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Abstract

Limited availability of multilingual text corpora001
for training language models often leads to poor002
performance on downstream tasks due to un-003
dertrained representation spaces for languages004
other than English. This ‘under-representation’005
has motivated recent cross-lingual transfer006
methods to leverage the English representation007
space by e.g. mixing English and non-English008
tokens at input or extending model parameters,009
which in turn increases computational complex-010
ity. To address this, we introduce Fusion for011
Language Representations (FLARE) in adapters,012
a method designed to improve both the repre-013
sentation quality and downstream performance014
for languages other than English. FLARE inte-015
grates source and target language representa-016
tions within the bottlenecks of low-rank LoRA017
adapters using lightweight linear transforma-018
tions. This maintains parameter efficiency as019
the method does not require additional param-020
eters, while improving transfer performance,021
further narrowing the performance gap to En-022
glish. Another key advantage of the proposed023
latent representation fusion is that it does not024
increase the number of input tokens, thus main-025
taining computational efficiency. Moreover,026
FLARE provides flexibility to integrate various027
types of representations, e.g., we show that it028
is possible to fuse latent translations extracted029
from machine translation models. Our results030
demonstrate FLARE’s effectiveness on natural031
language understanding tasks, reducing the per-032
formance gap to English across all tasks.1033

1 Introduction034

Representation degradation for ‘non-English’ lan-035

guages poses a challenge in the context of mul-036

tilingual pretrained language models (mPLMs)2.037

1Our code repository is available at https://anonymous.
4open.science/r/FLARE-7984

2The domination of the English representation space is ob-
served independent of model architectures, including encoder-

Figure 1: Fusion of source and target representations
in LoRA adapters inserted within the query and value
matrices. The representations are fused in the adapter
bottlenecks and the outputs are added + to the query
and value outputs before softmax ⊗ activation.

Large-scale English text corpora are widely avail- 038

able for self-supervised pretraining, resulting in su- 039

perior representation quality and downstream task 040

performance when compared to low(er)-resource 041

languages (Lauscher et al., 2020; Yang et al., 2022). 042

Training mPLMs on massively multilingual text 043

data creates a unified representation space that en- 044

ables cross-lingual information transfer. Despite 045

the substantial improvements, the imbalance in pre- 046

training resources still substantially reduces down- 047

stream performance (Winata et al., 2022). 048

Cross-lingual transfer (termed XLT henceforth) 049

aims to narrow this performance gap by trans- 050

ferring task-specific knowledge acquired in high- 051

resource languages to lower-resource languages 052

(Ruder et al., 2019). Given the dominance of En- 053

glish in pretraining corpora, machine translations 054

(MT) are frequently utilized to avoid processing 055

non-English data (Shi et al., 2010; Artetxe et al., 056

2020, 2023). Techniques utilizing source and target 057

language representation spaces include language 058

mixup (Yang et al., 2022), and concatenating mul- 059

tilingual input sequences for in-context XLT (Kim 060

et al., 2023; Tanwar et al., 2023; Villa-Cueva et al., 061

only, decoder-only and encoder-decoder transformer (Wu and
Dredze, 2020; Lee et al., 2022a; Yang et al., 2022; Wendler
et al., 2024; Tang et al., 2024).
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2024). These approaches, while improving XLT,062

typically focus on representations in a specific063

mPLM layer or require extensive training and com-064

putational resources by extending the input length.065

Additionally, they typically rely on high-quality066

MT output for source language input. Despite the067

widespread use of discrete machine translations,068

only few studies explore enhancing the ‘internal’069

information extracted from MT models (Ponti et al.,070

2021), and MT output is typically not used to model071

sub-sentential interaction between source and tar-072

get language representations.073

When adapting mPLMs to new tasks and lan-074

guages, the choice of adaptation method is crucial075

for downstream performance. Parameter-efficient076

fine-tuning (PEFT) methods are designed to ac-077

quire new knowledge while minimizing the number078

of extra parameters required and keeping the large079

underlying mPLM frozen (Hu et al., 2021). In par-080

ticular, bottleneck-style adapters extract relevant081

features from new data by compressing model rep-082

resentations with the assumption that task informa-083

tion can be captured in a lower-dimensional space084

(Houlsby et al., 2019). This directly aligns with the085

XLT objectives, providing resource-efficient lan-086

guage and task adaptation capabilities and support087

for infusing model representations with new knowl-088

edge. Similarly, low-rank adapters (LoRA) also089

create such ‘representation bottlenecks’; they get090

inserted into the query and value attention modules,091

and exemplify a widely adopted PEFT approach in092

large language models (Hu et al., 2021). In XLT,093

adapters are extensively used for acquiring task094

and language knowledge (Pfeiffer et al., 2020), yet095

the extent of knowledge transfer within adapters096

themselves remains underexplored.097

In this study, we thus introduce Fusion for Lan-098

guage Representations (FLARE) within adapter bot-099

tlenecks to improve parameter-efficient XLT. As100

illustrated in Figure 1, we propose token-wise fu-101

sion of source and target language representations102

within each transformer block. Our findings sug-103

gest that even lightweight linear transformations,104

such as addition or multiplication, enhance XLT105

performance, as they allow for the interaction of106

source and target language representations within107

the adapter bottlenecks. A key advantage of our108

method lies in its parameter efficiency, as the fu-109

sion operations are located within the adapter bot-110

tlenecks, thereby not introducing additional param-111

eters while enhancing performance. Our experi-112

ments across natural language inference, sentiment113

classification, and question answering tasks, us- 114

ing encoder-only and encoder-decoder mPLMs, 115

demonstrate that our fusion technique effectively 116

reduces the cross-lingual transfer gap for XLM-R 117

Large to 8.1% across all evaluated tasks. Further 118

experiments illustrate that computational efficiency 119

can be further enhanced by using latent translations 120

as source language inputs in FLARE, and demon- 121

strate the versatility of the method, which is orthog- 122

onal to the choice of mPLMs and MT systems. 123

Contributions. 1) We introduce the FLARE method, 124

fusion for language representations in bottleneck 125

adapters for parameter-efficient cross-lingual trans- 126

fer. 2) Our approach effectively narrows the trans- 127

fer performance gap between English and other 128

languages across various downstream tasks. 3) We 129

demonstrate the adaptability of our approach by 130

incorporating machine translation encoder repre- 131

sentations directly into the mPLM. 132

2 Related Work 133

PEFT in Multilingual Language Models and 134

Cross-Lingual Transfer. PEFT aims to incor- 135

porate task or language-specific knowledge into 136

mPLMs without updating all model weights (Pfeif- 137

fer et al., 2020). Most prominent techniques in- 138

clude sparse fine-tuning by selectively updating 139

model parameters (Ansell et al., 2022), and insert- 140

ing adapter modules that reduce trainable param- 141

eters to a small fraction of total weights of the 142

underlying mPLM (Houlsby et al., 2019). Further- 143

more, PEFT modules are composable, and thus 144

information combination from multiple modules is 145

possible (Wang et al., 2022; Lee et al., 2022b). 146

Bottleneck adapters project model representa- 147

tions into a lower-dimensional space and then back 148

to their original dimensions, creating a bottleneck 149

that regulates information flow (Houlsby et al., 150

2019). During this adaptation process, the weights 151

of the (m)PLM remain frozen. Following the same 152

assumption that task-specific knowledge can be 153

compressed in a low-dimensional space, low-rank 154

adapters (LoRA) are widely utilized for fine-tuning 155

language models (Hu et al., 2021). They are in- 156

serted into the attention modules of transformer 157

architectures, maximizing the capacity to adapt 158

to new task-specific information, while preserv- 159

ing parameter-efficiency. In this study, we extend 160

the task and knowledge acquisition capabilities of 161

adapters by leveraging such adapter bottlenecks (as 162

created e.g. by LoRA) for XLT. 163
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Cross-lingual Representation Transfer. Enhanc-164

ing performance for languages underrepresented165

in the mPLMs’ pretraining data often involves166

aligning and combining representations from var-167

ious languages to facilitate XLT (Oh et al., 2022).168

By concatenating multilingual input sequences,169

mPLMs leverage a shared representation space170

across both source and target language inputs (Kim171

et al., 2023; Tanwar et al., 2023; Villa-Cueva et al.,172

2024). Techniques such as mixtures of task and lan-173

guage adapters have been implemented to merge174

language representation spaces effectively (Lee175

et al., 2022b). In projection-based approaches, tar-176

get language representations are projected onto a177

high-resource language (e.g., English), to enhance178

feature extraction in the high-resource language,179

before re-projecting back to the target language180

(Xu et al., 2023). Yang et al. (2022) introduced a181

mixup method, combining source and target rep-182

resentations in a specific layer of the mPLM dur-183

ing task fine-tuning. Building on this concept, Cao184

et al. (2023) used cross-attention with semantic and185

token-level alignment loss terms, aiming to transfer186

knowledge from the source to the target language.187

Our work contributes to this research stream by en-188

hancing parameter-efficient XLT and introducing189

representation-agnostic fusion methods.190

Representation fusion is also applied to integrate191

information across different modalities (Fang et al.,192

2021; Ramnath et al., 2021). For instance, Qu et al.193

(2024) employed feature routing in cross-modal194

vision-language tasks, guiding language model rep-195

resentations through the LoRA bottleneck using196

the last hidden state of a vision model. Our work197

differs in its scope and fusion methodology: FLARE198

extracts significantly richer representations from199

the source and target languages by capturing layer-200

wise representations for each transformer block in201

the mPLMs. Moreover, by ensuring dimensional202

alignment, we perform token-wise representation203

fusion within adapter bottlenecks, thereby transfer-204

ring finer-grained information across languages.205

3 Methodology206

3.1 Language Representation Fusion207

Our methodology is based on the hypothesis that208

incorporating English with target language repre-209

sentations enhances cross-lingual knowledge trans-210

fer and distills task-relevant information into the211

target language. We assume (MT-created) parallel212

corpora P = {
(
xS , xT

)
} during task fine-tuning,213

Transformer
Block

Figure 2: During the forward pass with fusion adapters,
source language representations xS are fused with target
language representations xT in each transformer block
i. Source representations are extracted by inferencing
the mPLM without the fusion adapters.

where x are instances in the respective source and 214

target language. Our methodology particularly fo- 215

cuses on employing machine-translated ‘silver’ par- 216

allel data, akin to translate-train and translate-test 217

settings, as we believe this approach is the most 218

realistic in practice. We contend that transferring in- 219

formation during task fine-tuning is more resource- 220

efficient compared to extensive pretraining on large- 221

scale self-supervised text corpora. 222

A straightforward and effective method for align- 223

ing multilingual representations is to concatenate 224

source and target language input sequences xS,T = 225

[xS ;xT ] where x ∈ R2m, with m representing 226

the sequence length of both source and target lan- 227

guages. This so-called input-level fusion enables 228

cross-lingual knowledge transfer across all lay- 229

ers of the mPLM, facilitating in-context learning, 230

which typically does not require additional training 231

(Villa-Cueva et al., 2024). However, this approach 232

is computationally expensive due to increased input 233

sequence lengths and encounters scalability issues 234

related to the context length limitations in mPLMs. 235

To address these limitations, we propose FLARE, 236

a method for representation-level language fusion 237

within low-rank bottleneck adapters; see Figure 1. 238

Source language representations vSi , extracted from 239

the frozen mPLM without adapters, and target lan- 240

guage representation vTi at transformer block i 241

are down-projected using W down and combined 242

with fusion function ϕ to create a fused repre- 243

sentation h = ϕ
(
vSi W

down, vTi W
down

)
, where 244
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h ∈ Rm×r with sequence length m and bottle-245

neck dimensions r. Following a standard LoRA246

procedure, this fused low-rank representation is247

then up-projected and added to the frozen attention248

outputs v0 to form the target language output repre-249

sentation vTi+1 = hW up+v0 of the attention block.250

This enhances the target language adaptation by251

directing the model’s attention to task-relevant in-252

formation. The down-projection within the bottle-253

neck adapters is applied to both target and source254

language representations, exploiting the unified em-255

bedding space acquired during self-supervised pre-256

training for cross-lingual adaptation.3257

A key advantage of representation fusion is the258

reduction in computational complexity, thereby en-259

hancing parameter efficiency for both task and lan-260

guage adaptation. By processing multilingual in-261

puts separately and only fusing highly compressed262

representations within adapter bottlenecks, our263

method avoids the computational overhead asso-264

ciated with quadratic scaling in attention compu-265

tations for model dimensions d, thus enhancing266

resource efficiency. Furthermore, the memory re-267

quirements are limited to the last hidden states ob-268

tained from the output of each transformer block.269

Moreover, our fusion approach is agnostic re-270

garding the source language representation. This271

flexibility allows directly leveraging representa-272

tions extracted from the MT encoder M as ‘la-273

tent translations’ for fusion. We extract a single274

representation from the MT model vT = M
(
xT

)
,275

where vT ∈ Rm×dM , which serves as a latent trans-276

lation. We project these MT model dimensions277

to align with the mPLM using a projection layer278

W proj . Consequently, the up-projected representa-279

tion vTW proj is fused with the target language rep-280

resentation within the adapter bottlenecks of each281

mPLM layer; see Figure 3. This FLARE MT method282

enhances resource efficiency by bypassing a for-283

ward pass in the mPLM, which is required when284

using discrete text in the source language, and pre-285

serves the inherent translation uncertainty within286

the embeddings by avoiding discretization in the287

MT decoder, thus mitigating potential translation288

errors (Ponti et al., 2021; Unanue et al., 2023).289

3Assuming that new task information can be learned within
low-rank adapters, we posit that task-specific cross-lingual
knowledge can be effectively transferred within adapter bot-
tlenecks. This enhances efficiency, and also compresses and
aligns task-relevant information, simplifying the complexity
of representations r ≪ d. This setup enables the application
of lightweight transformations that merge information from
both source and target representations.

Inputs

NLLB Encoder

NLLB
Embedding

Transformer
Embedding

Transformer
Block

Transformer
Block

Figure 3: Illustration of the FLARE MT variant where
projected encoder representations from an MT model
are directly fused with target language representations
within the fusion adapters in the mPLM. Encoder rep-
resentations from the MT model serve as latent transla-
tions, avoiding discretization in the decoder.

3.2 Fusion Functions 290

To fuse cross-lingual representations in bottle- 291

neck adapters, we evaluate both linear and non- 292

linear transformations that do not require additional 293

model parameters, alongside cross-attention. We 294

extract token-wise representations from source and 295

target language sequences, capturing rich contex- 296

tual information at the token level. Extracting 297

source language and target language representa- 298

tions from the same underlying mPLM ensures 299

matching hidden dimensions d in each transformer 300

layer, facilitating subsequent representation fusion 301

in the low-rank bottleneck adapters. 302

The down-projected representations in the 303

adapter bottlenecks for source and target languages 304

are denoted as S = vSW down and T = vTW down, 305

where S and T are representations of dimensions 306

Rm×r. These representations are subsequently 307

combined at the token level through the following 308

fusion functions: 309

1. element-wise addition (add): S + T 310

2. element-wise multiplication (mul): S ◦ T 311

3. cross-attention:4 softmax
(

WQ
a S(WK

a T)′√
r

)
WV

a T 312

4Although cross-attention modules add parameters to the
adapters, the low bottleneck dimensions r, typically smaller
than 64, minimize the parameter count in comparison to the
model’s internal dimensions d. Specifically, we utilize a single
cross-attention head to maintain efficiency.
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WQ
a , WK

a and W V
a are the weight matrices of the313

query, key and value projections in the adapter a,314

respectively, and ′ denotes the matrix transpose.315

We extend the linear fusion functions using non-316

linear transformations through rectified linear units317

ReLU (S) and ReLU (T ) (Qu et al., 2024). This318

addition improves feature extraction capabilities by319

selectively enabling information flow in token rep-320

resentations. Given the inherent misalignment of321

multilingual input sequences at the token level, ex-322

tracting token-level representations for subsequent323

fusion may introduce alignment issues. We hypoth-324

esize that the adapter projections W down aid the325

alignment of multilingual representations. Further326

correcting for misalignment between source and327

target language representations, non-linear trans-328

formation functions can restrict propagating mis-329

aligned information, which ultimately might im-330

prove downstream task performance.331

3.3 Training332

For task adaptation in the target language, we in-333

sert LoRA adapters into query and value weight334

matrices of the mPLM previously fine-tuned on En-335

glish task data (referred to as the base model). In336

FLARE, these adapters implement fusion function337

ϕ that combines source and target language input338

representations into a single fused representation,339

as illustrated in Figure 1. Consistent with standard340

PEFT training, only the task head and LoRA pa-341

rameters and output layer are trainable, while all342

other parameters remain frozen.343

During the forward pass, detailed in Figure 2,344

representations from both the source and target345

languages are extracted at each transformer block.346

Layer-wise source language representations are ob-347

tained from the base model and stacked in ma-348

trix V S ∈ Rl×m×d, where l represents the num-349

ber of layers in the mPLM. Target language rep-350

resentations are obtained during the forward pass351

through the base model with LoRA adapters. In352

each layer, source and target language representa-353

tions are transformed and compressed to lower di-354

mensions r ≪ h in the adapter’s down-projection355

W down. The shared down-projection layers, ap-356

plied to both source and target language representa-357

tions before subsequent fusion, reduce the model’s358

reliance on the English representation space. The359

final steps include the application of a fusion func-360

tion and standard up-projection, as already de-361

scribed in Sections 3.1 and 3.2.362

4 Experimental Setup 363

4.1 Underlying Models and Baselines 364

mPLMs. Our experiments are based on various 365

mPLMs including XLM-R Base (270M parame- 366

ters) and Large (550M) (Conneau et al., 2020), and 367

mT5-XL (3.7B) (Xue et al., 2021). Additionally, 368

experiments with LLaMA 3 (8B) (AI@Meta, 2024) 369

are discussed in Appendix D. 370

Fine-Tuning Setup. We follow a modular XLT 371

approach where the mPLM is fine-tuned on English 372

task data and subsequently adapted using task data 373

in the target language (Zhao et al., 2021). Unless 374

stated otherwise, models are fine-tuned using r = 375

64 and α = 128 in the LoRA configurations, while 376

the hyperparameter configurations of each model 377

are detailed in Table 5 in the appendix. 378

Baselines. We benchmark FLARE against zero-shot 379

cross-lingual transfer, translate-test, and translate- 380

train baselines, as well as input-level fusion models 381

trained with the same LoRA configurations as the 382

FLARE variants. Model checkpoints are selected on 383

validation data that was machine translated from 384

English to the respective target languages. More 385

details on the baselines are provided below: 386

Zero-Shot XLT. The base model fine-tuned on En- 387

glish task data is directly evaluated on test data in 388

the target languages without further training. 389

Translate-Test. Test sets in each target language are 390

translated into English using NLLB (Team et al., 391

2022). Subsequently, the base model is evaluated 392

on these machine-translated test sets. 393

Translate-Train. The base model is fine-tuned on 394

machine-translated task data in the respective target 395

languages. This setting assumes that no gold trans- 396

lations are available during training. Consequently, 397

training data comprises instances translated from 398

English to the target language using NLLB. 399

For fusion, we obtain the required ‘silver’ paral- 400

lel data also through MT (using NLLB). The train- 401

ing set consists of parallel sets of English and MT- 402

ed instances, whereas the validation and test sets 403

consist of parallel target language instances and 404

corresponding machine translations into English. 405

We posit that the assumed absence of gold transla- 406

tions both during training and during inference is 407

the most realistic evaluation of FLARE models. 408

Finally, to compare representation-level fusion 409

with input-level fusion, we append source and 410

target language texts in the input prompt of the 411

mPLM, effectively doubling the sequence length 412
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Model XNLI TyDiQA NusaX Avg.
Zero-Shot Cross-Lingual Transfer (models are trained on English data)

XLM-R Base 74.08 48.90 / 36.64 58.07 58.31
XLM-R Large 78.40 65.08 / 54.22 76.41 71.49
mT5-XL 80.50 64.11 / 50.76 72.88 70.27

Translate-Test (test data is translated to English)

XLM-R Base 75.25 48.76 / 36.79 76.30 64.77
XLM-R Large 77.04 65.51 / 54.17 75.80 70.89
mT5-XL 79.13 64.36 / 51.18 75.48 70.79

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 77.30 50.09 / 37.66 71.04 64.07
w/ input-level fusion 74.58 - 76.68 -
w/ FLARE MT 77.14 48.94 / 37.20 72.05 64.09
w/ FLARE 73.40 50.04 / 37.74 73.61 63.63

XLM-R Large 79.40 65.20 / 53.74 77.47 72.11
w/ input-level fusion 78.48 - 78.39 -
w/ FLARE MT 81.45 65.34 / 53.98 77.16 72.76
w/ FLARE 80.23 65.30 / 54.30 79.99 73.34
mT5-XL 82.99 64.87 / 52.42 80.58 74.07
w/ input-level fusion 79.66 - 74.87 -
w/ FLARE MT 82.84 64.78 / 52.12 80.41 73.90
w/ FLARE 83.25 64.90 / 52.48 80.72 74.22

Table 1: Average accuracy results across languages included in the XNLI, TyDiQA, and NusaX datasets. Perfor-
mance metrics are: Accuracy for XNLI, F1/Exact Match for TyDiQA, and Micro F1 for NusaX. FLARE results are
based on the best performing fusion functions:add relu for XNLI and NusaX, as well as mul on TyDiQA.

(Kim et al., 2023; Villa-Cueva et al., 2024).5413

4.2 Evaluation Tasks and Datasets414

XNLI consists of machine-translated sentence415

pairs that are translated from English to 15 lan-416

guages (Conneau et al., 2018). The task involves417

determining whether a sentence entails, contradicts,418

or is neutral to a given premise.419

NusaX is a human-annotated sentiment classifica-420

tion dataset that spans 11 Indonesian languages,421

including low-resource languages (Winata et al.,422

2023). With 500 labeled instances for each lan-423

guage, the dataset evaluates few-shot adaptation.424

TyDiQA-GoldP is a human-annotated extractive425

QA dataset covering 8 languages (Clark et al.,426

2020). The task is to identify the answer spans427

within the context passages.428

Additional information on evaluation languages429

and datasets used for source language fine-tuning430

are available in Table 9 in the appendix.431

4.3 Machine Translations432

We utilize NLLB’s 3.3B variant (Team et al., 2022)433

as the main MT model, with greedy decoding to434

obtain translations (Artetxe et al., 2023). To en-435

sure consistency in our experimental setup, we also436

translate languages that are not directly supported437

5The context length for input-level fusion models is dou-
bled. Due to memory and context length limitations, these
models could not be evaluated for TyDiQA; see later.

Model XNLI NusaX
Translate-Train (fusion models are trained on training data
translated to the target language and evaluated using gold
translations in the source language)

XLM-R Base
w/ input-level fusion 84.63 87.87
w/ FLARE 84.62 75.43

XLM-R Large
w/ input-level fusion 87.19 90.93
w/ FLARE 88.15 84.66

mT5-XL
w/ input-level fusion 89.67 90.57
w/ FLARE 86.57 80.72

Table 2: Average scores for the translate-train setting
with gold English translations during inference across
languages included in the XNLI, and NusaX datasets,
representing optimal translation quality.

by NLLB. Specifically, Madurese (mad) and Ngaju 438

(nij) are translated using the Indonesian language 439

identifier, as these languages are not supported by 440

NLLB6 (Winata et al., 2023). 441

For translating extractive QA datasets, we en- 442

close the answer spans within marker tokens prior 443

to translation with NLLB (Chen et al., 2023). This 444

method allows us to determine the position of the 445

translated answer spans by locating these marker 446

tokens in the translated text. Instances that fail to re- 447

tain the answer span marker tokens in the translated 448

output are excluded from the evaluation process. 449

6We note that Toba Batak (bbc) is unsupported by NLLB
and excluded from the evaluation due to translation artifacts
resulting in random classification performance.

6



Fusion Function TyDiQA NusaX

Translate-Train (models are trained on data translated to
the target language)

add 65.04 / 53.48 79.89
mul 65.30 / 54.30 78.78
add+relu 65.06 / 53.78 79.99
cross-attention 65.04 / 53.64 78.17

Table 3: Average scores for different fusion functions
based on XLM-R Large using FLARE.

5 Results and Discussion450

Main Results displayed in Table 1 confirm our451

hypothesis that task-specific knowledge can be effi-452

ciently transferred from English to other languages453

within adapter bottlenecks. FLARE consistently sur-454

passes the zero-shot, translate-test, and translate-455

train baselines across various tasks, demonstrat-456

ing robust performance with machine-translated457

training data in the target language and machine-458

translated source language data during inference.459

Moreover, the results from the few-shot adaptation460

scenario on NusaX suggest that FLARE does not461

require extensive labeled task data. It improves462

downstream performance in few-shot settings on463

lower-resource languages. While input-level fusion464

shows competitive results for XLM-R Base, both465

translate-train and FLARE outperform input-level466

fusion for larger mPLMs. Beyond performance467

benefits, FLARE reduces the average training time468

on XNLI by more than 30% when compared to469

input-level fusion.470

When comparing FLARE with the FLARE MT vari-471

ant which utilizes latent translations, it becomes472

evident that the mPLM’s task-specific enriched473

source representations enhance downstream perfor-474

mance. In settings where extracting task-specific475

knowledge for the source representations from the476

mPLM is challenging, such as when faced with477

issues of translation quality, the richer translation478

information from the MT model’s encoder repre-479

sentations can enhance downstream performance.480

Impact of Translation Quality. Translation qual-481

ity is an important factor when combining source482

and target language representations. The results483

in Table 2 show the upper performance bound-484

ary when fusion models are exposed to gold trans-485

lations during inference. Providing gold transla-486

tions for source language inputs closes the cross-487

lingual transfer gap, matching source language per-488

formance. This demonstrates that FLARE can opti-489

mally combine the available information, and its490

0
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64.98 65.34

53.92 53.98

NusaX TyDiQA
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NLLB 600M
NLLB 3.3B

Figure 4: Average performance differences on NusaX
and TyDiQA for XLM-R Large using FLARE MT with
MT models of different size.

performance scales with translation quality, which 491

is the most decisive factor for downstream perfor- 492

mance across fusion models. 493

For extractive QA tasks, MT quality limits model 494

applicability. For these tasks, FLARE matches or 495

surpasses the translate-train and translate-test base- 496

lines, indicating that the lower performance bound- 497

ary matches strong baselines. In contrast, perfor- 498

mance of input-level fusion substantially deteri- 499

orates when evaluated using machine-translated 500

inputs, underscoring its reliance on the quality of 501

English text inputs. Yet, when provided with gold 502

translation data, input-level fusion matches or ex- 503

ceeds source language performance. 504

The FLARE MT variant relies on latent transla- 505

tions, which contain rich translation information. 506

Consequently, the MT model size, serving as a 507

proxy for translation quality, has a lower impact on 508

performance. The results in Figure 4 show that per- 509

formance with the NLLB 600M variant is compa- 510

rable to, or even better than, that with NLLB 3.3B. 511

This suggests that down-projecting latent transla- 512

tions may incur information loss. 513

Impact of Fusion Function. Table 3 presents 514

the average performance of fusion functions in- 515

side LoRAs of XLM-R Large. The results suggest 516

that adding non-linearity to the fusion functions 517

does not provide decisive performance benefits 518

over simpler linear transformations. Notably, the 519

functions add, mul, and add+relu show the best 520

performance. Despite the additional parameters 521

available in cross-attention, the technique does not 522

yield superior downstream performance. In sum, 523

given that the optimal fusion function appears to be 524

task-dependent, these functions can be regarded as 525

hyperparameters that can also be fine-tuned based 526

on validation data. 527

Impact of Adapter Capacity. Increasing the 528

bottleneck size within LoRA improves FLARE’s 529

performance, albeit with diminishing returns for 530
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Model r TyDiQA NusaX
Translate-Train (models are trained on training data trans-
lated to the target language)

XLM-R Base 8 51.05 / 38.11 63.40
w/ FLARE 51.12 / 39.08 66.46
XLM-R Large 64.87 / 53.81 77.79
w/ FLARE 65.03 / 53.96 79.21

XLM-R Base 64 50.09 / 37.66 70.29
w/ FLARE 50.04 / 37.74 73.61
XLM-R Large 65.20 / 53.74 77.47
w/ FLARE 65.30 / 54.30 79.99

XLM-R Base 128 49.77 / 37.78 70.46
w/ FLARE 50.42 / 38.63 73.12
XLM-R Large 65.26 / 53.97 77.36
w/ FLARE 66.18 / 55.46 79.35

Table 4: Average scores for varying adapter bottleneck
size r in LoRA; based on XLM-R Large, using FLARE
with the add+relu fusion function (Section 3.2).

r = 128 on datasets like NusaX; see Table 4. This531

suggests that even highly compressed language rep-532

resentations are sufficient to facilitate cross-lingual533

transfer in the representation space. Moreover, the534

required adapter capacity is dependent on task com-535

plexity: more complex tasks require finer-grained536

representations for optimal fusion performance.537

Despite the incremental performance gains with538

larger adapter capacities, even LoRA adapters with539

r = 8 already yield considerable benefits with540

FLARE. Interestingly, FLARE can leverage larger541

adapter capacities more effectively compared to542

regular LoRA adapters without fusion.543

Layer-wise Language Activation. Figure 6 shows544

that the magnitudes of source and target language545

activations across the entire XLM-R Large are com-546

parable. This indicates that FLARE does not overly547

rely on either source or target representations dur-548

ing fusion. Further, Figure 5 displays the average549

activations for English and Acehnese in the first550

adapter bottleneck: this confirms that both source551

and target languages maintain similar activation552

magnitudes. Hence, subsequent Acehnese repre-553

sentations are infused with the English representa-554

tions from this initial transfer, integrating balanced555

source and target language information. Detailed556

activations for individual instances are illustrated557

in Figure 7, which show positional activation dif-558

ferences and demonstrate the alignment of source559

and target languages for information transfer.560

On Latent MT Fusion. FLARE MT outperforms561

zero-shot and translate-test baselines and shows562

competitive performance with regular FLARE. This563

indicates that errors in discrete translations directly564

affect downstream performance. In contrast to reg-565

ular FLARE, the MT encoder representations used in566
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FLARE MT include task-agnostic language informa- 567

tion, and therefore do not transfer task knowledge 568

to the target languages. Nonetheless, it provides a 569

resource-efficient alternative to regular FLARE by 570

avoiding the need for decoding in the MT and elim- 571

inating the forward pass in the mPLM, making it 572

especially valuable in scenarios where translation 573

quality is limited. The detailed results for XNLI in 574

Table 6 (appendix) show that FLARE MT is particu- 575

larly beneficial for lower-resource languages, such 576

as Swahili and Urdu, compared to FLARE, when 577

exposed to large amounts of training data. 578

6 Conclusion 579

We introduced Fusion for Language Representa- 580

tions (FLARE) for parameter-efficient cross-lingual 581

transfer (XLT). Our experimental results demon- 582

strated that FLARE outperforms strong XLT base- 583

lines on natural language understanding tasks. 584

With gold translations, it matches model per- 585

formance in English, while not reducing perfor- 586

mance below translate-train baselines for lower- 587

quality translations. We also showed that FLARE 588

is representation-agnostic: it can directly incorpo- 589

rate latent translations from an MT model in place 590

of translated English text. This further improves 591

resource-efficiency and enhances knowledge trans- 592

fer for lower-quality translations. 593
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7 Limitations594

The proposed FLARE method by design relies on595

textual data availability for both source and tar-596

get languages. In practical scenarios, such as the597

standard translate-train settings evaluated in our598

study, machine translation models are utilized to599

generate either the source or target language in-600

puts. Consequently, the performance of FLARE601

is dependent upon the quality of these machine602

translations, as we also investigated empirically603

in this work. This dependency poses some sig-604

nificant challenges, particularly for tasks that re-605

quire precise positional alignment, like extractive606

question-answering, where the quality of machine607

translations affects downstream performance and608

model applicability.609

Furthermore, our evaluation exclusively employs610

English as the high-resource source language for611

representation fusion. While English is predomi-612

nantly used in mPLM pretraining corpora, explor-613

ing other high-resource languages that share lin-614

guistic similarities with the target languages could615

potentially yield similar or improved cross-lingual616

transfer performance.617

Finally, our choice of base multilingual LMs618

has been motivated by the current state-of-the-art619

(SotA) in the field of multilingual NLP and XLT620

to low-resource languages for NLU tasks. The621

main models are SotA encoder-only (XLM-R) and622

encoder-decoder mPLMs (mT5), while we also623

provide some preliminary results with a represen-624

tative decoder-only LLM (Llama 3). However, we625

note that the LLM technology and its adaptation626

to XLT for NLU in lower-resource languages has627

not been proven to be fully mature yet (Lin et al.,628

2024; Razumovskaia et al., 2024).629
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A Detailed Evaluation Results898

Figure 7 displays average activations within the899

first adapter bottlenecks in the XLM-R Large900

model using FLARE and the add+relu fusion func-901

tion. This visualization highlights the positional902

alignment process between English and Acehnese903

token representations, with varying activation val-904

ues across different sequence positions reflecting905

the dynamics of language representation fusion.906

Table 6 shows the results for the XNLI dataset907

for each language in zero-shot XLT, translate-908

test, translate-train settings, including translate-909

train with gold translations in the source language.910

The results confirm that FLARE consistently im-911

proves XTL performance in the translate-train set-912

ting across different languages without particular913

bias towards typological relatedness to English or914

frequency in pretraining corpora.915

Table 7 details the results for the TyDiQA dataset916

for each language in the zero-shot XLT, translate-917

test, and translate-train settings. The outcomes918

demonstrate that FLARE performance extends to919

tasks including positional information, such as ex-920

tractive question-answering.921

Table 8 outlines the performance for the NusaX922

dataset for each language in zero-shot XLT,923

translate-test, translate-train, and translate-train924

settings with gold translations in the source lan-925

guage. Even with few training samples, our FLARE926

method demonstrates consistent performance im-927

provements across the low-resource languages in-928

cluded in the NusaX dataset.929

B Training Details930

Our evaluation results are averaged across two ran-931

dom seeds. Initially, we fully fine-tune XLM-R932

Base and XLM-R Large models on English task933

data. For mT5-XL, fine-tuning is conducted us-934

ing LoRA adapters set with r = 64 and α = 128,935

which are subsequently integrated into the model’s936

weights prior to task fine-tuning in the target lan-937

guages. Hyperparameter configurations for full-938

tuning each mPLM are provided in Table 5.939

The total computation time for the experimental940

results exceeds 4,000 GPU hours. Experiments are941

conducted on NVIDIA A100 and H100 GPUs. All942

models are trained using half-precision.943
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Figure 7: Activation values for individual instances
included in the NusaX test set. English and Acehnese
activation values are extracted from the first bottleneck
query layer in XLMR-Large, which is trained with the
add+relu fusion function.

C Another Ablation: Representation 944

Fusion during Training Only 945

To investigate the importance of utilizing source 946

language representations during inference, we mod- 947

ified FLARE to restrict representation fusion to 948

the training phase only. Specifically, we limited 949

the fusion with source language representations 950

to 50% of the training instances and excluded 951

source language data during inference. This eval- 952

uates cross-lingual transfer capabilities based on 953

instance-independent patterns learned from source 954

language representations during training. Our find- 955

ings reveal that fusion adapters struggle to learn 956

patterns that are independent of specific instances 957

from source language representations during train- 958

ing. As a result, when implemented in the XLM- 959

R Large model on the NusaX test set, the perfor- 960

mance of the train-only FLARE variant decreased by 961

30%. Crucially, this significant drop underscores 962

the importance of incorporating source language 963

representations during inference to achieve effec- 964

tive cross-lingual adaptation. 965
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Model Hparam Values

XLMR-Base epochs {10, 10, 20}
batch size 32
sequence length {128, 512, 128}
learning rate 2e-5

XLMR-Large epochs {10, 10, 20}
batch size 32
sequence length {128, 512, 128}
learning rate 2e-5

mT5-XL epochs {10, 10, 40}
batch size 64
sequence length {128, 512, 128}
learning rate 2e-4

Table 5: Hyperparameter configurations for each mPLM
across the XNLI, TyDiQA, and NusaX datasets. Values
listed in curly braces represent the specific settings used
for each dataset in sequential order: {XNLI, TyDiQA,
NusaX}.

D Preliminary Results on LLaMA 3966

To validate whether the performance benefits of967

FLARE extend to decoder-only model architec-968

tures, we conducted further experiments using the969

LLaMA 3 8B model (AI@Meta, 2024). We fine-970

tune the base model for 3 epochs on the English971

NusaX dataset using LoRA adapters (r = 64,972

α = 128). Subsequently, we adapted this base973

model to the Indonesian languages included in the974

NusaX dataset using FLARE in the translate-train975

setting. We train the base model for 3 epochs with a976

learning rate of 2e−4, maintaining the same LoRA977

configurations as mentioned above. The results978

demonstrate that language representation fusion is979

effectively applicable to decoder-only architectures.980

The LLaMA 3 8B model with FLARE achieved an981

F1-Score of 76.58, surpassing the translate-test982

performance, which was 76.18. While these out-983

comes are in line with our findings for other model984

architectures, they suggest that the LLaMA 3 base985

model is undertrained and it has not been created986

to support multilingual NLP applications directly.987

Consequently, the results are not directly compara-988

ble with those included in Table 1, and they war-989

rant further investigation (also related to improving990

target language adaptation of LLMs in general),991

which is out of scope of this particular work.992
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Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Base 84.83 72.18 77.23 76.85 75.67 78.92 78.20 70.06 75.17 64.27 71.52 72.42 65.95 74.69 73.27 74.08
XLM-R Large 87.94 77.45 81.72 81.26 81.58 82.99 82.40 74.31 78.66 67.70 76.29 76.95 69.88 78.30 78.60 78.40
mT5-XL 90.00 79.72 84.01 83.55 83.05 84.87 84.49 77.72 81.38 75.85 77.70 80.46 73.85 79.90 80.48 80.50

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 84.83 74.69 77.74 78.86 78.42 80.48 78.86 72.87 76.25 70.90 71.60 76.41 66.85 76.57 72.99 75.25
XLM-R Large 87.94 76.51 81.28 81.12 81.36 82.48 81.74 74.73 77.58 71.88 71.96 77.62 68.52 77.90 73.95 77.04
mT5-XL 90.00 79.06 83.17 83.29 82.71 84.09 83.49 76.67 80.54 73.15 74.69 79.64 69.80 80.26 77.31 79.13

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 84.83 75.43 79.50 79.08 78.18 80.68 79.90 73.11 78.20 79.90 76.87 75.67 69.40 78.06 78.22 77.30
w/ input-level fusion 84.83 74.73 77.80 78.08 76.59 78.94 78.38 71.22 75.37 70.32 72.26 75.93 65.71 75.79 72.97 74.58
w/ FLARE MT 84.83 76.71 80.34 79.72 78.46 80.74 80.00 73.73 78.62 71.20 77.09 75.89 70.50 78.16 78.84 77.14
w/ FLARE 84.83 75.03 75.51 78.36 74.47 76.77 78.50 69.68 74.63 70.64 69.42 72.63 64.89 74.03 73.07 73.40

XLM-R Large 87.94 76.51 83.95 81.12 82.91 84.31 81.74 78.12 81.26 71.88 78.54 80.56 75.03 81.76 73.95 79.40
w/ input-level fusion 87.94 79.60 82.30 81.46 82.36 83.77 81.26 76.85 78.70 73.15 74.85 80.06 70.70 79.40 74.19 78.48
w/ FLARE MT 87.94 80.90 84.91 83.75 83.97 85.03 83.91 78.20 82.16 76.39 80.72 81.26 75.17 81.60 82.34 81.45
w/ FLARE 87.94 79.94 83.59 82.46 82.75 84.39 82.44 80.72 78.10 73.65 78.10 80.06 73.99 80.66 82.34 80.23

mT5-XL 90.00 82.24 85.95 85.43 85.33 86.29 86.23 80.62 83.91 78.96 81.12 83.01 77.07 82.81 82.95 82.99
w/ input-level fusion 90.00 79.74 83.65 83.65 82.95 84.51 83.81 77.50 81.18 73.47 75.93 79.82 70.74 80.70 77.54 79.66
w/ FLARE MT 90.00 82.50 85.77 85.49 84.95 85.85 85.61 80.48 83.39 79.06 80.66 83.17 77.50 82.53 82.79 82.84
w/ FLARE 90.00 82.59 86.43 85.61 85.39 86.13 86.17 81.08 84.09 79.58 81.10 83.41 77.52 83.32 83.11 83.25

Translate-Train (fusion models are trained on training data translated to the target language and evaluated using gold translations in the source language)

XLM-R Base w/ input-level fusion 84.83 84.85 84.79 84.79 84.71 84.67 84.25 84.63 84.31 84.53 84.63 84.51 84.87 84.75 84.47 84.63
w/ FLARE 84.83 84.63 84.63 84.53 84.67 84.55 84.57 84.35 84.39 84.65 84.87 84.87 84.79 84.67 84.49 84.62

XLM-R Large w/ input-level fusion 87.94 88.41 88.54 88.46 88.36 88.28 88.02 88.38 85.91 86.23 85.91 85.85 86.05 85.85 86.45 87.19
w/ FLARE 87.94 88.10 88.06 88.04 88.12 88.02 88.08 88.40 88.12 88.46 88.16 88.14 88.22 88.04 88.16 88.15

mT5-XL w/ input-level fusion 90.00 90.04 89.80 89.54 89.70 89.78 89.50 89.80 89.52 89.56 89.84 89.66 89.38 89.52 89.70 89.67
FLARE 90.00 88.62 88.74 88.80 85.34 87.83 86.19 84.31 86.12 89.66 88.49 89.56 79.22 85.33 83.73 86.57

Table 6: Average scores per language in the XNLI dataset. Model performance is evaluated using the Accuracy
metric.

Model en ar ben fi ind ko ru sw tel Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Base 62.17 / 51.36 51.35 / 35.94 50.31 / 36.67 42.48 / 27.39 58.07 / 46.95 40.26 / 28.77 41.41 / 29.97 58.66 / 47.44 48.62 / 40.00 48.90 / 36.64
XLM-R Large 72.26 / 57.96 62.78 / 51.25 72.14 / 60.00 51.31 / 37.90 68.34 / 58.84 53.49 / 40.03 56.20 / 44.03 69.59 / 59.04 86.79 / 82.63 65.08 / 54.22
mT5-XL 74.97 / 61.14 58.26 / 40.31 71.00 / 53.33 55.21 / 40.13 67.76 / 55.93 53.77 / 41.03 56.00 / 43.30 68.64 / 57.02 82.26 / 75.00 64.11 / 50.76

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 62.17 / 51.36 51.17 / 36.25 47.98 / 35.00 42.59 / 27.39 58.43 / 47.26 40.84 / 30.77 41.72 / 30.24 58.70 / 47.44 48.61 / 40.00 48.76 / 36.79
XLM-R Large 72.26 / 57.96 62.40 / 50.62 73.25 / 60.00 52.62 / 38.54 68.78 / 58.84 55.09 / 41.03 55.64 / 42.97 69.38 / 58.70 86.91 / 82.63 65.51 / 54.17
mT5-XL 74.97 / 61.14 58.23 / 40.00 71.00 / 53.33 54.99 / 40.13 69.76 / 57.93 53.77 / 41.03 56.72 / 44.03 68.22 / 58.02 82.15 / 75.00 64.36 / 51.18

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 62.17 / 51.36 52.08 / 36.88 50.78 / 38.33 44.48 / 27.39 58.96 / 47.56 40.41 / 29.06 42.56 / 31.30 59.54 / 48.12 51.94 / 42.63 50.09 / 37.66
w/ FLARE MT 62.17 / 51.36 51.36 / 37.19 48.19 / 35.00 43.13 / 28.03 59.78 / 48.48 38.48 / 29.06 42.68 / 31.30 58.75 / 47.78 49.18 / 40.79 48.94 / 37.20
w/ FLARE 62.17 / 51.36 52.37 / 37.19 49.87 / 36.67 43.98 / 27.71 59.67 / 48.78 40.45 / 29.92 42.55 / 30.24 58.88 / 47.44 52.53 / 43.95 50.04 / 37.74

XLM-R Large 72.26 / 57.96 61.77 / 49.38 72.44 / 58.33 51.90 / 39.17 68.07 / 59.45 55.46 / 41.03 55.57 / 42.71 68.78 / 57.00 87.61 / 82.89 65.20 / 53.74
w/ FLARE MT 72.26 / 57.96 61.99 / 48.75 71.58 / 58.33 52.62 / 37.90 68.39 / 59.76 56.42 / 43.59 56.17 / 43.24 68.60 / 57.34 86.95 / 82.89 65.34 / 53.98
w/ FLARE 72.26 / 57.96 61.77 / 49.69 71.17 / 58.33 52.55 / 39.81 68.35 / 60.06 56.10 / 41.88 55.69 / 43.24 69.02 / 57.68 87.78 / 83.68 65.30 / 54.30

mT5-XL 74.97 / 61.14 60.34 / 43.44 70.01 / 58.33 54.44 / 38.85 68.63 / 57.01 56.46 / 45.30 55.94 / 41.11 69.56 / 58.70 83.54 / 76.58 64.87 / 52.42
w/ FLARE MT 74.97 / 61.14 59.96 / 43.15 69.86 / 56.66 55.63 / 39.52 68.80 / 57.11 56.17 / 44.97 55.63 / 42.24 69.29 / 57.53 82.94 / 75.82 64.78 / 52.12
w/ FLARE 74.97 / 61.14 57.55 / 41.25 71.95 / 57.67 55.97 / 40.45 68.88 / 57.01 56.61 / 45.36 56.31 / 43.77 68.48 / 57.68 83.41 / 76.65 64.90 / 52.48

Table 7: Average scores per language in the TyDiQA dataset. Model performance is evaluated using the F1 / EM
metrics.
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Model en ace ban bjn bug ind jav mad min nij sun Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Base 91.00 / 90.00 55.75 / 52.64 64.25 / 61.87 69.00 / 66.01 43.00 / 32.49 89.50 / 88.62 75.25 / 71.73 50.75 / 42.75 63.50 / 61.28 51.75 / 43.75 62.25 / 59.60 62.50 / 58.07
XLM-R Large 91.75 / 91.21 70.00 / 69.53 78.25 / 77.78 81.50 / 80.77 50.75 / 47.99 92.50 / 91.82 86.50 / 85.71 73.25 / 72.28 82.00 / 80.52 74.00 / 72.93 85.50 / 84.73 77.42 / 76.41
mT5-XL 90.75 / 90.21 73.25 / 72.93 77.00 / 76.24 80.25 / 79.62 34.75 / 30.84 91.50 / 90.61 88.25 / 87.35 61.75 / 61.38 78.50 / 77.90 65.00 / 65.16 87.50 / 86.73 73.78 / 72.88

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 91.00 / 90.00 77.25 / 76.88 77.25 / 77.52 85.25 / 84.57 72.50 / 72.28 87.50 / 86.63 85.25 / 84.67 55.50 / 55.32 83.00 / 82.22 59.00 / 58.61 84.75 / 84.31 76.72 / 76.30
XLM-R Large 91.75 / 91.21 77.00 / 76.46 74.50 / 74.19 84.25 / 83.78 70.00 / 69.82 87.75 / 86.88 84.25 / 83.69 58.25 / 58.36 82.75 / 82.27 56.25 / 56.54 86.50 / 86.04 76.15 / 75.80
mT5-XL 90.75 / 90.21 76.75 / 76.18 74.00 / 73.43 82.25 / 81.55 69.50 / 69.13 87.00 / 85.99 84.25 / 83.50 61.00 / 60.63 83.00 / 82.32 59.50 / 59.37 83.50 / 82.68 76.08 / 75.48

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 91.00 / 90.00 67.50 / 67.48 71.50 / 70.73 79.50 / 78.38 65.25 / 65.29 88.25/ 86.48 83.50 / 81.52 55.00 / 48.54 80.75 / 79.35 60.00 / 55.95 78.00 / 76.77 72.92 / 71.04
w/ input-level fusion 91.00 / 90.00 80.75 / 79.97 73.00 / 72.67 82.50 / 80.45 72.75 / 72.28 90.50 / 89.63 85.50 / 84.66 63.25 / 62.80 82.75 / 82.09 58.75 / 56.96 85.75 / 85.25 77.55 / 76.68
w/ FLARE MT 91.00 / 90.00 73.25 / 73.28 70.00 / 69.19 80.00 / 78.81 63.50 / 63.03 90.75 / 89.58 84.00 / 82.23 57.00 / 52.80 81.75 / 80.10 57.00 / 53.03 79.25 / 78.47 73.65 / 72.05
w/ FLARE 91.00 / 90.00 72.00 / 71.93 75.00 / 74.13 80.25 / 78.77 75.50 / 74.77 89.00 / 87.30 82.50 / 80.41 58.75 / 55.32 80.50 / 78.86 61.25 / 57.33 78.50 / 77.28 75.32 / 73.61

XLM-R Large 91.75 / 91.21 73.00 / 72.29 77.50 / 76.14 83.00 / 81.74 63.00 / 60.73 90.50 / 89.25 87.75 / 86.51 74.75 / 73.14 82.00 / 80.51 73.50 / 71.14 84.25 / 83.22 78.92 / 77.47
w/ input-level fusion 91.75 / 91.21 78.00 / 77.63 75.00 / 74.72 82.25 / 81.77 71.50 / 71.12 90.25 / 89.38 90.00 / 89.44 67.00 / 66.07 79.00 / 78.31 68.00 / 67.69 88.25 / 87.75 78.92 / 78.39
w/ FLARE MT 91.75 / 91.21 73.50 / 72.59 77.25 / 76.84 82.50 / 81.95 56.00 / 53.88 91.50 / 90.33 87.75 / 86.50 72.50 / 71.56 84.00 / 82.67 73.00 / 70.66 85.75 / 84.67 78.38 / 77.16
w/ FLARE 91.75 / 91.21 79.25 / 78.77 78.75 / 78.15 81.50 / 80.32 70.25 / 70.08 92.00 / 91.27 88.75 / 87.85 73.50 / 72.67 86.25 / 85.31 74.00 / 72.07 84.00 / 83.42 80.82 / 79.99

mT5-XL 90.75 / 90.21 81.25 / 80.11 82.50 / 80.94 86.25 / 85.13 68.50 / 66.58 90.75 / 89.57 91.00 / 89.90 75.00 / 72.61 85.25 / 83.67 72.00 / 68.99 89.25 / 88.29 82.18 / 80.58
w/ input-level fusion 90.75 / 90.21 81.50 / 80.95 79.25 / 78.57 83.50 / 82.88 72.25 / 71.87 90.25 / 89.28 40.00 / 33.80 70.00 / 69.10 84.25 / 83.57 71.75 / 71.14 88.50 / 87.55 76.12 / 74.87
w/ FLARE MT 90.75 / 90.21 82.00 / 81.14 83.00 / 81.39 85.25 / 84.07 65.25 / 64.62 90.75 / 89.61 90.75 / 89.73 72.00 / 69.05 85.75 / 84.89 73.25 / 71.57 89.25 / 88.01 81.72 / 80.41
w/ FLARE 90.75 / 90.21 84.25 / 83.80 81.50 / 80.55 85.00 / 84.06 65.75 / 64.70 89.75 / 88.32 91.50 / 90.50 76.50 / 74.36 85.00 / 83.64 71.00 / 69.29 89.00 / 88.00 81.92 / 80.72

Translate-Train (fusion models are trained on training data translated to the target language and evaluated using gold translations in the source language)

XLM-R Base w/ input-level fusion 91.00 / 90.00 90.50 / 90.04 89.25 / 88.45 89.50 / 88.23 89.50 / 88.51 91.00 / 89.83 91.00 / 90.19 86.25 /84.76 89.75 / 88.55 84.75 / 82.79 88.50 / 87.38 89.00 / 87.87
w/ FLARE 91.00 / 90.00 75.25 / 74.79 78.75 / 77.66 81.00 / 79.66 87.25 / 85.84 90.75 / 89.52 84.00 / 82.06 57.00 / 51.11 81.75 / 80.25 61.25 / 57.10 77.50 / 76.31 77.45 / 75.43

XLM-R Large w/ input-level fusion 91.75 / 91.21 91.75 / 91.24 91.75 / 91.08 91.25 / 90.55 91.25 / 90.69 92.50 / 91.99 91.50 / 90.88 91.75 / 91.23 91.75 / 91.07 90.75 / 90.07 91.00 / 90.52 91.52 / 90.93
w/ FLARE 91.75 / 91.21 89.75 / 89.24 89.75 / 88.98 84.00 / 82.55 90.75 / 90.07 91.00 / 90.22 89.00 / 88.15 73.00 / 71.20 88.50 / 87.58 75.00 / 72.93 86.50 / 85.71 85.72 / 84.66

mT5-XL w/ input-level fusion 90.75 / 90.21 92.00 / 91.39 91.00 / 90.39 92.00 / 91.47 92.00 / 91.54 91.75 / 90.88 90.25 / 89.49 90.00 / 88.87 91.50 / 90.86 90.25 / 89.20 92.25 / 91.60 91.30 / 90.57
w/ FLARE 90.75 / 90.21 84.25 / 83.80 81.50 / 80.55 85.00 / 84.06 65.75 / 64.70 89.75 / 88.32 91.50 / 90.50 76.50 / 74.36 85.00 / 83.64 71.00 / 69.29 89.00 / 88.00 81.92 / 80.72

Table 8: Average scores per language in the NusaX dataset. Model performance is evaluated using the Accuracy /
Micro F1 metrics.

Task Language ISO Code Source

XNLI Arabic ar

Crowd-sourced (Williams et al., 2018)

Bulgarian bg
Chinese zh
French fr
German de
Greek el
Hindi hi
Russian ru
Spanish es
Swahili sw
Thai th
Turkish tr
Urdu ur
Vietnamese vi

TyDiQA Arabic ar

Wikipedia (Clark et al., 2020)

Bengali ben
Finnish fi
Indonesian ind
Korean ko
Russian ru
Swahili sw
Telugu tel

NusaX Acehnese ace

SmSA (Purwarianti and Crisdayanti, 2019)

Balinese ban
Banjarese bjn
Buginese bug
Indonesian ind
Javanese jav
Madurese mad
Minangkabau min
Ngaju nij

Table 9: Overview of languages and corresponding source data used in the experiments, categorized by task.
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