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Abstract

We propose SEAL-Pose, a method that trains models to pre-001
dict more plausible 3D human poses through a trainable loss002
function that dynamically learns the output structures of data.003
SEAL-Pose extends the Structured Energy As Loss (SEAL)004
framework, originally designed for structured prediction005
and limited to probabilistic models, to deterministic mod-006
els, particularly for 3D human pose estimation. SEAL-Pose007
enables pose estimation models to learn joint dependencies008
via structured energy networks that automatically capture009
body structure during training without explicit prior knowl-010
edge and is applicable to any backbone models. We also011
suggest evaluation metrics such as the limb symmetry error012
(LSE) and body segment length error (BSLE) to assess the013
structural consistency of the predicted poses. These met-014
rics measure overall structural preservation, which the vast015
majority of existing metrics do not capture. Experimental re-016
sults on the Human3.6M, MPI-INF-3DHP, and Human3.6M017
WholeBody datasets show that SEAL-Pose not only reduces018
per-joint pose estimation errors but also generates more019
plausible poses. In addition, SEAL-Pose demonstrates more020
significant improvements in challenging settings such as021
monocular single-frame pose estimation. Our work also022
highlights the potential of employing trainable loss func-023
tions for tasks with complex output structures, offering a024
promising direction for future research.025

1. Introduction026

Pose estimation is a critical task in computer vision that re-027
quires accurate prediction of keypoint positions of objects or028
humans. In particular, 3D human pose estimation (3D HPE)029
is even more challenging because it involves predicting spa-030
tial structures while adhering to anatomical constraints. [12]031
It is critical to effectively model the dependencies in the out-032
put space to predict accurate and plausible 3D poses. There033
have been previous studies [3, 8, 22, 23, 27] that attempted034
to capture the structural dependencies of human poses, but035

they often rely on manually designed rules or specific model 036
architectures, which constrain their adaptability and scalabil- 037
ity. 038

To address these issues, we propose SEAL-Pose, a 039
method that extends the Structured Energy As Loss (SEAL) 040
framework [11], which leverages a structured energy net- 041
work as a trainable loss function, allowing the model to learn 042
dependencies among output variables, to improve 3D HPE. 043
SEAL was originally designed for structured prediction tasks 044
involving probabilistic models, where negative sampling is 045
performed from the output distribution of a neural network. 046
However, since deterministic models lack an inherent out- 047
put distribution, we successfully adapt the framework for 048
deterministic models, particularly for 3D HPE in 2D-to-3D 049
lifting scenarios, by utilizing the task-net’s output values as 050
negative examples for the structured energy network. This 051
adaptation not only enhances 3D HPE but also demonstrates 052
the SEAL’s applicability to various tasks that require learning 053
complex output dependencies. 054

Our proposed method, SEAL-Pose, enables pose esti- 055
mation models to learn joint dependencies during training, 056
allowing the model to more accurately represent relation- 057
ships in the output space. This results in improved 3D HPE 058
performance in terms of widely used per-joint error met- 059
rics, such as mean per-joint position error (MPJPE). Unlike 060
previous methods that manually encode body structures or 061
use domain-specific rules [3, 8, 22, 23, 27], SEAL-Pose au- 062
tomatically captures joint dependencies without requiring 063
predefined structural priors, through a trainable loss function. 064
This approach offers a flexible and scalable solution that is 065
applicable to any backbone models. 066

Additionally, we also suggest new evaluation metrics, 067
such as Limb Symmetry Error (LSE) and Body Segment 068
Error (BSLE), to evaluate the structural consistency of pre- 069
dicted poses. Our experimental results on the Human3.6M, 070
MPI-INF-3DHP, and Human3.6M WholeBody datasets 071
demonstrate that SEAL-Pose not only reduces per-joint er- 072
rors but also produces more anatomically plausible poses, 073
evaluated by LSE and BSLE. SEAL-Pose shows even more 074
improvements in challenging settings like monocular single- 075
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frame pose estimation, highlighting its potential for broader076
applications. Overall, empirical results suggest that our ap-077
proach could be applied to a wide range of tasks that require078
capturing complex dependencies in the output space.079

2. Related Work080

2.1. 3D Human Pose Estimation081

3D human pose estimation is a well-established computer vi-082
sion task involving the prediction of 3D joint positions from083
2D images or videos. This task is inherently challenging084
because it requires inferring spatial relationships and ensur-085
ing anatomical plausibility using limited visual information.086
Current 3D HPE approaches typically follow two paradigms:087
(1) directly predicting 3D poses from images [17, 18] or (2)088
using a two-step process where 2D poses are estimated first089
and then lifted to 3D space [12, 26]. The latter approach has090
become more popular and effective following advances in091
2D human pose estimation [26]. Therefore, we also adopted092
the 2D-to-3D lifting approach in our work.093

3D whole-body pose estimation extends traditional 3D094
human pose estimation by integrating detailed annotations095
for additional keypoints, including those for the face, hands,096
and feet, demanding more fine-grained and precise predic-097
tions. The expanded scope introduces greater challenges098
due to the variation in scales and the increased diversity of099
poses associated with detail keypoints. Recently, [28] de-100
veloped the Human3.6M 3D WholeBody dataset (H3WB)101
based on the widely used Human3.6M dataset (H36M) by in-102
cluding annotations for 133 keypoints, as shown in Figure 1.103
This dataset has become an important resource, allowing104
research to address the increased complexity of whole-body105
pose estimation while encouraging methods that go beyond106
traditional approaches focused mainly on standard body key-107
points.108

2.2. Output Structure of 3D Human Pose Estima-109
tion110

2D-to-3D HPE has inherent challenges such as ambiguity111
due to incomplete information, which is further compounded112
in single-frame scenarios. To address this issue, several113
works have focused on capturing the structural dependen-114
cies between body joints. For instance, [27] proposed the115
Joint Relationship Aware Network, which enhances pose116
predictions by considering both global and local joint rela-117
tionships. [22] introduced the Limb Poses Aware Network,118
which incorporates relative and absolute bone angles to119
model pose structure. However, these methods tend to be120
closely tied to specific model architectures. Another notable121
approach is Pose Grammar [3, 23], which uses predefined122
kinematic rules and bidirectional recurrent neural networks123
to refine pose predictions.124

More recently, some works have proposed methods us-125

Figure 1. Example Annotations from the H3WB Dataset. H3WB
extends Human3.6M with keypoints for hands, face, and feet, en-
abling detailed whole-body pose estimation.

ing multiple hypotheses or generating plausible 3D poses 126
to overcome the inherent difficulties of 3D HPE. For exam- 127
ple, [8] proposed Biomechanical Pose Generator to augment 128
training data with biomechanically plausible poses. They 129
also introduced Binary Depth Coordinates to resolve the 130
depth ambiguity by classifying the joint depths as front or 131
back. Additionally, [20] suggested ManiPose, a manifold- 132
constrained multi-hypothesis approach to overcome depth 133
ambiguity through estimating the plausibility of each hypoth- 134
esis and constraining them to the human pose manifold. 135

Despite their contributions, most previous methods rely 136
on expert knowledge or predefined rules to capture joint 137
dependencies, which may limit their scalability and adapt- 138
ability. In contrast, we aim to address these limitations 139
by providing a more flexible and scalable approach for 3D 140
HPE that captures joint dependencies without explicit prior 141
knowledge. Our method, SEAL-Pose, can be applied to any 142
backbone models as well as potentially extending to various 143
tasks with complex output structures. 144

2.3. Structured Energy As Loss (SEAL) 145

SEAL [11] builds on the concept of using structured en- 146
ergy networks for structured prediction, initially introduced 147
by [1]. These early models, known as Structured Prediction 148
Energy Networks (SPENs), effectively captured arbitrary 149
global dependencies in the output space without explicitly 150
representing them. However, they were limited to slow and 151
unstable inference due to the inherent problem of updating 152
output variables through gradient-based inference (GBI). 153

SEAL addresses this issue by using structured energy 154
networks as trainable loss functions rather than direct predic- 155
tors, leveraging the expressivity of energy networks while 156
enabling faster and more stable inference at test time. SEAL 157
has been applied to tasks such as multi-label classification, 158
semantic role labeling, and image segmentation, highlight- 159
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ing its potential to improve performance and efficiency over160
traditional methods. However, SEAL can only be applied161
to probabilistic models because it utilizes the output dis-162
tribution of a neural network, referred to as a task-net, as163
a dynamic noise distribution to train a structured energy164
network, referred to as a loss-net.165

Specifically, SEAL is implemented in two main ways:166
SEAL-static and SEAL-dynamic. SEAL-static uses a pre-167
trained, fixed loss-net to guide the task-net, while SEAL-168
dynamic updates the loss-net dynamically based on the evolv-169
ing outputs of the task-net. SEAL-dynamic could be more170
beneficial for task-net training since it can better focus on171
the current distribution of task-net predictions. [11] has172
shown that SEAL-dynamic generally outperforms SEAL-173
static across structured prediction tasks, as it captures depen-174
dencies more effectively and provides more helpful learning175
signals even in high-dimensional spaces.176

Our work expands upon these foundations by introducing177
a novel application of the SEAL framework. We applied178
SEAL to deterministic models, particularly for 3D HPE in179
2D-to-3D lifting scenarios. Since it is not possible to ex-180
tract negative samples from the task-net’s output distribution181
because deterministic models directly output real-valued pre-182
dictions, we used the task-net’s predictions themselves as183
negative samples for the loss-net. This intuitive approach184
has been shown to be effective in practice, as long as the185
batch size is sufficiently larger than the task-net, allowing the186
loss-net to learn meaningful structural dependencies during187
training.188

Unlike existing pose estimation methods, in this way,189
SEAL-Pose offers a novel approach to capturing joint de-190
pendencies in the output space during training, even without191
any explicit prior knowledge, through a trainable loss func-192
tion. SEAL-Pose allows for more accurate and coherent 3D193
pose predictions and offers a flexible and scalable method194
to improve pose estimation. We also seek the potential of195
using a trainable loss function to model dependencies in196
the output space to improve various tasks with complex out-197
put structures, which is a promising direction for further198
research.199

3. Methodology200

3.1. SEAL-Pose201

SEAL-Pose extends the SEAL framework for 3D human202
pose estimation, particularly in a 2D-to-3D lifting scenario.203
SEAL-Pose provides a trainable loss function that automati-204
cally captures joint dependencies as the model trains, without205
manually encoded body structure and predefined rules, un-206
like previous approaches [3, 8, 22, 23, 27]. By incorporating207
the SEAL framework, our method allows pose estimation208
models to better capture the relationships between joints,209
leading to more accurate and coherent 3D pose predictions,210

utilizing the capacity of structured energy networks to well 211
model the dependencies in output space. Moreover, SEAL- 212
Pose is applicable to any model architecture and can be 213
combined with any data augmentation method, offering flex- 214
ibility and scalability. 215

In particular, we implement the SEAL-dynamic approach 216
to take advantage of the superiority of SEAL-dynamic over 217
SEAL-static, as presented in [11]. Therefore, in SEAL-Pose, 218
the pose estimation model (task-net)1 and the structured en- 219
ergy network (loss-net)1 are trained jointly, by dynamically 220
updating the loss-net based on the current predictions of the 221
task-net. This iterative joint optimization process ensures 222
that the loss-net remains synchronized with the task-net’s 223
progress, enhancing its ability to guide the task-net effec- 224
tively. This approach leads to more accurate and structurally 225
consistent 3D pose predictions by dynamically modeling 226
joint dependencies during training. 227

In this framework, the task-net Fϕ(x) is optimized to 228
minimize a weighted sum of the mean squared error (MSE) 229
loss and the output of the the loss-net (energy) Eθ(x, ỹ). 230
Specifically, the task-net parameters ϕ are updated using the 231
following manner: 232

ϕt ← ϕt−1 − ηϕ∇ϕ
1

|Bt|
∑

(x,y)∈Bt

LF (ϕ; θ) (1) 233

where Bt is the mini-batch of training samples at iteration 234
t, ηϕ is the learning rate for the task-net, and LF (ϕ; θ) is 235
the combined loss function. The combined loss function is 236
defined as: 237

LF (xi, yi; θ) =

M∑
j=1

MSE(yj , Fϕ(x)j) + αEθ(x, Fϕ(x))

(2)

238

where M refers to the total number of joints in the pose 239
estimation dataset and x represents the input data, specifi- 240
cally the 2D joint coordinates. The variable yj denotes the 241
ground-truth 3D joint coordinates, while Fϕ(x)j = ỹj rep- 242
resents the predicted 3D joint coordinates from the task-net. 243
The energy term Eθ(x, Fϕ(x)) is computed by the loss-net 244
and implicitly evaluates the structural dependencies between 245
joints. Finally, α is a hyperparameter controlling the balance 246
between the MSE loss and the energy term. 247

The loss-net is dynamically trained to adapt to the task- 248
net’s predictions by minimizing the loss LE : 249

1In the rest of this section, we refer to the pose estimation model as
task-net and the structured energy network as a trainable loss function as
loss-net, following SEAL’s convention.
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Algorithm 1 SEAL-Pose Algorithm
Require: T : number of training iterations
Require: (x,y): training data (2D inputs and 3D labels)
Require: Fϕ: task-net with parameters ϕ
Require: Eθ: loss-net with parameters θ
Require: optimizerϕ, optimizerθ: optimizers for task-net

and loss-net
Initialize ϕ0, θ0 randomly
for t = 1 to T do

Sample mini-batch Bt = {(xi, yi)}Ni=1 from training data
Compute task-net outputs: ỹi = Fϕt−1(xi) for all xi ∈ Bt

Update loss-net parameters θt:
θt ← θt−1 − ηθ∇θ

1
|Bt|

∑
(xi,yi)∈Bt

LE(xi, yi, ỹi θ)
Update task-net parameters ϕt:
ϕt ← ϕt−1 − ηϕ∇ϕ

1
|Bt|

∑
(xi,yi)∈Bt

LF (xi, yi; θt)
end for

θt ← θt−1 − ηθ∇θ
1

|Bt|
∑

(x,y)∈Bt

LE(x, y, Fϕt−1
(x); θ)

(3)

250

We employ two types of loss for LE : margin-based loss251
and a simplified form of noise contrastive estimation (NCE)252
ranking loss [13], both suggested in [11].253

The margin-based loss enforces the loss-net to decrease254
the energy Eθ(x, y) of the ground truth label y and increase255
the energy Eθ(x, ỹ) of the task-net’s incorrect prediction ỹ,256
such that the difference between the two energies is suffi-257
ciently large to exceed the margin. The margin-based loss is258
defined as:259

260

Lmargin
E (xi, yi, ỹi; θ) =261

max
ỹ

[∆(y, ỹ)− Eθ(x, ỹ) + Eθ(x, y)]+ (4)262

where ∆(y, ỹ) denotes a task-specific margin function,263
MPJPE in our implementation.264

Similarly, the NCE ranking loss minimizes the energy of265
the ground truth label y while increasing the energy of the266
task-net’s prediction ỹ, treating the task-net’s predictions as267
negative samples. The NCE ranking loss is defined as:268

269

LNCE
E (xi, yi, ỹi; θ) =270

− log
exp(−Eθ(x, y))

exp(−Eθ(x, y)) + exp(−Eθ(x, ỹ))
(5)271

Additionally, we used a larger mini-batch, which always272
includes the entire mini-batch for the task-net, in updating273
the loss-net in order to improve loss-net training.274

Algorithm 2 Gradient-Based Inference
Require: (x,y): training data (2D inputs and 3D labels)
Require: Fϕ: task-net, Eθ: energy network
Require: T : training iterations, K: GBI steps

Phase 1: train task-net
for t = 1 to T do

Sample batch Bt = {(xi, yi)}Ni=1

Update ϕ:
ϕ← ϕ− ηϕ∇ϕ

1
|Bt|

∑
(xi,yi)∈Bt

MSE(Fϕ(xi)− yi)
end for
Phase 2: train energy network
for t = 1 to T do

Sample batch Bt = {(xi, yi)}Ni=1

Generate ỹi = Fϕ(xi) for xi ∈ Bt

Update θ:
θ ← θ−ηθ∇θ

1
|Bt|

∑
(xi,yi)∈Bt

[Eθ(xi, yi)−Eθ(xi, ỹi)]
end for
Phase 3: gradient-based inference
Initialize ỹ

(0)
i = Fϕ(xi) for xi ∈ Bt

for k = 1 to K do
Refine ỹi: ỹ

(k)
i ← ỹ

(k−1)
i − η∇ỹEθ(xi, ỹ

(k−1)
i )

end for

In SEAL-Pose, the task-net and loss-net are updated in 275
an alternative manner, enabling the loss-net to adapt dynam- 276
ically to the task-net thus improving 3D pose predictions 277
by teaching dependencies in the output space to task-net 278
more effectively. This iterative joint optimization process is 279
summarized in Algorithm 1. 280

3.2. Gradient-Based Inference 281

We implemented a gradient-based inference (GBI) method to 282
evaluate the efficacy of utilizing a structured energy network 283
as a trainable loss function that provide learnings signals 284
compared to using it as a direct predictor. GBI is a method 285
that leverages gradients to iteratively refine the outputs [1, 4– 286
6, 16] or parameters [10] of a neural network, progressively 287
increasing the likelihood that the output configuration will 288
satisfy the desired constraints. In our case, the constraint is 289
that the energy network’s output, or energy, must decrease. 290
We specifically employed GBI to directly update the task- 291
net’s predictions using gradient signals derived from the 292
energy network. 293

The implementation of GBI involves three main steps. 294
The task-net, serving as our baseline model, is trained in a 295
supervised manner to predict 3D poses. Next, a structured 296
energy network is trained using the task-net’s predictions 297
as negative samples. Lastly, the trained energy network 298
is employed to iteratively update the task-net’s predictions 299
through gradient-based inference. Detailed algorithm of the 300
GBI method are provided in Algorithm 2. 301
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4. Experiments302

4.1. Datasets303

We conduct our empirical experiments on Human3.6M304
dataset (H36M) [7], MPI-INF-3DHP (3DHP) [15] dataset305
and Human3.6M 3D WholeBody dataset (H3WB) [28].306
H36M is the most widely used dataset for 3D human pose307
estimation [12, 26]. 3DHP is a more challenging dataset308
than H36M because it contains fewer samples and includes309
both indoor and outdoor scenes, while H36M only contains310
indoor scenes. H3WB is a recent dataset for 3D whole-body311
pose estimation. H3WB extends H36M by providing whole-312
body keypoint annotations with detailed information about313
hands, face, and feet, making it suitable for evaluating fine-314
grained 3D pose estimation. We utilize the ground truth 2D315
joint coordinates provided in the datasets to align the 3D and316
2D poses. For the H36M and 3DHP datasets, we zero-center317
the 3D poses around the pelvis joint, following prior works.318
For the H3WB dataset, we zero-center the 3D poses around319
the midpoint of the two hip joints, following the dataset’s320
protocol.321

4.2. Implementation Details322

There are two main settings for 3D human pose estimation:323
single-frame and multi-frame pose estimation. In the single-324
frame setting, models predict 3D poses from a single frame325
of 2D keypoints, while models exploit richer spatial and326
temporal information from multiple frames to estimate 3D327
poses in the multi-frame setting. We evaluate SEAL-Pose328
mainly on single-frame models to verify its effectiveness in329
more challenging scenarios. Moreover, we also applied it to330
multi-frame models to verify the applicability of SEAL-Pose331
to state-of-the-art models. Specifically, we employed the332
SimpleBaseline [14], SemGCN [25] and VideoPose [19] as333
task-net for single-frame pose estimation. For multi-frame334
pose estimation, we used the MixSTE (input sequence length335
T=243) [24] and P-STMO (T=81) [21] as task-net for H36M336
and 3DHP each.337

We have modified the input and output layers of task-net338
to align with the dimensions of each dataset. For the loss-net,339
we additionally adjusted the SimpleBaseline architecture by340
modifying the dimensions and depth of the hidden layers. We341
set the hidden size to 2048 with 2 residual block stages and342
omitted batch normalization and dropout layers. We used343
separate Adam optimizers [9] without learning rate decay344
for the loss-net and task-net. All single-frame models are345
trained with a batch size of 1024 for 50 epochs on H36M and346
3DHP, and a batch size of 64 for 200 epochs on H3WB, and347
we used reported hyperparameters in their original papers348
for multi-frame models.349

5. Evaluation Metrics 350

We evaluate our models using standard metrics for 3D human 351
pose estimation. For the H36M dataset, we report MPJPE 352
and P-MPJPE (procrustes-aligned MPJPE), following estab- 353
lished protocols [7]. MPJPE measures the average Euclidean 354
distance between the predicted and ground truth 3D joint po- 355
sitions, and P-MPJPE is a more robust metric that considers 356
the alignment of the predicted poses. For the 3DHP dataset, 357
we report MPJPE, PCK (percentage of correct keypoints) 358
within a 150 mm range, and AUC (area under the curve) 359
as evaluation metrics following previous works [15, 21, 24]. 360
On the H3WB dataset, we use the official benchmark’s PA- 361
MPJPE (pelvis-aligned MPJPE), measuring per-joint errors 362
for the whole body, body, hands, face, wrist-aligned hands, 363
and nose-aligned face. All reported metrics are averaged 364
over the entire test set of each dataset. 365

To further assess structural consistency in the predicted 366
poses, we suggest two additional metrics: Limb Symmetry 367
Error (LSE) and Body Segment Length Error (BSLE). These 368
metrics evaluate the structural plausibility of predicted poses 369
by measuring the symmetry between left and right limbs and 370
the predicted lengths of body segments, respectively. Lower 371
LSE and BSLE values indicate more anatomically plausible 372
poses. We provide detailed definitions of LSE and BSLE in 373
the following sections. 374

5.1. Limb Symmetry Error (LSE) 375

The Limb Symmetry Error evaluates left-right body symme- 376
try by comparing the lengths of corresponding limbs on the 377
left and right sides. It is defined as the normalized difference 378
in lengths between each pair of corresponding limbs, such 379
as wrist-to-elbow and ankle-to-knee. 380

Given a set of n corresponding limb pairs, where the i-th 381
left limb is defined by keypoints li1, li2 and the correspond- 382
ing right limb by ri1, ri2, the LSE for limb pair i is computed 383
as: 384

LSEi = 100 ·
∣∣∣∣ ∥li1 − li2∥ − ∥ri1 − ri2∥
(∥li1 − li2∥+ ∥ri1 − ri2∥)/2

∣∣∣∣ 385

where ∥ · ∥ denotes the Euclidean norm. 386
This metric is calculated based on the predicted poses and 387

measures the relative difference in lengths between the left 388
and right limbs. A value of 0 indicates perfect symmetry, and 389
a larger value indicates worse symmetry, which is desirable 390
for anatomically plausible poses. If the length of the left and 391
right limbs differs n% from their average length, the LSE 392
value is computed as n. 393

5.2. Body Segment Length Error (BSLE) 394

The Body Segment Length Error measures deviations in 395
the lengths of body segments—pairs of adjacent joints—by 396
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Table 1. Performances on the Human3.6M Dataset. SEAL-Pose
improves MPJPE and P-MPJPE across models.

Metric MPJPE ↓ P-MPJPE ↓
SimpleBaseline 43.8 34.7
+ SEAL-Pose (margin) 42.5 33.9
+ SEAL-Pose (NCE) 42.7 33.8

SemGCN 47.0 37.9
+ SEAL-Pose (margin) 45.1 36.6
+ SEAL-Pose (NCE) 44.9 36.5

VideoPose 41.6 32.4
+ SEAL-Pose (margin) 41.0 32.3
+ SEAL-Pose (NCE) 41.3 32.5

MixSTE (T=243) 20.1 15.7
+ SEAL-Pose (margin) 20.0 15.5
+ SEAL-Pose (NCE) 20.0 15.6

comparing predicted poses and ground-truth poses. For397
each segment i, with predicted adjacent keypoints ki1,ki2398
and corresponding ground truth keypoints ti1, ti2, BSLE is399
defined as:400

BSLEi = 100 ·
∣∣∣∣1− ∥ki2 − ki1∥

∥ti2 − ti1∥

∣∣∣∣401

We refer to the specific case of BSLE that focuses only402
on limb segments as the limb length error (LLE). These403
metrics calculate the relative difference between predicted404
and ground truth segment lengths, reflecting how well the405
model preserves anatomical proportions. Lower BSLE and406
LLE values indicate better preservation of segment lengths407
in the predicted poses. If the length of the predicted segment408
differs n% from the ground truth segment length, the BSLE409
value is computed as n.410

6. Experimental Results and Analysis411

6.1. Pose Estimation Error Evaluation412

Human3.6M Dataset We evaluated the impact of SEAL-413
Pose on various models on the H36M dataset. As shown in414
Table 1, SEAL-Pose consistently outperformed the baseline415
models across all metrics, more notably with the single-416
frame models. These results demonstrate that SEAL-Pose417
effectively reduces 3D pose estimation errors, especially in418
more challenging settings.419

MPI-INF-3DHP Dataset For the 3DHP dataset, SEAL-420
Pose also demonstrated consistent improvements across all421
models, as shown in Table 2. SEAL-Pose showed a larger422
performance gap on the 3DHP dataset, which is more chal-423
lenging than H36M due to its diverse scenes and fewer sam-424
ples, where the model requires more guidance to capture425

Table 2. Performances on the MPI-INF-3DHP Dataset. SEAL-
Pose consistently reduces MPJPE and improves PCK and AUC.

Metric MPJPE ↓ PCK ↑ AUC↑
SimpleBaseline 80.9 86.9 53.8
+ SEAL-Pose (margin) 71.8 89.3 58.7
+ SEAL-Pose (NCE) 72.3 89.2 58.2

SemGCN 74.5 89.5 56.4
+ SEAL-Pose (margin) 71.8 90.4 57.9
+ SEAL-Pose (NCE) 72.5 90.1 57.7

VideoPose 66.4 90.8 60.5
+ SEAL-Pose (margin) 64.1 91.4 62.1
+ SEAL-Pose (NCE) 64.0 91.7 62.1

P-STMO (T=81) 32.8 98.3 77.7
+ SEAL-Pose (margin) 32.2 98.2 78.1
+ SEAL-Pose (NCE) 32.4 98.1 78.1

Table 3. Performance on the Human3.6M WholeBody Dataset.
SEAL-Pose reduces pelvis-aligned MPJPE across all body parts,
resulting in more coherent predictions. † from H3WB’s official bench-
mark. ‡ nose-aligned MPJPE for face and wrist-aligned MPJPE for hands.

Method Whole-body Body Face/Aligned‡ Hand/Aligned‡

Jointformer † 88.3 84.9 66.5 / 17.8 125.3 / 43.7
3D-LFM (Dabhi et al. [2]) 64.1 60.8 56.6 / 10.4 78.2 / 28.2

SimpleBaseline 65.5 62.8 49.6 / 14.6 92.7 / 35.1
+ GBI 65.3 62.6 49.4 / 14.8 92.5 / 35.0
+ SEAL-Pose (margin) 62.8 61.1 46.3 / 13.7 90.7 / 34.7
+ SEAL-Pose (NCE) 63.4 61.1 46.5 / 14.5 92.1 / 34.2

VideoPose 60.1 56.4 46.3 / 11.9 84.3 / 29.6
+ GBI 60.0 56.3 46.3 / 12.4 84.2 / 29.5
+ SEAL-Pose (margin) 58.6 55.7 45.0 / 11.6 82.3 / 29.3
+ SEAL-Pose (NCE) 58.8 54.8 45.5 / 11.5 82.7 / 28.9

complex dependencies and structures. Moreover, SEAL- 426
Pose provided more substantial improvements on the Sim- 427
pleBaseline model, which has a more straightforward ar- 428
chitecture compared to the others. These results, which 429
show that SEAL-Pose is more beneficial in difficult settings, 430
clearly suggest the strength of SEAL-Pose in providing struc- 431
tural awareness that is not sufficient for MSE loss. For the 432
P-STMO task-net, SEAL-Pose showed a slight decrease in 433
PCK but achieved improvements in MPJPE and AUC, which 434
could outweigh the PCK loss, implying that it can still be 435
advantageous for state-of-the-art models. 436

Human3.6M WholeBody Dataset To evaluate the im- 437
pact of SEAL-Pose on 3D whole-body pose estimation with 438
detailed annotations and complex body structures, we con- 439
ducted experiments on the H3WB dataset. As shown in 440
Table 3, SEAL-Pose consistently outperformed the baseline 441
models across all body parts, reducing the pelvis-aligned 442
MPJPE, demonstrating its effectiveness in improving 3D 443
whole-body pose estimation and the loss-net’s capacity to 444
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Figure 2. Comparison of Predicted Poses on H3WB. Predictions
from SimpleBaseline (left) and the same model with SEAL-Pose
(right) show improved accuracy, especially in challenging poses.
Key differences are highlighted with red circles.

capture complex human body structures, including finer445
anatomical details like facial features and hand articulations.446
The improved performance validates SEAL-Pose’s ability447
to model intricate interdependencies among body regions448
for more accurate and cohesive predictions. Notably, SEAL-449
Pose showed relatively better performance than the baseline450
on less common data distributions, such as target figures451
in reverse and lying down, as illustrated in Figure 2. The452
superior performance of SEAL-Pose on H3WB highlights its453
potential to improve 3D human pose estimation, particularly454
in challenging whole-body settings. Overall, experimental455
results indicate that SEAL-Pose can provide informative456
signals to enhance the task-net’s learning. In addition, it is457
particularly effective in challenging settings, requiring more458
guidance to capture complex dependencies and structures.459

Comparison with Gradient-Based Inference In order460
to compare the effectiveness of SEAL-Pose with GBI, we461
evaluated the performance improvement of the task-net’s462
predictions using GBI on H3WB. As shown in Table 3,463
SEAL-Pose consistently outperformed GBI, and the ben-464
efits of GBI were limited in our experiments. This result465
demonstrates that using the structured energy network as a466
trainable loss function is more effective than using it as a467
direct predictor, as it better captures dependencies among468
output variables and teaches the task-net to generate more469
accurate and coherent 3D pose predictions.470

6.2. Pose Structure Evaluation471

We evaluated structural consistency by examining the LSE,472
LLE, and BSLE metrics on the H36M, 3DHP, and H3WB473
datasets. SEAL-Pose consistently showed lower error val-474
ues across all three structural metrics on H36M and 3DHP475
datasets, as detailed in Table 4. These results indicate that476

Table 4. Structural Consistency Evaluation Across Datasets.
SEAL-Pose reduces LSE, LLE, and BSLE, improving plausibility.

Dataset Metric LSE ↓ LLE ↓ BSLE ↓

H36M

Ground Truth 0.00 0.00 0.00
SimpleBaseline 4.85 5.09 6.12
+ SEAL-Pose (margin) 4.72 4.61 5.46
+ SEAL-Pose (NCE) 4.68 4.65 5.70

3DHP

Ground Truth 1.21 0.00 0.00
SimpleBaseline 10.14 11.60 8.13
+ SEAL-Pose (margin) 9.30 8.39 7.19
+ SEAL-Pose (NCE) 10.30 8.84 7.35

H3WB

Ground Truth 20.92 0 0
SimpleBaseline 18.33 6.94 23.65
+ SEAL-Pose (margin) 21.51 6.61 22.45
+ SEAL-Pose (NCE) 22.22 6.42 23.01

SEAL-Pose effectively captures structured dependencies in 477
human poses, leading to more anatomically plausible and 478
consistent 3D pose predictions. 479

On the H3WB dataset, SEAL-Pose showed mixed results, 480
with better LLE and BSLE but higher LSE compared to the 481
baseline. This is likely due to the dataset’s noisy labeling, 482
which is apparent from the high LSE of the ground truth 483
poses. It is probable that SEAL-Pose would struggle to im- 484
prove limb symmetry on H3WB with noisy and asymmetric 485
labeling, as the loss-net may not be able to learn and provide 486
additional guidance about it. Indeed, the trained task-nets 487
also exhibited similar levels of LSE with the ground truth 488
poses. 489

Overall, the improved structural consistency metrics high- 490
light that loss-net’s ability to capture structures in human 491
poses helps the task-net to predict more anatomically consis- 492
tent and plausible 3D human poses. 493

6.3. Analysis of Structured Energy Network 494

Gradient-Based Inference Analysis We analyzed the out- 495
puts by increasing the number of iterations of gradient-based 496
inference by a structured energy network trained through 497
SEAL-Pose to verify its ability to capture the pose structure. 498
The results showed that the P-MPJPE, which evaluates errors 499
after aligning coordinate transformations, decreases steadily 500
over dozens of iterations, while the MPJPE, which measures 501
simple errors relative to the ground truth, saturates after a 502
few iterations, as illustrated in Figure 3. Since P-MPJPE 503
considers the alignment of the predicted poses, the gradual 504
decrease in P-MPJPE suggests that the gradient signals from 505
the energy network can enhance the plausibility of the pre- 506
dicted poses. This trend clearly indicates that the structured 507
energy network is capable of capturing the pose structure 508
and suggests that the dynamic feedback from the loss-net 509
can provide helpful guidance to the task-net. 510
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Figure 3. Gradient-Based Inference with Jointly Trained Loss-
Net. MPJPE and P-MPJPE over GBI iterations show loss-net can
refine poses.

Energy Evolution during Training To evaluate the effi-511
cacy of SEAL-Pose in exploiting the learning signals from512
the loss-net, we observed the energy levels of the task-net pre-513
dictions at each training checkpoint, logged at every epoch.514
We calculated the energy of the task-net predictions by av-515
eraging the energy values of the predicted poses across the516
entire test set of H3WB and compared the energy levels517
between the baseline model and SEAL-Pose. During the518
training process, the task-net in SEAL-Pose demonstrated a519
more significant reduction in energy levels compared to the520
baseline, resulting in considerably lower energy values at521
the end of the training, as shown in Figure 4. The decrease522
in energy suggests that SEAL-Pose effectively utilizes the523
structured energy network to teach the task-net towards more524
plausible predictions by guiding the task-net to lower the525
energy of the predicted poses. This observation supports526
the hypothesis that the loss-net can train the task-net as we527
intended and strongly suggests that it guides the task-net528
effectively, given our prior demonstration that structured529
energy networks capture plausible pose structures.530

7. Conclusion531

In this work, we introduced SEAL-Pose, a novel adaptation532
of the SEAL framework to deterministic models, particu-533
larly in 3D human pose estimation. Our approach employs534
a structured energy network as a trainable loss function, ef-535
fectively capturing joint dependencies and improving the536
plausibility of predicted poses without any explicit structural537
priors. In addition, we suggest new metrics: limb symmetry538
error (LSE) and body segment length error (BSLE) to quan-539
titatively evaluate the structural consistency of the generated540
poses. Our experimental results showed the effectiveness of541
SEAL-Pose over baselines, achieving substantial reductions542

Figure 4. Training Dynamics of Energy. Energy evolution during
training shows SEAL-Pose effectively lowers the energy level of
task-net predictions.

in per-joint errors. SEAL-Pose also demonstrated better 543
structural consistency, as evidenced by lower LSE and BSLE 544
values, which underscore the efficacy of SEAL-Pose in cap- 545
turing complex structures among body joints. This work 546
highlights the potential of structured energy networks for en- 547
hancing tasks involving complex output dependencies. Our 548
findings suggest that SEAL-Pose can be extended to broader 549
applications in the future, providing a promising direction to 550
model the complex dependencies in high-dimensional output 551
spaces, thereby improving the performance and structural 552
consistency in various domains. 553

8. Limitations 554

While SEAL-Pose demonstrates significant improvements 555
in 3D human pose estimation, there are still rooms for op- 556
timization and refinement. One key challenge lies in the 557
broad hyperparameter search space, which includes weight 558
for the energy loss term, learning rates for the task-net and 559
the loss-net, relative batch size of the task-net and loss-net 560
and such. This extensive search space can make the training 561
optimization process less straightforward and computation- 562
ally intensive. Therefore, analyzing and identifying efficient 563
strategies for robust and stable training could enhance the 564
practicality of the method. Additionally, better loss-net ar- 565
chitectures to provide learning signals for the task-net could 566
further improve the joint optimization process of SEAL- 567
Pose. Moreover, combining SEAL-Pose with various data 568
augmentation methods would be synergistic in enhancing the 569
benefits of the structured energy network, as it could provide 570
more diverse and informative training samples for the loss- 571
net. Furthermore, exploring the potential of trainable loss 572
functions in other domains and tasks would provide valuable 573
insights and validate the versatility and effectiveness of the 574
framework. 575
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