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Abstract

Limited availability of multilingual text corpora
for training language models often leads to poor
performance on downstream tasks due to un-
dertrained representation spaces for languages
other than English. This ‘under-representation’
has motivated recent cross-lingual transfer
methods to leverage the English representation
space by e.g. mixing English and non-English
tokens at input or extending model parameters,
which in turn increases computational complex-
ity. To address this, we introduce Fusion for
Language Representations (FLARE) in adapters,
a method designed to improve both the repre-
sentation quality and downstream performance
for languages other than English. FLARE inte-
grates source and target language representa-
tions within the bottlenecks of low-rank LoRA
adapters using lightweight linear transforma-
tions. This maintains parameter efficiency as
the method does not require additional param-
eters, while improving transfer performance,
further narrowing the performance gap to En-
glish. Another key advantage of the proposed
latent representation fusion is that it does not
increase the number of input tokens, thus main-
taining computational efficiency. Moreover,
FLARE provides flexibility to integrate various
types of representations, e.g., we show that it
is possible to fuse latent translations extracted
from machine translation models. Our results
demonstrate FLARE’ s effectiveness on natural
language understanding tasks, reducing the per-
formance gap to English across all tasks. !

1 Introduction

Representation degradation for ‘non-English’ lan-
guages poses a challenge in the context of mul-
tilingual pretrained language models (mPLMs)?.

'Our code repository is available at https://anonymous.
4open.science/r/FLARE-7984

The domination of the English representation space is ob-
served independent of model architectures, including encoder-
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Figure 1: Fusion of and target representations
in LoRA adapters inserted within the query and value
matrices. The representations are fused in the adapter
bottlenecks and the outputs are added () to the query
and value outputs before softmax & activation.

Large-scale English text corpora are widely avail-
able for self-supervised pretraining, resulting in su-
perior representation quality and downstream task
performance when compared to low(er)-resource
languages (Lauscher et al., 2020; Yang et al., 2022).
Training mPLMs on massively multilingual text
data creates a unified representation space that en-
ables cross-lingual information transfer. Despite
the substantial improvements, the imbalance in pre-
training resources still substantially reduces down-
stream performance (Winata et al., 2022).
Cross-lingual transfer (termed XLT henceforth)
aims to narrow this performance gap by trans-
ferring task-specific knowledge acquired in high-
resource languages to lower-resource languages
(Ruder et al., 2019). Given the dominance of En-
glish in pretraining corpora, machine translations
(MT) are frequently utilized to avoid processing
non-English data (Shi et al., 2010; Artetxe et al.,
2020, 2023). Techniques utilizing source and target
language representation spaces include language
mixup (Yang et al., 2022), and concatenating mul-
tilingual input sequences for in-context XLT (Kim
et al., 2023; Tanwar et al., 2023; Villa-Cueva et al.,
only, decoder-only and encoder-decoder transformer (Wu and

Dredze, 2020; Lee et al., 2022a; Yang et al., 2022; Wendler
et al., 2024; Tang et al., 2024).
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2024). These approaches, while improving XLT,
typically focus on representations in a specific
mPLM layer or require extensive training and com-
putational resources by extending the input length.
Additionally, they typically rely on high-quality
MT output for source language input. Despite the
widespread use of discrete machine translations,
only few studies explore enhancing the ‘internal’
information extracted from MT models (Ponti et al.,
2021), and MT output is typically not used to model
sub-sentential interaction between source and tar-
get language representations.

When adapting mPLMs to new tasks and lan-
guages, the choice of adaptation method is crucial
for downstream performance. Parameter-efficient
fine-tuning (PEFT) methods are designed to ac-
quire new knowledge while minimizing the number
of extra parameters required and keeping the large
underlying mPLM frozen (Hu et al., 2021). In par-
ticular, bottleneck-style adapters extract relevant
features from new data by compressing model rep-
resentations with the assumption that task informa-
tion can be captured in a lower-dimensional space
(Houlsby et al., 2019). This directly aligns with the
XLT objectives, providing resource-efficient lan-
guage and task adaptation capabilities and support
for infusing model representations with new knowl-
edge. Similarly, low-rank adapters (LoRA) also
create such ‘representation bottlenecks’; they get
inserted into the query and value attention modules,
and exemplify a widely adopted PEFT approach in
large language models (Hu et al., 2021). In XLT,
adapters are extensively used for acquiring task
and language knowledge (Pfeiffer et al., 2020), yet
the extent of knowledge transfer within adapters
themselves remains underexplored.

In this study, we thus introduce Fusion for Lan-
guage Representations (FLARE) within adapter bot-
tlenecks to improve parameter-efficient XLT. As
illustrated in Figure 1, we propose token-wise fu-
sion of source and target language representations
within each transformer block. Our findings sug-
gest that even lightweight linear transformations,
such as addition or multiplication, enhance XLT
performance, as they allow for the interaction of
source and target language representations within
the adapter bottlenecks. A key advantage of our
method lies in its parameter efficiency, as the fu-
sion operations are located within the adapter bot-
tlenecks, thereby not introducing additional param-
eters while enhancing performance. Our experi-
ments across natural language inference, sentiment

classification, and question answering tasks, us-
ing encoder-only and encoder-decoder mPLMs,
demonstrate that our fusion technique effectively
reduces the cross-lingual transfer gap for XLM-R
Large to 8.1% across all evaluated tasks. Further
experiments illustrate that computational efficiency
can be further enhanced by using latent translations
as source language inputs in FLARE, and demon-
strate the versatility of the method, which is orthog-
onal to the choice of mPLMs and MT systems.

Contributions. 1) We introduce the FLARE method,
fusion for language representations in bottleneck
adapters for parameter-efficient cross-lingual trans-
fer. 2) Our approach effectively narrows the trans-
fer performance gap between English and other
languages across various downstream tasks. 3) We
demonstrate the adaptability of our approach by
incorporating machine translation encoder repre-
sentations directly into the mPLM.

2 Related Work

PEFT in Multilingual Language Models and
Cross-Lingual Transfer. PEFT aims to incor-
porate task or language-specific knowledge into
mPLMs without updating all model weights (Pfeif-
fer et al., 2020). Most prominent techniques in-
clude sparse fine-tuning by selectively updating
model parameters (Ansell et al., 2022), and insert-
ing adapter modules that reduce trainable param-
eters to a small fraction of total weights of the
underlying mPLM (Houlsby et al., 2019). Further-
more, PEFT modules are composable, and thus
information combination from multiple modules is
possible (Wang et al., 2022; Lee et al., 2022b).

Bottleneck adapters project model representa-
tions into a lower-dimensional space and then back
to their original dimensions, creating a bottleneck
that regulates information flow (Houlsby et al.,
2019). During this adaptation process, the weights
of the (m)PLM remain frozen. Following the same
assumption that task-specific knowledge can be
compressed in a low-dimensional space, low-rank
adapters (LoRA) are widely utilized for fine-tuning
language models (Hu et al., 2021). They are in-
serted into the attention modules of transformer
architectures, maximizing the capacity to adapt
to new task-specific information, while preserv-
ing parameter-efficiency. In this study, we extend
the task and knowledge acquisition capabilities of
adapters by leveraging such adapter bottlenecks (as
created e.g. by LoRA) for XLT.



Cross-lingual Representation Transfer. Enhanc-
ing performance for languages underrepresented
in the mPLMs’ pretraining data often involves
aligning and combining representations from var-
ious languages to facilitate XLT (Oh et al., 2022).
By concatenating multilingual input sequences,
mPLMs leverage a shared representation space
across both source and target language inputs (Kim
et al., 2023; Tanwar et al., 2023; Villa-Cueva et al.,
2024). Techniques such as mixtures of task and lan-
guage adapters have been implemented to merge
language representation spaces effectively (Lee
et al., 2022b). In projection-based approaches, tar-
get language representations are projected onto a
high-resource language (e.g., English), to enhance
feature extraction in the high-resource language,
before re-projecting back to the target language
(Xu et al., 2023). Yang et al. (2022) introduced a
mixup method, combining source and target rep-
resentations in a specific layer of the mPLM dur-
ing task fine-tuning. Building on this concept, Cao
et al. (2023) used cross-attention with semantic and
token-level alignment loss terms, aiming to transfer
knowledge from the source to the target language.
Our work contributes to this research stream by en-
hancing parameter-efficient XLT and introducing
representation-agnostic fusion methods.
Representation fusion is also applied to integrate
information across different modalities (Fang et al.,
2021; Ramnath et al., 2021). For instance, Qu et al.
(2024) employed feature routing in cross-modal
vision-language tasks, guiding language model rep-
resentations through the LoRA bottleneck using
the last hidden state of a vision model. Our work
differs in its scope and fusion methodology: FLARE
extracts significantly richer representations from
the source and target languages by capturing layer-
wise representations for each transformer block in
the mPLMs. Moreover, by ensuring dimensional
alignment, we perform token-wise representation
fusion within adapter bottlenecks, thereby transfer-
ring finer-grained information across languages.

3 Methodology

3.1 Language Representation Fusion

Our methodology is based on the hypothesis that
incorporating English with target language repre-
sentations enhances cross-lingual knowledge trans-
fer and distills task-relevant information into the
target language. We assume (MT-created) parallel
corpora P = {(z°,27)} during task fine-tuning,
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Figure 2: During the forward pass with fusion adapters,

language representations ° are fused with target
language representations =’ in each transformer block
1. Source representations are extracted by inferencing
the mPLM without the fusion adapters.

where z are instances in the respective source and
target language. Our methodology particularly fo-
cuses on employing machine-translated ‘silver’ par-
allel data, akin to translate-train and translate-test
settings, as we believe this approach is the most
realistic in practice. We contend that transferring in-
formation during task fine-tuning is more resource-
efficient compared to extensive pretraining on large-
scale self-supervised text corpora.

A straightforward and effective method for align-
ing multilingual representations is to concatenate
source and target language input sequences =7 =
[, 2T] where * € R?*™, with m representing
the sequence length of both source and target lan-
guages. This so-called input-level fusion enables
cross-lingual knowledge transfer across all lay-
ers of the mPLM, facilitating in-context learning,
which typically does not require additional training
(Villa-Cueva et al., 2024). However, this approach
is computationally expensive due to increased input
sequence lengths and encounters scalability issues
related to the context length limitations in mPLMs.

To address these limitations, we propose FLARE,
a method for representation-level language fusion
within low-rank bottleneck adapters; see Figure 1.
Source language representations vf , extracted from
the frozen mPLM without adapters, and target lan-
guage representation v;-r at transformer block ¢
are down-projected using W9%"" and combined
with fusion function ¢ to create a fused repre-
sentation h = ¢ (v Wdown pTWdown) where



h € R™*" with sequence length m and bottle-
neck dimensions r. Following a standard LoRA
procedure, this fused low-rank representation is
then up-projected and added to the frozen attention
outputs v to form the target language output repre-
sentation v}, ; = hW " +1° of the attention block.
This enhances the target language adaptation by
directing the model’s attention to task-relevant in-
formation. The down-projection within the bottle-
neck adapters is applied to both target and source
language representations, exploiting the unified em-
bedding space acquired during self-supervised pre-
training for cross-lingual adaptation.’

A key advantage of representation fusion is the
reduction in computational complexity, thereby en-
hancing parameter efficiency for both task and lan-
guage adaptation. By processing multilingual in-
puts separately and only fusing highly compressed
representations within adapter bottlenecks, our
method avoids the computational overhead asso-
ciated with quadratic scaling in attention compu-
tations for model dimensions d, thus enhancing
resource efficiency. Furthermore, the memory re-
quirements are limited to the last hidden states ob-
tained from the output of each transformer block.

Moreover, our fusion approach is agnostic re-
garding the source language representation. This
flexibility allows directly leveraging representa-
tions extracted from the MT encoder M as ‘la-
tent translations’ for fusion. We extract a single
representation from the MT model v7 = M (z7),
where vT' € R™* M _ which serves as a latent trans-
lation. We project these MT model dimensions
to align with the mPLM using a projection layer
WProi . Consequently, the up-projected representa-
tion v WP is fused with the target language rep-
resentation within the adapter bottlenecks of each
mPLM layer; see Figure 3. This FLARE MT method
enhances resource efficiency by bypassing a for-
ward pass in the mPLM, which is required when
using discrete text in the source language, and pre-
serves the inherent translation uncertainty within
the embeddings by avoiding discretization in the
MT decoder, thus mitigating potential translation
errors (Ponti et al., 2021; Unanue et al., 2023).

3 Assuming that new task information can be learned within
low-rank adapters, we posit that task-specific cross-lingual
knowledge can be effectively transferred within adapter bot-
tlenecks. This enhances efficiency, and also compresses and
aligns task-relevant information, simplifying the complexity
of representations r < d. This setup enables the application
of lightweight transformations that merge information from
both source and target representations.
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Figure 3: Illustration of the FLARE MT variant where
projected encoder representations from an MT model
are directly fused with target language representations
within the fusion adapters in the mPLM. Encoder rep-
resentations from the MT model serve as latent transla-
tions, avoiding discretization in the decoder.

3.2 Fusion Functions

To fuse cross-lingual representations in bottle-
neck adapters, we evaluate both linear and non-
linear transformations that do not require additional
model parameters, alongside cross-attention. We
extract token-wise representations from source and
target language sequences, capturing rich contex-
tual information at the token level. Extracting
source language and target language representa-
tions from the same underlying mPLM ensures
matching hidden dimensions d in each transformer
layer, facilitating subsequent representation fusion
in the low-rank bottleneck adapters.

The down-projected representations in the
adapter bottlenecks for source and target languages
are denoted as S = v Wdown gnd T = T W down
where S and T are representations of dimensions
R™>"_ These representations are subsequently
combined at the token level through the following
fusion functions:

1. element-wise addition (add): S + T
2. element-wise multiplication (mul): S o T’

. Qs(wKT)
3. cross-attention:* softmax (%) wy'T

*Although cross-attention modules add parameters to the
adapters, the low bottleneck dimensions 7, typically smaller
than 64, minimize the parameter count in comparison to the
model’s internal dimensions d. Specifically, we utilize a single
cross-attention head to maintain efficiency.



we, WK and W) are the weight matrices of the
query, key and value projections in the adapter a,
respectively, and ’ denotes the matrix transpose.

We extend the linear fusion functions using non-
linear transformations through rectified linear units
ReLU (S) and ReLU (T') (Qu et al., 2024). This
addition improves feature extraction capabilities by
selectively enabling information flow in token rep-
resentations. Given the inherent misalignment of
multilingual input sequences at the token level, ex-
tracting token-level representations for subsequent
fusion may introduce alignment issues. We hypoth-
esize that the adapter projections W*™ aid the
alignment of multilingual representations. Further
correcting for misalignment between source and
target language representations, non-linear trans-
formation functions can restrict propagating mis-
aligned information, which ultimately might im-
prove downstream task performance.

3.3 Training

For task adaptation in the target language, we in-
sert LoORA adapters into query and value weight
matrices of the mPLM previously fine-tuned on En-
glish task data (referred to as the base model). In
FLARE, these adapters implement fusion function
¢ that combines source and target language input
representations into a single fused representation,
as illustrated in Figure 1. Consistent with standard
PEFT training, only the task head and LoRA pa-
rameters and output layer are trainable, while all
other parameters remain frozen.

During the forward pass, detailed in Figure 2,
representations from both the source and target
languages are extracted at each transformer block.
Layer-wise source language representations are ob-
tained from the base model and stacked in ma-
trix VS € RI>X™xd where [ represents the num-
ber of layers in the mPLM. Target language rep-
resentations are obtained during the forward pass
through the base model with LoRA adapters. In
each layer, source and target language representa-
tions are transformed and compressed to lower di-
mensions < h in the adapter’s down-projection
Wdown - The shared down-projection layers, ap-
plied to both source and target language representa-
tions before subsequent fusion, reduce the model’s
reliance on the English representation space. The
final steps include the application of a fusion func-
tion and standard up-projection, as already de-
scribed in Sections 3.1 and 3.2.

4 Experimental Setup
4.1 Underlying Models and Baselines

mPLMs. Our experiments are based on various
mPLMs including XLM-R Base (270M parame-
ters) and Large (550M) (Conneau et al., 2020), and
mT5-XL (3.7B) (Xue et al., 2021). Additionally,
experiments with LLaMA 3 (8B) (Al@Meta, 2024)
are discussed in Appendix D.

Fine-Tuning Setup. We follow a modular XLT
approach where the mPLM is fine-tuned on English
task data and subsequently adapted using task data
in the target language (Zhao et al., 2021). Unless
stated otherwise, models are fine-tuned using r =
64 and oo = 128 in the LoRA configurations, while
the hyperparameter configurations of each model
are detailed in Table 5 in the appendix.

Baselines. We benchmark FLARE against zero-shot
cross-lingual transfer, translate-test, and translate-
train baselines, as well as input-level fusion models
trained with the same LoRA configurations as the
FLARE variants. Model checkpoints are selected on
validation data that was machine translated from
English to the respective target languages. More
details on the baselines are provided below:

Zero-Shot XLT. The base model fine-tuned on En-
glish task data is directly evaluated on test data in
the target languages without further training.

Translate-Test. Test sets in each target language are
translated into English using NLLB (Team et al.,
2022). Subsequently, the base model is evaluated
on these machine-translated test sets.

Translate-Train. The base model is fine-tuned on
machine-translated task data in the respective target
languages. This setting assumes that no gold trans-
lations are available during training. Consequently,
training data comprises instances translated from
English to the target language using NLLB.

For fusion, we obtain the required ‘silver’ paral-
lel data also through MT (using NLLB). The train-
ing set consists of parallel sets of English and MT-
ed instances, whereas the validation and test sets
consist of parallel target language instances and
corresponding machine translations into English.
We posit that the assumed absence of gold transla-
tions both during training and during inference is
the most realistic evaluation of FLARE models.

Finally, to compare representation-level fusion
with input-level fusion, we append source and
target language texts in the input prompt of the
mPLM, effectively doubling the sequence length



Model XNLI TyDiQA NusaX Avg.
Zero-Shot Cross-Lingual Transfer (models are trained on English data)

XLM-R Base 74.08 48.90/ 36.64 58.07 58.31
XLM-R Large 78.40 65.08 /54.22 76.41 71.49
mT5-XL 80.50 64.11/50.76 72.88 70.27
Translate-Test (test data is translated to English)

XLM-R Base 75.25 48.76 /1 36.79 76.30 64.77
XLM-R Large 77.04 65.51/54.17 75.80 70.89
mT5-XL 79.13 64.36/51.18 75.48 70.79
Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 77.30 50.09/37.66 71.04 64.07
w/ input-level fusion 74.58 - 76.68 -
w/ FLARE MT 77.14 48.94 /37.20 72.05 64.09
w/ FLARE 73.40 50.04/37.74 73.61 63.63
XLM-R Large 79.40 65.20/53.74 77.47 72.11
w/ input-level fusion 78.48 - 78.39 -
w/ FLARE MT 81.45 65.34 /53.98 77.16 72.76
w/ FLARE 80.23 65.30/54.30 79.99 73.34
mT5-XL 82.99 64.87/52.42 80.58 74.07
w/ input-level fusion 79.66 - 74.87 -
w/ FLARE MT 82.84 64.78 /52.12 80.41 73.90
w/ FLARE 83.25 64.90/52.48 80.72 74.22

Table 1: Average accuracy results across languages included in the XNLI, TyDiQA, and NusaX datasets. Perfor-
mance metrics are: Accuracy for XNLI, F1/Exact Match for TyDiQA, and Micro F1 for NusaX. FLARE results are
based on the best performing fusion functions:add relu for XNLI and NusaX, as well as mul on TyDiQA.

(Kim et al., 2023; Villa-Cueva et al., 2024).

4.2 Evaluation Tasks and Datasets

XNLI consists of machine-translated sentence
pairs that are translated from English to 15 lan-
guages (Conneau et al., 2018). The task involves
determining whether a sentence entails, contradicts,
or is neutral to a given premise.

NusaX is a human-annotated sentiment classifica-
tion dataset that spans 11 Indonesian languages,
including low-resource languages (Winata et al.,
2023). With 500 labeled instances for each lan-
guage, the dataset evaluates few-shot adaptation.

TyDiQA-GoldP is a human-annotated extractive
QA dataset covering 8 languages (Clark et al.,
2020). The task is to identify the answer spans
within the context passages.

Additional information on evaluation languages
and datasets used for source language fine-tuning
are available in Table 9 in the appendix.

4.3 Machine Translations

We utilize NLLB’s 3.3B variant (Team et al., 2022)
as the main MT model, with greedy decoding to
obtain translations (Artetxe et al., 2023). To en-
sure consistency in our experimental setup, we also
translate languages that are not directly supported

SThe context length for input-level fusion models is dou-
bled. Due to memory and context length limitations, these
models could not be evaluated for TyDiQA; see later.

Model XNLI NusaX

Translate-Train (fusion models are trained on training data
translated to the target language and evaluated using gold
translations in the source language)

XLM-R Base

w/ input-level fusion ~ 84.63 87.87
w/ FLARE 84.62 7543
XLM-R Large

w/ input-level fusion ~ 87.19 90.93
w/ FLARE 88.15 84.66
mT5-XL

w/ input-level fusion ~ 89.67 90.57
w/ FLARE 86.57 80.72

Table 2: Average scores for the translate-train setting
with gold English translations during inference across
languages included in the XNLI, and NusaX datasets,
representing optimal translation quality.

by NLLB. Specifically, Madurese (mad) and Ngaju
(nij) are translated using the Indonesian language
identifier, as these languages are not supported by
NLLB® (Winata et al., 2023).

For translating extractive QA datasets, we en-
close the answer spans within marker tokens prior
to translation with NLLB (Chen et al., 2023). This
method allows us to determine the position of the
translated answer spans by locating these marker
tokens in the translated text. Instances that fail to re-
tain the answer span marker tokens in the translated
output are excluded from the evaluation process.

®We note that Toba Batak (bbc) is unsupported by NLLB
and excluded from the evaluation due to translation artifacts
resulting in random classification performance.



Fusion Function TyDiQA NusaX

Translate-Train (models are trained on data translated to
the target language)

add 65.04/53.48 79.89
mul 65.30/54.30 78.78
add+relu 65.06/53.78 79.99
cross-attention 65.04 /53.64 78.17

Table 3: Average scores for different fusion functions
based on XLM-R Large using FLARE.

5 Results and Discussion

Main Results displayed in Table 1 confirm our
hypothesis that task-specific knowledge can be effi-
ciently transferred from English to other languages
within adapter bottlenecks. FLARE consistently sur-
passes the zero-shot, translate-test, and translate-
train baselines across various tasks, demonstrat-
ing robust performance with machine-translated
training data in the target language and machine-
translated source language data during inference.
Moreover, the results from the few-shot adaptation
scenario on NusaX suggest that FLARE does not
require extensive labeled task data. It improves
downstream performance in few-shot settings on
lower-resource languages. While input-level fusion
shows competitive results for XLM-R Base, both
translate-train and FLARE outperform input-level
fusion for larger mPLMs. Beyond performance
benefits, FLARE reduces the average training time
on XNLI by more than 30% when compared to
input-level fusion.

When comparing FLARE with the FLARE MT vari-
ant which utilizes latent translations, it becomes
evident that the mPLM’s task-specific enriched
source representations enhance downstream perfor-
mance. In settings where extracting task-specific
knowledge for the source representations from the
mPLM is challenging, such as when faced with
issues of translation quality, the richer translation
information from the MT model’s encoder repre-
sentations can enhance downstream performance.

Impact of Translation Quality. Translation qual-
ity is an important factor when combining source
and target language representations. The results
in Table 2 show the upper performance bound-
ary when fusion models are exposed to gold trans-
lations during inference. Providing gold transla-
tions for source language inputs closes the cross-
lingual transfer gap, matching source language per-
formance. This demonstrates that FLARE can opti-
mally combine the available information, and its

NusaX TyDIQA = nus 600M

[ NLLB 3.3B
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Figure 4: Average performance differences on NusaX
and TyDiQA for XLM-R Large using FLARE MT with
MT models of different size.

performance scales with translation quality, which
is the most decisive factor for downstream perfor-
mance across fusion models.

For extractive QA tasks, MT quality limits model
applicability. For these tasks, FLARE matches or
surpasses the translate-train and translate-test base-
lines, indicating that the lower performance bound-
ary matches strong baselines. In contrast, perfor-
mance of input-level fusion substantially deteri-
orates when evaluated using machine-translated
inputs, underscoring its reliance on the quality of
English text inputs. Yet, when provided with gold
translation data, input-level fusion matches or ex-
ceeds source language performance.

The FLARE MT variant relies on latent transla-
tions, which contain rich translation information.
Consequently, the MT model size, serving as a
proxy for translation quality, has a lower impact on
performance. The results in Figure 4 show that per-
formance with the NLLB 600M variant is compa-
rable to, or even better than, that with NLLB 3.3B.
This suggests that down-projecting latent transla-
tions may incur information loss.

Impact of Fusion Function. Table 3 presents
the average performance of fusion functions in-
side LoRAs of XLLM-R Large. The results suggest
that adding non-linearity to the fusion functions
does not provide decisive performance benefits
over simpler linear transformations. Notably, the
functions add, mul, and add+relu show the best
performance. Despite the additional parameters
available in cross-attention, the technique does not
yield superior downstream performance. In sum,
given that the optimal fusion function appears to be
task-dependent, these functions can be regarded as
hyperparameters that can also be fine-tuned based
on validation data.

Impact of Adapter Capacity. Increasing the
bottleneck size within LoRA improves FLARE’ s
performance, albeit with diminishing returns for



Model r TyDiQA NusaX

Translate-Train (models are trained on training data trans-
lated to the target language)

XLM-RBase 8  51.05/38.11 63.40
w/ FLARE 51.12/39.08 66.46
XLM-R Large 64.87753.81 7779
w/ FLARE 65.03/53.96 79.21
XLM-RBase 64  50.09/37.66 70.29
w/ FLARE 50.04 /37.74 73.61
XLM-R Large 65.20/ 53.74 7747
w/ FLARE 65.30/ 54.30 79.99
XLM-R Base 128 49.77/37.78 70.46
w/ FLARE 50.42 /38.63 73.12
XLM-R Large 65.26/53.97 77.36
w/ FLARE 66.18 /55.46 7935

Table 4: Average scores for varying adapter bottleneck
size r in LoRA; based on XLM-R Large, using FLARE
with the add+relu fusion function (Section 3.2).

r = 128 on datasets like NusaX; see Table 4. This
suggests that even highly compressed language rep-
resentations are sufficient to facilitate cross-lingual
transfer in the representation space. Moreover, the
required adapter capacity is dependent on task com-
plexity: more complex tasks require finer-grained
representations for optimal fusion performance.
Despite the incremental performance gains with
larger adapter capacities, even LoRA adapters with
r = 8 already yield considerable benefits with
FLARE. Interestingly, FLARE can leverage larger
adapter capacities more effectively compared to
regular LoRA adapters without fusion.

Layer-wise Language Activation. Figure 6 shows
that the magnitudes of source and target language
activations across the entire XLM-R Large are com-
parable. This indicates that FLARE does not overly
rely on either source or target representations dur-
ing fusion. Further, Figure 5 displays the average
activations for English and Acehnese in the first
adapter bottleneck: this confirms that both source
and target languages maintain similar activation
magnitudes. Hence, subsequent Acehnese repre-
sentations are infused with the English representa-
tions from this initial transfer, integrating balanced
source and target language information. Detailed
activations for individual instances are illustrated
in Figure 7, which show positional activation dif-
ferences and demonstrate the alignment of source
and target languages for information transfer.

On Latent MT Fusion. FLARE MT outperforms
zero-shot and translate-test baselines and shows
competitive performance with regular FLARE. This
indicates that errors in discrete translations directly
affect downstream performance. In contrast to reg-
ular FLARE, the MT encoder representations used in
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Figure 5: Average activation values for and
Acehnese in the first bottleneck query layer in XLM-R
Large for the NusaX test set; add+relu fusion.
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Figure 6: Average activations in the bottleneck adapters
across all XLM-R Large layers for the NusaX test set.

FLARE MT include task-agnostic language informa-
tion, and therefore do not transfer task knowledge
to the target languages. Nonetheless, it provides a
resource-efficient alternative to regular FLARE by
avoiding the need for decoding in the MT and elim-
inating the forward pass in the mPLM, making it
especially valuable in scenarios where translation
quality is limited. The detailed results for XNLI in
Table 6 (appendix) show that FLARE MT is particu-
larly beneficial for lower-resource languages, such
as Swahili and Urdu, compared to FLARE, when
exposed to large amounts of training data.

6 Conclusion

We introduced Fusion for Language Representa-
tions (FLARE) for parameter-efficient cross-lingual
transfer (XLT). Our experimental results demon-
strated that FLARE outperforms strong XLT base-
lines on natural language understanding tasks.
With gold translations, it matches model per-
formance in English, while not reducing perfor-
mance below translate-train baselines for lower-
quality translations. We also showed that FLARE
is representation-agnostic: it can directly incorpo-
rate latent translations from an MT model in place
of translated English text. This further improves
resource-efficiency and enhances knowledge trans-
fer for lower-quality translations.



7 Limitations

The proposed FLARE method by design relies on
textual data availability for both source and tar-
get languages. In practical scenarios, such as the
standard translate-train settings evaluated in our
study, machine translation models are utilized to
generate either the source or target language in-
puts. Consequently, the performance of FLARE
is dependent upon the quality of these machine
translations, as we also investigated empirically
in this work. This dependency poses some sig-
nificant challenges, particularly for tasks that re-
quire precise positional alignment, like extractive
question-answering, where the quality of machine
translations affects downstream performance and
model applicability.

Furthermore, our evaluation exclusively employs
English as the high-resource source language for
representation fusion. While English is predomi-
nantly used in mPLM pretraining corpora, explor-
ing other high-resource languages that share lin-
guistic similarities with the target languages could
potentially yield similar or improved cross-lingual
transfer performance.

Finally, our choice of base multilingual LMs
has been motivated by the current state-of-the-art
(SotA) in the field of multilingual NLP and XLT
to low-resource languages for NLU tasks. The
main models are SotA encoder-only (XLM-R) and
encoder-decoder mPLMs (mT5), while we also
provide some preliminary results with a represen-
tative decoder-only LLM (Llama 3). However, we
note that the LLLM technology and its adaptation
to XLT for NLU in lower-resource languages has
not been proven to be fully mature yet (Lin et al.,
2024; Razumovskaia et al., 2024).
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A Detailed Evaluation Results

Figure 7 displays average activations within the
first adapter bottlenecks in the XLM-R Large
model using FLARE and the add+relu fusion func-
tion. This visualization highlights the positional
alignment process between English and Acehnese
token representations, with varying activation val-
ues across different sequence positions reflecting
the dynamics of language representation fusion.

Table 6 shows the results for the XNLI dataset
for each language in zero-shot XLT, translate-
test, translate-train settings, including translate-
train with gold translations in the source language.
The results confirm that FLARE consistently im-
proves XTL performance in the translate-train set-
ting across different languages without particular
bias towards typological relatedness to English or
frequency in pretraining corpora.

Table 7 details the results for the TyDiQA dataset
for each language in the zero-shot XLT, translate-
test, and translate-train settings. The outcomes
demonstrate that FLARE performance extends to
tasks including positional information, such as ex-
tractive question-answering.

Table 8 outlines the performance for the NusaX
dataset for each language in zero-shot XLT,
translate-test, translate-train, and translate-train
settings with gold translations in the source lan-
guage. Even with few training samples, our FLARE
method demonstrates consistent performance im-
provements across the low-resource languages in-
cluded in the NusaX dataset.

B Training Details

Our evaluation results are averaged across two ran-
dom seeds. Initially, we fully fine-tune XLM-R
Base and XLLM-R Large models on English task
data. For mT5-XL, fine-tuning is conducted us-
ing LoRA adapters set with 7 = 64 and o = 128,
which are subsequently integrated into the model’s
weights prior to task fine-tuning in the target lan-
guages. Hyperparameter configurations for full-
tuning each mPLM are provided in Table 5.

The total computation time for the experimental
results exceeds 4,000 GPU hours. Experiments are
conducted on NVIDIA A100 and H100 GPUs. All
models are trained using half-precision.
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Figure 7: Activation values for individual instances
included in the NusaX test set. and Acehnese
activation values are extracted from the first bottleneck
query layer in XLMR-Large, which is trained with the
add+relu fusion function.

C Another Ablation: Representation
Fusion during Training Only

To investigate the importance of utilizing source
language representations during inference, we mod-
ified FLARE to restrict representation fusion to
the training phase only. Specifically, we limited
the fusion with source language representations
to 50% of the training instances and excluded
source language data during inference. This eval-
uates cross-lingual transfer capabilities based on
instance-independent patterns learned from source
language representations during training. Our find-
ings reveal that fusion adapters struggle to learn
patterns that are independent of specific instances
from source language representations during train-
ing. As a result, when implemented in the XLM-
R Large model on the NusaX test set, the perfor-
mance of the train-only FLARE variant decreased by
30%. Crucially, this significant drop underscores
the importance of incorporating source language
representations during inference to achieve effec-
tive cross-lingual adaptation.



Model Hparam Values

XLMR-Base  epochs {10, 10, 20}
batch size 32
sequence length {128, 512, 128}
learning rate 2e-5

XLMR-Large epochs {10, 10, 20}
batch size 32
sequence length {128, 512, 128}
learning rate 2e-5

mT5-XL epochs {10, 10, 40}
batch size 64
sequence length {128, 512, 128}
learning rate 2e-4

Table 5: Hyperparameter configurations for each mPLM
across the XNLI, TyDiQA, and NusaX datasets. Values
listed in curly braces represent the specific settings used
for each dataset in sequential order: {XNLI, TyDiQA,
NusaX}.

D Preliminary Results on LLaMA 3

To validate whether the performance benefits of
FLARE extend to decoder-only model architec-
tures, we conducted further experiments using the
LLaMA 3 8B model (Al@Meta, 2024). We fine-
tune the base model for 3 epochs on the English
NusaX dataset using LoRA adapters (r = 64,
a = 128). Subsequently, we adapted this base
model to the Indonesian languages included in the
NusaX dataset using FLARE in the translate-train
setting. We train the base model for 3 epochs with a
learning rate of 2e %, maintaining the same LoRA
configurations as mentioned above. The results
demonstrate that language representation fusion is
effectively applicable to decoder-only architectures.
The LLaMA 3 8B model with FLARE achieved an
F1-Score of 76.58, surpassing the translate-test
performance, which was 76.18. While these out-
comes are in line with our findings for other model
architectures, they suggest that the LLaMA 3 base
model is undertrained and it has not been created
to support multilingual NLP applications directly.
Consequently, the results are not directly compara-
ble with those included in Table 1, and they war-
rant further investigation (also related to improving
target language adaptation of LLMs in general),
which is out of scope of this particular work.
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Model en ar bg de el es fr hi ru SW th tr ur vi zh Avg.
Zero-Shot Cross-lingual Transfer

XLM-R Base 84.83 72.18 7723 7685 75.67 7892 7820 70.06 7517 6427 71.52 7242 6595 7469 7327 74.08
XLM-R Large 87.94 7745 81.72 8126 81.58 8299 8240 7431 78.66 67.70 7629 76.95 69.88 7830 78.60 78.40
mT5-XL 90.00 79.72 84.01 83.55 83.05 84.87 84.49 7772 8138 7585 77.70 80.46 7385 79.90 80.48 80.50
Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 84.83 74.69 77774 7886 7842 8048 7886 7287 7625 7090 71.60 76.41 6685 76.57 7299 75.25
XLM-R Large 87.94 7651 81.28 81.12 81.36 8248 81.74 7473 7758 71.88 71.96 77.62 6852 7790 7395 77.04
mT5-XL 90.00 79.06 83.17 8329 8271 84.09 83.49 76.67 80.54 73.15 74.69 79.64 69.80 80.26 77.31 79.13
Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 84.83 7543 79.50 79.08 78.18 80.68 79.90 73.11 7820 79.90 76.87 75.67 69.40 78.06 7822 77.30
w/ input-level fusion 84.83 7473 77.80 78.08 76.59 7894 7838 7122 7537 7032 7226 7593 6571 7579 7297 7458
w/ FLARE MT 84.83 76.71 80.34 79.72 7846 80.74 80.00 73.73 78.62 7120 77.09 75.89 7050 78.16 78.84 77.14
w/ FLARE 84.83 75.03 7551 7836 7447 76777 7850 69.68 74.63 70.64 69.42 72.63 64.89 74.03 73.07 73.40
XLM-R Large 87.94 7651 8395 81.12 8291 8431 81.74 7812 8126 71.88 7854 80.56 7503 8176 73.95 79.40
w/ input-level fusion 87.94 79.60 8230 8146 8236 83.77 81.26 76.85 78.70 73.15 74.85 80.06 70.70 79.40 74.19 78.48
w/ FLARE MT 87.94 8090 8491 83.75 8397 8503 8391 7820 82.16 7639 80.72 81.26 7517 81.60 82.34 81.45
w/ FLARE 87.94 7994 8359 8246 82775 8439 8244 80.72 78.10 73.65 78.10 80.06 73.99 80.66 82.34 80.23
mT5-XL 90.00 8224 8595 8543 8533 86.29 8623 80.62 8391 7896 81.12 83.01 77.07 82.81 8295 82.99
w/ input-level fusion 90.00 79.74 83.65 83.65 8295 84.51 83.81 77.50 81.18 7347 7593 79.82 70.74 80.70 77.54 79.66
w/ FLARE MT 90.00 82.50 8577 8549 8495 85.85 85.61 80.48 8339 79.06 80.66 83.17 77.50 82.53 82.79 82.84
w/ FLARE 90.00 82.59 86.43 85.61 8539 86.13 86.17 81.08 84.09 79.58 81.10 83.41 77.52 8332 83.11 83.25
Translate-Train (fusion models are trained on training data translated to the target language and evaluated using gold translations in the source language)

XLM-R Base w/ input-level fusion ~ 84.83 84.85 84.79 84.79 84.71 84.67 84.25 84.63 8431 8453 84.63 84.51 84.87 8475 84.47 84.63
w/ FLARE 84.83 84.63 84.63 84.53 84.67 84.55 84.57 8435 8439 84.65 84.87 84.87 8479 84.67 8449 84.62
XLM-R Large w/ input-level fusion 87.94 88.41 88.54 88.46 8836 8828 88.02 8838 8591 86.23 8591 85.85 86.05 8585 86.45 87.19
w/ FLARE 87.94 88.10 88.06 88.04 88.12 88.02 88.08 88.40 88.12 8846 88.16 88.14 8822 88.04 83.16 88.15
mT5-XL w/ input-level fusion 90.00 90.04 89.80 89.54 89.70 89.78 89.50 89.80 89.52 89.56 89.84 89.66 89.38 89.52 89.70 89.67
FLARE 90.00 88.62 88.74 88.80 85.34 87.83 86.19 8431 86.12 89.66 8849 89.56 79.22 8533 83.73 86.57

Table 6: Average scores per language in the XNLI dataset. Model performance is evaluated using the Accuracy
metric.

Model en ar ben fi ind ko ru sW tel Avg.
Zero-Shot Cross-lingual Transfer

XLM-R Base  62.17/51.36 51.35/35.94 50.31/36.67 42.48/27.39 58.07/46.95 40.26/28.77 41.41/29.97 58.66/47.44 48.62/40.00 48.90/36.64
XLM-R Large 72.26/57.96 62.78/51.25 72.14/60.00 51.31/37.90 68.34/58.84 53.49/40.03 56.20/44.03 69.59/59.04 86.79/82.63 65.08/54.22
mT5-XL 74.97/61.14 5826/40.31 71.00/53.33 55.21/40.13 67.76/5593 53.77/41.03 56.00/43.30 68.64/57.02 82.26/75.00 64.11/50.76
Translate-Test (translate test data to English using NLLB 3.3B)

XLM-RBase  62.17/51.36 51.17/36.25 47.98/35.00 42.59/27.39 5843/4726 40.84/30.77 41.72/30.24 58.70/47.44 48.61/40.00 48.76/36.79
XLM-R Large 72.26/57.96 62.40/50.62 73.25/60.00 52.62/38.54 68.78/58.84 55.09/41.03 55.64/42.97 69.38/58.70 86.91/82.63 65.51/54.17
mT5-XL 74.97/61.14 5823/40.00 71.00/53.33 54.99/40.13 69.76/57.93 53.77/41.03 56.72/44.03 68.22/58.02 82.15/75.00 64.36/51.18
Translate-Train (models are trained on training data translated to the target language)

XLM-R Base  62.17/51.36 52.08/36.88 50.78/38.33 44.48/27.39 58.96/47.56 40.41/29.06 42.56/31.30 59.54/48.12 51.94/42.63 50.09/37.66
w/ FLARE MT  62.17/51.36 51.36/37.19 48.19/35.00 43.13/28.03 59.78/48.48 38.48/29.06 42.68/31.30 58.75/47.78 49.18/40.79 48.94/37.20
w/ FLARE 62.17/51.36 52.37/37.19 49.87/36.67 43.98/27.71 59.67/48.78 40.45/29.92 42.55/30.24 58.88/47.44 52.53/43.95 50.04/37.74
XLM-R Large 72.26/57.96 61.77/49.38 72.44/5833 51.90/39.17 68.07/59.45 55.46/41.03 55.57/42.71 68.78/57.00 87.61/82.89 65.20/53.74
w/ FLARE MT  72.26/57.96 61.99/48.75 71.58/58.33 52.62/37.90 6839/59.76 56.42/43.59 56.17/43.24 68.60/57.34 86.95/82.89 65.34/53.98
w/ FLARE 72.26/57.96 61.77/49.69 71.17/58.33 52.55/39.81 68.35/60.06 56.10/41.88 55.69/43.24 69.02/57.68 87.78/83.68 65.30/54.30
mT5-XL 74.97/61.14 60.34/43.44 70.01/58.33 54.44/38.85 68.63/57.01 56.46/4530 55.94/41.11 69.56/58.70 83.54/76.58 64.87/52.42
w/FLARE MT  74.97/61.14 59.96/43.15 69.86/56.66 55.63/39.52 68.80/57.11 56.17/44.97 55.63/42.24 69.29/57.53 82.94/75.82 64.78/52.12
w/ FLARE 74.97/61.14 57.55/41.25 71.95/57.67 5597/40.45 68.88/57.01 56.61/4536 56.31/43.77 68.48/57.68 83.41/76.65 64.90/52.48

Table 7: Average scores per language in the TyDiQA dataset. Model performance is evaluated using the F1 / EM
metrics.
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Model en ace ban bjn bug ind Jjav mad min nij sun Avg.

Zero-Shot Cross-lingual Transfer

XLM-R Base 91.00/90.00 55.75/52.64 64.25/61.87 69.00/66.01 43.00/32.49 89.50/88.62 75.25/71.73 50.75/42.75 63.50/61.28 51.75/43.75 62.25/59.60 62.50/58.07
XLM-R Large 91.75/91.21 70.00/69.53 78.25/77.78 81.50/80.77 50.75/47.99 92.50/91.82 86.50/85.71 73.25/72.28 82.00/80.52 74.00/72.93 85.50/84.73 77.42/76.41
mT5-XL 90.75/90.21 73.25/72.93 77.00/76.24 80.25/79.62 34.75/30.84 91.50/90.61 88.25/87.35 61.75/61.38 78.50/77.90 65.00/65.16 87.50/86.73 73.78/72.88

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 91.00/90.00 77.25/76.88 77.25/77.52 85.25/84.57 72.50/72.28 87.50/86.63 85.25/84.67 55.50/5532 83.00/82.22 59.00/58.61 84.75/84.31 76.72/76.30
XLM-R Large 91.75/91.21 77.00/76.46 74.50/74.19 84.25/83.78 70.00/69.82 87.75/86.88 84.25/83.69 58.25/58.36 82.75/82.27 56.25/56.54 86.50/86.04 76.15/75.80
mT5-XL 90.75/90.21 76.75/76.18 74.00/73.43 82.25/81.55 69.50/69.13 87.00/85.99 84.25/83.50 61.00/60.63 83.00/82.32 59.50/59.37 83.50/82.68 76.08/75.48

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 91.00/90.00 67.50/67.48 71.50/70.73 79.50/78.38 65.25/65.29 88.25/86.48 83.50/81.52 55.00/48.54 80.75/79.35 60.00/55.95 78.00/76.77 72.92/71.04
w/ input-level fusion 91.00/90.00 80.75/79.97 73.00/72.67 82.50/80.45 72.75/7228 90.50/89.63 85.50/84.66 63.25/62.80 82.75/82.09 58.75/56.96 85.75/85.25 77.55/76.68
w/ FLARE MT 91.00/90.00 73.25/73.28 70.00/69.19 80.00/78.81 63.50/63.03 90.75/89.58 84.00/82.23 57.00/52.80 81.75/80.10 57.00/53.03 79.25/78.47 73.65/72.05
w/ FLARE 91.00/90.00 72.00/71.93 75.00/74.13 80.25/78.77 75.50/74.77 89.00/87.30 82.50/80.41 58.75/5532 80.50/78.86 61.25/57.33 78.50/77.28 75.32/73.61
XLM-R Large 91.75/91.21 73.00/72.29 77.50/76.14 83.00/81.74 63.00/60.73 90.50/89.25 87.75/86.51 74.75/73.14 82.00/80.51 73.50/71.14 84.25/83.22 78.92/77.47
w/ input-level fusion 91.75/91.21 78.00/77.63 75.00/74.72 82.25/81.77 71.50/71.12 90.25/89.38 90.00/89.44 67.00/66.07 79.00/78.31 68.00/67.69 88.25/87.75 78.92/78.39
w/ FLARE MT 91.75/91.21 73.50/72.59 77.25/76.84 82.50/81.95 56.00/53.88 91.50/90.33 87.75/86.50 72.50/71.56 84.00/82.67 73.00/70.66 85.75/84.67 78.38/77.16
w/ FLARE 91.75/91.21 79.25/78.77 78.75/78.15 81.50/80.32 70.25/70.08 92.00/91.27 88.75/87.85 73.50/72.67 86.25/85.31 74.00/72.07 84.00/83.42 80.82/79.99
mT5-XL 90.75/90.21 81.25/80.11 82.50/80.94 86.25/85.13 68.50/66.58 90.75/89.57 91.00/89.90 75.00/72.61 8525/83.67 72.00/68.99 89.25/88.29 82.18/80.58
w/ input-level fusion 90.75/90.21 81.50/80.95 79.25/78.57 83.50/82.88 72.25/71.87 90.25/89.28 40.00/33.80 70.00/69.10 84.25/83.57 71.75/71.14 88.50/87.55 76.12/74.87
w/ FLARE MT 90.75/90.21 82.00/81.14 83.00/81.39 85.25/84.07 65.25/64.62 90.75/89.61 90.75/89.73 72.00/69.05 85.75/84.89 73.25/71.57 89.25/88.01 81.72/80.41
w/ FLARE 90.75/90.21 84.25/83.80 81.50/80.55 85.00/84.06 65.75/64.70 89.75/88.32 91.50/90.50 76.50/74.36 85.00/83.64 71.00/69.29 89.00/88.00 81.92/80.72

Translate-Train (fusion models are trained on training data translated to the target language and evaluated using gold translations in the source language)

XLM-R Base w/ input-level fusion ~ 91.00/90.00 90.50/90.04 89.25/88.45 89.50/88.23 89.50/88.51 91.00/89.83 91.00/90.19 86.25/84.76 89.75/88.55 84.75/82.79 88.50/87.38 89.00/87.87

w/ FLARE 91.00/90.00 75.25/74.79 78.75/77.66 81.00/79.66 87.25/85.84 90.75/89.52 84.00/82.06 57.00/51.11 81.75/80.25 61.25/57.10 77.50/76.31 77.45/75.43
XLM-R Large w/ input-level fusion 91.75/91.21 91.75/91.24 91.75/91.08 91.25/90.55 91.25/90.69 92.50/91.99 91.50/90.88 91.75/91.23 91.75/91.07 90.75/90.07 91.00/90.52 91.52/90.93
w/ FLARE 91.75/91.21 89.75/89.24 89.75/88.98 84.00/82.55 90.75/90.07 91.00/90.22 89.00/88.15 73.00/71.20 88.50/87.58 75.00/72.93 86.50/85.71 85.72/84.66
mT5-XL w/ input-level fusion 90.75/90.21  92.00/91.39 91.00/90.39 92.00/91.47 92.00/91.54 91.75/90.88 90.25/89.49 90.00/88.87 91.50/90.86 90.25/89.20 92.25/91.60 91.30/90.57
w/ FLARE 90.75/90.21 84.25/83.80 81.50/80.55 85.00/84.06 65.75/64.70 89.75/88.32 91.50/90.50 76.50/74.36 85.00/83.64 71.00/69.29 89.00/88.00 81.92/80.72

Table 8: Average scores per language in the NusaX dataset. Model performance is evaluated using the Accuracy /
Micro F1 metrics.

Task Language ISO Code Source
XNLI Arabic ar
Bulgarian bg
Chinese zh
French fr
German de
Greek el
Il-{hnd} hi Crowd-sourced (Williams et al., 2018)
ussian ru
Spanish es
Swahili SW
Thai th
Turkish tr
Urdu ur
Vietnamese vi
TyDiQA  Arabic ar
Bengali ben
Finnish fi
mdonesian - nd Wikipedia (Clark et al., 2020)
Russian ru
Swabhili SW
Telugu tel
NusaX Acehnese ace
Balinese ban
Banjarese bjn
Buginese bug
Indonesian ind SmSA (Purwarianti and Crisdayanti, 2019)
Javanese jav
Madurese mad
Minangkabau  min
Ngaju nij

Table 9: Overview of languages and corresponding source data used in the experiments, categorized by task.
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