing reference model (right).

and replicate the marginal distribution of the favored outcomes. We adopt a novel flow matching
framework [Lipman et al., 2022], which is a simple, intuitive, yet relatively under-explored method
for preference alignment. By simply adding a preference flow matching module to black-box models,
PFM eliminates the need for fine-tuning the black-box model itself, providing a significant advantage.

Additionally, our method offers a highly robust approach for preference alignment, by circumventing
the need for explicit or implicit reward function estimation. In typical RLHF scenarios, a model is
initially trained to approximate a reward function based on human preferences. This reward model
is then used to guide the policy learning process, aiming to align agent behaviors more closely
with human preferences. However, this approach can introduce complexities and potential biases
in translating human preferences into numerical rewards. In particular, learned reward models can
often overfit the ground truth preference model, especially in the finite data regime [Azar et al., 2023].
Recent advancements such as Direct Preference Optimization (DPO) [Rafailov et al., 2024b] address
the complexities of RLHF by eliminating the need for reward learning. However, these methods still
inherently optimize for the reward model, and hence they are also susceptible to reward overfitting.
In contrast, PFM directly learns preference flow, thereby removing the need for any reward model
assumptions and resolving the challenges associated with reward model learning.

We prove both theoretically and empirically that our method is able to learn an object that is similar to
the standard RLHF objectives, while being robust to the preference overfitting observed in traditional
RLHF pipelines. We also demonstrate how we can further improve the quality of alignment via
iterative flow matching, with theoretical guarantees. Experimentally, we find that while typical RLHF
methods and DPO suffer from preference overfitting, our method can robustly align with preference
and still achieve comparable performances.

2 Preliminaries

2.1 Reinforcement Learning from Human Feedback (RLHF)

Reinforcement learning from human feedback generally begins with obtaining a pre-trained reference
policy πref that can generate samples y ∼ πref(·|x) given a context x. For example, a context
x could be a text prompt given by a user, and the sample y could represent an appropriate text
response generated by the reference policy πref . We then collect a dataset of N preference pairs
D = {(xi, y

+
i , y

−
i)}Ni=1, where each xi denotes the context, and each y+i , y

−
i ∼ πref(·|xi) are

generated responses to xi and marked as good or bad samples, respectively. Here, we assume that
the preference y+i > y−i is generated from a ground-truth reward r∗ : X × Y → R≥0, where X and
Y are context space and response space, respectively. The goal of general RLHF is to recover an

2

optimal policy π∗ such that

π∗ = argmax
π

Ex

(
Ey∼π(·|x)

(
r∗(x, y)

)
− βDKL

(
π(·|x)

∥∥∥πref(·|x)
))

. (1)

RLHF pipelines generally require reward learning. One of the most popular choices of the reward
model is the Bradley-Terry model [Bradley and Terry, 1952], which assumes that the preference
y+ > y− is generated from the probability P(y+ > y−|x) = σ(r∗(x, y+) − r∗(x, y−)), where σ
is the logistic function. Under this model, the general RLHF framework learns the reward model
rϕ ≈ r∗ by minimizing the negative log-likelihood:

LR(ϕ;D) := −E(x,y+,y−)∼D

(
log σ

(
rϕ(x, y

+)− rϕ(x, y
−)
))

. (2)

Once the reward model rϕ is trained, we then use it to optimize for (1) to obtain πθ ≈ π∗ using
standard reinforcement learning algorithms.

There is also a class of reward-free methods that eliminates the need of reward learning phase [Rafailov
et al., 2024b, Azar et al., 2023]. Direct Policy Optimization (DPO) [Rafailov et al., 2024b] is a
representative reward-free method that optimizes for (1) directly without learning a reward model.
Although being a reward-free method, DPO implicitly optimizes for the reward function as in (2), by
replacing r̂θ(x, y) = β log(πθ(y|x)/πref(y|x)) as the implicit reward estimate.

2.2 Flow Matching

Flow matching is a class of generative model, where given a prior distribution p0, we aim to model a
target distribution p1 from p0. A key difference of the flow matching to the other generative models
is that the prior p0 can be an arbitrary distribution, (diffusion, for example, starts from a Gaussian
prior p0) and that the flow matching algorithm learns to modify the prior distribution p0 to the target
distribution p1 with a neural network.

Throughout, we consider a pair of data distributions over Rd with densities y− ∼ p0 and y+ ∼ p1,
possibly unknown (but able to sample). The flow matching considers the task of fitting a mapping
f : Rd → Rd that transforms p0 to p1, that is, if y− ∼ p0, then f(y−) ∼ p1. Inspired as
in the motivation for the diffusion models, one can define a smooth time-varying vector field
u : [0, 1]× Rd → Rd that defines an ordinary differential equation (ODE),

dy = u(t, y)dt (3)

where we use the notation u(t, y) interchanably with ut(y). Denote the solution of the above ODE by
ϕ(t, y) (or ϕt(y)) with initial condition ϕ0(y) = y. In other words, ϕt(y) is the point y transported
along the vector field u from time 0 to t. In order to obtain samples from the target distribution p1,
we simply compute ϕ1(y) where y ∼ p0. The integration map ϕt induces a pushforward measure
pt ≜ [ϕt]♯(p0), which is the density of points y ∼ p0 transported via u from 0 to t.

To train the vector field vθ with a neural network that mimics the vector field u of our interest, we
can solve for the conditional flow matching objective, as proposed by Lipman et al. [2022]:

LCFM(θ) ≜ Et∼[0,1],z∼q(·),y∼pt(·|z)
(
∥vθ(t, y)− ut(y|z)∥2

)
(4)

where q(z) = π(y−, y+) is some coupled distribution of samples y−, y+ and ut(y|z) = y+−y− is a
straight path from a source sample to a target sample. The conditional distribution q(z) can be chosen
to be an independent coupling of source and target distribution q(z) = p0(y

−)p1(y
+) [Lipman et al.,

2022], or the 2-Wasserstein optimal transport plan as proposed by Tong et al. [2023].

3 Preference Flow Matching

In this section, we describe how we can use flow matching to learn (human) preferences. In the first
subsection, we illustrate our flow matching framework for learning preferences, and compare it with
typical RLHF pipelines. Then in Section 3.2, we demonstrate our method in a simple 2-dimensional
toy experiment. Finally in Section 3.3, we provide an extension of our framework that can iteratively
improve the performance, with theoretical guarantees.

3

3.1 Flow Matching for Preference Learning

Instead of trying to optimize for the unknown reward r∗ or the preference probability model P(y+ >
y−|x), we simply learn a flow from the marginal distribution of less preferred data p0(y

−|x) to the
marginal distribution of more preferred data p1(y

+|x) by leveraging what is explicitly characterized
in the collected preference data:

p0(y
−|x) ∝ πref(y

−|x)
∫

πref(y|x)P(y > y−|x)dy (5)

p1(y
+|x) ∝ πref(y

+|x)
∫

πref(y|x)P(y+ > y|x)dy (6)

= πref(y
+|x) Ey∼πref (·|x)

(
P(y+ > y|x)

)
(7)

In other words, we view that our collected data D is in fact generated from each of the marginal
distributions y− ∼ p0(·|x) and y+ ∼ p1(·|x) obtained from P(y+ > y−|x), respectively. Hence,
following the conventions in the literature, [Tong et al., 2023] we define the flow matching objective
for preference dataset D as follows:

L(θ) = Et∼[0,1],z∼D,y∼pt(·|z)
(
∥vθ(t, y|x)− ut(y|z)∥2

)
(8)

where we define the condition z = (x, y+, y−), conditional flow ut(y|z) = y+ − y−, and the
probability path pt(y|z) = N (y|ty+ + (1− t)y−, σ2). Once we obtain the vector field vθ, we can
improve upon the generated negative samples y− ∼ p0(·|x) by solving (3) using an off-the-shelf
numerical ODE solver [Runge, 1895, Kutta, 1901] to obtain samples f(y−) ∼ p1. Specifically, we
start from a sample y− with t = 0, and "flow" along the ODE trajectory using vθ until t = 1, to arrive
at the target y+. Detailed algorithm can be found in Algorithm 1. Notably, generating improved
samples can be done without the need of fine-tuning the existing model, since we learn a separate
vector field that transports negative samples from p0 to p1. Furthermore, we did not require any
assumption for the probability model P(y+ > y−|x), so our method can extend to general scenarios
that do not adopt the Bradley-Terry model. Our method is outlined in Figure 1.

A careful reader might notice that for inference, we require negative samples y− from the marginal
distribution p0, to obtain aligned samples y+. However, this p0 is inaccessible during inference step,
as we must first acquire preference label y+ > y− for samples generated from πref . Instead, we
simply start from y ∼ πref as the starting point, and apply flow matching to obtain f(y) ≈ y+ ∼ p1.
We emphasize that PFM can still robustly generate positive samples, if we assume non-deterministic
preferences i.e., supp(p1) ⊇ supp(p0). We also empirically find that using πref instead of p0 as
the source distribution can produce comparable results in practical scenarios. Further details can be
found in Appendix B.

3.2 Illustrative Example: Preference Generated from 8-Gaussians Density

Here, we demonstrate how our method learns to improve generated samples to better align with the
preference, in a simple 2-dimensional toy experiment. We consider a ground truth reward function
generated from an 8-Gaussians density as illustrated in Figure 2a. We then pre-train a Gaussian
mixture model to obtain samples as in Figure 2c. The pairwise preference labels are then generated
using the ground truth 8-Gaussians reward function, as done in many existing preference-based
reinforcement learning (PbRL) settings [Christiano et al., 2017, Ibarz et al., 2018, Shin et al., 2023].

Once preference data are collected, we first learn a reward model r̂ϕ via (2). As can be seen
in Figure 2b, the learned reward model overfits in the unseen region, which causes the RLHF method
to diverge (Figure 2e). DPO also fails to learn the correct preference, as can be seen in Figure 2f. We
note here that DPO is also subjective to the reward overfitting since DPO also implicitly learns to
optimize for the reward using the Bradley-Terry model (2) [Xu et al., 2024, Azar et al., 2023].

However, PFM is free of such reward overfitting issues, as we do not optimize for the reward function
using the Bradley-Terry model. Unlike other RLHF methods, our model robustly learns to align with
the preference from the provided dataset (Figure 2g). Notably, our method does not try to overfit
beyond the unseen region, since the learned target distribution from the flow matching model tries to
mimic the distribution p1(y

+) of collected preferred samples. (Compare Figure 2d and Figure 2g.)

4

(a) Ground-truth reward (b) Learned reward model (c) Pre-trained model (d) Preferred samples

(e) RLHF (f) DPO (g) PFM (h) PFM (5 iter.)

Figure 2: Comparison of RLHF, DPO, and PFM on a 2-dimensional toy experiment. We generate preference
labels from a ground truth reward in (a) and a pre-trained Gaussian reference policy (c). Both the RLHF (e) and
DPO (f) methods struggle to align with the preferences, due to the overfitted reward model (b), even with the
presence of KL regularizer (β = 1). PFM is able to mimic the distribution of the positively-labeled samples
(d), and therefore achieves the highest performance (g). Repeating PFM iteratively to the marginal samples can
further improve the alignment with the preference (h).

3.3 Improving Alignment with Iterative Flow Matching

As done in iterative variants of DPO [Xiong et al., 2023, Yuan et al., 2024], we can also further
improve the quality of alignment with iterative flow matching. Specifically, upon obtaining a marginal
distribution p1 by applying flow matching, we again collect a new preference data y−, y+ from the
obtained marginal distribution p1 in (6). We repeat this process iteratively, by replacing the source
distribution (which is πref in the first step) with the marginal distribution p1 obtained in the latest
iteration. This iterative process can be summarized as follows.

p
(n)
0 (y−|x) ∝ p

(n−1)
1 (y−|x)

∫
p
(n−1)
1 (y|x)P(y > y−|x)dy (9)

p
(n)
1 (y+|x) ∝ p

(n−1)
1 (y+|x)

∫
p
(n−1)
1 (y|x)P(y+ > y|x)dy, p

(0)
1 = πref , (10)

where we denote p
(n)
0 and p

(n)
1 to be the source and target distribution of the flow matching model

at the n-th iteration, respectively. By repeatedly marginalizing the distribution with respect to the
preference P(y+ > y−|x), we can effectively "narrow" the sampling distribution towards the outputs
with higher preference probability. See Figure 2h for the results of the iterative method in our toy
experiment. Note that even during this iterative approach, we leave the parameters of the pre-trained
model πref untouched, and only require sampling from this model throughout the whole process.
Later in Section 4, we formally prove that the iterative method allows us to obtain a distribution class
that maximizes the ground truth expected preference, and hence yields an optimal policy π∗ in (1)
with β = 0. See Theorem 4.2.

4 Theoretical Analysis of Preference Flow

In this section, we theoretically analyze why PFM framework can effectively learn to align with
the preference. Interestingly, learning to generate samples from the marginal distribution p1 in (6)
optimizes an objective that is similar to the goal of general RLHF in (1). Following the formulation
provided by Azar et al. [2023], one can observe that the objective (1) is equivalent to the below form:

π∗ = argmax
π

Ey∼π

(
Ey′∼πref

(
σ−1(P(y > y′))

))
− βDKL

(
π
∥∥∥πref

)
(11)

where σ−1(ξ) = log(ξ/(1− ξ)) is the logit function, and we drop the conditional dependence of x
for simplicity. Note DPO also optimizes for the same objective as in (11).

5

Let us take a step back, and characterize the failure modes of the RLHF and DPO frameworks,
by figuring out when these methods overfit the reward. Consider a case where the preferences are
deterministic, i.e., P(y > y′) = 1, so that y is always preferred to y′. If we plug it into (11), we
see that σ−1(P(y > y′)) → +∞. Therefore, the solution π∗ of (11) ends up overfitting for the
preference likelihood, resulting in a weak or even null KL regularization, regardless of the size of β.

Although in the case where the preference is not deterministic, this phenomenon can still be pro-
nounced in the finite data regime [Azar et al., 2023]. Even if the true preference is strictly less than
1, we may have access to only a few data samples to estimate P(y > y′) ≈ 1. This means that
overfitting can be a critical issue in general, especially if the action space Y or the context space X is
extremely large, as in the case of aligning large language models to human preferences.

In contrast, the PFM framework learns to generate a marginal distribution p1. One can show that this
marginal is a solution for the optimization problem that is similar to the objective (11).
Theorem 4.1 (Characterization of the Marginal). Let p1 denote the marginal distribution of the
positively-labeled samples y+. Then the marginal distribution p1 obtained from the preference model
P(y > y′|x) is an optimizer of the optimization problem

p1 = argmax
π

Ey∼π

(
logEy′∼πref

(
P(y > y′)

))
− DKL

(
π
∥∥∥πref

)
. (12)

We defer the proof to the Appendix C. Similar to the RLHF and DPO objective (11), the solution
p1 of (12) drives the original distribution πref towards the points where the preference probability
P(y > y′) is increasing. However, unlike the RLHF or DPO objectives, the objective (12) is bounded
even in the deterministic case P(y > y′) = 1, making it robust to reward overfitting.

Interestingly, maximizing the objective (12) is equivalent to minimizing the KL distance between the
policy π and the normalized preference score with a cross-entropy constraint:

p1 = argmin
π

DKL(π∥P̃)− Ey∼π(log πref(y)) where P̃(y) ∝ Ey′∼πref
(P(y > y′)). (13)

Hence, the objective pushes the policy π to match the preference P̃, while encouraging π to align with
the high-probability samples in πref . Since the constraint restricts the policy to the high-probability
regions of πref where the preference labels are collected from, our method is less prone to reward
overfitting in the out-of-distribution samples due to the distribution shift in π from πref [Gao et al.,
2023, Rafailov et al., 2024a]. Though we find this information-theoretic formulation interesting, we
leave further analysis to future work.

Despite its robustness, one may notice that the objective (12) is less flexible compared to the original
objective, due to the fixed regularization constant with β = 1. Below, we show that if we apply the
iterative algorithm provided in Section 3.3, one can further reduce the KL regularization strength and
obtain an optimal policy π∗ in (11) with β → 0.
Theorem 4.2 (Convergence of Iterative Method). Assume πref ∈ L2 and P(y > y′) ∈ L2.
Consider an iterative update of the marginal distribution p1 in (10). Then, the iteration converges to
the uniform distribution of points y where the value Ey−∼πref

(P(y > y−)) is the largest, i.e.,

p
(∞)
1 → U

({
y : y ∈ argmax

y
Ey−∼πref

(
P(y > y−)

)})
, (14)

where U stands for uniform distribution, and we drop the conditional dependence of x for simplicity.

We defer the proof to the Appendix C. Intuitively, the proof follows from the fact that the marginal-
ization iteratively "narrows" down the distribution towards the outputs with higher preference. We
note here that the L2 assumptions are generally valid in practical domains. See Appendix C.

5 Experimental Results

In this section, we conduct experiments to address the following questions: Q1. Can PFM align
generated samples from the black-box model with preference and achieve comparable results in
practical tasks? Q2. Is PFM more beneficial than methods optimizing for explicit/implicit reward
model? and Q3. Is PFM more beneficial than naïve add-on methods, e.g., separately training
generative models to imitate preferred samples? To answer these questions, we validate our method
in three domains: Conditional text and image generation, and offline reinforcement learning tasks.

6

(a) Pretrained (0.8389) (b) Rejected y− (0.3951) (c) Preferred y+ (0.9976) (d) PFM (0.9841)

(e) RLHF (0.9171) (f) DPO (0.8936) (g) DPO β << 1 (0.5397) (h) Iterative PFM (0.9996)

Figure 3: Comparison of RLHF, DPO, and PFM on a conditional MNIST image generation task. Numbers
represent the preference score. PFM (d) demonstrates superior sample quality and preference alignment
compared to RLHF (e) and DPO (f), where DPO collapses with a small size of β (g). The iterative PFM with
only two iterations (h) results in almost perfectly aligning with the preferences.

5.1 Conditional Image Generation

We first evaluate PFM on a conditional image generation task using the MNIST dataset [LeCun et al.,
1998]. Specifically, we utilize a pre-trained DCGAN [Radford et al., 2015] generator as πref and
collect sample pairs from πref(·|x) conditioned on the digit labels x ∈ {0, · · · , 9}. To construct
preference datasets, we assign preferences to sample pairs according to the softmax probabilities of
the labels from a LeNet [LeCun et al., 1998]. Then, we learn a PFM flow vθ that transports y− to y+

given a condition x. More experimental details are provided in the Appendix D.

Figure 3a illustrates the generated samples from πref , and the rejected and preferred images are
depicted in Figure 3b and Figure 3c, respectively, where the values in parenthesis are the measured
preference score. As shown in Figure 3d, PFM achieves higher preference alignment and better
sample quality than RLHF (Figure 3e) and DPO (Figure 3f) without fine-tuning πref . Moreover,
PFM achieves nearly perfect alignment with the preferences after only two iterations (Figure 3h),
demonstrating the effectiveness of iterative PFM.

5.2 Conditional Text Generation

Next, we adopt a controlled (positive) sentiment review generation task. As done in Rafailov et al.
[2024b], to perform a controlled evaluation, we adopt the pre-trained sentiment classifier as the
preference annotator. We train a preference flow on randomly selected pairs of movie reviews y+, y−
from the IMDB dataset [Maas et al., 2011]. For our PFM framework to be applied to variable-length
inputs, we employ a T5-based autoencoder to work with fixed-sized embeddings. We adopt GPT-2
SFT model on the IMDB dataset as a reference model πref . We also compare our method with a
RLHF (PPO) fine-tuned policy πPPO. See Appendix D for detailed experimental settings.

Below, we report the average preference score (from the classifier annotator) of 100 randomly
generated review samples for each method. As shown in Table 1, PFM is able to improve the
preference score of any baseline model to which it is attached. We emphasize here that our method
requires relatively smaller training cost compared to the standard RLHF frameworks, even in the
iterative settings. See Table 6 in Appendix D for the number of parameters that require training for
each framework in tackling this task. PFM requires training a much smaller number of parameters
(around 1.2%) while still achieving better performance. We also note here that instead of iteratively
training the PFM module as described in Section 3.3, simply applying the same learned preference
flow iteratively to the improved samples achieves the best performance. (See Appendix D.)

7

(a) SFT vs PFM (b) PPO vs PFM

Figure 4: Distribution of preference scores for each method. Left visualizes the distribution of scores for the
pre-trained reference policy and PFM-attached policy. Without fine-tuning the reference policy, PFM can obtain
substantially better results by only adding a small flow-matching module. Right visualizes the preference score
distribution of the RLHF (PPO) fine-tuned policy, and the PFM added policy to the PPO fine-tuned policy. Note
that PFM is trained with the original dataset, not by the dataset generated from the PPO fine-tuned policy.

Table 1: Average preference scores of 100 test instances.

πref πref + PFM πref + PFM×5

-0.3607 0.6399 2.7469
πPPO πPPO + PFM πPPO + PFM×5

2.0156 2.178 2.7894

Table 2: GPT-4 win rate over 100 test samples.

Method vs. πref vs. πPPO

πref + PFM 100% 2%
πref + PFM×5 – 85%
πPPO 100% –
πPPO + PFM – 99%
πPPO + PFM×5 – 100%

Interestingly, we observe that the distribution of the scores tends to shift more toward that of the
preferred samples with an increasing number of PFM iterations. (See Figure 4.) This result aligns
with our theoretical insights: the PFM framework learns to shift the source distribution (i.e., the
distribution of the reference policy) toward the marginal distribution of the more preferred samples.

We also compute the win rate with GPT-4 evaluation. The results are summarized in Table 2. Both
PFM and PPO fine-tuned policy excel the reference policy with win rates 100%. (First column
of Table 2.) Furthermore, we observe that the iterative PFM with 5 iterations on the reference model
outperforms the PPO fine-tuned policy. If PFM is added on top of the PPO fine-tuned policy, we
observe near 100% win rates for both PPO + PFM and PPO + Iterative PFM.

5.3 Offline Reinforcement Learning

Finally, we employ the D4RL [Fu et al., 2020] benchmark to assess the performance of PFM in
reinforcement learning tasks. Following the prior works on the PbRL literature, we adopt trajectory-
based preference alignment [Hejna et al., 2023, Kim et al., 2023]. We first randomly choose an
starting state s0 ∼ S, and sample two trajectories τ+ and τ− with fixed length ℓ ≥ 2 from πref :

τ+ := (a0, a1, · · · , aℓ) ∼ πref(·|s0) (15)

τ− := (a′0, a
′
1, · · · , a′ℓ) ∼ πref(·|s0). (16)

Then, we obtain the preference τ+ > τ− given the starting state s0 using a scripted teacher approach
that has also been widely adopted in the PbRL settings [Lee et al., 2021, Kim et al., 2023], which
prioritizes trajectories with higher rewards based on the ground truth reward. For inference at a given
state st, we again sample an action trajectory τ = (at, · · · , at+ℓ) from πref(·|st), and apply flow
matching to obtain a better action sequence.

The baseline methods for comparing the performance of PFM include behavior cloning (BC), which
we adopt as our pre-trained reference model πref , and a DPO fine-tuned model from the BC model.
Additionally, we train a separate behavior cloning model to the collected preferred samples y+ ∼ p1,
aiming to replicate the marginal distribution of the "good" trajectories. Further experimental details
are deferred to Appendix D.

Table 3 presents the outcomes from evaluations conducted on 12 offline datasets. Our findings
indicate that PFM consistently demonstrates comparable or even superior performance with lower

8

Table 3: Normalized results on MuJoCo datasets. Mean and standard deviation from 5 seeds are reported.

Dataset BC DPO Fine-tuned PFM (Ours) Marginal BC

ant-random-v2 31.59 ± 0.05 31.52 ± 0.08 31.62 ± 0.13 25.01 ± 4.64

ant-medium-v2 90.16 ± 21.48 95.04 ± 13.93 96.73 ± 2.47 99.67 ± 1.57
ant-expert-v2 125.83 ± 24.07 134.96 ± 3.76 132.20 ± 2.69 99.29 ± 34.74

hopper-random-v2 3.17 ± 0.25 3.23 ± 0.25 7.69 ± 0.08 5.48 ± 4.46

hopper-medium-v2 52.83 ± 5.03 53.47 ± 3.92 58.76 ± 2.62 40.44 ± 1.69

hopper-expert-v2 111.27 ± 0.48 111.51 ± 0.92 111.70 ± 0.77 32.39 ± 0.1

halfcheetah-random-v2 2.25 ± 0.01 2.26 ± 0.01 2.26 ± 0.0 2.21 ± 0.02

halfcheetah-medium-v2 40.97 ± 0.89 41.94 ± 0.68 43.49 ± 0.88 38.79 ± 1.27

halfcheetah-expert-v2 91.02 ± 1.24 92.15 ± 0.76 90.05 ± 0.83 4.77 ± 2.5

walker2d-random-v2 1.47 ± 0.1 1.38 ± 0.08 1.77 ± 0.13 2.45 ± 0.38
walker2d-medium-v2 60.35 ± 18.16 74.05 ± 12.05 72.59 ± 15.8 65.29 ± 12.58

walker2d-expert-v2 108.62 ± 0.39 108.38 ± 0.28 108.36 ± 0.21 15.8 ± 0.54

Random Average 9.62 9.60 10.84 8.79
Medium Average 61.08 66.13 67.89 61.05
Expert Average 109.19 111.75 110.58 38.06

D4RL Average 59.97 62.49 63.10 35.97

(a) (b)

(c)

(d)

(a) (b) (c) (d)

under-estimated reward, stable correct reward estimation, stable over-estimated reward, fail over-estimated reward, fail

Figure 5: Analysis of a sample episode of a DPO fine-tuned model on the MuJoCo ant environment. DPO fine-
tuned model often overestimates the reward due to reward overfitting (e.g., t = 196). This can cause the policy
to choose problematic actions. Here, the implicit reward estimation is r̂θ(s, a) = β log(πθ(a|s)/πref(a|s)).

variance across all baseline methods. Notably, our method excels particularly in datasets generated
from suboptimal behavioral policies, achieving better performance. Furthermore, PFM manages to
match the performance on expert datasets even in the absence of a reward model, underscoring its
robustness and effectiveness. This demonstrates that PFM can effectively align black-box models
with preference through flow matching, without the need to fine-tune the pre-trained model.

5.4 Is Learning a Flow Truly Beneficial?

In this remaining section, we focus on answering the remaining questions, Q2 and Q3. We first
investigate why PFM can be advantageous over previous methods with explicit/implicit reward
modeling. As can be seen in Figure 5, DPO, like typical RLHF approaches, is also prone to reward
overfitting, and may cause the agent to fail. This is because if the preference estimate is close to 0
or 1, these methods may end up overoptimizing to the exploding reward model [Ziegler et al., 2019,
Gao et al., 2023]. PFM, on the other hand, is inherently robust to such over-estimation, as we adopt a
completely different optimization framework that does not require a reward proxy. (See Theorem 4.1.)

On the other hand, we observe less performance gain in the expert datasets. This is a possible
failure mode of PFM, where the generated samples are already near-optimal. In such regime, an
arbitrary source y ∼ πref has a near zero probability of being sampled from the true marginal p0,
suggesting that PFM with prior as πref might suffer from a shifted source distribution. We verify
this experimentally on walker2d, where PFM struggles the most. By adopting a true marginal p0
as the source, PFM with prior p0 can achieve the highest performance among all baselines. This
performance is evident even on the expert dataset, matching our theoretical analysis. See Appendix B.

9

Next, we compare PFM to an alternative approach that simply tries to approximate the marginal
distribution directly from the positive samples. Intuitively, training a generative model from scratch
that replicates the marginal p1 is as computationally costly as training the original reference model.
Experimentally, we observe that PFM achieves better performance than training a behavior cloning
model (Marginal BC) to replicate the distribution of the preferred samples (Table 3). However, it is
also worth mentioning that the Marginal BC model does occasionally yield the best results, suggesting
the potential of using a marginal distribution for preference alignment.

6 Related Works

Contrastive Preference Learning (CPL) [Hejna et al., 2023] is a class of reward-free methods that
utilizes contrastive learning techniques to align model outputs with the preferences observed in the
dataset. By leveraging contrastive loss, CPL encourages the model to distinguish between preferred
and less preferred outcomes effectively. Flow-to-Better (FTB) [Zhang et al., 2023] innovatively uses a
diffusion model to transition from less preferred data to more preferred data, similar to the flow-based
approach in our work. However, FTB mainly focuses on data augmentation, where they used the
trained diffusion model to generate more data samples for behavior cloning. Despite their strengths,
both works rely on the Bradley-Terry model to implicitly learn the reward function.

Identity Preference Optimization (IPO) [Azar et al., 2023] builds upon the foundation laid by DPO,
extending the framework to accommodate a broader range of preference models beyond the Bradley-
Terry paradigm. In particular, they focus on finding an objective that is bounded even in a deterministic
preference regime, by replacing the function σ−1 in (11) with an identity function I(x) = x. This
effectively mitigates the reward overfitting problem observed in DPO and standard RLHF methods.

Our method distinguishes itself from these approaches by not requiring the Bradley-Terry assumption
nor the fine-tuning of pre-trained models. This eliminates the risk of reward overfitting associated
with the Bradley-Terry model and reduces the computational cost significantly. By avoiding the
need for fine-tuning, our method offers a more efficient and scalable solution for integrating human
preferences into reinforcement learning systems. This makes our approach particularly suitable for
scenarios where computational resources are limited or where quick adaptation to human feedback is
essential. The comparison of these related works is summarized in Table 4.

Table 4: Comparison of our method to other works.

RLHF DPO IPO CPL FTB PFM (Ours)

Reward Model Free ✗ ✓ ✓ ✓ ✓ ✓
No Reward Assumptions (e.g. BT) ✗ ✗ ✓ ✗ ✗ ✓
Applicable to Black-Box Models ✗ ✗ ✗ ✗ ✓ ✓

7 Conclusion and Limitations

In conclusion, this research introduces Preference Flow Matching (PFM), a novel add-on approach
that offers a practical, efficient, and scalable solution for integrating human preferences. This research
highlights the potential of flow matching as a powerful tool for preference alignment and opens new
avenues for further exploration and development in the field of RLHF. The ability to align black-box
models with human preferences without extensive model modifications marks a critical step forward,
with broad implications for the deployment and usability of AI systems in real-world applications.

Our theoretical and empirical analyses demonstrate that PFM achieves alignment performance
comparable to standard RLHF methods while being more resilient to preference overfitting. The
iterative flow matching technique further enhances alignment quality, by continually refining the
preference alignment without modifying the underlying pre-trained model parameters.

Despite these promising results, the current design of the PFM framework entails several challenges
in the natural language processing (NLP) domain. The PFM framework, as currently designed, relies
on the autoencoder to work with fixed-sized embeddings to handle variable-length texts. To scale
our method to more complex NLP tasks, future research should explore ways to adapt the PFM
framework to long-form texts.

10

Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT)(No.RS-2019-II190075 Artificial Intelligence Graduate
School Program(KAIST)), the Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-00871, Development of
AI Autonomy and Knowledge Enhancement for AI Agent Collaboration) and the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2019-NR040050
Stochastic Analysis and Application Research Center (SAARC)).

We thank Taehyeon Kim at KAIST for pointing out the strengths of our work and providing motiva-
tions of this work. We would also like to appreciate Sihyeon Kim and Yongjin Yang at KAIST for
providing experimental details and suggesting relevant settings for PbRL tasks. Finally, we thank
Junghyun Lee at KAIST for revising the details of the proofs of theorems.

References
Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Machine

Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pages 12–27. Springer, 2011.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036, 2023.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pages 10835–10866. PMLR, 2023.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Pref-
erence transformer: Modeling human preferences using transformers for rl. arXiv preprint
arXiv:2303.00957, 2023.

Wilhelm Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Teubner,
1901.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. arXiv preprint arXiv:2106.05091,
2021.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International journal of robotics research, 37(4-5):421–436, 2018.

11

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pages 142–150, 2011.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

12

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea
Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment
algorithms. arXiv preprint arXiv:2406.02900, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

Carl Runge. Über die numerische auflösung von differentialgleichungen. Mathematische Annalen,
46(2):167–178, 1895.

Daniel Shin, Anca D Dragan, and Daniel S Brown. Benchmarks and algorithms for offline preference-
based reward learning. arXiv preprint arXiv:2301.01392, 2023.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. Advances in neural information processing systems, 25, 2012.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under kl-
constraint. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation
Models, 2023.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Zhilong Zhang, Yihao Sun, Junyin Ye, Tian-Shuo Liu, Jiaji Zhang, and Yang Yu. Flow to better:
Offline preference-based reinforcement learning via preferred trajectory generation. In The Twelfth
International Conference on Learning Representations, 2023.

Tianchen Zhu, Yue Qiu, Haoyi Zhou, and Jianxin Li. Decoding global preferences: Temporal and
cooperative dependency modeling in multi-agent preference-based reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 17202–17210,
2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

A Flow Matching Algorithm for Preference Alignment

Below, we outline our method in Algorithm 1. Although the vector field vθ is trained to transport the
source distribution of less preferred samples p0 to the target distribution, we use πref for inference
instead of p0 due to inaccessibility to the preference model.

Note that with the non-deterministic preference assumption, PFM is still theoretically guaranteed
to obtain ϕ1(y) ∼ p1, even if the sample y is obtained from πref instead of p0. In particular, we
assume supp(p1) ⊇ supp(p0), i.e., for any sample y+ obtained from the target distribution p1, the
probability of y ∼ p0 is non-zero. Then, for any sample y ∼ πref sampled from the reference
model, we can guarantee that this sample has non-zero probability of being sampled as less preferred,
indicating that there is a learned flow from this point to a better sample, with non-zero probability. In
the next section, we provide empirical evidence that further justifies the use of πref instead of p0 for
inference.

Algorithm 1: PFM: Preference Flow Matching

1 # Training
2 repeat
3 Sample z = (x, y+.y−) ∼ D
4 ut(y|z)← y+ − y−

5 pt(y|z)← N (y|ty+ + (1− t)y−, σ2)

6 Sample t ∼ [0, 1] and y ∼ pt(·|z)
7 θ ← θ − η∇L(θ) # from (8)
8 until vθ converges;

9 # Inference
10 Sample y ∼ πref(·|x)
11 Solve ODE (3) with initial condition ϕ0(y) = y using vθ
12 return ϕ1(y)

B Empirical Evidence for Using Reference Policy Instead of the True
Marginal During Inference

We conduct experiments on the D4RL walker2d environment to compare the performance of the flow
matching method using πref and p0 as source distribution, respectively.

Table 5: Normalized results on MuJoCo datasets. Mean and standard deviation from 5 seeds are reported.

Pretrained (BC) PFM from πref PFM from p0 Planning

walker2d-random-v2 1.47 ± 0.1 1.77 ± 0.13 2.03 ± 1.01 1.93 ± 0.13

walker2d-medium-v2 60.35 ± 18.16 72.59 ± 15.8 80.58 ± 1.80 76.27 ± 7.97

walker2d-expert-v2 108.62 ± 0.39 108.38 ± 0.28 109.19 ± 0.37 109.08 ± 0.21

Average 56.81 60.91 63.93 62.43

To replicate the actual marginal distribution of less preferred samples p0, we sample two trajectories
from a given state st, and use the ground truth reward function to select the less preferred data (with
lower reward). Note that this use of the environment reward is restricted in practice, as it assumes
access to the preference model during inference. We also compare another baseline model, namely a
planning model, that searches among the two generated trajectories τ+, τ− ∼ πref(·|st) and chooses
an action sequence with higher environmental reward.

As can be seen in Table 5, the flow matching model with the source distribution matched to the
actual marginal distribution p0 (as in the training process) achieves the highest performance among
all baselines, including a flow matching model that uses πref instead of p0. However, we observe
that the flow matching model with πref as the source distribution yields comparable results to the

14

model using p0 as source. It is also worth noting that the flow matching model (with true p0) achieves
better performance even compared to the planning method, that explicitly uses a trajectory with
higher reward. This suggests that using a flow matching for preference alignment can provide better
alignment than simply conducting an exhaustive search.

C Proof of Theorems

In this section, we provide proof to the theorems in the paper. Throughout this section, we write µ as
the reference policy instead of πref for the ease of writing.

First, we prove Theorem 4.1, where we rewrite the theorem statement for completeness.
Theorem C.1 (Characterization of the Marginal). Suppose that a preference dataset D =
{(x, y+, y−)} is collected from a pre-trained reference policy µ, i.e., y+, y− ∼ µ(·|x), where
the preference y+ > y− is labeled with probability P(y+ > y−|x). Let p1 denote the marginal
distribution of the positively-labeled samples y+. Then the marginal distribution p1 obtained from
the preference model P(y > y′|x) is an optimizer of the optimization problem

p1 = argmax
π

Ey∼π

(
logEy′∼µ

(
P(y > y′)

))
− DKL

(
π
∥∥∥µ). (17)

Proof. For simplicity, we drop the conditional dependence of x. Notice that the general RLHF
optimization objective (11) attains a unique optimal solution

π∗(y) ∝ µ(y) exp

(
1

β
Ey′∼µ

(
σ−1(P(y > y′))

))
(18)

As it is a widely known result, we defer the proof to prior works, e.g., Azar et al. [2023]. Intuitively,
comparing the above solution with the target distribution p1 as rewritten in (7) allows us to formulate
a similar objective to (11) which p1 optimizes. Formally, we begin with considering the optimization
objective in (17):

argmax
π

Ey∼π

(
logEy′∼µ

(
P(y > y′)

))
− DKL(π∥µ) (19)

= argmax
π

Ey∼π

(
logEy′∼µ

(
P(y > y′)

)
− log

π(y)

µ(y)

)
(20)

= argmin
π

Ey∼π

(
log

π(y)

µ(y)
− logEy′∼µ

(
P(y > y′)

))
(21)

= argmin
π

(
log

π(y)

µ(y)Ey′∼µ

(
P(y > y′)

)) (22)

= argmin
π

(
log

π(y)
1
Zµ(y)Ey′∼µ

(
P(y > y′)

) − logZ

)
(23)

where Z =
∫
µ(y)Ey′∼µ

(
P(y > y′)

)
dy is the normalization constant. Notice that the distribution

in the denominator is precisely the marginal distribution p1 of our interest, which is indeed a valid
distribution. Hence, the last optimization objective can be reorganized as follows.

argmin
π

DKL(π∥p1)− logZ. (24)

Since the Z is a constant, the KL-divergence objective is minimized at 0 if and only if the two
distributions π and p1 are identical, by the Gibbs’ inequality. It follows that p1 is the optimal solution
of the optimization problemm (17), which completes the proof.

Next, we aim to prove Theorem 4.2. Before stating and proving the theorem, we note here that the L2

assumptions of the pre-trained model πref and the probability model P(y > y′) is generally valid in
practical domains. For instance, assuming πref being trained on L2 loss as in many practical domains,
πref ∈ L2 generally holds. Also, the preference model P is usually provided in a finite support, or
modeled as Bradley-Terry model, which generally behaves well.

15

Theorem C.2 (Convergence of Iterative Method). Assume that µ ∈ L2, and P(y > y′) ∈ L2.
Consider an iterative update of the marginal distribution p1 as follows.

p
(n)
1 (y) ∝ p

(n−1)
1 (y)

∫
p
(n−1)
1 (y′)P(y > y′)dy′, p

(0)
1 = µ, (25)

i.e., we iteratively compute the marginal distribution of more preferred samples from the update
marginal distribution. Then, the limiting marginal distribution p

(∞)
1 converges to the uniform

distribution U of points y where the value Ey′∼µ (P(y > y′)) is the largest, i.e.,

p
(∞)
1 → U

(
argmax

y
Ey′∼µ (P(y > y′))

)
. (26)

Proof. Let us denote by T the transformation applied at each step:

T [p](y) = 1

Zp
p(y)

∫
p(y′)P(y > y′)dy′, (27)

where Zp =
∫
p(y)

∫
p(y′)P(y > y′)dy′dy is the normalization constant. Then, the update rule

in (25) can be written simply as p
(n)
1 = T [p(n−1)

1]. We aim to show that this iterative procedure
converges to a distribution that places uniform weight on the set of points y where Ey′∼µ (P(y > y−))
is maximized. Given a probability distribution p, Let us define the function fp as follows.

fp(y) ≜ Ey′∼p

(
P(y > y′)

)
=

∫
p(y′)P(y > y′)dy′. (28)

Observe that T [p](y) increases p(y) proportionally to fp(y). Consequently, the regions where fp(y)
is higher will see an amplification in probability mass relative to regions where fp(y) is lower. This
amplification occurs iteratively, with higher fp(y) regions increasingly dominating the distribution.

Formally, we claim that the fixed-point iterator T is compact. Notice that the kernel K(y, y′) =
p(y′)P(y > y′) is bounded, provided that P(y > y′) is bounded by 1, and that p is a probability
density, which integrates to 1. By Schur’s test and the properties of Hilbert-Schmidt operators, i.e.,∫∫

|K(y, y′)|2dydy′ <∞, (29)

T can be shown to be a compact operator, from the square integrability assumptions.

Next, consider the behavior of T on any sequence of probability densities {p(n)}∞n=0. By the
properties of compact operators in the space of continuous functions, any sequence {p(n)} has a
convergent subsequence in the weak topology. Let p∗ be the limit of any convergent subsequence. The
uniform boundedness of K(y, y′) and the compactness of T suggest that T [p∗] = p∗, establishing
that p∗ is a fixed point of T . To determine the nature of p∗, observe that∫

p∗(y)

∫
p∗(y′)P(y > y′)dy′dy = 1. (30)

Since P(y > y′) is maximized uniformly over y when Ey′∼µ(P(y > y′)) is maximized, p∗ must
concentrate its mass on the set where this expectation is maximized. Therefore, p∗ converges to a
uniform distribution over the set

argmax
y

Ey′∼µ(P(y > y′)). (31)

Formally, recall that from Theorem 4.1, the updated distribution p
(n)
1 is a solution to the following

optimization problem:

p
(n)
1 = argmax

π
Ψ(π) := Ey∼π

(
logE

y′∼p
(n−1)
1

(
P(y > y′)

))
− DKL

(
π
∥∥∥p(n−1)

1

)
. (32)

Hence, we note that if any point y not in this set were to have a positive probability under p∗, then
T [p∗] would not be equal to p∗, due to the strict maximization condition, contradicting the fixed-point
property. Thus, p(∞)

1 converges to the uniform distribution over the optimal set, as stated. We note
here that because the space of probability densities is closed under the topology induced by the
function space norm, p∗ should also a probability density, and ultimately the unique minima.

16

D Experimental Details

In this section, we describe our experimental details.

Resource All experiments were conducted on a single Nvidia Titan RTX GPU and a single i9-10850K
CPU core for each run. The time required varies by task, but as it only involves collecting preference
datasets and learning the flow, it completes within a few hours.

D.1 Conditional Image Generation

Task We employ the MNIST [LeCun et al., 1998] 2 dataset to evaluate PFM on a conditional image
generation task.

Preference Dataset We utilize a pre-trained DCGAN [Radford et al., 2015] generator as πref and
collect sample pairs from πref conditioned on the digit labels as contexts. To construct preference
datasets, we assign preferences to sample pairs according to the softmax probabilities of the labels
from a LeNet [LeCun et al., 1998].

Baseline We consider the pre-trained DCGAN generator (πref), a RLHF fine-tuned model and a DPO
fine-tuned model of πref as baselines. All methods are trained until convergence, and we report the
normalized episodes returns with the standard deviation from 5 different random seeds.

D.2 Conditional Text Generation

Task To evaluate PFM on the NLP domain, we adopt a controlled (positive) sentiment review
generation task with the IMDB dataset [Maas et al., 2011].

Preference dataset As done in Rafailov et al. [2024b], to perform a controlled evaluation, we adopt
the pre-trained sentiment classifier3 as the preference annotator. The preference dataset is constructed
from randomly selected pairs of moview reviews y+, y− from the IMDB dataset, where the preference
is obtained from the classifier logit probability p(positive|y+) > p(positive|y−). We then train our
PFM model on this preference dataset, to obtain the marginal distribution of the preferred (positive
sentiment) review p1(y

+).

Baseline We consider the GPT-2 SFT model on the IMDB dataset (πref) and a RLHF fine-tuned
model of πref using PPO (πPPO) as baselines. We apply PFM to baseline models as an add-on
module without fine-tuning. For the iterative PFM, we iteratively apply the initially obtained learned
preference flow without collecting new data from the improved PFM model.

Embedding for variable-length input For our PFM framework to be applied to variable-length
inputs, we employ a T5-based autoencoder4 to obtain fixed-sized (1024-dimensional vector) embed-
ding of the input texts, allowing us to work within the fixed-size latent space. Once the fixed-size
embeddings z+ and z− are obtained for each text sample y+ and y−, we learn the conditional flow
using PFM from z− to z+. During inference, we apply PFM to the latent embedding z of the given
input text y, and decode the improved latent embedding using the T5 decoder. We adopt the same
U-Net architecture used in our MNIST experiment, where we reshape the 1024-dimensional vector
into a two-dimensional (32, 32) image tensor. As shown in Table 6, PFM requires a much smaller
number of parameters (around 1.2%) than RLHF or DPO which involve fine-tuning LLMs.

Table 6: Parameters required for training for each method. PFM only requires 1.2% parameters to be trained
compared to naive approaches (RLHF, DPO, etc.), and still achieves better performance in preference alignment.

GPT-2 (RLHF) U-Net (PFM)

124M 1.5M

Iterative PFM For our iterative PFM, we do not iteratively collect data and re-train the module.
Instead, we simply iteratively apply the learned preference flow to the output samples. In particular,
we apply the learned flow to the embedding z iteratively with the same flow module.

2
http://yann.lecun.com/exdb/mnist

3
https://huggingface.co/lvwerra/distilbert-imdb

4
https://huggingface.co/thesephist/contra-bottleneck-t5-large-wikipedia

17

http://yann.lecun.com/exdb/mnist
https://huggingface.co/lvwerra/distilbert-imdb
https://huggingface.co/thesephist/contra-bottleneck-t5-large-wikipedia

Prompt for GPT-4 Evaluation Below we include the prompts used to generate win rates.

Which of the two movie reviews has a more positive sentiment?

Response A: <Response A>

Response B: <Response B>

D.3 Offline Reinforcement Learning

Task To assess the performance of PFM in reinforcement learning tasks, we employ the D4RL [Fu
et al., 2020] benchmark from https://github.com/Farama-Foundation/D4RL where
the datasets and code are licensed under the Creative Commons Attribution 4.0 License (CC
BY) and the Apache 2.0 License, respectively. We consider four different tasks (ant, hopper,
halfcheetah, walker2d) from Gym-Mujoco domain with three different levels of offline dataset
quality (random, medium, expert) for each task.

Preference dataset We first pre-train πref using behavior cloning (BC) for each offline dataset. We
then collect segment pairs of the rollout trajectories from πref , with each pair starting from the same
state as a context. To construct preference datasets, we utilize a scripted teacher which prioritizes
trajectories with higher rewards based on the ground truth rewards provided by the environment. This
approach has been widely adopted in the PbRL settings [Kim et al., 2023, Lee et al., 2021, Zhu et al.,
2024]. The preference datasets consist of 1,000 pairs of preferred and rejected segments and their
context for each offline dataset, with the segment length 10.

Baseline The baseline methods for comparing the performance of PFM includes behavior cloning
(BC), which we adopt as our pretrained reference model πref , and a DPO fine-tuned model from the
BC model. For DPO fine-tuned models, we search KL regularization coefficient β from 0.01 to 100
and adopt the best one. Additionally, we train a separate behavior cloning model to the collected
preferred samples y+ ∼ p1, aiming to replicate the marginal distribution of the "good" trajectories.
All methods are trained until convergence, and we report the normalized episodes returns with the
standard deviation from 5 different random seeds.

E Broader Impacts

As an add-on module, PFM can be seamlessly integrated into various real-world AI applications,
such as generative models and continuous control systems, without the need to modify the underlying
application models. This integration enables the applications to deliver personalized results that align
with individual user preferences. However, since PFM utilizes preference data, it raises potential
privacy concerns similar to those found in typical PbRL methods. These concerns can be mitigated
by ensuring that access to user preferences is granted only with explicit user consent.

18

https://github.com/Farama-Foundation/D4RL

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims made in abstract and introduction reflect the paper’s contributions
and scope. Theoretical and empirical results in Section 4 and Section 5 demonstrate our
contributions. Furthermore, we address limitations in Section 7.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19

Answer: [Yes]

Justification: Please refer to Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide descriptions of our method in Section 3.1 and in Appendix A.
Furthermore, we provide experimental details in Section 5 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We attach the code and related information in the supplementary mate-
rial. Furthermore, we release the revised code at https://github.com/jadehaus/
preference-flow-matching.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental settings and details in Section 5, Appendix D.
We also release our code in supplementary materials and at https://github.com/
jadehaus/preference-flow-matching.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please refer to Section 5 and Appendix D. For RL tasks, we report mean
episode returns with standard deviations for 5 different random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

21

https://github.com/jadehaus/preference-flow-matching
https://github.com/jadehaus/preference-flow-matching
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/jadehaus/preference-flow-matching
https://github.com/jadehaus/preference-flow-matching

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors read and followed the NeruIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

22

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks since we do not release datasets or pre-trained
models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original papers of the assets. URLs and licenses are mentioned in
Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

23

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide instructions to use our codes in README.md file which is
included in the supplementary materials and at our repository https://github.com/
jadehaus/preference-flow-matching.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24

paperswithcode.com/datasets
https://github.com/jadehaus/preference-flow-matching
https://github.com/jadehaus/preference-flow-matching

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Preliminaries
	Reinforcement Learning from Human Feedback (RLHF)
	Flow Matching

	Preference Flow Matching
	Flow Matching for Preference Learning
	Illustrative Example: Preference Generated from 8-Gaussians Density
	Improving Alignment with Iterative Flow Matching

	Theoretical Analysis of Preference Flow
	Experimental Results
	Conditional Image Generation
	Conditional Text Generation
	Offline Reinforcement Learning
	Is Learning a Flow Truly Beneficial?

	Related Works
	Conclusion and Limitations
	Flow Matching Algorithm for Preference Alignment
	Empirical Evidence for Using Reference Policy Instead of the True Marginal During Inference
	Proof of Theorems
	Experimental Details
	Conditional Image Generation
	Conditional Text Generation
	Offline Reinforcement Learning

	Broader Impacts

