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ABSTRACT

Many variants of Optimal Transport (OT) have been developed to address its
heavy computation. Among them, notably, Sliced Wasserstein (SW) is widely
used for application domains by projecting the OT problem onto one-dimensional
lines, and leveraging the closed-form expression of the univariate OT to reduce
the computational burden. However, projecting measures onto low-dimensional
spaces can lead to a loss of topological information. To mitigate this issue, in this
work, we propose to replace one-dimensional lines with a more intricate structure,
called tree systems. This structure is metrizable by a tree metric, which yields a
closed-form expression for OT problems on tree systems. We provide an extensive
theoretical analysis to formally define tree systems with their topological prop-
erties, introduce the concept of splitting maps, which operate as the projection
mechanism onto these structures, then finally propose a novel variant of Radon
transform for tree systems and verify its injectivity. This framework leads to an
efficient metric between measures, termed Tree-Sliced Wasserstein distance on
Systems of Lines (TSW-SL). By conducting a variety of experiments on gradient
flows, image style transfer, and generative models, we illustrate that our proposed
approach performs favorably compared to SW and its variants.

1 INTRODUCTION

Optimal transport (OT) (Villani, 2008; Peyré et al., 2019) is a naturally geometrical metric for com-
paring probability distributions. Intuitively, OT lifts the ground cost metric among supports of input
measures into the metric between two input measures. OT has been applied in many research fields,
including machine learning (Bunne et al., 2022; Takezawa et al., 2022; Fan et al., 2022; Hua et al.,
2023; Nguyen & Ho, 2024), statistics (Mena & Niles-Weed, 2019; Weed & Berthet, 2019; Liu
et al., 2022; Nguyen et al., 2022; Nietert et al., 2022; Wang et al., 2022; Pham et al., 2024), mul-
timodal (Park et al., 2024; Luong et al., 2024), computer vision and graphics (Rabin et al., 2011;
Solomon et al., 2015; Lavenant et al., 2018; Nguyen et al., 2021; Saleh et al., 2022).

However, OT has a supercubic computational complexity concerning the number of supports in in-
put measures (Peyré et al., 2019). To address this issue, Sliced-Wasserstein (SW) (Rabin et al., 2011;
Bonneel et al., 2015) exploits the closed-form expression of the one-dimensional OT to reduce its
computational complexity. More concretely, SW projects supports of input measures onto a random
line and leverage the fast computation of the OT on one-dimensional lines. SW is widely used in var-
ious applications, such as gradient flows (Bonet et al., 2021; Liutkus et al., 2019), clustering (Kolouri
et al., 2018; Ho et al., 2017), domain adaptation (Courty et al., 2017), generative models (Deshpande
et al., 2018; Wu et al., 2019; Nguyen & Ho, 2022), thanks to its computational efficiency. Due to
relying on one-dimensional projection, SW limits its capacity to capture the topological structures
of input measures, especially in high-dimensional domains.

Related work. Prior studies have aimed to enhance the Sliced Wasserstein (SW) distance (Nguyen
et al., 2024a; 2020; Nguyen & Ho, 2024) or explore variants of SW (Bai et al., 2023; Kolouri et al.,
2019; Quellmalz et al., 2023). These works primarily concentrate on improving existing components
within the SW framework, including the sampling process (Nguyen et al., 2024a; 2020; Nadjahi
et al., 2021), determining optimal lines for projection (Deshpande et al., 2019), and modifying the
projection mechanism (Kolouri et al., 2019; Bonet et al., 2023). However, few studies have focused
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on replacing one-dimensional lines, which play the role of integration domains, with more complex
domains such as one-dimensional manifolds (Kolouri et al., 2019), or low-dimensional subspaces
(Alvarez-Melis et al., 2018; Bonet et al., 2023; Paty & Cuturi, 2019; Niles-Weed & Rigollet, 2022;
Lin et al., 2021; Huang et al., 2021; Muzellec & Cuturi, 2019). In this paper, we concentrate on the
latter approach, aiming to discover novel geometrical domains that meet two key criteria: (i) pushing
forward of high-dimensional measures onto these domains can be processed in a meaningful manner,
and (ii) OT problems on these domains can be efficiently solved, ideally with a closed-form solution.

Contribution. In summary, our contributions are three-fold:

1. We introduce the concept of tree systems, which consist of copies of the real line equipped
with additional structures, and study their topology. A key property of tree systems is that they
form well-defined metric spaces, with metrics being tree metrics. This property is sufficient to
guarantee that OT problems on tree systems admit closed-form solutions.

2. We define the space of integrable functions and probability measures on a tree system, and
introduce a novel transform, called Radon Transform on Systems of Lines. This transform
naturally transforms measures supported in high-dimensional space onto tree systems, and is a
generalization of the original Radon transform. The injectivity of this variant holds, similar to
other Radon transform variants in the literature.

3. We propose the Tree-Sliced Wasserstein distance on Systems of Lines (TSW-SL), and analyze
its efficiency through the closed-form solution for the OT problem on tree systems, achieving
a similar computational cost as the traditional SW.

Organization. The remainder of the paper is organized as follows. Section 2 provides necessary
backgrounds of SW distance and Wasserstein distance on tree metric spaces. Section 3 provides a
brief and intuitive introduction of tree systems and studies its properties, and Section 4 introduces
the Radon Transform on System of Lines. The novel Tree-Sliced Wasserstein distance on Systems
of Lines is proposed in Section 5. Finally, Section 6 contains empirical results for TSW-SL. Formal
constructions, theoretical proofs of key results, and additional materials are presented in Appendix.

2 PRELIMINARIES

In this section, we review Sliced Wasserstein (SW) distance and Wasserstein distances on metric
spaces with tree metrics (TW).

Wasserstein Distance. Let Ω be a measurable space with a metric d on Ω, and let µ, ν be two
probability distributions on Ω. Let P(µ, ν) be the set of probability distributions π on the product
space Ω × Ω such that π(A × Ω) = µ(A), π(Ω × B) = ν(B) for all measurable sets A, B. For
p ⩾ 1, the p-Wasserstein distance Wp between µ and ν (Villani, 2008) is defined as:

Wp(µ, ν) = inf
π∈P(µ,ν)

(∫
Ω×Ω

d(x, y)p dπ(x, y)

) 1
p

. (1)

Sliced Wasserstein Distance. For µ, ν ∈ P(Rd), the Sliced p-Wasserstein distance (SW) (Bon-
neel et al., 2015) between µ, ν is defined by:

SWp(µ, ν) :=

(∫
Sd−1

Wp
p(Rfµ(·, θ),Rfν(·, θ)) dσ(θ)

) 1
p

, (2)

where σ = U(Sd−1) is the uniform distribution on Sd−1, operator R : L1(Rd) ! L1(R × Sd−1)
is the Radon Transform (Helgason & Helgason, 2011)

Rf(t, θ) =

∫
Rd

f(x) · δ(t− ⟨x, θ⟩) dx, (3)

and fµ, fν are the probability density functions of µ, ν, respectively. Max Sliced Wasserstein
(MaxSW) distance is discussed in Appendix C.
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Adding a tree structure

Figure 1: This illustration demonstrates the process of adding a tree structure to a system of lines.
Left: An example of a system of 5 lines in R2, where the lines intersect, making the system con-
nected. Right: Adding a tree structure to the connected system. In this example, only four pairs
of lines are adjacent, shown by intersections, while the remaining pairs are disconnected, repre-
sented by gaps. This structure is derived by taking a spanning tree from a graph with five nodes
(representing the five lines), with edges connecting nodes where lines intersect.

Monte Carlo estimation for SW. The Monte Carlo method is usually employed to approximate
the intractable integral in Equation (2) as follows:

ŜWp(µ, ν) =

(
1

L

L∑
l=1

Wp
p(Rfµ(·, θl),Rfν(·, θl))

) 1
p

, (4)

where θ1, . . . , θL are drawn independently from U(Sd−1). Using the closed-form expression of one-
dimensional Wasserstein distance, when µ and ν are discrete measures that have supports of at most
n supports, the computational complexity of ŜWp is O(Ln log n+ Ldn) (Peyré et al., 2019).

Tree Wasserstein Distances. Given a rooted tree (T , r) (T is a tree as a graph, with one certain
node r called root) with non-negative edge lengths, and the ground metric dT , i.e. the length of the
unique path between two nodes. For two distributions µ, ν supported on nodes of T , the Wasserstein
distance with ground cost dT , i.e., tree-Wasserstein (TW) (Le et al., 2019), admits a closed-form
expression

WdT ,1(µ, ν) =
∑
e∈T

we ·
∣∣µ(Γ(ve))− ν(Γ(ve))

∣∣, (5)

where ve is the farther endpoint of edge e from r, we is the length of e, and Γ(ve) is the subtree of
T rooted at ve, i.e. the subtree consists of all node x that the unique path from x to r contains ve.

3 SYSTEM OF LINES WITH TREE STRUCTURES

This section provides an intuitive and brief introduction of systems of lines and their additional tree
structures. These structures form metric spaces, called tree systems, which serve as a generalization
of one-dimensional lines within the framework of the Sliced-Wasserstein distance. We then explore
the topological properties and the construction of tree systems. The ideas are illustrated in Figures 1,
2, 3, and a complete formal construction with theoretical proofs are presented in Appendix A.

3.1 SYSTEM OF LINES AND TREE SYSTEM

A line in Rd can be fully described by specifying its direction and a point it passes through. Specif-
ically, a line is determined by (x, θ) ∈ Rd × Sd−1, and is parameterized as x+ t · θ for t ∈ R.
Definition 3.1 (Line and System of Lines in Rd). A line in Rd is an element (x, θ) of Rd × Sd−1.
For k ⩾ 1, a system of k lines in Rd is a set of k lines in Rd.

We denote a line in Rd as l = (xl, θl). Here, xl and θl are called source and direction of l, respec-
tively. Denote (Rd × Sd−1)k by Ld

k, which is the space of systems of k lines in Rd, and an element
of Ld

k is usually denoted by L. The ground set of a system of lines L is defined by:

L̄ :=
{
(x, l) ∈ Rd × L : x = xl + tx · θl for some tx ∈ R

}
.

3
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Figure 2: The same tree system L shown in Figure 1, naturally has a topology derived from five
copies of R. Consider three points a, b, c. The red zigzag line presents the unique path from a to b.
Here the distance between a, b, i.e. dL(a, b), is the sum of four red line segments. Similar for paths
between b and c; a and c. This demonstrates that the triangle inequality is satisfied for dL.

For each element L̄, we sometimes write (x, l) as (tx, l), where tx ∈ R presents the parameterization
of x on l as x = xl + tx · θl. By a point of L, we refer to a point of the ground set L̄. Now consider
a system of distinct lines L in Rd. L is said to be connected if its points form a connected set in Rd.
In this case, L naturally has certain tree structures. Figure 1 gives an example of a system of lines
with an added tree structure. A pair (L, T ) consists of a connected system of lines L and its tree
structure T of L, is called a tree system. We also denote it as L for short.

3.2 TOPOLOGICAL PROPERTIES OF TREE SYSTEMS

A tree system L can be intuitively understood as a system of lines that are connected in certain
ways. It naturally forms a topological space by taking disjoint union copies of R and then taking
the quotient at intersections of these copies. The disjoint union is straightforward, and the quotient
follows the tree structure of L. The topological space resulting from these actions is called the
topological space of a tree system L, and is denoted by ΩL. By its construction, ΩL naturally
carries a measure induced from the standard measure on each copy of R. This measure is denoted
by µL. Notice that, due to the tree structure, a unique path exists between any two points of ΩL.
This leads to an important result regarding the metrizability of ΩL.
Theorem 3.2 (ΩL is metrizable by a tree metric). Consider dL : ΩL × ΩL ! [0,∞) defined by:

dL(a, b) := µL (Pa,b) , ∀a, b ∈ ΩL, (6)

where Pa,b is the unique path between a and b in ΩL. Then dL is a metric on ΩL, which makes
(ΩL, dL) a metric space. Moreover, dL is a tree metric, and the topology on ΩL induced by dL is
identical to the topology of ΩL.

The proof is presented in Theorem A.11. Figure 2 illustrates an example of a unique path between
two points on a tree system, providing an intuitive explanation of why dL is indeed a metric.

3.3 CONSTRUCTION OF TREE SYSTEMS AND SAMPLING PROCESS

A tree system can be built inductively by sampling lines, ensuring that each new line intersects one
of the previously sampled lines. We introduce a straightforward method to construct a tree system:
start by sampling a line, and at each subsequent step, sample a new line that intersects the previously
selected line. Specifically, the process is as follows:

Step 1. Sampling x1 ∼ µ1 for an µ1 ∈ P(Rd), then θ1 ∼ ν1 for an ν1 ∈ P(Sd−1). The pair
(x1, θ1) forms the first line;

Step i. At step i, sampling xi = xi−1 + ti · θi−1 where ti ∼ µi for an µi ∈ P(R), then θi ∼ νi
for an νi ∈ P(Sd−1). The pair (xi, θi) forms the ith line.

The tree system produced by this construction has a chain-like tree structure, where the ith line inter-
sects the (i+ 1)th line. A general approach for sampling tree systems is provided in Appendix A.4.
In practice, we simply assume all the distributions µ’s and ν’s to be independent, and let:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1. µ1 to be a distribution on a bounded subset of Rd, for instance, the uniform distribution on
the d-dimensional cube [−1, 1]d, i.e. U([−1, 1]d);

2. µi for i > 1 to be a distribution on a bounded subset of R, for instance, the uniform
distribution on the interval [−1, 1], i.e. U([−1, 1]);

3. θn to be a distribution on Sd−1, for instance, the uniform distribution U(Sd−1).

Using the distributions µ’s and ν’s, we get a distribution on the space of all tree systems that can
be sampled by this way. We obtain a distribution over the space of all tree systems that can be
sampled in this manner. The algorithm for sampling tree systems is summarized in Algorithm 1,
and illustrated in Figure 3.

Algorithm 1 Sampling (chain-like) tree systems.

Input: The number of lines in tree systems k.
Sampling x1 ∼ U([−1, 1]d) and θ1 ∼ U(Sd−1).
for i = 2 to k do

Sample ti ∼ U([−1, 1]) and θi ∼ U(Sd−1).
Compute xi = xi−1 + ti · θi−1.

end for
Return: (x1, θ1), (x2, θ2), . . . , (xk, θk).

Figure 3: Illustration of Algorithm 1
.

4 RADON TRANSFORM ON SYSTEMS OF LINES

In this section, we introduce the notions of the space of Lebesgue integrable functions and the Radon
Transform for systems of lines. Let L ∈ Ld

k be a system of k lines. Denote L1(Rd) as the space of
Lebesgue integrable functions on Rd with norm ∥ · ∥1, i.e.

L1(Rd) =

{
f : Rd ! R : ∥f∥1 =

∫
Rd

|f(x)| dx < ∞
}
. (7)

Two functions f1, f2 ∈ L1(Rd) are considered to be identical if f1(x) = f2(x) almost everywhere
on Rd. As a counterpart, a Lebesgue integrable function on L is a function f : L̄ ! R such that:

∥f∥L :=
∑
l∈L

∫
R
|f(tx, l)| dtx < ∞. (8)

The space of Lebesgue integrable functions on L is denoted by L1(L). Two functions f1, f2 ∈
L1(L) are considered to be identical if f1(x) = f2(x) almost everywhere on L̄. The space L1(L)
with norm ∥ · ∥L is a Banach space.

Recall that L has k lines. Denote the (k − 1)-dimensional standard simplex as ∆k−1 =
{(al)l∈L : al ⩾ 0 and

∑
l∈L al = 1} ⊂ Rk. Denote C(Rd,∆k−1) as the space of continuous

maps from Rd to ∆k−1. A map in C(Rd,∆k−1) is referred to as a splitting map. Let L be a sys-
tem of k lines in Ld

k, α be a splitting map in C(Rd,∆k−1), we define an operator associated to
α that transforms a Lebesgue integrable functions on Rd to a Lebesgue integrable functions on L,
analogous to the original Radon Transform. For f ∈ L1(Rd), define:

Rα
Lf : L̄ −! R

(x, l) 7−!

∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy, (9)

where δ is the 1-dimensional Dirac delta function. For f ∈ L1(Rd), we can show that Rα
Lf ∈

L1(L). Moreover, we have ∥Rα
Lf∥L ⩽ ∥f∥1. In other words, the operator Rα

L : L1(Rd) ! L1(L)
is well-defined, and is a linear operator. The proof for these properties is presented in Theorem B.2.
We now propose a novel variant of Radon Transform for systems of lines.
Definition 4.1 (Radon Transform on Systems of lines). For α ∈ C(Rd,∆k−1), the operator Rα:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L)

f 7−! (Rα
Lf)L∈Ld

k
.

5
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Figure 4: An illustration of Radon Transform on Systems of Lines. Given f ∈ L1(Rd) such
that f(x) = 0.6, f(y) = 0.4, and L is a system of 3 lines. For a splitting map α such that
α(x) = (1/6, 3/6, 2/6) and α(y) = (1/4, 2/4, 1/4), f is transformed to Rα

Lf . By Equation (9), for
instance, the value of Rα

Lf at the projection of x onto line (2) of L is f(x) · α(x)2 = 0.3.

is called the Radon Transform on Systems of Lines.
Remark. An illustration of splitting maps and the Radon Transform on Systems of Lines is presented
in Figure 4. Intuitively, splitting map α indicates how the mass at a given point is distributed across
all lines of a system of lines. In the case k = 1, there is only one splitting map which is the constant
function 1, and the Radon Transform for Ld

1 is identical to the traditional Radon Transform.

Many variants of the Radon transform require the transform to be injective. In the case of systems
of lines, the injectivity also holds for Rα.
Theorem 4.2. Rα is injective for all splitting maps α ∈ C(Rd,∆k−1).

The proof of this theorem is presented in Theorem B.1. Denote P(Rd) as the space of all probability
distribution on Rd, and define a probability distribution on L to be a function f ∈ L1(L) such that
f : L̄ ! [0,∞) and ∥f∥L = 1. The space of probability distribution on L is denoted by P(L).
Then Rα

L transforms a distribution in P(Rd) to a distribution in P(L). In other words, the restricted
operator Rα

L : P(Rd) ! P(L) is also well-defined.

5 TREE-SLICED WASSERSTEIN DISTANCE ON SYSTEMS OF LINES

In this section, we present a novel Tree-Sliced Wasserstein distance on Systems of Lines (TSW-SL).
Consider T as the space of tree systems consisting of k lines in Rd that be sampled by Algorithm 1.
By the remark at the end of Subsection 3.3, we have a distribution σ on the space T. General cases
of T, as in Appendix A.4, will be handled in a similar manner. For simplicity and convenience,
we occasionally use the same notation to represent both a measure and its probability distribution
function, provided the context makes the meaning clear.

5.1 TREE-SLICED WASSERSTEIN DISTANCE ON SYSTEMS OF LINES

Consider a splitting function α in C(Rd,∆k−1). Given two probability distributions µ, ν in P(Rd)
and a tree system L ∈ T. By the Radon Transform Rα

L in Definition 4.1, µ and ν are transformed to
two probability distributions Rα

Lµ and Rα
Lν in P(L). By Theorem 3.2, L has a tree metric dL, we

compute Wasserstein distance WdL,1(Rα
Lµ,Rα

Lν) between Rα
Lµ and Rα

Lν by Equation (5).
Definition 5.1 (Tree-Sliced Wasserstein Distance on Systems of Lines). The Tree-Sliced Wasser-
stein distance on Systems of Lines between µ, ν in P(Rd) is defined by:

TSW-SL(µ, ν) :=
∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L). (10)

Remark. Note that, the definition of TSW-SL depends on the space of sampled tree systems T, the
distribution σ on T, and the splitting function α. For simplifying the notation, we omit them.

TSW-SL is a metric on P(Rd). The proof for the below theorem is provided in Appendix D.1.
Theorem 5.2. TSW-SL is a metric on P(Rd).
Remark. If tree systems in T consists consist only one line, i.e. k = 1, then in Definition 4.1, the
splitting map α is the constant map 1, and the Radon Transform Rα now becomes identical to the

6
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original Radon Transform, as pushing forward measures onto lines depends only on their directions.
Also, according to the sampling process described in Subsection 3.3, σ becomes the distribution
of θ1, which is U(Sd−1). In this case, TSW-SL in Equation (10) is identical to SW in Equation
(2). Furthermore, in Appendix C, we introduce Max Tree-Sliced Wasserstein Distance on Systems
of Lines (MaxTSW-SL), an analog of MaxSW (Deshpande et al., 2019).

5.2 COMPUTING TSW-SL

We employ the Monte Carlo method to estimate the intractable integral in Equation (10) as follows:

̂TSW-SL(µ, ν) =
1

L

L∑
i=l

WdLl
,1(Rα

Ll
µ,Rα

Ll
ν), (11)

where L1, . . . ,LL
i.i.d∼ σ are referred to as projecting tree systems. We now discuss on how to

compute WdL,1(Rα
Lµ,Rα

Lν) for L ∈ T. In applications, consider µ, ν ∈ P(Rd) given as follows:

µ(x) =

n∑
i=1

ui · δ(x− ai) and ν(x) =

m∑
i=1

vi · δ(x− bi) (12)

Rα
L projects µ, ν on L, resulting in discrete measures Rα

Lµ,Rα
Lν in P(L). In details, from definition

of Rα
Lµ, the support of Rα

Lµ is the set of all projections of support of µ onto lines of L. Moreover,
the value of Rα

Lµ at projections of ai onto l is equal to α(ai)l · ui. Similar for Rα
Lν. From this

detailed description of Rα
Lµ,Rα

Lν, together with Equation (5), we derive a closed-form expression
of WdL,1(Rα

Lµ,Rα
Lν) as follows:

WdL,1(Rα
Lµ,Rα

Lν) =
∑
e∈T

we ·
∣∣∣Rα

Lµ(Γ(ve))−Rα
Lν(Γ(ve))

∣∣∣. (13)

This expression enables an efficient and highly parallelizable implementation of TSW-SL, as it relies
on fundamental operations like matrix multiplication and sorting.
Remark. Assume n ⩾ m, the time complexity for TSW-SL is O(Lkn log n + Lkdn) since it
primarily involves projecting onto L×k lines and sorting n projections on each line. This complexity
is equivalent to that of SW when the number of projection directions is the same. Therefore, in our
experiments, we ensure a fair comparison by evaluating the performance of TSW-SL against SW or
its variants using the same number of projection directions.

We summarize this section with Algorithm 2 of computing TSW-SL.

Algorithm 2 Tree Sliced Wasserstein distance on Systems of Lines.

Input: µ and ν in P(Rd), the number of lines in each tree system k, the number of tree systems
L, a splitting map α : Rd ! ∆k−1.
for l = 1 to L do

Sample tree system Li =
(
(x

(l)
1 , θ

(l)
1 ), . . . , (x

(l)
k , θ

(l)
k )
)
.

Project µ and ν onto Ll to get Rα
Ll
µ and Rα

Ll
ν.

Compute WdLl
,1(Rα

Ll
µ,Rα

Ll
ν).

end for
Compute ̂TSW-SL = (1/L) · ΣL

l=1WdLl
,1(Rα

Ll
µ,Rα

Ll
ν).

Return: ̂TSW-SL(µ, ν).

6 EXPERIMENTAL RESULTS

In this section, we present empirical results demonstrating the advantages of our TSW-SL distance
over traditional SW distance and its variants, and how MaxTSW-SL enhances the original MaxSW
(Deshpande et al., 2019) through optimized tree construction. The splitting maps α will be selected
either as a trainable constant vector or a random vector, while the tree systems will be sampled
such that the root is positioned near the mean of the target distribution, i.e. the data mean. It

7
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Table 1: Average Wasserstein distance between source and target distributions of 10 runs on Swiss
Roll and 25 Gaussians datasets. All methods use 100 projecting directions.

Swiss Roll 25 Gaussians

Methods Iteration Time/Iter(s) Iteration Time/Iter(s)
500 1000 1500 2000 2500 500 1000 1500 2000 2500

SW 5.73e-3 2.04e-3 1.23e-3 1.11e-3 1.05e-3 0.009 1.61e-1 9.52e-2 3.44e-2 2.56e-2 2.20e-2 0.006
MaxSW 2.47e-2 1.03e-2 6.10e-3 4.47e-3 3.45e-3 2.46 5.09e-1 2.36e-1 1.33e-1 9.70e-2 8.48e-2 2.38
SWGG 3.84e-2 1.53e-2 1.02e-2 4.49e-3 3.57e-5 0.011 3.10e-1 1.17e-1 3.38e-2 3.58e-3 2.54e-4 0.009
LCVSW 7.28e-3 1.40e-3 1.38e-3 1.38e-3 1.36e-3 0.010 3.38e-1 6.64e-2 3.06e-2 3.06e-2 3.02e-2 0.009
TSW-SL 9.41e-3 2.03e-7 9.63e-8 4.44e-8 3.65e-8 0.014 3.49e-1 9.06e-2 2.96e-2 1.20e-2 3.03e-7 0.010
MaxTSW-SL 2.75e-6 8.24e-7 5.14e-7 5.02e-7 5.00e-7 2.53 1.12e-1 8.28e-3 1.61e-6 7.32e-7 5.19e-7 2.49

Table 2: Average Wasserstein distance between source and target distributions of 10 runs on high-
dimensional datasets.

Iteration 500 Iteration 1000 Iteration 1500 Iteration 2000 Iteration 2500 Time/Iter(s)

Dimension SW TSW-SL SW TSW-SL SW TSW-SL SW TSW-SL SW TSW-SL SW TSW-SL

10 4.32e-3 2.81e-3 2.94e-3 2.00e-3 2.81e-3 1.55e-3 2.23e-3 1.59e-3 2.28e-3 1.75e-3 0.010 0.015
50 50.41 39.26 45.69 21.91 42.56 11.91 38.81 4.08 35.75 1.72 0.014 0.018
75 92.39 79.71 90.79 67.99 90.07 53.92 86.58 44.91 90.31 31.61 0.015 0.018

100 130.12 117.66 128.13 103.23 128.58 93.41 129.80 80.46 128.29 75.28 0.018 0.019
150 214.09 203.30 213.71 190.62 215.05 186.77 212.90 183.52 216.32 182.63 0.020 0.022
200 302.84 289.83 301.35 283.34 303.07 276.94 302.70 279.24 301.51 279.08 0.020 0.021

is worth noting that the paper presents a simple alternative by substituting lines in SW with tree
systems, focusing mainly on comparing TSW-SL with the original SW, without expecting TSW-
SL to outperform more recent SW variant. Further improvements to TSW-SL could be made by
incorporating advanced techniques developed for SW, but we leave this for future research, choosing
instead to focus on the fundamental aspects of TSW-SL.

6.1 GRADIENT FLOWS

First of all, we conduct experiments to compare the effectiveness of our methods with baselines in
the gradient flow task. In this task, we aim to minimize TSW-SL(µ, ν), where ν is the target distri-
bution and µ represents the source distribution. The optimization process is carried out iteratively
as ∂tµt = −∇TSW-SL(µt, ν) with µ0 = N (0, 1), −∂tµt represents the change in the source distri-
bution over time and ∇TSW-SL(µt, ν) is the gradient of TSW-SL with respect to µt. We initialize
with µ0 = N (0, 1) and iteratively update µt over 2500 iterations.

To compare the effectiveness of various distance metrics, we employ alternative distances as loss
functions (SW (Bonneel et al., 2015), MaxSW (Deshpande et al., 2019), SWGG (Mahey et al.,
2023) and LCVSW (Nguyen & Ho, 2023)) instead of TSW-SL. Over 2500 timesteps, we evaluate
the Wasserstein distance between source and target distributions at iteration 500, 1000, 1500, 2000
and 2500. We use L = 100 in SW variants and L = 25, k = 4 in TSW-SL for a fair comparison.
Detailed training settings are presented in Appendix E.1.

We first utilize both the Swiss Roll (a non-linear dataset) and 25 Gaussians (a multimodal dataset)
as described in (Kolouri et al., 2019). In Table 1, we present the performance and runtime of various
methods on these datasets, emphasizing the reduction of the Wasserstein distance over iterations.
Notably, across both datasets, our TSW-SL method demonstrates superior performance by signifi-
cantly reducing the Wasserstein distance. Moreover, our MaxTSW-SL method shows a significant
decrease in the Wasserstein distance compared to MaxSW, highlighting its improved performance
and effectiveness. Furthermore, we provide additional results from experiments of 10, 50, 75, 100,
150, and 200-dimensional Gaussian distributions, where target distribution supports were sampled
from these high-dimensional spaces to showcase the empirical advantages of our TSW-SL in cap-
turing topological properties. In this context, we compare the Tree Sliced Wasserstein distance on a
System of Lines (TSW-SL) with Sliced Wasserstein distance (SW) to demonstrate TSW-SL’s effec-
tiveness when distribution supports lie in high-dimensional spaces. The results presented in Table 2
highlight TSW-SL’s superior ability to preserve the original data’s topological properties compared
to SW.
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Table 3: Average FID and IS score of 3 runs on CelebA and STL-10 of SN-GAN.

CelebA (64x64) STL-10 (96x96) CelebA (64x64) STL-10 (96x96)

FID(#) FID(#) IS(") FID(#) FID(#) IS(")

SW (L = 50) 9.97 ± 1.02 69.46 ± 0.21 9.08 ± 0.06 SW (L = 500) 9.62 ± 0.42 53.52 ± 0.61 10.56 ± 0.05
TSW-SL (L = 10, k = 5) 9.63 ± 0.46 61.15 ± 0.37 10.00 ± 0.03 TSW-SL (L = 100, k = 5) 8.90± 0.49 51.81 ± 1.02 10.74 ± 0.13
TSW-SL (L = 17, k = 3) 8.98± 0.75 65.91 ± 0.64 9.75 ± 0.10 TSW-SL (L = 167, k = 3) 8.90 ± 0.38 52.27± 0.96 10.62± 0.18

Figure 5: Style-transferred images from different models with 100 projecting directions.

6.2 COLOR TRANSFER

We continue by examining the performance of TSW-SL methods for transferring color between
images to produce results that closely match the color distributions of the target images. Given a
source image and a target image, we represent their respective color palettes as matrices X and Y ,
each with dimensions n × 3 (where n denotes the number of pixels). We traverse along the curve
connecting PX and PY , where PX and PY denote the empirical distribution of the source and the
target images respectively. More specifically, this curve (denonted as Z(t)) starts from Z(0) = X
and ends at Y . During optimization, we minimize the loss L(Z(t), Y ) Loss(Z(t), Y ) to make the
color distribution of the obtained image close to that of the target image Y .

We evaluate the color-transferred images obtained by various loss L, including SW (Bonneel et al.,
2015), MaxSW (Deshpande et al., 2019), and SW variants proposed in (Nguyen et al., 2024a) to
compare with our TSW-SL and MaxTSW-SL approaches. For consistency, we set L = 100 for the
SW variants and L = 25, k = 4 for TSW-SL in our comparisons. We report the Wasserstein dis-
tances at the final time step along with the corresponding transferred images from various baselines
Figure 5. TSW-SL produces images that most closely resemble the target, demonstrating a signifi-
cant reduction compared to SW and its variants mentioned above with the same number of lines. In
addition, MaxTSW-SL improves upon the original MaxSW, as highlighted by both qualitative and
quantitative results.

6.3 GENERATIVE ADVERSARIAL NETWORK

We then explore the capabilities of our proposed TSW-SL framework within the context of gener-
ative adversarial networks (GANs). We employ the SNGAN architecture (Miyato et al., 2018). In
detail, our approach is based on the methodology of the Sliced Wasserstein generator (Deshpande
et al., 2018), with details provided in the Appendix E.3. Specifically, we conduct deep genera-
tive modeling experiments on the non-cropped CelebA dataset (Krizhevsky, 2009) with image size
64× 64, and on the STL-10 dataset (Wang & Tan, 2016) with image size 96× 96.

To demonstrate the empirical advantage of our method in enhancing generative adversarial networks,
we employ two primary metrics: the Fréchet Inception Distance (FID) score (Heusel et al., 2017)
and the Inception Score (IS) (Salimans et al., 2016). We omit to report the IS for the CelebA dataset

9
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Table 4: Results for unconditional generation on CIFAR-10 of denoising diffusion models

Model FID # Time/Epoch(s)# Time/Iter(s)#

DDGAN (Xiao et al. (2021)) 3.64 136 0.45
SW-DD (Nguyen et al. (2024b)) 2.90 140 0.47
DSW-DD (Nguyen et al. (2024b)) 2.88 1059 3.53
EBSW-DD (Nguyen et al. (2024b)) 2.87 145 0.48
RPSW-DD (Nguyen et al. (2024b)) 2.82 159 0.53
IWRPSW-DD (Nguyen et al. (2024b)) 2.70 152 0.51
TSW-SL-DD (Ours) 2.83 163 0.54

as it does not effectively capture the perceptual quality of face images (Heusel et al., 2017). Table 3
presents the results of SW and TSW-SL methodologies on the CelebA and STL-10 datasets, utilizing
FID and IS as our metrics. We conduct experiments with two configurations of projecting directions:
for 50 projecting directions, we use L = 50 in SW compared to L = 10, k = 5 and L = 17, k = 3
in TSW-SL; for 500 projecting directions, we use L = 500 in SW compared to L = 100, k = 5
and L = 167, k = 3 in TSW-SL. Our results reveal that TSW-SL significantly outperforms SW,
demonstrating a considerable performance gap on both datasets in terms of IS and FID. We provide
additional qualitative results in Appendix E.3.

6.4 DENOISING DIFFUSION MODELS

Finally, we concentrate on denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020),
which are among the most complex generative frameworks for image generation. Diffusion models
consist of a forward process that gradually adds Gaussian noise to data and a reverse process that
learns to denoise the data. The forward process is defined as a Markov chain of T steps, where each
step adds noise according to a predefined schedule. The reverse process, parameterized by θ, aims to
learn the denoising distribution. Traditionally, these models are trained using maximum likelihood
by optimizing the evidence lower bound (ELBO). However, to accelerate generation, denoising
diffusion GANs (Xiao et al., 2021) introduce an implicit denoising model and employ adversarial
training. In our work, we build upon the framework in (Nguyen et al., 2024b) and replace the
Augmented Generalized Mini-batch Energy distance with our novel TSW-SL distance as the kernel
and conducting experiments on the CIFAR-10 dataset (Krizhevsky, 2009). For a detailed description
of the model architecture and training loss, we refer readers to Appendix E.4.

Table 4 demonstrates that our TSW-SL loss function significantly enhances FID performance com-
pared to conventional SW. It also outperforms RPSW and IWRPSW while yielding competitive
results that are only marginally behind other state-of-the-art baselines in (Nguyen et al., 2024b).
It is worth noting that our TSW-SL-DD maintains a competitive training time. This improvement
underscores the efficacy of our approach in generating high-quality samples with improved fidelity.

7 CONCLUSION

This paper proposes a novel method called Tree-Sliced Wasserstein on Systems of Lines (TSW-SL),
replacing the traditional one-dimensional lines in the Sliced Wasserstein (SW) framework with tree
systems, providing a more geometrically meaningful space. This key innovation enables the pro-
posed TSW-SL to capture more detailed structural information and geometric relationships within
the data compared to SW while preserving computational efficiency. We rigorously develop the
theoretical basis for our approach, verifying the essential properties of the Radon Transform and
empirically demonstrating the benefits of TSW-SL across a range of application tasks. As this paper
introduces a straightforward alternative by replacing one-dimensional lines in SW with tree systems,
our primary comparison is between TSW-SL and the original SW, without anticipating that TSW-
SL will surpass more recent SW variants. Future research on adapting recent advance techniques
within the SW framework to TSW-SL remains an open area and is anticipated to lead to improved
performance for Sliced Optimal Transport overall.
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NOTATION

Rd d-dimensional Euclidean space
∥ · ∥2 Euclidean norm
⟨·, ·⟩ standard dot product
Sd−1 (d− 1)-dimensional hypersphere
θ unit vector
⊔ disjoint union
L1(X) space of Lebesgue integrable functions on X

P(X) space of probability distributions on X

µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd−1) uniform distribution on Sd−1

♯ pushforward (measure)
C(X,Y ) space of continuous maps from X to Y

d(·, ·) metric in metric space
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
Γ (rooted) subtree
e edge in graph
we weight of edge in graph
l line, index of line
L system of lines, tree system
L̄ ground set of system of lines, tree system
ΩL topological space of system of lines
Ld
k space of symtems of k lines in Rd

T tree structure in system of lines
L number of tree systems
k number of lines in a system of lines or a tree system
R original Radon Transform
Rα Radon Transform on Systems of Lines
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
T space of tree systems
σ distribution on space of tree systems
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A TREE SYSTEM

In this section, we introduce the notion of a tree system, beginning with a collection of unstructured
lines and progressively adding a tree structure to form a well-defined metric space with a tree metric.
It is important to note that while some statements here differ slightly from those in the paper, the
underlying ideas remain the same.

A.1 SYSTEM OF LINES

We have a definition of lines by parameterization. Observe that, a line in Rd is completely deter-
mined by a pair (x, θ) ∈ Rd × Sd−1 via x+ t · θ, t ∈ R.

Definition A.1 (Line and System of lines in Rd). A line in Rd is an element (x, θ) of Rd × Sd−1,
and the image of a line (x, θ) is defined by:

Im(x, θ) := {x+ t · θ : t ∈ R} ⊂ Rd. (14)

For k ⩾ 1, a system of n lines in Rd is a sequence of k lines.
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Remark. A line in Rd is usually denoted, or indexed, by l = (xl, θl) ∈ Rd × Sd−1. Here, xl and
θl are called source and direction of l, respectively. Denote (Rd × Sd−1)k by Ld

k, which is the
collection of systems of k lines in Rd, and an element of Ld

k is usually denoted by L.
Definition A.2 (Ground Set). The ground set of a system of lines L is defined by:

L̄ :=
{
(x, l) ∈ Rd × L : x = xl + tx · θl for some tx ∈ R

}
.

For each element (x, l) ∈ L̄ (x, l) ∈ L̄, we sometime write (x, l) as (tx, l), where tx ∈ R, which
presents the parameterization of x on l by source xl and direction θl, as x = xl + tx · θl.
Remark. In other words, the ground set L̄ is the disjoint union of images of lines in L:

L̄ =
⊔
l∈L

Im(l).

This notation seems to be redundant, but will be helpful when we define functions on L̄.

A.2 SYSTEM OF LINES WITH TREE STRUCTURES (TREE SYSTEM)

Consider a finite system of lines L in Rd. Assume that these lines are geometrically distinct, i.e.
their images are distinct. Define the graph GL associated with L, where L is the set of nodes in GL,
and two nodes are adjacent if the two corresponding lines intersect each other. Here, saying two
lines in Rd intersect means their images have exactly one point in common.
Definition A.3 (Connected system of lines). L is called connected if its associated graph GL is
connected.
Remark. Intuitively, each edge of GL represents the intersection of its endpoints. If L is connected,
for every two points that each one lies on some lines in L, one can travel to the other through lines
in L.

From now on, we will only consider the case L is connected. Recall the notion of a spanning tree of
a graph G, which is a subgraph of G that contains all nodes of G, and also is a tree.
Definition A.4 (Tree system of lines). Let L be a connected system of lines. A spanning tree T of
GL is called a tree structure of L. A pair (L, T ) consists of a connected system of lines L and a tree
structure T of L is called a tree system of lines.
Remark. For short, we usually call a tree system of lines as a tree system. In a tree system (L, T ),
images of two lines of L can intersect each other even when they are not adjacent in T .

Let r be an arbitrary line of L. Denote Tr as the tree T rooted at r, and denote the (rooted) tree
system as (L, Tr) if we want to specify the root.
Definition A.5 (Depth of lines in a tree system). Let (L, Tr) be a tree system. For each m ⩾ 0, a
line l ∈ L is called a line of depth m if the (unique) path from r to l in T has length m. Denote Lm

as the set of lines of depth m.
Remark. Note that L0 = {r}. Let T be the maximum length of paths in T start from r, which is
called the depth of the line system. L has a partition as L = L0 ⊔ L1 ⊔ . . . ⊔ LT .

For l ∈ L that is not the root, denote pr(l) ∈ L as the parent of l, i.e. the (unique) node on the
unique path from l to r that is adjacent to l. Note that, by definition, l and pr(l) intersect each other.
We sometimes omit the root when the context is clear.
Definition A.6 (Canonical tree system). A tree system (L, T ) is called a canonical tree system if
for all l ∈ L that is not the root, the intersection of l and pr(l) is the source xl of l.
Remark. In other words, in a canonical tree system, a line that differs from the root will have its
source lies on its parent. For the rest of the paper, a tree system (L, T ) will be considered to be a
canonical tree system.

A.3 TOPOLOGICAL PROPERTIES OF TREE SYSTEMS

We will introduce the notion of the topological space of a tree system. Let (L, T ) be a (canonical)
tree system. Consider a graph where the nodes are elements of L̄; (x, l) and (x′, l′) are adjacent if
and only if one of the following conditions holds:
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1. l = pr(l′), x = x′, and x′ is the source of l′.
2. l′ = pr(l), x = x′, and x is the source of l.

Let ∼ be the relation on L̄ such that (x, l) ∼ (x′, l′) if and only if (x, l) and (x′, l′) are connected in
the above graph. By design, ∼ is an equivalence relation on L̄. The set of all equivalence classes in
L̄ with respect to the equivalence relation ∼ as ΩL = L̄/ ∼.
Remark. In other words, we identify the source of lines to the corresponding point on its parent.

We recall the notion of disjoint union topology and quotient topology in (Hatcher, 2005). For a line
l in Rd, the image Im(l) is a topological space, moreover, a metric space, that is homeomorphic and
isometric to R via the map t 7! xl + t · θl. The metric on Im(l) is dl(x, x

′) = |tx − tx′ | for all
x, x′ ∈ Im(l). For each l ∈ L, consider the injection map:

fl : Im(l) −!
⊔
l∈L

Im(l) = L̄

x 7−! (x, l).

L̄ =
⊔

l∈L Im(l) now becomes a topological space with the disjoint union topology, i.e. the finest
topology on L̄ such that the map fl is continuous for all l ∈ L. Also, consider the quotient map:

π : L̄ −! ΩL

(x, l) 7−! [(x, l)].

ΩL now becomes a topological space with the quotient topology, i.e. the finest topology on ΩL such
that the map π is continuous.
Definition A.7 (Topological space of a tree system). The topological space ΩL is called the topo-
logical space of a tree system (L, T ).
Remark. In other words, ΩL is formed by gluing all images Im(l) along the relation ∼.

We show that the topological space ΩL is metrizable.
Definition A.8 (Paths in ΩL). For a and b in ΩL with a ̸= b, a path from a to b in ΩL is a continuous
injective map γ : [0, 1] ! ΩL where γ(0) = a and γ(1) = b. By convention, for a in ΩL, the path
from a to a in ΩL is the constant map γ : [0, 1] ! ΩL such that γ(t) = a for all t ∈ [0, 1]. For a
path γ from a to b, the image of γ is defined by:

Im(γ) := γ([0, 1]) ⊂ ΩL. (15)

Theorem A.9 (Existence and uniqueness of path in ΩL). For all a and b in ΩL, there exist a path γ
from a to b in ΩL. Moreover, γ is unique up to a re-parameterization, i.e. if γ and γ′ are two path γ
from a to b in ΩL, there exist a homeomorphism φ : [0, 1] ! [0, 1] such that γ = γ′ ◦ φ.

Proof. All previous results we state in this proof can be found in (Munkres, 2018; Rotman, 2013;
Hatcher, 2005). For two point a, b on the real line R, all paths from a to b are homotopic to each
other. In other words, all paths from a to b are homotopic to the canonical path:

γa,b : [0, 1] −! R
t 7−! (1− t) · a+ t · b.

Now consider two point a, b on space ΩL. Observe that ΩL is path-connected by design and by
the fact that R is path-connected. Consider a curve from a to b on ΩL, i.e. a continuous map
f : [0, 1] ! ΩL, and consider the set consists of sources of lines in L that lie on the curve f , i.e. all
the sources that belong to f([0, 1]). We choose the curve f that has the smallest set of sources. By
the tree structure added to L, all curves from a to b have the set of sources that contains the set of
sources of f . We denote the sources belong to this set of f as s1, . . . , sk−1, and defined:

xi = inf f−1(si) for all 1 ⩽ i ⩽ k − 1.

We reindex si such that:

x1 ⩽ . . . ⩽ xk−1
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For convention, we define s0 = a and sk = b. By design, for i = 0, . . . , k − 1, we have si and si+1

line on the same line in L. So by the result of paths on R, there exist a path γi from si to si+1 on
ΩL. Gluing γ0, γ1, . . . , γk−1 to get a path γ from s0 = a to sk = b on ΩL by:

γ : [0, 1] −! ΩL

t 7−! γi(k · t− i) if t ∈
[
i

k
,
i+ 1

k

]
, i = 0, . . . , k − 1.

It is clear to check γ is a path from a to b on Ω, and the uniqueness (up to re-parameterization) of γ
comes from homotopy of paths in R.

Remark. The image of a path from a to b does not depend on the chosen path γ by the uniqueness
property. Indeed, for a homeomorphism φ : [0, 1] ! [0, 1], we have γ([0, 1]) = γ◦φ([0, 1]). Denote
the image of any path from a to b by Pa,b.

Let µ be the standard Borel measure on R, i.e. µ ((a, b]) = b−a for every half-open interval (a, b] in
R. For l ∈ L, denote µl as the pushforward of µ by the map t 7! xl+ t ·θl, which is a Borel measure
on Im(l). Denote the σ-algebra of Borel sets in L̄ and ΩL as B(L̄) and B(ΩL), respectively.

Definition A.10 (Borel measure on L̄ and ΩL). The map µL̄ : B(ΩL) ! [0,∞) that is defined by:

µL̄(B) :=
∑
l∈L

µl

(
f−1
l (B)

)
, ∀B ∈ B(L̄),

is called the Borel measure on L̄. Define the Borel measure on ΩL, denoted by µΩL , as the pushfor-
ward of µL̄ by the map π : L̄ ! ΩL.

It is straightforward to show that µL̄ is well-defined, and indeed a Borel measure of L̄. As a corollary,
µΩL is also a Borel measure of ΩL.
Remark. By abuse of notation, we sometimes simply denote both of µL̄ and µΩL as µL.

Theorem A.11 (ΩL is metrizable by a tree metric). Define the map dΩ : ΩL × ΩL ! [0,∞) by:

dL(a, b) := µL (Pa,b) , ∀a, b ∈ ΩL. (16)

Then dL is a metric on ΩL, which makes (ΩL, dL) a metric space. Moreover, dL is a tree metric,
and the topology on ΩL induced by dL is identical to the topology of ΩL.

Proof. It is straightforward to check that dL is positive definite and symmetry. We show the triangle
inequality holds for dL. Let a, b, c be points of ΩL. It is enough to show that Pa,c is a subset of
Pa,b ∪ Pb,c. Let γ0, γ1 be paths on Ω from a to b and from b to c, respectively. Consider the curve
from a to c on Ω defined by:

γ : [0, 1] −! ΩL

t 7−! γi(2 · t− i) if t ∈
[
i

2
,
i+ 1

2

]
, i = 0, 1.

It is clear that γ is a curve from a to c. We have γ([(0, 1)] is exactly the union of Pa,b and Pb,c. As
in the proof of Theorem A.9, the set of sources of γ contains the set of sources lying on the path
from a to c. So γ([0, 1]) contains Pa,c.

We have the below corollary says that: If we take finite points on ΩL, together with the sources of
lines, it induces a tree (as a graph) with nodes are these points; Moreover, we have a tree metric on
this tree which is dL.

Corollary A.12. Let y1, y2, . . . , ym be points on ΩL. Consider the graph, where {y1, . . . , ym} ∪
{xl : l ∈ L} is the node set, and two nodes are adjacent if the (unique) path between this two
nodes on ΩL does not contain any node, except them. Then this graph is a rooted tree at xr, with an
induced tree metric from dL.
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A.4 CONSTRUCTION OF TREE SYSTEMS

We present a way to construct a tree system in Rd. First, we have a way to describe the structure of
a rooted tree by a sequence of vectors.
Definition A.13 (Tree representation). Let T be a nonnegative integer, and n1, . . . , nT be T positive
integer. A sequence s = {xi}Ti=0, where xi is a vector of ni nonnegative numbers, is called a tree
representation if x0 = [1], and for all 1 ⩽ i ⩽ T , ni is equal to the sum of all entries in vector xi−1.

Example A.14. For T = 5 and {ni}5i=1 = {1, 3, 4, 2, 3}, the sequence:

s : x0 = [1]

!x1 = [3]

!x2 = [2, 1, 1]

!x3 = [1, 0, 2, 0]

!x4 = [1, 2]

!x5 = [0, 0, 1].

is a tree representation.

For a tree representation s = {xi}Ti=0, a tree system of type s is a tree system that is inductively
constructed step-by-step as follows:

Step 0. Sample a point xr ∈ Rd and a direction θr ∈ Sd−1. Define r as the line that passes through
xr with direction θr. We call r as the line of depth 0.

Step i. On the j-th line of depth (i−1), sample (xi)j points where (xi)j is the j-th entry of vector
xi. For each of these points, denoted as xl, sample a direction θl ∈ Sd−1, and define l is
the line that passes through xl with direction θl. We call the set of all lines sampled at this
step as the set of lines of depth i and order them by the order that they are sampled.

By this construction, we will get a system of lines L in Rd, together with a tree structure Tr. The
pair (L, Tr) forms a tree system, which is canonical by design, and is said to be of type s. Denote
Ts as the set of all tree systems of type s.
Remark. A tree system in of type s has k =

∑T
i=0

∑ni

j=1(xi)j lines. Observe that constructing a
tree system of type s only depends on sampling k points and k directions, so by some assumptions
on the probability distribution of these points and directions, we will have a probability distribution
on Ts. Note that:

1. xr is sampled from a distribution on Rd;

2. For all l ̸= r, xl is sampled from a distribution on R;

3. For all l, θl is sampled from a distribution on Sd−1.

We have some examples of tree presentations s and distribution on Ts.
Example A.15 (Lines pass through origin). Consider the tree representation s:

s : [1], (17)

and the distributions on Ts is determined by:

1. xr = 0 ∈ Rd;

2. θr ∼ U(Sd−1).

In this case, Ts is identical to the set of lines that pass through the origin 0.
Example A.16 (Concurrent lines). Consider the tree representation s:

s : [1] ! [k − 1], (18)

and the distributions on Ts is determined by:
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1. xr ∼ µr for an µr ∈ P(Rd);

2. For all l ̸= r, xl = xr;

3. For all l, θl ∼ U(Sd−1);

4. xr and all θl’s are pairwise independent.

In this case, Ts is identical to the set of all tuples of n concurrent lines.
Example A.17 (Series of lines). Consider the tree representation s:

s : [1] ! [1] ! . . . ! [1], (19)

and the distributions on Ts is determined by:

1. xr ∼ µr for an µr ∈ P(Rd);

2. For all l ̸= r, xl ∼ µl for an µl ∈ P(R);

3. For all l, θl ∼ U(Sd−1);

4. All xl’s and all θl’s are pairwise independent.

In this case, we call Ts as the set of all series of k lines. This is the same as the sampling process in
Subsection 3.3 and Algorithm 1.
Example A.18. For an arbitrary tree representation s, the distributions on Ts is determined by:

1. xr is sampled from the uniform distribution on a bounded subset of Rd, for instance, µr ∼
U([0, 1]d);

2. For l ̸= r, xl will be sampled from the uniform distribution on a bounded subset of R, for
instance, µl ∼ U([0, 1]);

3. For all l, θl will be sampled from the uniform distribution on Sd−1, i.e θl ∼ U(Sd−1);

4. Together with assumptions on independence between all xr’s and all θl’s.

B RADON TRANSFORM ON SYSTEMS OF LINES

We introduce the notions of the space of Lebesgue integrable functions and the space of probability
distributions on a system of lines. Let L be a system of k lines.

B.1 SPACE OF LEBESGUE INTEGRABLE FUNCTIONS ON A SYSTEM OF LINES

Denote L1(Rd) as the space of Lebesgue integrable functions on Rd with norm ∥ · ∥1:

L1(Rd) =

{
f : Rd ! R : ∥f∥1 =

∫
Rd

|f(x)| dx < ∞
}
. (20)

As usual, two functions f1, f2 ∈ L1(Rd) are considered to be identical if f1(x) = f2(x) almost
everywhere on Rd.
Definition B.1 (Lebesgue integrable function on a system of lines). A Lebesgue integrable function
on L is a function f : L̄ ! R such that:

∥f∥L :=
∑
l∈L

∫
R
|f(tx, l)| dtx < ∞. (21)

The space of Lebesgue integrable functions on L is denoted by:

L1(L) :=

{
f : L̄ ! R : ∥f∥L =

∑
l∈L

∫
R
|f(tx, l)| dtx < ∞

}
. (22)
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Remark. As an analog of integrable functions on Rd, two functions f1, f2 ∈ L1(L) are considered
to be identical if f1(x) = f2(x) almost everywhere on L̄. The space L1(L) with norm ∥ · ∥L is a
Banach space.

Recall that L has k lines, we denote the (k − 1)-dimensional standard simplex as ∆k−1 ={
(al)l∈L : al ⩾ 0 and

∑
l∈L al = 1

}
⊂ Rk. Let C(Rd,∆k−1) be the space of continuous func-

tion from Rd to ∆k−1. A map in C(Rd,∆k−1) is called a splitting map. Let L be a system of lines
in Ld

k, α be a map in C(Rd,∆k−1), we define an operator associated to α that transforms a Lebesgue
integrable functions on Rd to a Lebesgue integrable functions on L. For f ∈ L1(Rd), define:

Rα
Lf : L̄ −! R

(x, l) 7−!

∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy,

where δ is the 1-dimensional Dirac delta function.

Theorem B.2. For f ∈ L1(Rd), we have Rα
Lf ∈ L1(L). Moreover, we have ∥Rα

Lf∥L ⩽ ∥f∥1. In
other words, the operator:

Rα
L : L1(Rd) ! L1(L), (23)

is well-defined, and is a linear operator.

Proof. Let f ∈ L1(Rd). We show that ∥Rα
Lf∥L ⩽ ∥f∥1. Indeed,

∥Rα
Lf∥L =

∑
l∈L

∫
R
|Rα

Lf(tx, l)| dtx (24)

=
∑
l∈L

∫
R

∣∣∣∣∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy

∣∣∣∣ dtx (25)

⩽
∑
l∈L

∫
Rd

(∫
R
|f(y)| · α(y)l · δ (tx − ⟨y − xl, θl⟩) · dtx

)
dy (26)

=
∑
l∈L

∫
Rd

|f(y)| · α(y)l ·
(∫

R
δ (tx − ⟨y − xl, θl⟩) dtx

)
dy (27)

=
∑
l∈L

∫
Rd

|f(y)| · α(y)l dy (28)

=

∫
Rd

|f(y)| ·
∑
l∈L

α(y)l dy (29)

=

∫
Rd

|f(y)| dy (30)

= ∥f∥1 < ∞. (31)

So the operator Rα
L is well-defined, and is clearly a linear operator.

Definition B.3 (Radon transform on system of lines). For α ∈ C(Rd,∆k−1), the operator Rα:

Rα : L1(Rd) −!
∏

L∈Ld
k

L1(L)

f 7−! (Rα
Lf)L∈Ld

k
.

is called the Radon transform on a system of lines.

Many variants of Radon transform require the transforms to be injective. We show that the injectivity
holds in the Radon transform on a system of lines.

Theorem B.4. Rα is injective.
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Proof. Since Rα is linear, we show that if Rαf = 0, then f = 0. Let f ∈ L1(Rd) such that
Rαf = 0, which means Rα

L = 0 for all L ∈ Ld
n. Fix a line index l, consider the operator:∫

Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy = 0 , ∀tx ∈ R, (xl, θl) ∈ Rd × Sd−1. (32)

Note that for index l, f(y) · α(y)l is a function of y. Let xl be fixed and θl varies in Rd. By the
injectivity of the usual Radon transform (Helgason & Helgason, 2011), we have f(x) ·α(x)l = 0 for
all x ∈ Rd. This holds for all line index l, so f(x) =

∑
l f(x) · α(x)l = 0. So Rα is injective.

Remark. By the proof, we can show a stronger result as follows: Let A be a subset of Ld
k such that

for every index l and θ ∈ Sd−1, there exists L ∈ A such that θl = θ, where θl is the direction of line
with index l in L. Roughly speaking, the set of directions in L is (Sd−1)k.

B.2 PROBABILITY DISTRIBUTIONS ON A SYSTEM OF LINES

Denote P(Rd) as the space of all probability distribution on Rd:

P(Rd) =
{
f : Rd ! [0,∞) : ∥f∥1 = 1

}
⊂ L1(Rd).

Definition B.5 (Probability distribution on a system of lines). Let L be a system of lines. A proba-
bility distribution on L is a function f ∈ L1(L) such that f : L̄ ! [0,∞) and ∥f∥L = 1. The space
of probability distribution on L is defined by:

P(L) :=
{
f : L̄ ! [0,∞) : ∥f∥L = 1

}
⊂ L1(L). (33)

Corollary B.6. For f ∈ P1(Rd), we have Rα
Lf ∈ P(L). In other words, the restricted of Radon

Transform:
Rα

L : P(Rd) ! P(L), (34)
is well-defined.

Proof. Let f ∈ P1(Rd). It is clear that Rα
Lf : L̄ ! [0,∞). We show that ∥Rα

Lf∥L = 1. Indeed,

∥Rα
Lf∥L =

∑
l∈L

∫
R
Rα

Lf(tx, l) dtx (35)

=
∑
l∈L

∫
R

(∫
Rd

f(y) · α(y)l · δ (tx − ⟨y − xl, θl⟩) dy

)
dtx (36)

=

∫
Rd

f(y) dy = 1. (37)

So Rα
Lf ∈ P(L), and Rα

L is well-defined.

C MAX TREE-SLICED WASSERSTEIN DISTANCE ON SYSTEMS OF LINES.

Max Sliced Wasserstein distance. Max Sliced Wasserstein (MaxSW) distance (Deshpande et al.,
2019) uses only one maximal projecting direction instead of multiple projecting directions as SW.

MaxSWp(µ, ν) := max
θ∈U(Sd−1)

[
Wp(Rfµ(·, θ),Rfν(·, θ))

]
, (38)

MaxSW requires an optimization procedure to find the projecting direction. It is a metric on space
of probability distributions on Rd.

We define the Max Tree-Sliced Wasserstein distance on System of Lines (MaxTSW-SL) as follows.
Definition C.1 (Max Tree-Sliced Wasserstein Distance on Systems of Lines). The Max Tree-Sliced
Wasserstein Distance on Systems of Lines between two probability distributions µ, ν in P(Rd) is
defined by:

MaxTSW-SL(µ, ν) := max
L∈T

[
WdL,1(Rα

Lµ,Rα
Lν)
]
, (39)
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MaxTSW-SL is a metric on P(Rd). The proof of the below theorem is in Appendix D.2.

Theorem C.2. MaxTSW-SL distance is a metric on P(Rd).

We provide an algorithm to compute the MaxTSW-SL in Algorithm 3.

Algorithm 3 Max Tree-Sliced Wasserstein distance on Systems of lines.

Input: Probability measures µ and ν, the number of lines in tree system k, a splitting function
α : Rd ! ∆k−1, learning rate η, max number of iterations T .
Initialize x1 ∈ Rd, t2, . . . , tk ∈ R, θ1, . . . , θk ∈ Sd−1.
Compute L corresponded to (x1, t2, . . . , tk, θ1, . . . , θk).
while L not converge or reach T do
x1 = x1 + η · ∇x1

WdL,1(Rα
Lµ,Rα

Lν).
for i = 2 to k do
ti = Ti + η · ∇tiWdL,1(Rα

Lµ,Rα
Lν).

end for
for i = 1 to k do
θi = θi + η · ∇θiWdL,1(Rα

Lµ,Rα
Lν).

Normalize θi = θi/∥θi∥2.
end for

end while
Compute L corresponded to (x1, t2, . . . , tk, θ1, . . . , θk).
Compute WdL,1(Rα

Lµ,Rα
Lν).

Return: L,WdL,1(Rα
Lµ,Rα

Lν).

D THEORETICAL PROOF FOR INJECTIVITY OF TSW-SL

We will leave out “almost-surely-conditions” in the proofs, as they are straightforward to verify, and
including them would unnecessarily complicate the proofs.

D.1 PROOF OF THEOREM 5.2

Proof. Need to show that:

TSW-SL(µ, ν) :=
∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L). (40)

is a metric on P(Rd).

Positive definiteness. For µ, ν ∈ P(Rn), one has TSW-SL(µ, µ) = 0 and TSW-SL(µ, ν) ⩾ 0. If
TSW-SL(µ, ν) = 0, then WdL,1(Rα

Lµ,Rα
Lν) = 0 for all L ∈ T. Since WdL,1 is a metric on P(L),

we have Rα
Lµ = Rα

Lν for all L ∈ T. Since T is a subset of Ld
k that satisfies the condition in the

remark at the end of the proof of Theorem B.4, we conclude that µ = ν.

Symmetry. For µ, ν ∈ P(Rn), we have:

TSW-SL(µ, ν) =
∫
T

WdL,1(Rα
Lµ,Rα

Lν) dσ(L) (41)

=

∫
T

WdL,1(Rα
Lν,Rα

Lµ) dσ(L) (42)

= TSW-SL(ν, µ). (43)

So TSW-SL(µ, ν) = TSW-SL(ν, µ).
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Triangle inequality. For µ1, µ2, µ3 ∈ P(Rn), we have:
TSW-SL(µ1, µ2) + TSW-SL(µ2, µ3) (44)

=

∫
T

WdL,1(Rα
Lµ1,Rα

Lµ2) dσ(L) +
∫
T

WdL,1(Rα
Lµ2,Rα

Lµ3) dσ(L) (45)

=

∫
T

(
WdL,1(Rα

Lµ1,Rα
Lµ2) + WdL,1(Rα

Lµ2,Rα
Lµ3)

)
dσ(L) (46)

⩾
∫
T

WdL,1(Rα
Lµ1,Rα

Lµ3) dσ(L) (47)

= TSW-SL(µ1, µ3). (48)

The triangle inequality holds for TSW-SL. We conclude that TSW-SL is a metric on P(Rd).

D.2 PROOF OF THEOREM C.2

Proof. Need to show that:

MaxTSW-SL(µ, ν) = max
L∈T

[
WdL,1(Rα

Lµ,Rα
Lν)
]

(49)

is a metric on P(Rd).

Positive definiteness. For µ, ν ∈ P(Rn), one has MaxTSW-SL(µ, µ) = 0 and
MaxTSW-SL(µ, ν) ⩾ 0. If MaxTSW-SL(µ, ν) = 0, then WdL,1(Rα

Lµ,Rα
Lν) = 0 for all L ∈ T.

Since WdL,p is a metric, we have Rα
Lµ = Rα

Lν for all L ∈ T. Since T is a subset of Ld
k that satisfies

the condition in the remark at the end of the proof of Theorem B.4, we conclude that µ = ν.

Symmetry. For µ, ν ∈ P(Rn), we have:

MaxTSW-SL(µ, ν) = max
L∈T

[
WdL,1(Rα

Lµ,Rα
Lν)
]

(50)

= max
L∈T

[
WdL,1(Rα

Lν,Rα
Lµ)

]
(51)

= MaxTSW-SL(ν, µ). (52)

So MaxTSW-SL(µ, ν) = MaxTSW-SL(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(Rn), we have:
MaxTSW-SL(µ1, µ2) + TSW-SL(µ2, µ3) (53)

= max
L∈T

[
WdL,1(Rα

Lµ1,Rα
Lµ2)

]
+max

L′∈T

[
WdL′ ,1(Rα

L′µ2,Rα
L′µ3)

]
(54)

⩾ max
L∈T

[
WdL,1(Rα

Lµ1,Rα
Lµ2) + WdL,1(Rα

Lµ2,Rα
Lµ3)

]
(55)

⩾ max
L∈T

[
WdL,1(Rα

Lµ1,Rα
Lµ3)

]
(56)

= MaxTSW-SL(µ1, µ3). (57)
The triangle inequality holds for MaxTSW-SL. We conclude that MaxTSW-SL is a metric on
P(Rd).

E EXPERIMENTAL DETAILS

E.1 GRADIENT FLOWS

Gradient flow is a concept in differential geometry and dynamical systems that describes the evolu-
tion of a point or a curve under a given vector field. In the field of Sliced Wasserstein distance, this is
a synthetic task that is used to evaluate the evolution of Wasserstein distance between 2 distributions
(source and target distributions) while minimizing different distances (Mahey et al., 2023; Kolouri
et al., 2019) as a loss function.
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Figure 6: Swiss Roll and 25-Gaussians datasets for Gradient Flows task

Datasets. We use Swiss Roll, 25-Gaussians and high-dimensional Gaussian datasets as the target
distribution as in (Kolouri et al., 2019). The details of these datasets can be described as follows.

• The Swiss Roll dataset is a popular synthetic dataset used in machine learning, particu-
larly for visualizing and testing dimensionality reduction techniques. It is generated using
the make swiss roll function of Pytorch, which creates a non-linear, three-dimensional
dataset resembling a swiss roll or spiral shape. In the original version, it is a three-
dimensional dataset with each dimension representing a coordinate in the 1 axis of the
points. In order to simplify it, we follow (Kolouri et al., 2019) to just consider the two-
dimensional Swiss Roll dataset by reducing the second coordinates and retaining only the
first and the third coordinates. We set the number of samples to equal 100.

• The 25-Gaussians dataset is obtained by first create a grid of 25 points spaced evenly in
a 5 × 5 arrangement. For each grid point, we generate a cluster by sampling points from
a Gaussian distribution centered at that grid point, with a small standard deviation. All the
points from the 25 clusters are combined, shuffled randomly, and scaled to form the final
dataset.

• The High-dimensional Gaussian datasets are generated by initializing a mean vector, µs,
consisting of ones across all dimensions. Each element of this mean vector is scaled by a
random value to introduce variability. The covariance matrix, Σ, is created as an identity
matrix scaled by a constant, ensuring independence among dimensions. Points are then
sampled from the multivariate normal distribution using these parameters, resulting in a
dataset of N points in the specified high-dimensional space.

The Swiss Roll and 25-Gaussians datasets are presented in Figure 6.

Hyperparameters. For TSW-SL, we use L = 25, k = 4 in all experiments, while L = 100 is
set for SW and SW-variants, with 100 points generated per distribution across datasets. Following
(Mahey et al., 2023), the global learning rate for all baselines is 5 × 10−3. For our methods, we
use 5× 10−3 for the 25-Gaussians and Swiss Roll datasets, and 5× 10−2 for the high-dimensional
Gaussian datasets. We also follow (Mahey et al., 2023) in setting 100 iterations for both MaxSW
and MaxTSW-SL, using a learning rate of 1× 10−4 for both methods.

Evaluation metrics. We use the Wasserstein distance as a neutral metric to evaluate how close
the model distribution µ(t) is to the target distribution ν. Over 2500 timesteps, we evaluate the
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Wasserstein distance between source and target distributions at iteration 500, 1000, 1500, 2000 and
2500.

We utilize the source code adapted from Mahey et al. (2023) for this task.

E.2 COLOR TRANSFER

This section extends our experiments to evaluate our methods against various baselines as discussed
in Nguyen et al. (2024a). Similar to E.1, we set L = 100 for all baselines and employ 25 trees and
4 lines for our TSW-SL.

Settings. Given a source image and a target image, we represent their respective color palettes as
matrices X and Y , each with dimensions n× 3 (where n denotes the number of pixels).

We follow Nguyen et al. (2024a) to first define the curve Ż(t) = −n∇Z(t)

[
SW2

(
PZ(t), PY

)]
where PX and PY are empirical distributions over X and Y in turn. Here, the curve starts from
Z(0) = X and ends at Y .

We then reduce the number of colors in the images to 1000 using K-means clustering. After that,
we iterate through the curve between the empirical distribution of colors in the source image PX

and the empirical distribution of colors in the target image PY using the approximate Euler method.
However, owing to the color palette values (RGB) lying within the set {0, . . . , 255}, an additional
rounding step is necessary during the final Euler iterations. We increase the number of iterations
to 2000 and utilize a step size of 1 as in (Nguyen et al., 2024a) for baselines and a step size of 16
for our experiments. We use L = 100 in SW variants and L = 25, k = 4 in TSW-SL for a fair
comparison.

Evaluation metrics. We present the Wasserstein distances at the final time step alongside the
corresponding transferred images to evaluate the performance of different methods. The results
illustrated in Figure 7 demonstrate that our novel metrics substantially reduce the Wasserstein dis-
tance of a large number of baselines. Our primary contribution is the development of a metric that
effectively bridges SW and TSW, exhibiting superior performance over vanilla SW, MaxSW, and
several enhanced variants of SW. This represents a significant breakthrough in the field of optimal
transport and paves the way for further advancements.

We utilize the source code adapted from Nguyen et al. (2021) for this task.

Additional Results. We further provide in Figure 8 to show that our TSW-SL and MaxTSW-SL
improve the performance of original SW and MaxSW both qualitatively and quantitatively.

E.3 GENERATIVE ADVERSARIAL NETWORK

Architectures. We denote µ as our data distribution. Subsequently, we formulate the model distri-
bution νϕ as a resultant probability measure generated by applying a neural network Gϕ to transform
a unit multivariate Gaussian (ϵ) into the data space. Additionally, we employ another neural network
Tβ to map from the data space to a singular scalar value. More specifically, Tβ1

represents the sub-
set neural network of Tβ that maps from the data space to a feature space, specifically the output of
the last ResNet block, while Tβ2

maps from the feature space (the image of Tβ1
) to a single scalar.

Formally, Tβ = Tβ2
◦ Tβ1

. We utilize the subsequent neural network architectures for Gϕ and Tβ :

• CIFAR10:
- Gϕ : z ∈ R128(∼ ϵ : N (0, 1)) ! 4 × 4 × 256 (Dense, Linear) ! ResBlock up 256 !
ResBlock up 256 ! ResBlock up 256 ! BN, ReLU, ! 3× 3 conv, 3 Tanh .
−Tβ1

: x ∈ [−1, 1]32×32×3 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock
down 128 ! ResBlock 128 ! ResBlock 128.
−Tβ2

: x ∈ R128×8×8 ! ReLU ! Global sum pooling (128) ! 1( Spec-
tral normalization ).
−Tβ(x) = Tβ2

(Tβ1
(x)).

• CelebA:
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Figure 7: Style-transferred images from various baselines with 100 projecting directions.

Figure 8: Additional style-transferred images from various baselines with 100 projecting directions.

- Gϕ : z ∈ R128(∼ ϵ : N (0, 1)) ! 4 × 4 × 256 (Dense, Linear) ! ResBlock up 256 !
ResBlock up 256 ! ResBlock up 256 ! ResBlock up 256 ! BN, ReLU, ! 3× 3 conv,
3 Tanh .
- Tβ1

: x ∈ [−1, 1]32×32×3 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock
down 128 ! ResBlock down 128 ! ResBlock 128 ! ResBlock 128.
−Tβ2

: x ∈ R128×8×8 ! ReLU ! Global sum pooling(128) ! 1( Spectral
normalization ).
−Tβ(x) = Tβ2

(Tβ1
(x)).

• STL-10:
- Gϕ : z ∈ R128(∼ ϵ : N (0, 1)) ! 3 × 3 × 256 (Dense, Linear) ! ResBlock up 256 !
ResBlock up 256 ! ResBlock up 256 ! ResBlock up 256 ! ResBlock up 256 ! BN,
ReLU, ! 3× 3 conv, 3 Tanh .
- Tβ1

: x ∈ [−1, 1]32×32×3 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock
down 128 ! ResBlock down 128 ! ResBlock down 128 ! ResBlock 128 ! ResBlock
128.
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SW L = 50 TSW-SL (50 lines) SW L = 500 TSW-SL (500 lines)

Figure 9: Randomly generated images of different methods on CIFAR10 and CelebA of SN-GAN

−Tβ2
: x ∈ R128×8×8 ! ReLU ! Global sum pooling(128) ! 1( Spectral

normalization ).
−Tβ(x) = Tβ2 (Tβ1(x)).
We use the following bi-optimization problem to train our neural networks:

min
β1,β2

(Ex∼µ [min (0,−1 + Tβ(x))] + Ez∼ϵ [min (0,−1− Tβ (Gϕ(z)))]) ,

min
ϕ

EX∼µ⊗m,Z∼ϵ⊗m

[
S
(
T̃β1,β2

♯PX , T̃β1,β2
♯Gϕ♯PZ

)]
,

where the function T̃β1,β2
= [Tβ1

(x), Tβ2
(Tβ1

(x))] which is the concatenation vector of
Tβ1

(x) and Tβ2
(Tβ1

(x)) ,S is an estimator of the sliced Wasserstein distance.

Training setup. In our experiments, we configured the number of training iterations to 100000
for CIFAR10, STL-10 and 50000 for CelebA. The generator Gϕ is updated every 5 iteration, while
the feature function Tβ undergoes an update each iteration. Across all datasets, we maintain a
consistent mini-batch size of 128. We leverage the Adam optimizer (Kingma, 2014) with parameters
(β1, β2) = (0, 0.9) for both Gϕ and Tβ with the learning rate 0.0002. Furthermore, we use 50000
random samples generated from the generator to compute the FID and Inception scores. For FID
score evaluation, the statistics of datasets are computed using all training samples.

Results. For qualitative analysis, Figure 9 displays a selection of randomly generated images pro-
duced by the trained models. It is evident that utilizing our TSW-SL as the generator loss sig-
nificantly enhances the quality of the generated images. Additionally, increasing the number of
projections further improves the visual quality of images across all estimators. This improvement in
visual quality is corroborated by the FID and IS scores presented in Table 3.

We utilize the source code adapted from (Miyato et al., 2018) for this task.

Additional results. To fully show the empirical advantage of our methods, we conducted addi-
tional experiments on Adversarial Neural Networks on the CIFAR-10 dataset and STL-10 dataset.
First of all, Table 6 presents the average FID and IS scores for different methods on the CIFAR-10
dataset. For 50 projecting directions, our TSW-SL method with 10 trees and 5 lines each (L = 10,
k = 5) achieves the best performance, outperforming the standard SW method. Similarly, for 500
projecting directions, TSW-SL (L = 100, k = 5) shows superior results compared to SW. This
demonstrates the consistent effectiveness of our approach across different numbers of projecting
directions. Additionally, Table 5 illustrates the performance of generative models on the STL-10
(96× 96) dataset with different numbers of trees and lines compared with SW and orthogonal-SW.
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Table 5: Performance of different methods on STL-10 dataset on SN-GAN architecture

Methods Total line
No. of lines

per tree
No. of trees FID IS

SW 50 - - 69.46 9.08
Orthogonal-SW 50 - - 63.61 9.63
TSW-SL (ours) 51 3 17 65.93 9.75
TSW-SL (ours) 52 4 13 62.91 9.95
TSW-SL (ours) 50 5 10 61.15 10.00

In our experiments, we utilize the SN-GAN architecture (Miyato et al., 2018) for STL-10. For SW
and Orthogonal-SW, we conduct experiments using 50 projecting directions. Our TSW-SL method
is tested with three distinct configurations: 10 trees with 5 lines each, 13 trees with 4 lines each, and
17 trees with 3 lines each. All hyperparameters remain consistent with those used in our main paper.
To evaluate the models, we generate 50000 random images.

Table 6: Average FID and IS score of 3 runs on CIFAR-10 of SN-GAN

50 projecting directions 500 projecting directions

FID(#) IS(") FID(#) IS(")

SW (L = 50) 16.80 ± 0.45 7.97 ± 0.05 SW (L = 500) 14.23 ± 0.84 8.25 ± 0.05
TSW-SL (L = 10, k = 5) 15.44 ± 0.42 8.14 ± 0.05 TSW-SL (L = 100, k = 5) 13.27 ± 0.23 8.30 ± 0.01
TSW-SL (L = 17, k = 3) 15.9 ± 0.35 8.10 ± 0.04 TSW-SL (L = 167, k = 3) 14.18 ± 0.38 8.28 ± 0.07

E.4 DENOISING DIFFUSION MODELS

In this section, we provide details about denoising diffusion models, a class of generative models that
have shown remarkable success in producing high-quality samples. We first describe the forward
and reverse processes that form the foundation of these models. Then, we introduce the concept
of denoising diffusion GANs, which aims to accelerate the generation process. Finally, we explain
how our proposed TSW-SL distance can be integrated into this framework.

The process in diffusion models is typically divided into two main parts: the forward process and
the reverse process.

The forward process is defined as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

where the variance schedule β1, . . . , βT can be constant or learned hyperparameters. The reverse
process is defined as:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),

where µθ(xt, t) and Σθ(xt, t) are functions that provide the mean and covariance for the Gaussian
and are defined using MLPs.

The model is trained by maximizing the variational lower bound on the negative log-likelihood:

Eq[− log pθ(x0)] ⩽ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= L,

While traditional models have successfully generated high-quality images without the need for ad-
versarial training. However, their sampling process involves simulating a Markov chain for multiple

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

steps, which can be time-consuming. To accelerate the generation process by reducing the number
of steps T , denoising diffusion GANs (Xiao et al., 2021) propose utilizing an implicit denoising
model:

pθ(xt−1|xt) =

∫
pθ(xt−1|xt, ϵ)Gθ(xt, ϵ)dϵ, with ϵ ∼ N (0, I).

Subsequently, adversarial training is employed (Xiao et al., 2021) to optimize the model parameters

min
ϕ

T∑
t=1

Eq(xt)[Dadv(q(xt−1|xt)||pϕ(xt−1|xt))],

where Dadv refers to either the GAN objective or the Jensen-Shannon divergence (Goodfellow et al.,
2020). We follow the proposed Augmented Generalized Mini-batch Energy distances of Nguyen
et al. (2024b) leverage our TSW-SL distance for Dadv .

More specifically, as described by Nguyen et al. (2024b), the adversarial loss is replaced by the
augmented generalized Mini-batch Energy (AGME) distance. For two distributions µ and ν, with a
mini-batch size n ⩾ 1, the AGME distance using a Sliced Wasserstein (SW) kernel is defined as:

AGME2
b (µ, ν; g) = GME2

b (µ̃, ν̃),

where µ̃ = f#µ and ν̃ = f#ν, with the mapping f(x) = (x, g(x)) for a nonlinear function
g : Rd ! R. The GME is the generalized Mini-batch Energy distance Salimans et al. (2018),
given by:

GME2
b (µ, ν) = 2E[D(PX , PY )]− E[D(PX , P ′

X)]− E[D(PY , P
′
Y )],

where X,X ′ i.i.d.∼ µ⊗m, Y, Y ′ i.i.d.∼ ν⊗m, and

PX =
1

m

m∑
i=1

δxi
, X = (x1, . . . , xm).

In the equation above, D denotes a distance function that can calculate the distance between two
probability measures. To evaluate how well TSW-SL compares to other SW variants in capturing
topological information, particularly when the supports lie in high-dimensional spaces, we replace
D with both TSW and SW variants. We then train the generative model to assess which distance
metric better quantifies the divergence between two probability distributions. A lower FID score
indicates a more effective distance measure.

Experimental setup. For our experiments, we adopted the architecture and hyperparameters from
Nguyen et al. (2024b), training our models for 1800 epochs. For TSW, we employed the following
hyperparameters: L = 2500, k = 4. For the vanilla SW and its variants, we adhered to the approach
outlined in Nguyen et al. (2024b), using L = 10000. This consistent setup allowed us to effectively
compare the performance of our proposed methods against existing approaches while maintaining
experimental integrity.

FID plot. Figure 10 illustrates the FID scores of SW-DD and TSW-SL-DD across epochs. Due
to the wide range of FID values, from over 400 in the initial epoch to less than 3.0 in the final
epochs, we present the results on a logarithmic scale for improved visualization. The plot shows
that TSW-SL-DD achieves a greater reduction in FID scores compared to SW-DD during the final
300 epochs.

E.5 COMPUTATIONAL INFRASTRUCTURE

The experiments on gradient flow, color transfer and generative models using generative adversarial
networks are conducted on a single NVIDIA A100 GPU. Training generative adversarial networks
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Figure 10: FID score over epochs between SW and TSW-SL

on CIFAR10 requires 14 hours, while CelebA training takes 22 hours. Regarding gradient flows,
each dataset’s experiments take approximately 3.5 hours. For color transfer, the runtime is 15 min-
utes.

The denoising diffusion experiments were conducted parallelly on 2 NVIDIA A100 GPUs and each
run takes us 81.5 hours.

F BROADER IMPACT

The novel Tree-Sliced Wasserstein distance on a System of Lines (TSW-SL) introduced in this
paper holds significant potential for societal advancement. By refining optimal transport method-
ologies, TSW-SL enhances their accuracy and versatility across diverse practical domains. This
approach, which synthesizes elements from both Sliced Wasserstein (SW) and Tree-Sliced Wasser-
stein (TSW), offers enhanced resilience and adaptability, particularly in dynamic scenarios. The
resulting improvements in gradient flows, color manipulation, and generative modeling yield more
potent computational tools. These advancements promise to catalyze progress across multiple sec-
tors. In healthcare, for instance, refined image processing could elevate the precision of medical
diagnostics. The creative industries stand to benefit from more sophisticated generative models, po-
tentially revolutionizing artistic expression. Moreover, TSW-SL’s proficiency in handling dynamic
environments opens new avenues for real-time analytics and decision-making in fields ranging from
finance to environmental monitoring. By expanding the applicability of advanced computational
techniques to a wider array of real-world challenges, TSW-SL contributes to technological innova-
tion and, consequently, to the enhancement of societal welfare.
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