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Abstract

We propose SEAL-Pose, a method that trains models to pre-
dict more plausible 3D human poses through a trainable
loss function that dynamically learns the output structures
of data. While inspired by the idea of Structured Energy
As Loss (SEAL), initially designed for structured prediction
and limited to probabilistic models with relatively simple
output structures, we extend it to tackle 3D human pose es-
timation, a task with more complex and high-dimensional
structural dependencies than those considered in previous
applications. SEAL-Pose enables pose estimation models
(task-net) to learn joint dependencies via trainable loss func-
tion (loss-net) that automatically capture body structure
during training without explicit prior knowledge and is ap-
plicable to any backbone models. We also suggest evaluation
metrics such as the limb symmetry error (LSE) and body seg-
ment length error (BSLE) to assess the structural consistency
of the predicted poses. These metrics measure overall struc-
tural preservation, which the vast majority of existing metrics
do not capture. Experimental results on the Human3.6M,
MPI-INF-3DHP, and Human3.6M WholeBody datasets show
that SEAL-Pose not only reduces per-joint pose estimation
errors but also generates more plausible poses. In addition,
SEAL-Pose demonstrates more significant improvements in
challenging settings such as monocular single-frame pose
estimation. Our work also highlights the potential of employ-
ing trainable loss functions for tasks with complex output
structures, offering a promising direction for future research.

1. Introduction

Pose estimation is a critical task in computer vision that
requires accurate prediction of keypoint positions of ob-
jects or humans. In particular, 3D human pose estimation
(3D HPE) is even more challenging because it involves pre-
dicting spatial structures while adhering to anatomical con-
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straints [12]. However, common training objectives such as
mean squared error (MSE) and mean per-joint position error
(MPJPE) penalize individual joint errors without accounting
for structural consistency, which often results in implausible
or anatomically inconsistent poses. To address these issues,
it is critical to effectively model the dependencies in the out-
put space to predict accurate and plausible 3D poses. There
have been previous studies [3, 8, 22, 23, 27] that attempted
to capture the structural dependencies of human poses, but
they often rely on manually designed rules or specific model
architectures, which constrain their adaptability and scalabil-
ity.

To overcome these limitations, we propose SEAL-Pose,
a novel framework that employs a trainable loss function to
provide structural guidance for 3D pose estimation without
requiring explicit priors. At the core of this framework is
the loss-net, a neural network jointly optimized with the
pose estimation model (task-net). The loss-net learns to cap-
ture dependencies among joints and dynamically evaluates
pose plausibility during training, unlike conventional per-
joint error objectives. Building on the Structured Energy As
Loss (SEAL) framework [ 1], initially applied to generic
multi-label classification problems and natural language ap-
plications, we extend the concept of trainable loss functions
to the 3D HPE.

Our proposed method enables pose estimation models
to learn joint dependencies during training, allowing the
model to more accurately represent relationships in the out-
put space. This results in improved 3D HPE performance in
terms of widely used per-joint error metrics, such as mean
per-joint position error (MPJPE). Unlike previous methods
that manually encode body structures or use domain-specific
rules [3, 8, 22, 23, 27], SEAL-Pose automatically captures
joint dependencies without requiring predefined structural
priors, through a trainable loss function. This approach of-
fers a flexible and scalable solution that is applicable to any
backbone models.

Additionally, we also suggest new evaluation metrics,
such as Limb Symmetry Error (LSE) and Body Segment
Error (BSLE), to evaluate the structural consistency of pre-



dicted poses. Our experimental results on the Human3.6M,
MPI-INF-3DHP, and Human3.6M WholeBody datasets
demonstrate that SEAL-Pose not only reduces per-joint er-
rors but also produces more anatomically plausible poses,
evaluated by LSE and BSLE. SEAL-Pose shows even more
improvements in challenging settings like monocular single-
frame pose estimation, highlighting its potential for broader
applications. Overall, empirical results suggest that our ap-
proach could be applied to a wide range of tasks that require
capturing complex dependencies in the output space.

2. Related Work

2.1. 3D Human Pose Estimation

3D human pose estimation is a well-established computer vi-
sion task involving the prediction of 3D joint positions from
2D images or videos. This task is inherently challenging
because it requires inferring spatial relationships and ensur-
ing anatomical plausibility using limited visual information.
Current 3D HPE approaches typically follow two paradigms:
(1) directly predicting 3D poses from images [17, 18] or (2)
using a two-step process where 2D poses are estimated first
and then lifted to 3D space [12, 26]. The latter approach has
become more popular and effective following advances in
2D human pose estimation [26]. Therefore, we also adopted
the 2D-to-3D lifting approach in our work.

3D whole-body pose estimation extends traditional 3D
human pose estimation by integrating detailed annotations
for additional keypoints, including those for the face, hands,
and feet, demanding more fine-grained and precise predic-
tions. The expanded scope introduces greater challenges
due to the variation in scales and the increased diversity of
poses associated with detail keypoints. Recently, [28] de-
veloped the Human3.6M 3D WholeBody dataset (H3WB)
based on the widely used Human3.6M dataset (H36M) by in-
cluding annotations for 133 keypoints, as shown in Figure 1.
This dataset has become an important resource, allowing
research to address the increased complexity of whole-body
pose estimation while encouraging methods that go beyond
traditional approaches focused mainly on standard body key-
points.

2.2. Output Structure of 3D HPE

2D-to-3D HPE has inherent challenges such as ambiguity
due to incomplete information, which is further compounded
in single-frame scenarios. To address this issue, several
works have focused on capturing the structural dependen-
cies between body joints. For instance, [27] proposed the
Joint Relationship Aware Network, which enhances pose
predictions by considering both global and local joint rela-
tionships. [22] introduced the Limb Poses Aware Network,
which incorporates relative and absolute bone angles to
model pose structure. However, these methods tend to be

Figure 1. Example Annotations from the H3WB Dataset. H3WB
extends Human3.6M with keypoints for hands, face, and feet, en-
abling detailed whole-body pose estimation.

closely tied to specific model architectures. Another notable
approach is Pose Grammar [3, 23], which uses predefined
kinematic rules and bidirectional recurrent neural networks
to refine pose predictions.

More recently, some works have proposed methods us-
ing multiple hypotheses or generating plausible 3D poses
to overcome the inherent difficulties of 3D HPE. For exam-
ple, [8] proposed Biomechanical Pose Generator to augment
training data with biomechanically plausible poses. They
also introduced Binary Depth Coordinates to resolve the
depth ambiguity by classifying the joint depths as front or
back. Additionally, [20] suggested ManiPose, a manifold-
constrained multi-hypothesis approach to overcome depth
ambiguity through estimating the plausibility of each hypoth-
esis and constraining them to the human pose manifold.

Despite their contributions, most previous methods rely
on expert knowledge or predefined rules to capture joint
dependencies, which may limit their scalability and adapt-
ability. In contrast, we aim to address these limitations
by providing a more flexible and scalable approach for 3D
HPE that captures joint dependencies without explicit prior
knowledge. Our method, SEAL-Pose, can be applied to any
backbone models as well as potentially extending to various
tasks with complex output structures.

2.3. Structured Energy As Loss (SEAL)

SEAL [11] builds on the concept of using structured en-
ergy networks for structured prediction, initially introduced
by [1]. These early models, known as Structured Prediction
Energy Networks (SPENs), effectively captured arbitrary
global dependencies in the output space without explicitly
representing them. However, they were limited to slow and
unstable inference due to the inherent problem of updating



output variables through gradient-based inference (GBI).

SEAL addresses this issue by using structured energy
networks as trainable loss functions rather than direct predic-
tors, leveraging the expressivity of energy networks while
enabling faster and more stable inference at test time. SEAL
has been applied to tasks such as multi-label classification,
semantic role labeling, and image segmentation, highlight-
ing its potential to improve performance and efficiency over
traditional methods. However, SEAL can only be applied
to probabilistic models because it utilizes the output dis-
tribution of a neural network, referred to as a task-net, as
a dynamic noise distribution to train a structured energy
network, referred to as a loss-net.

Specifically, SEAL is implemented in two main ways:
SEAL-static and SEAL-dynamic. SEAL-static uses a pre-
trained, fixed loss-net to guide the task-net, while SEAL-
dynamic updates the loss-net dynamically based on the evolv-
ing outputs of the task-net. SEAL-dynamic could be more
beneficial for task-net training since it can better focus on
the current distribution of task-net predictions. [11] has
shown that SEAL-dynamic generally outperforms SEAL-
static across structured prediction tasks, as it captures depen-
dencies more effectively and provides more helpful learning
signals even in high-dimensional spaces.

Our work expands upon these foundations by introducing
a novel application of the SEAL framework. We applied
SEAL to deterministic models, particularly for 3D HPE in
2D-to-3D lifting scenarios. Since it is not possible to ex-
tract negative samples from the task-net’s output distribution
because deterministic models directly output real-valued pre-
dictions, we used the task-net’s predictions themselves as
negative samples for the loss-net. This intuitive approach
has been shown to be effective in practice, as long as the
batch size is sufficiently larger than the task-net, allowing the
loss-net to learn meaningful structural dependencies during
training.

Unlike existing pose estimation methods, in this way,
SEAL-Pose offers a novel approach to capturing joint de-
pendencies in the output space during training, even without
any explicit prior knowledge, through a trainable loss func-
tion. SEAL-Pose allows for more accurate and coherent 3D
pose predictions and offers a flexible and scalable method
to improve pose estimation. We also seek the potential of
using a trainable loss function to model dependencies in
the output space to improve various tasks with complex out-
put structures, which is a promising direction for further
research.

3. Methodology

3.1. SEAL-Pose

SEAL-Pose extends the SEAL framework for 3D human
pose estimation, particularly in a 2D-to-3D lifting scenario.

SEAL-Pose provides a trainable loss function that automati-
cally captures joint dependencies as the model trains, without
manually encoded body structure and predefined rules, un-
like previous approaches [3, 8, 22, 23, 27]. By incorporating
the SEAL framework, our method allows pose estimation
models to better capture the relationships between joints,
leading to more accurate and coherent 3D pose predictions,
utilizing the capacity of structured energy networks to well
model the dependencies in output space. Moreover, SEAL-
Pose is applicable to any model architecture and can be
combined with any data augmentation method, offering flex-
ibility and scalability.

In particular, we implement the SEAL-dynamic approach
to take advantage of the superiority of SEAL-dynamic over
SEAL-static, as presented in [11]. Therefore, in SEAL-Pose,
the pose estimation model (task-net)' and the structured en-
ergy network (loss-net)! are trained jointly, by dynamically
updating the loss-net based on the current predictions of the
task-net. This iterative joint optimization process ensures
that the loss-net remains synchronized with the task-net’s
progress, enhancing its ability to guide the task-net effec-
tively. This approach leads to more accurate and structurally
consistent 3D pose predictions by dynamically modeling
joint dependencies during training.

In this framework, the task-net Fi,(z) is optimized to
minimize a weighted sum of the mean squared error (MSE)
loss and the output of the the loss-net (energy) Fo(z, 7).
Specifically, the task-net parameters ¢ are updated using the
following manner:
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where B; is the mini-batch of training samples at iteration
t, ng is the learning rate for the task-net, and L r(;0) is
the combined loss function. The combined loss function is
defined as:

M
Lp(zi,y:;0) = ZMSE(yj,F¢(x)j) + aFy(x, Fy(x))
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where M refers to the total number of joints in the pose
estimation dataset and x represents the input data, specifi-
cally the 2D joint coordinates. The variable y; denotes the
ground-truth 3D joint coordinates, while Fy,(z); = g; rep-
resents the predicted 3D joint coordinates from the task-net.
The energy term Fy(x, Fy(z)) is computed by the loss-net
and implicitly evaluates the structural dependencies between
joints. Finally, « is a hyperparameter controlling the balance
between the MSE loss and the energy term.

n the rest of this section, we refer to the pose estimation model as
task-net and the structured energy network as a trainable loss function as
loss-net.



Algorithm 1 SEAL-Pose Algorithm

Algorithm 2 Gradient-Based Inference

Require: 7": number of training iterations
Require: (x,y): training data (2D inputs and 3D labels)
Require: F: task-net with parameters ¢
Require: Fy: loss-net with parameters 0
Require: optimizery: optimizer for task-net
Require: optimizerg: optimizer for loss-net
Initialize ¢, 6o randomly
fort =1toT do
Sample mini-batch By = {(x;, y;)}/_, from training data
Compute task-net outputs: §; = Fy, , (z;) forall z; € By
Update loss-net parameters 6;:
0r 011 — naveﬁ Z(wi,yi)eBt Le(xi, v, Ui 0)
Update task-net parameters ¢.:
Gt Pr—1 — 77¢V¢ﬁ 2wy yien, LF (@i vi; 00)
end for

The loss-net is dynamically trained to adapt to the task-
net’s predictions by minimizing the loss Lg:
1
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We employ two types of loss for L g: margin-based loss
and a simplified form of noise contrastive estimation (NCE)
ranking loss [13], both suggested in [11].

The margin-based loss enforces the loss-net to decrease
the energy Fy(x,y) of the ground truth label y and increase
the energy Fy(z,¢) of the task-net’s incorrect prediction g,
such that the difference between the two energies is suffi-
ciently large to exceed the margin. The margin-based loss is
defined as:

L™ (i, i, 543 0) =

ngaX [A(ya g) - EQ({L‘, g) + EO(Z'7 y)]+ “4)

where A(y,7) denotes a task-specific margin function,
MPIJPE in our implementation.

Similarly, the NCE ranking loss minimizes the energy of
the ground truth label y while increasing the energy of the
task-net’s prediction g, treating the task-net’s predictions as
negative samples. The NCE ranking loss is defined as:

L5 (2,93, 533 0) =
exp(—Eog(z,y))
exp(—Ey(z,y)) + exp(—Eq(z, 7))

Additionally, we used a larger mini-batch, which always
includes the entire mini-batch for the task-net, in updating
the loss-net in order to improve loss-net training.

In SEAL-Pose, the task-net and loss-net are updated in
an alternative manner, enabling the loss-net to adapt dynam-
ically to the task-net thus improving 3D pose predictions

—log (5)

Require: (x,y): training data (2D inputs and 3D labels)
Require: F: task-net, Fy: energy network
Require: 7T': training iterations, K: GBI steps
Phase 1: train task-net
fort =1toT do
Sample batch By = {(z4, y:)} o
Update ¢:
G & =6V O TET 2 (2s,0:)e 8, MSE(Fo (i) — yi)
end for
Phase 2: train energy network
fort =1to7T do
Sample batch By = {(z4, y:)} o
Generate §; = Fy(x;) for x; € By
Update 0:
0 < 0=16Vo 51 2, ) m [ Eo (@i yi) — Bo(xi, §i)]
end for
Phase 3: gradient-based inference
Initialize 7\°) = F(x;) for z; € B,
for k = 1to K do
Refine ¢;: gjgm
end for

g VB (zi, 5Y)

by teaching dependencies in the output space to task-net
more effectively. This iterative joint optimization process is
summarized in Algorithm 1.

3.2. Gradient-Based Inference

We implement a gradient-based inference (GBI) method
with trained loss-net and pose-net, to examine whether the
loss-net effectively captures structural dependencies in hu-
man poses. GBI is a method that leverages gradients to iter-
atively refine the outputs [1, 4-06, 16] or parameters [10] of
neural networks, and we adopt the former approach. Specifi-
cally, we iteratively update the predictions of pose-net along
the gradient provided by the loss-net, with the objective of
decreasing the energy. This procedure provides a direct way
to evaluate whether the learned energy function captures
human pose structure.

We used GBI in two complementary ways. First, we
compared the effectiveness of the structured energy network
when used as a trainable loss function versus as a direct
predictor, providing insights into whether incorporating it
as loss-net yields more consistent improvements. The de-
tailed GBI procedure for this comparison is summarized in
Algorithm 2. Second, we employed GBI as an analysis tool
to directly probe the gradient signals of the loss-net trained
jointly with the task-net in SEAL-Pose. In this case, if the
loss-net has successfully captured structural dependencies in
human poses, then following its gradients should iteratively
refine task-net predictions toward more plausible poses, of-
fering a direct way to examine the quality of the learned
energy function.



4. Experiments

4.1. Datasets

We conduct our empirical experiments on Human3.6M
dataset (H36M) [7], MPI-INF-3DHP (3DHP) [15] dataset
and Human3.6M 3D WholeBody dataset (H3WB) [28].
H36M is the most widely used dataset for 3D human pose
estimation [12, 26]. 3DHP is a more challenging dataset
than H36M because it contains fewer samples and includes
both indoor and outdoor scenes, while H36M only contains
indoor scenes. H3WB is a recent dataset for 3D whole-body
pose estimation. H3WB extends H36M by providing whole-
body keypoint annotations with detailed information about
hands, face, and feet, making it suitable for evaluating fine-
grained 3D pose estimation. We utilize the ground truth 2D
joint coordinates provided in the datasets to align the 3D and
2D poses. For the H36M and 3DHP datasets, we zero-center
the 3D poses around the pelvis joint, following prior works.
For the H3WB dataset, we zero-center the 3D poses around
the midpoint of the two hip joints, following the dataset’s
protocol.

4.2. Implementation Details

There are two main settings for 3D human pose estimation:
single-frame and multi-frame pose estimation. In the single-
frame setting, models predict 3D poses from a single frame
of 2D keypoints, while models exploit richer spatial and
temporal information from multiple frames to estimate 3D
poses in the multi-frame setting. We evaluate SEAL-Pose
mainly on single-frame models to verify its effectiveness in
more challenging scenarios. Moreover, we also applied it to
multi-frame models to verify the applicability of SEAL-Pose
to state-of-the-art models. Specifically, we employed the
SimpleBaseline [14], SemGCN [25] and VideoPose [19] as
task-net for single-frame pose estimation. For multi-frame
pose estimation, we used the MixSTE (input sequence length
T'=243) [24] and P-STMO (7'=81) [21] as task-net for H36M
and 3DHP each.

We have modified the input and output layers of task-net
to align with the dimensions of each dataset. For the loss-net,
we additionally adjusted the SimpleBaseline architecture by
modifying the dimensions and depth of the hidden layers. We
set the hidden size to 2048 with 2 residual block stages and
omitted batch normalization and dropout layers. We used
separate Adam optimizers [9] without learning rate decay
for the loss-net and task-net. All single-frame models are
trained with a batch size of 1024 for 50 epochs on H36M and
3DHP, and a batch size of 64 for 200 epochs on H3WB, and
we used reported hyperparameters in their original papers
for multi-frame models.

5. Evaluation Metrics

We evaluate our models using standard metrics for 3D human
pose estimation. For the H36M dataset, we report MPJPE
and P-MPJPE (procrustes-aligned MPJPE), following estab-
lished protocols [7]. MPJPE measures the average Euclidean
distance between the predicted and ground truth 3D joint po-
sitions, and P-MPJPE is a more robust metric that considers
the alignment of the predicted poses. For the 3DHP dataset,
we report MPJPE, PCK (percentage of correct keypoints)
within a 150 mm range, and AUC (area under the curve)
as evaluation metrics following previous works [15, 21, 24].
On the H3WB dataset, we use the official benchmark’s PA-
MPIJPE (pelvis-aligned MPJPE), measuring per-joint errors
for the whole body, body, hands, face, wrist-aligned hands,
and nose-aligned face. All reported metrics are averaged
over the entire test set of each dataset.

To further assess structural consistency in the predicted
poses, we suggest two additional metrics: Limb Symmetry
Error (LSE) and Body Segment Length Error (BSLE). These
metrics evaluate the structural plausibility of predicted poses
by measuring the symmetry between left and right limbs and
the predicted lengths of body segments, respectively. Lower
LSE and BSLE values indicate more anatomically plausible
poses. We provide detailed definitions of LSE and BSLE in
the following sections.

5.1. Limb Symmetry Error (LSE)

The Limb Symmetry Error evaluates left-right body symme-
try by comparing the lengths of corresponding limbs on the
left and right sides. It is defined as the normalized difference
in lengths between each pair of corresponding limbs, such
as wrist-to-elbow and ankle-to-knee.

Given a set of n corresponding limb pairs, where the i-th
left limb is defined by keypoints 1;1, 1,2 and the correspond-
ing right limb by r;1, r;2, the LSE for limb pair ¢ is computed
as:

[lix = Lia|| — l[ran — raa]
LSE; = 100 -
(e = Ligll + [lriz — ri])/2
where || - || denotes the Euclidean norm.

This metric is calculated based on the predicted poses and
measures the relative difference in lengths between the left
and right limbs. A value of 0 indicates perfect symmetry, and
a larger value indicates worse symmetry, which is desirable
for anatomically plausible poses. If the length of the left and
right limbs differs n% from their average length, the LSE
value is computed as n.

5.2. Body Segment Length Error (BSLE)

The Body Segment Length Error measures deviations in
the lengths of body segments—pairs of adjacent joints—by



Table 1. Performances on the Human3.6M Dataset. SEAL-Pose
improves MPJPE and P-MPJPE across models.

Metric MPJPE | P-MPIJPE |
SimpleBaseline 43.8 34.7
+ SEAL-Pose (margin) 42.5 33.9
+ SEAL-Pose (NCE) 42.7 33.8
SemGCN 47.0 37.9
+ SEAL-Pose (margin) 45.1 36.6
+ SEAL-Pose (NCE) 44.9 36.5
VideoPose 41.6 32.4
+ SEAL-Pose (margin) 41.0 323
+ SEAL-Pose (NCE) 41.3 32.5
MixSTE (T'=243) 20.1 15.7
+ SEAL-Pose (margin) 20.0 15.5
+ SEAL-Pose (NCE) 20.0 15.6

comparing predicted poses and ground-truth poses. For
each segment ¢, with predicted adjacent keypoints k;1, ko
and corresponding ground truth keypoints t;1, t;2, BSLE is
defined as:

_ i, — ki, )
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We refer to the specific case of BSLE that focuses only
on limb segments as the limb length error (LLE). These
metrics calculate the relative difference between predicted
and ground truth segment lengths, reflecting how well the
model preserves anatomical proportions. Lower BSLE and
LLE values indicate better preservation of segment lengths
in the predicted poses. If the length of the predicted segment
differs n% from the ground truth segment length, the BSLE
value is computed as n.

BSLE,; = 100 - |1

6. Experimental Results and Analysis

6.1. Pose Estimation Error Evaluation

Human3.6M Dataset We evaluated the impact of SEAL-
Pose on various models on the H36M dataset. As shown in
Table 1, SEAL-Pose consistently outperformed the baseline
models across all metrics, more notably with the single-
frame models. These results demonstrate that SEAL-Pose
effectively reduces 3D pose estimation errors, especially in
more challenging settings.

MPI-INF-3DHP Dataset For the 3DHP dataset, SEAL-
Pose also demonstrated consistent improvements across all
models, as shown in Table 2. SEAL-Pose showed a larger
performance gap on the 3DHP dataset, which is more chal-
lenging than H36M due to its diverse scenes and fewer sam-
ples, where the model requires more guidance to capture

Table 2. Performances on the MPI-INF-3DHP Dataset. SEAL-
Pose consistently reduces MPJPE and improves PCK and AUC.

Metric MPJPE| PCK1 AUCT
SimpleBaseline 80.9 86.9 53.8
+ SEAL-Pose (margin) 71.8 89.3 58.7
+ SEAL-Pose (NCE) 72.3 89.2 58.2
SemGCN 74.5 89.5 56.4
+ SEAL-Pose (margin) 71.8 90.4 57.9
+ SEAL-Pose (NCE) 72.5 90.1 57.7
VideoPose 66.4 90.8 60.5
+ SEAL-Pose (margin) 64.1 914 62.1
+ SEAL-Pose (NCE) 64.0 91.7 62.1
P-STMO (T'=81) 32.8 98.3 77.7
+ SEAL-Pose (margin) 32.2 98.2 78.1
+ SEAL-Pose (NCE) 324 98.1 78.1

Table 3. Performance on the Human3.6M WholeBody Dataset.
SEAL-Pose reduces pelvis-aligned MPJPE across all body parts,
resulting in more coherent predictions. T from H3WB’s official bench-
mark. { nose-aligned MPJPE for face and wrist-aligned MPJPE for hands.

Method Whole-body Body Face/Aligned? Hand/Aligned*
Jointformer 88.3 84.9 66.5/17.8 125.3/43.7
3D-LFM (Dabhi et al. [2]) 64.1 60.8 56.6/10.4 78.2/28.2
SimpleBaseline 65.5 62.8 49.6/14.6 92.7/35.1
+ GBI 65.3 62.6 49.4/14.8 92.5/35.0
+ SEAL-Pose (margin) 62.8 61.1 46.3/13.7 90.7 /34.7
+ SEAL-Pose (NCE) 63.4 61.1 46.5/14.5 92.1/34.2
VideoPose 60.1 56.4 46.3/11.9 84.3/29.6
+ GBI 60.0 56.3 46.3/12.4 84.2/29.5
+ SEAL-Pose (margin) 58.6 55.7 45.0/11.6 82.3/29.3
+ SEAL-Pose (NCE) 58.8 54.8 455/11.5 82.7/28.9

complex dependencies and structures. Moreover, SEAL-
Pose provided more substantial improvements on the Sim-
pleBaseline model, which has a more straightforward ar-
chitecture compared to the others. These results, which
show that SEAL-Pose is more beneficial in difficult settings,
clearly suggest the strength of SEAL-Pose in providing struc-
tural awareness that is not sufficient for MSE loss. For the
P-STMO task-net, SEAL-Pose showed a slight decrease in
PCK but achieved improvements in MPJPE and AUC, which
could outweigh the PCK loss, implying that it can still be
advantageous for state-of-the-art models.

Human3.6M WholeBody Dataset To evaluate the im-
pact of SEAL-Pose on 3D whole-body pose estimation with
detailed annotations and complex body structures, we con-
ducted experiments on the H3WB dataset. As shown in
Table 3, SEAL-Pose consistently outperformed the baseline
models across all body parts, reducing the pelvis-aligned
MPJPE, demonstrating its effectiveness in improving 3D
whole-body pose estimation and the loss-net’s capacity to



Figure 2. Comparison of Predicted Poses on H3WB. Predictions
from SimpleBaseline (left) and the same model with SEAL-Pose
(right) show improved accuracy, especially in challenging poses.
Key differences are highlighted with red circles.

capture complex human body structures, including finer
anatomical details like facial features and hand articulations.
The improved performance validates SEAL-Pose’s ability
to model intricate interdependencies among body regions
for more accurate and cohesive predictions. Notably, SEAL-
Pose showed relatively better performance than the baseline
on less common data distributions, such as target figures
in reverse and lying down, as illustrated in Figure 2. The
superior performance of SEAL-Pose on H3WB highlights its
potential to improve 3D human pose estimation, particularly
in challenging whole-body settings. Overall, experimental
results indicate that SEAL-Pose can provide informative
signals to enhance the task-net’s learning. In addition, it is
particularly effective in challenging settings, requiring more
guidance to capture complex dependencies and structures.

Comparison with Gradient-Based Inference In order
to compare the effectiveness of SEAL-Pose with GBI, we
evaluated the performance improvement of the task-net’s
predictions using GBI on H3WB. As shown in Table 3,
SEAL-Pose consistently outperformed GBI, and the ben-
efits of GBI were limited in our experiments. This result
demonstrates that using the structured energy network as a
trainable loss function is more effective than using it as a
direct predictor, as it better captures dependencies among
output variables and teaches the task-net to generate more
accurate and coherent 3D pose predictions.

6.2. Pose Structure Evaluation

We evaluated structural consistency by examining the LSE,
LLE, and BSLE metrics on the H36M, 3DHP, and H3WB
datasets. SEAL-Pose consistently showed lower error val-
ues across all three structural metrics on H36M and 3DHP

Table 4. Structural Consistency Evaluation Across Datasets.
SEAL-Pose reduces LSE, LLE, and BSLE, improving plausibility.

Dataset  Metric LSE|l LLE| BSLE]
Ground Truth 0.00 0.00 0.00
H36M SimpleBaseline 4.85 5.09 6.12
+ SEAL-Pose (margin) 4.72 4.61 5.46
+ SEAL-Pose (NCE) 4.68 4.65 5.70
Ground Truth 1.21 0.00 0.00
3DHP SimpleBaseline 10.14  11.60 8.13
+ SEAL-Pose (margin)  9.30 8.39 7.19
+ SEAL-Pose (NCE) 10.30 8.84 7.35
Ground Truth 442 0.00 0.00
H3WB SimpleBaseline 6.60 6.56 6.22

+ SEAL-Pose (margin) 6.78 6.24 5.86
+ SEAL-Pose (NCE) 6.85 6.32 5.98

datasets, as detailed in Table 4. These results indicate that
SEAL-Pose effectively captures structured dependencies in
human poses, leading to more anatomically plausible and
consistent 3D pose predictions.

On the H3WB dataset, SEAL-Pose showed mixed results,
with better LLE and BSLE but higher LSE compared to the
baseline. This is likely due to the dataset’s noisy labeling,
which is apparent from the high LSE of the ground truth
poses. It is probable that SEAL-Pose would struggle to im-
prove limb symmetry on H3WB with noisy and asymmetric
labeling, as the loss-net may not be able to learn and provide
additional guidance about it. Indeed, the trained task-nets
also exhibited similar levels of LSE with the ground truth
poses.

Overall, the improved structural consistency metrics high-
light that loss-net’s ability to capture structures in human
poses helps the task-net to predict more anatomically consis-
tent and plausible 3D human poses.

6.3. Analysis of Structured Energy Network

Gradient-Based Inference Analysis We conduct gradient-
based inference (GBI) on the output of the task-net using
the trained loss-net to verify its ability to capture plausible
human pose structures. GBI iteratively refines the predicted
poses by following the gradient signals from the loss-net,
which are expected to lower the assigned energy. As shown
in Figure 3, P-MPJPE, as well as the structural metrics LSE,
LLE, and BSLE, all steadily decrease over dozens of iter-
ations. Since these metrics directly reflect structural plau-
sibility, the consistent reduction indicates that the loss-net
effectively caputres human pose structure and provides mean-
ingful gradient signals. The effect is more pronounced on
the challenging 3DHP dataset but the same trend is also
observed on H36M, as shown in Figure 5 in Appendix A,
confirming the consistency of the results.
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Figure 3. Gradient-Based Inference results on MPI-INF-3DHP. P-MPJPE, LSE, LLE, and BSLE all decrease steadily over iterations,
indicating that the loss-net effectively captures structural plausibility and provides meaningful corrective feedback to the task-net.

Energy Evolution During Training
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Figure 4. Training Dynamics of Energy. Energy evolution during
training shows SEAL-Pose on H3WB, effectively lowers the energy
level of task-net predictions.

Energy Evolution during Training To evaluate the effi-
cacy of SEAL-Pose in exploiting the learning signals from
the loss-net, we observed the energy levels of the task-net pre-
dictions at each training checkpoint, logged at every epoch.
We calculated the energy of the task-net predictions by av-
eraging the energy values of the predicted poses across the
entire test set of H3WB and compared the energy levels
between the baseline model and SEAL-Pose. During the
training process, the task-net in SEAL-Pose demonstrated a
more significant reduction in energy levels compared to the
baseline, resulting in considerably lower energy values at
the end of the training, as shown in Figure 4. The decrease
in energy suggests that SEAL-Pose effectively utilizes the
structured energy network to teach the task-net towards more
plausible predictions by guiding the task-net to lower the
energy of the predicted poses. This observation supports
the hypothesis that the loss-net can train the task-net as we
intended and strongly suggests that it guides the task-net
effectively, given our prior demonstration that structured
energy networks capture plausible pose structures.

7. Conclusion

In this work, we introduced SEAL-Pose, a novel adaptation
of the SEAL framework to deterministic models, particu-
larly in 3D human pose estimation. Our approach employs
a structured energy network as a trainable loss function, ef-
fectively capturing joint dependencies and improving the
plausibility of predicted poses without any explicit structural
priors. In addition, we suggest new metrics: limb symmetry
error (LSE) and body segment length error (BSLE) to quan-
titatively evaluate the structural consistency of the generated
poses. Our experimental results showed the effectiveness of
SEAL-Pose over baselines, achieving substantial reductions
in per-joint errors. SEAL-Pose also demonstrated better
structural consistency, as evidenced by lower LSE and BSLE
values, which underscore the efficacy of SEAL-Pose in cap-
turing complex structures among body joints. This work
highlights the potential of structured energy networks for en-
hancing tasks involving complex output dependencies. Our
findings suggest that SEAL-Pose can be extended to broader
applications in the future, providing a promising direction to
model the complex dependencies in high-dimensional output
spaces, thereby improving the performance and structural
consistency in various domains.

8. Limitations

Although SEAL-Pose demonstrates significant improve-
ments in 3D human pose estimation, there are still room
for advancement. One key challenge lies in the broad hyper-
parameter search space, which includes weight for the energy
loss term, learning rates for the task-net and the loss-net, rel-
ative batch size of the task-net and loss-net and such. This
extensive search space can make the training optimization
process less straightforward and computationally intensive.
Therefore, analyzing and identifying efficient strategies for
robust and stable training could enhance the practicality of
the method. Additionally, better loss-net architectures to pro-
vide learning signals for the task-net could further improve
the joint optimization process of SEAL-Pose.



References

(1]

(2]

(3]

[4]

(5]

[6

—_

(71

(8]

(9]

[10]

(1]

David Belanger and Andrew McCallum. Structured pre-
diction energy networks. In Proceedings of the 33nd In-
ternational Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pages 983-992.
JMLR.org, 2016. 2, 4

Mosam Dabhi, Laszl6 A. Jeni, and Simon Lucey. 3d-1fm:
Lifting foundation model. 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
10466-10475, 2023. 6

Haoshu Fang, Yuanlu Xu, Wenguan Wang, Xiaobai Liu, and
Song-Chun Zhu. Learning pose grammar to encode human
body configuration for 3d pose estimation. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages
6821-6828. AAAI Press, 2018. 1,2, 3

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Texture synthesis using convolutional neural networks. In Ad-
vances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages
262-270, 2015. 4

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
A neural algorithm of artistic style. CoRR, abs/1508.06576,
2015.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In 3rd In-
ternational Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. 4

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2014. 5

Jun-Hee Kim and Seong-Whan Lee. Toward approaches
to scalability in 3d human pose estimation. In The Thirty-
eighth Annual Conference on Neural Information Processing
Systems, 2024. 1,2, 3

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 5

Jay Yoon Lee, Sanket Vaibhav Mehta, Michael L. Wick, Jean-
Baptiste Tristan, and Jaime G. Carbonell. Gradient-based
inference for networks with output constraints. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 4147-4154. AAAI Press, 2019. 4

Jay-Yoon Lee, Dhruvesh Patel, Purujit Goyal, Wenlong Zhao,
Zhiyang Xu, and Andrew McCallum. Structured energy net-

[12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

work as a loss. In Advances in Neural Information Processing
Systems, 2022. 1,2, 3,4

Yang Liu, Changzhen Qiu, and Zhiyong Zhang. Deep learning
for 3d human pose estimation and mesh recovery: A survey.
Neurocomputing, page 128049, 2024. 1,2, 5

Zhuang Ma and Michael Collins. Noise contrastive estimation
and negative sampling for conditional models: Consistency
and statistical efficiency. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing,
pages 3698-3707, Brussels, Belgium, 2018. Association for
Computational Linguistics. 4

Julieta Martinez, Rayat Hossain, Javier Romero, and James J.
Little. A simple yet effective baseline for 3d human pose esti-
mation. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 2659-2668, 2017. 5

Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Olek-
sandr Sotnychenko, Weipeng Xu, and Christian Theobalt.
Monocular 3d human pose estimation in the wild using im-
proved cnn supervision. In 2017 International Conference on
3D Vision (3DV), pages 506-516, 2017. 5

A. Mordvintsev, Christopher Olah, and Mike Tyka. Inception-
ism: Going deeper into neural networks. 2015. 4

Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis,
and Kostas Daniilidis. Coarse-to-fine volumetric prediction
for single-image 3D human pose. In Computer Vision and
Pattern Recognition (CVPR), 2017. 2

Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis.
Ordinal depth supervision for 3D human pose estimation. In
Computer Vision and Pattern Recognition (CVPR), 2018. 2
Dario Pavllo, Christoph Feichtenhofer, David Grangier, and
Michael Auli. 3d human pose estimation in video with tempo-
ral convolutions and semi-supervised training. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.
S

Cédric Rommel, Victor Letzelter, Nermin Samet, Renaud
Marlet, Matthieu Cord, Patrick Pérez, and Eduardo Valle.
Manipose: Manifold-constrained multi-hypothesis 3d human
pose estimation. In Advances in Neural Information Process-
ing Systems. Curran Associates, Inc., 2024. 2

Wenkang Shan, Zhenhua Liu, Xinfeng Zhang, Shanshe Wang,
Siwei Ma, and Wen Gao. P-stmo: Pre-trained spatial tem-
poral many-to-one model for 3d human pose estimation. In
Computer Vision—-ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part V,
pages 461-478. Springer, 2022. 5

Lele Wu, Zhenbo Yu, Yijiang Liu, and Qingshan Liu. Limb
pose aware networks for monocular 3d pose estimation. /[EEE
Transactions on Image Processing, 31:906-917,2022. 1,2, 3
Yuanlu Xu, Wenguan Wang, Tengyu Liu, Xiaobai Liu, Jian-
wen Xie, and Song-Chun Zhu. Monocular 3d pose estimation
via pose grammar and data augmentation. /EEE Trans. Pat-
tern Anal. Mach. Intell., 44(10):6327-6344, 2022. 1,2, 3
Jinlu Zhang, Zhigang Tu, Jianyu Yang, Yujin Chen, and Jun-
song Yuan. Mixste: Seq2seq mixed spatio-temporal encoder
for 3d human pose estimation in video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13232-13242,2022. 5



[25]

[26]

(27]

(28]

Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dim-
itris N. Metaxas. Semantic graph convolutional networks for
3d human pose regression. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 34253435,
2019. 5

Ce Zheng, Wenhan Wu, Chen Chen, Taojiannan Yang, Si-
jie Zhu, Ju Shen, Nasser Kehtarnavaz, and Mubarak Shah.
Deep learning-based human pose estimation: A survey. ACM
Comput. Surv., 56(1), 2023. 2, 5

Xiangtao Zheng, Xiumei Chen, and Xiaoqiang Lu. A joint
relationship aware neural network for single-image 3d human
pose estimation. /EEE Transactions on Image Processing, 29:
4747-4758,2020. 1,2, 3

Yue Zhu, Nermin Samet, and David Picard. H3wb: Hu-
man3.6m 3d wholebody dataset and benchmark. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 20166-20177, 2023. 2, 5



A. Gradient-Based Inference

The gradient-based inference results on the H36M dataset are shown in Figure 5, where all metrics steadily decrease over
iterations, consistent with the trends observed for 3DHP in Figure 3.
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Figure 5. Gradient-Based Inference results on H36M. P-MPJPE, LSE, LLE, and BSLE all decrease steadily over iterations, indicating
that the loss-net effectively captures structural plausibility and provides meaningful corrective feedback to the task-net.
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