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ABSTRACT

Deep learning algorithms are known to experience destructive interference when
instances violate the assumption of being independent and identically distributed
(i.i.d). This violation, however, is ubiquitous in clinical settings where data are
streamed temporally and from a multitude of physiological sensors. To overcome
this obstacle, we propose CLOPS, a replay-based continual learning strategy. In
three continual learning scenarios based on three publically-available datasets,
we show that CLOPS can outperform the state-of-the-art methods, GEM and
MIR. Moreover, we propose end-to-end trainable parameters, which we term task-
instance parameters, that can be used to quantify task difficulty and similarity.
This quantification yields insights into both network interpretability and clinical
applications, where task difficulty is poorly quantified.

1 INTRODUCTION

Many deep learning algorithms operate under the assumption that instances are independent and
identically-distributed (i.i.d.). The violation of this assumption can be detrimental to the training
behaviour and performance of an algorithm. The assumption of independence can be violated,
for example, when data are streamed temporally from a sensor. Introducing multiple sensors in a
changing environment can introduce covariate shift, arguably the ‘Achilles heel’ of machine learning
model deployment (Quionero-Candela et al., 2009).

A plethora of realistic scenarios violate the i.i.d. assumption. This is particularly true in healthcare
where the multitude of physiological sensors generate time-series recordings that may vary temporally
(due to seasonal diseases; e.g. flu), across patients (due to different hospitals or hospital settings), and
in their modality. Tackling the challenges posed by such scenarios is the focus of continual learning
(CL) whereby a learner, when exposed to tasks in a sequential manner, is expected to perform well on
current tasks without compromising performance on previously seen tasks. The outcome is a single
algorithm that can reliably solve a multitude of tasks. However, most, if not all, research in this field
has been limited to a small handful of imaging datasets (Lopez-Paz & Ranzato, 2017; Aljundi et al.,
2019b;a). Although understandable from a benchmarking perspective, such research fails to explore
the utility of continual learning methodologies in more realistic healthcare scenarios (Farquhar &
Gal, 2018). To the best of our knowledge, we are the first to explore and propose a CL approach
in the context of physiological signals. The dynamic and chaotic environment that characterizes
healthcare necessitates the availability of algorithms that are dynamically reliable; those that can
adapt to potential covariate shift without catastrophically forgetting how to perform tasks from the
past. Such dynamic reliability implies that algorithms no longer needs to be retrained on data or tasks
to which it has been exposed in the past, thus improving its data-efficiency. Secondly, algorithms that
perform consistently well across a multitude of tasks are more trustworthy, a desirable trait sought by
medical professionals (Spiegelhalter, 2020).

Our Contributions. In this paper, we propose a replay-based continual learning methodology that is
based on the following:

1. Importance-guided storage: task-instance parameters, a scalar corresponding to each instance
in each task, as informative signals for loss-weighting and buffer-storage.

2. Uncertainty-based acquisition: an active learning inspired methodology that determines the
degree of informativeness of an instance and thus acts as a buffer-acquisition mechanism.
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2 RELATED WORK

Continual learning (CL) approaches have resurfaced in recent years (Parisi et al., 2019). Those
similar to ours comprise memory-based methods such as iCaRL (Rebuffi et al., 2017), CLEAR
(Rolnick et al., 2019), GEM (Lopez-Paz & Ranzato, 2017), and aGEM (Chaudhry et al., 2018). In
contrast to our work, the latter two methods naively populate their replay buffer with the last m
examples observed for a particular task. Isele & Cosgun (2018) and Aljundi et al. (2019b) employ
a more sophisticated buffer-storage strategy where a quadratic programming problem is solved in
the absence of task boundaries. Aljundi et al. (2019a) introduce MIR whereby instances are stored
using reservoir sampling and sampled according to whether they incur the greatest change in loss if
parameters were to be updated on the subsequent task. This approach is computationally expensive,
requiring multiple forward and backward passes per batch. The application of CL in the medical
domain is limited to that of Lenga et al. (2020) wherein existing methodologies are implemented on
chest X-ray datasets. In contrast to previous research that independently investigates buffer-storage
and acquisition strategies, we focus on a dual storage and acquisition strategy.

Active learning (AL) in healthcare has observed increased interest in recent years, with a review
of methodologies provided by Settles (2009). For example, Gong et al. (2019) propose a Bayesian
deep latent Gaussian model to acquire important features from electronic health record (EHR) data in
MIMIC (Johnson et al., 2016) to improve mortality prediction. In dealing with EHR data, Chen et al.
(2013) use the distance of unlabelled samples from the hyperplane in an SVM to acquire datapoints.
Wang et al. (2019) implement an RNN to acquire ECG samples during training. Zhou et al. (2017)
perform transfer learning in conjunction with a convolutional neural network to acquire biomedical
images in an online manner. Smailagic et al. (2018; 2019) actively acquire unannotated medical
images by measuring their distance in a latent space to images in the training set. Such similarity
metrics, however, are sensitive to the amount of available labelled training data. Gal et al. (2017)
adopt BALD (Houlsby et al., 2011) with Monte Carlo Dropout to acquire instances that maximize
the Jensen-Shannon divergence (JSD) across MC samples. To the best of our knowledge, we are the
first to employ AL-inspired acquisition functions in the context of CL.

3 BACKGROUND

3.1 CONTINUAL LEARNING

In this work, we consider a learner, fω : xT ∈ Rm → yT ∈ Rc, parameterized by ω, that maps an
m-dimensional input, xT , to a c-dimensional output, yT , where c is the number of classes, for each
task T ∈ [1 . . . N ]. This learner is exposed to new tasks in a sequential manner once previously-
tackled tasks are mastered. In this paper, we formulate our tasks based on a modification of the
three-tier categorization proposed by van de Ven & Tolias (2019). In our learning scenarios (see
Fig. 1), a network is sequentially tasked with solving a binary classification problem in response
to data from mutually-exclusive pairs of classes Class Incremental Learning (Class-IL), multi-
class classification problem in response to data collected at different times of the year (e.g., winter

Figure 1: Illustration of the three continual learning scenarios. A network is sequentially exposed to
tasks (Class-IL) with mutually-exclusive pairs of classes, (Time-IL) with data collected at different
times of the year, and (Domain-IL) with data from different input modalities.

2



Under review as a conference paper at ICLR 2021

and summer) Time Incremental Learning (Time-IL), and a multi-class classification problem
in response to inputs with a different modality Domain Incremental Learning (Domain-IL). In
the aforementioned cases, task identities are absent during both training and testing and neural
architectures are single-headed.

4 METHODS

The two ideas underlying our proposal are the storage of instances into and the acquisition of instances
from a buffer such that destructive interference is mitigated. We describe these in more detail below.

4.1 IMPORTANCE-GUIDED BUFFER STORAGE

We aim to populate a buffer, DB , of finite size,M, with instances from the current task that are
considered important. To quantify importance, we learn parameters, entitled task-instance parameters,
βiT , associated with each instance, xiT , in each task, T . These parameters play a dual role.

4.1.1 LOSS-WEIGHTING MECHANISM

For the current task, k, and its associated data, Dk, we incorporate β as a coefficient of the loss, Lik,
incurred for each instance, xik ∈ Dk. For a mini-batch of size, B, that consists of Bk instances from
the current task, the objective function is shown in Eq. 1. We can learn the values of βik via gradient
descent, with some learning rate, η, as shown in Eq. 2.

L =
1

Bk

Bk∑
i=1

βikLik (1) βik ← βik − η
∂L
∂βik

(2)

Note that ∂L
∂βik

= Lik > 0. This suggests that instances that are hard to classify (↑ Lik) will exhibit
↓ βik. From this perspective, βik can be viewed as a proxy for instance difficulty. However, as
presented, βik → 0 as training progresses, an observation we confirmed empirically. Since βik is
the coefficient of the loss, Lik, this implies that the network will quickly be unable to learn from the
data. To avoid this behaviour, we initialize βik = 1 in order to emulate a standard loss function and
introduce a regularization term to penalize its undesirable and rapid decay toward zero. As a result,
our modified objective function is:

Lcurrent =
1

Bk

Bk∑
i=1

βikLik + λ(βik − 1)2 (3)

When k > 1, we replay instances from previous tasks by using a replay buffer (see Sec. 4.2 for replay
mechanism). These replayed instances incur a loss Lij ∀ j ∈ [1 . . . k − 1]. We decide to not weight
these instances, in contrast to what we perform to instances from the current task (see Appendix K).

Lreplay =
1

B −Bk

k−1∑
j=1

Bj∑
i

Lij (4) L = Lcurrent + Lreplay (5)

4.1.2 BUFFER-STORAGE MECHANISM

We leverage β, as a proxy for instance difficulty, to store instances into the buffer. To describe the
intuition behind this process, we illustrate, in Fig. 2, the trajectory of β1k and β2k associated with two
instances, x1k and x2k, while training on the current task, k, for τ = 20 epochs. In selecting instances
for storage into the buffer, we can 1) retrieve their corresponding β values at the conclusion of the
task, i.e., at β(t = 20), 2) rank all instances based on these β values, and 3) acquire the top b fraction
of instances. This approach, however, can lead to erroneous estimates of the relative difficulty of
instances, as explained next.

In Fig. 2, we see that β2k > β1k for the majority of the training process, indicating that x2k had been
easier to classify than x1k. The swap in the ranking of these β values that occurs towards the end of
training in addition to myopically looking at β(t = 20) would erroneously make us believe that the
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opposite was true. Such convergence or swapping of β values has also been observed by Saxena et al.
(2019). As a result, the reliability of β as a proxy of instance difficulty is eroded.

Figure 2: Trajectory of β1k and β2k on task k.
Ranking instances based on β(t = 20) leads to
erroneous estimates of their relative difficulty. We
propose to rank instances based on the area under
the trajectory of β, denoted as sik.

To maintain the reliability of this proxy, we pro-
pose to track the β values after each training
epoch, t, until the final epoch, τ , for the task at
hand and calculate the area under these tracked
values. We do so by using the trapezoidal rule
as shown in Eq. 6. We explored several variants
of the storage function and found the proposed
form to work best (see Appendix H). At t = τ ,
we rank the instances in descending order of
sik (easy to hard) as we found this preferable
to the opposite order (see Appendix I), select
the top b fraction, and store them into the buffer,
of which each task is allotted a fixed portion.
The higher the value of the storage fraction, b,
the more likely it is that the buffer will con-
tain representative instances and thus mitigate
forgetting, however this comes at an increased
computational cost.

sik =

∫ τ

0

βik(t)dt ≈
τ∑
t=0

(
βik(t+ ∆t) + βik(t)

2

)
∆t (6)

4.2 UNCERTAINTY-BASED BUFFER ACQUISITION

The acquisition of instances that a learner is uncertain about is likely to benefit training (Zhu, 2005).
This is the premise of uncertainty-based acquisition functions such as BALD (Houlsby et al., 2011;
Gal & Ghahramani, 2016). We now outline how to exploit this premise for buffer acquisition.

At epoch number, τMC , referred to as Monte Carlo (MC) epochs, each of the M instances, x ∼ DB ,
is passed through the network and exposed to a stochastic binary dropout mask to generate an output,
p(y|x, ω) ∈ RC . This is repeated T times to form a matrix, G ∈ RMxT xC . An acquisition function,
such as BALDMCD, is thus a function F : RMxT xC → RM .

BALDMCD = JSD(p1, p2, . . . , pT ) = H (p(y|x))− Ep(ω|Dtrain) [H (p(y|x, ω̂))] (7)

where H(p(y|x)) represents the entropy of the network outputs averaged across the MC samples,
and ω̂ ∼ p(ω|Dtrain) as in Gal & Ghahramani (2016). At sample epochs, τS , we rank instances in
descending order of BALDMCD and acquire the top a fraction from each task in the buffer. A higher
value of this acquisition fraction, a, implies more instances are acquired. Although this may not
guarantee improvement in performance, it does guarantee increased training overhead. Nonetheless,
the intuition is that by acquiring instances, from previous tasks, to which a network is most confused,
it can be nudged to avoid destructive interference in a data-efficient manner. We outline the entire
training procedure in Algorithms 1-4 in Appendix A.

5 EXPERIMENTAL DESIGN

5.1 DATASETS

We conduct experiments1 in PyTorch (Paszke et al., 2019). Given our emphasis on healthcare, we
evaluate our approach on three publically-available datasets that include physiological time-series data
such as the electrocardiogram (ECG) alongside cardiac arrhythmia labels. We useD1D1D1 = Cardiology
ECG (Hannun et al., 2019) (12-way),D2D2D2 = Chapman ECG (Zheng et al., 2020) (4-way), andD3D3D3 =
PhysioNet 2020 ECG (Perez Alday et al., 2020) (9-way, multi-label). Further details regarding the
datasets and network architecture can be found in Appendix C.

1Our code is available at: https://tinyurl.com/CLOPSSubmission
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5.2 CONTINUAL LEARNING SCENARIOS

Here, we outline the three primary continual learning scenarios we use for our experiments. In Class-
IL, D1 is split according to mutually-exclusive pairs of classes [0, 1], [2, 3], [4, 5], [6, 7], [8, 9], and
[10, 11]. This scenario allows us to evaluate the sensitivity of a network to new classes. In Time-IL,
D2 is split into three tasks; Term 1, Term 2, and Term 3 corresponding to mutually-exclusive times of
the year during which patient data were collected. This scenario allows us to evaluate the effect of
temporal non-stationarity on a network’s performance. Lastly, in Domain-IL, D3 is split according
to the 12 leads of an ECG; 12 different projections of the same electrical signal generated by the
heart. This scenario allows us to evaluate how robust a network is to the input distribution.

5.3 BASELINE METHODS

We compare our proposed method to the following. Multi-Task Learning (MTL) (Caruana, 1993)
is a strategy whereby all datasets are assumed to be available at the same time and thus can be
simultaneously used for training. Although this assumption may not hold in clinical settings due
to the nature of data collection, privacy or memory constraints, it is nonetheless a strong baseline.
Fine-tuning is a strategy that involves updating all parameters when training on subsequent tasks as
they arrive without explicitly dealing with catastrophic forgetting. We also adapt two replay-based
methods for our scenarios. GEM (Lopez-Paz & Ranzato, 2017) solves a quadratic programming
problem to generate parameter gradients that do not increase the loss incurred by replayed instances.
MIR (Aljundi et al., 2019a) replays instances from a buffer that incur the greatest change in loss given
a parameter pseudo-update. Details on how these methods were adapted are found in Appendix C.

5.4 EVALUATION METRICS

To evaluate our methods, we exploit metrics suggested by Lopez-Paz & Ranzato (2017) such as
average AUC and Backward Weight Transfer (BWT). We also propose two additional evaluation
metrics that provide us with a more fine-grained analysis of learning strategies.

t-Step Backward Weight Transfer. To determine how performance changes ‘t-steps into the future’,
we propose BWTt which evaluates the performance of the network on a previously-seen task, after
having trained on t-tasks after it.

BWTt =
1

N − t

N−t∑
j=1

Rj+tj − Rjj (8)

Lambda Backward Weight Transfer. We extend BWTt to all time-steps, t, to generate BWTλ.
As a result, we can identify improvements in methodology at the task-level.

BWTλ =
1

N − 1

N−1∑
j=1

[
1

N − j

N−j∑
t=1

Rj+tj − Rjj

]
(9)

5.5 HYPERPARAMETERS

Depending on the continual learning scenario, we chose τ = 20 or 40, as we found that to achieve
strong performance on the respective validation sets. We chose τMC = 40 +n and the sample epochs
τS = 41 + n where n ∈ N+ in order to sample data from the buffer at every epoch following the
first task. The values must satisfy τS ≥ τMC > τ . For computational reasons, we chose the storage
fraction b = 0.1 of the size of the training dataset and the acquisition fraction a = 0.25 of the number
of samples per task in the buffer. To calculate the acquisition function, we chose the number of Monte
Carlo samples, T = 20. We chose the regularization coefficient, λ = 10. We also explore the effect
of changing these values on performance (see Appendices L and M).
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6 EXPERIMENTAL RESULTS

6.1 CLASS-IL

Destructive interference is notorious amongst neural networks. In this section, we quantify such
interference when learners are exposed to tasks involving novel classes. In Fig. 3a, we illustrate
the AUC achieved on sequential binary classification tasks. We find that destructive interference is
prevalent. For example, the network quickly forgets how to perform task [0 − 1] once exposed to
data from task [2− 3]. This can be seen by the AUC ≈ 0.92→ 0.30. The final performance of the
network for that particular task (AUC ≈ 0.78) is also lower than that maximally-achieved. In Fig. 3b,
we show that CLOPS alleviates this interference. This can be seen by the absence of significant drops
in AUC and higher final performance for all tasks relative to the fine-tuning strategy.

In Table 1, we compare the performance of the CL strategies in the Class-IL scenario. We find that
CLOPS outperforms MTL (AUC = 0.796 vs. 0.701), which is a seemingly non-intuitive finding.
We hypothesize that this finding is due to positive weight transfer brought about by a curriculum
wherein sequential tasks of different levels of difficulty can improve generalization performance
(Bengio et al., 2009). We explore this hypothesis further in Sec. 6.5. We also find that CLOPS
outperforms state-of-the-art methods, GEM and MIR, in terms of generalization performance and
exhibits constructive interference. For example, CLOPS and MIR achieve an AUC = 0.796 and
0.753, respectively. Moreover, BWT = 0.053 and 0.009 for these two methods, respectively. Such a
finding underscores the ability of CLOPS to deal with tasks involving novel classes. We also show
that CLOPS is robust to task order (see Appendix F).

(a) Fine-tuning (b) CLOPS

Figure 3: Mean validation AUC of the a) fine-tuning and b) CLOPS strategy (b = 0.25 and a = 0.50)
in the Class-IL scenario. Coloured blocks indicate tasks on which the learner is currently being
trained. The shaded area represents one standard deviation across five seeds.

Table 1: Performance of CL strategies in the Class-IL scenario. Storage and acquisition fractions are
b = 0.25 and a = 0.50, respectively. Mean and standard deviation are shown across five seeds.

Method Average AUC BWT BWTt BWTλ

MTL 0.701 ± 0.014 - - -
Fine-tuning 0.770 ± 0.020 0.037 ± 0.037 (0.076) ± 0.064 (0.176) ± 0.080

Replay-based Methods

GEM 0.544 ± 0.031 (0.024) ± 0.028 (0.046) ± 0.017 (0.175) ± 0.021
MIR 0.753 ± 0.014 0.009 ± 0.018 0.001 ± 0.025 (0.046) ± 0.022

CLOPS 0.796 ± 0.013 0.053 ± 0.023 0.018 ± 0.010 0.008 ± 0.016

6.2 TIME-IL

Environmental changes within healthcare can introduce seasonal shift into datasets. In this section,
we quantify the effect of such a shift on learners. In Fig. 4a, we illustrate the AUC achieved on tasks
with seasonally-shifted data.
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(a) Fine-tuning (b) CLOPS

Figure 4: Mean validation AUC of the (a) fine-tuning and (b) CLOPS strategy in the Time-IL
scenario. Coloured blocks indicate tasks on which the learner is currently being trained. The shaded
area represents one standard deviation from the mean across five seeds.

In this scenario, we find that CLOPS is capable of achieving forward weight transfer (FWT). For
example, in Figs. 4a and 4b, CLOPS achieves an AUC ≈ 0.62 after one epoch of training on
task Term 3, a value that the fine-tuning strategy only achieves after 20 epochs, signalling a 20-fold
reduction in training time. We attribute this FWT to the loss-weighting role played by the task-instance
parameters. By placing greater emphasis on more useful instances, the generalization performance of
the network is improved. We also find that CLOPS exhibits reduced catastrophic forgetting relative
to fine-tuning. For example, performance on tasks Term 1 and Term 2 is maintained at AUC > 0.90
when training on task Term 3. We do not observe this for the fine-tuning setup.

6.3 DOMAIN-IL

So far, we have shown the potential of CLOPS to alleviate destructive interference and allow for
forward weight transfer. In this section, and in Table 2, we illustrate the performance of the CL
strategies in the Domain-IL scenario. We show that CLOPS outperforms state-of-the-art methods.
For example, CLOPS and MIR achieve an AUC = 0.731 and 0.716, respectively. CLOPS is also
better at mitigating destructive interference, as shown by BWT = (0.011) and (0.022), respectively.
We provide an explanation for such performance by conducting ablation studies in the next section.

Table 2: Performance of CL strategies in the Domain-IL scenario. Storage and acquisition fractions
are b = 0.25 and a = 0.50, respectively. Mean and standard deviation are shown across five seeds.

Method Average AUC BWT BWTt BWTλ

MTL 0.730 ± 0.016 - - -
Fine-tuning 0.687 ± 0.007 (0.041) ± 0.008 (0.047) ± 0.004 (0.070) ± 0.007

Replay-based Methods

GEM 0.502 ± 0.012 (0.025) ± 0.008 0.004 ± 0.010 (0.046) ± 0.021
MIR 0.716 ± 0.011 (0.022) ± 0.011 (0.013) ± 0.004 (0.019) ± 0.006

CLOPS 0.731 ± 0.001 (0.011) ± 0.002 (0.020) ± 0.004 (0.019) ± 0.009

6.4 EFFECT OF TASK-INSTANCE PARAMETERS, β , AND ACQUISITION FUNCTION, α

To better understand the root cause of CLOPS’ benefits, we conduct three ablation studies: 1)
Random Storage dispenses with task-instance parameters and instead randomly stores instances
into the buffer, 2) Random Acquisition dispenses with acquisition functions and instead randomly
acquires instances from the buffer, and 3) Random Storage and Acquisition which stores instances
into, and acquires instances from, the buffer randomly. In Fig. 5, we illustrate the effect of these
strategies on performance as we vary the storage fraction, b, and acquisition fraction, a.

We find that β, as a loss-weighting mechanism, benefits generalization performance. For example,
in Fig. 5 (red rectangle), at b = 1, a = 0.5, we show that simply including the loss-weighting
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mechanism ↑ AUC ≈ 12%. We hypothesize that this mechanism is analogous to attention being
placed on instance losses and thus allows the network to learn which instances to exploit further. We
also find that uncertainty-based acquisition functions offer significant improvements. In Fig. 5 (black
rectangles), at a = 0.1, b = 0.5, we show that such acquisition ↑ AUC ≈ 8%. We arrive at the same
conclusion when evaluating backward weight transfer (see Appendix J).

Figure 5: Mean validation AUC of four different learning strategies in the Class-IL scenario. 1)
CLOPS, 2) Random Storage, 3) Random Acquisition, and 4) Random Storage and Acquisition.
Results are shown as a function of storage fractions, b, and acquisition fractions, a and are an
average across five seeds. We highlight the utility of (red rectangle) task-instance parameters as
a loss-weighting mechanism and (black rectangle) uncertainty-based acquisition functions for the
acquisition of instances from the buffer.

6.5 VALIDATION OF INTERPRETATION OF TASK-INSTANCE PARAMETERS, β

We claimed that instances with lower values of β, and by extension, s, are relatively more difficult to
classify. In this section, we aim to validate this intuition. In Fig. 6, we illustrate the distribution of s
values corresponding to each task.

Figure 6: Distribution of the s values corresponding to CLOPS (b = 0.25 and a = 0.50) in the
Class-IL scenario. Each colour corresponds to a different task. The ECG recording with the lowest s
value is labelled as normal despite the presence of ST-elevation, a feature common in heart attacks.
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We find that tasks differ in their difficulty level. For example, task [6− 7] is considered more difficult
to solve than task [8− 9] as evidenced by the lower distribution mean of the former relative to the
latter (s ≈ 18.85 vs. 18.95). After extracting the two ECG recordings associated with the lowest
and highest s values, we find that both belong to the same class, normal sinus rhythm. Upon closer
inspection, the recording with the lower s value exhibits a feature known as ST-elevation. This feature,
which is characterized by the elevation of the segment between the S and T waves (deflections) of
the ECG signal relative to the baseline, is typically associated with heart attacks. Mapping an ECG
recording with such an abnormal feature to the normal class would have been a source of confusion
for the network. We provide additional qualitative evidence in Appendix G.

Figure 7: Similarity of tasks in the Class-IL scen-
ario. We create a curriculum by following chaining
tasks that are similar to one another.

We also leverage s to learn a curriculum (Ben-
gio et al., 2009). First, we fit a Gaussian,
N (µT , σ

2
T ), to each of the distributions in Fig. 6.

Using this information, we define the difficulty
of task T as dT = 1

µT
and the similarity,

S(j, k), between task j and k as shown in Eq. 10.
In Fig. 7, we illustrate the resulting pairwise task
similarity matrix.

S(j, k) = 1−

√√√√1−

√
2σ0σ1

σ2
0σ

2
1

e
− 1

4
(µ0−µ1)2

σ20σ
2
1

︸ ︷︷ ︸
DH =HellingerDistance

(10)

We design a curriculum by first selecting the easiest task (↓ dT ) and then creating a chain of tasks
that are similar to one another as shown in Fig. 7. For an anti-curriculum, we start with the hardest
task (↑ dT ). In Table 3, we illustrate the performance of various curricula and find that a curriculum
exhibits higher constructive interference than a random one (BWT = 0.087 vs. 0.053). Such an
outcome aligns well with the expectations of curriculum learning, thus helping to further validate the
intuition underlying β.

Table 3: Performance of CLOPS in the Class-IL scenario with different curricula. Storage and
acquisition fractions are b = 0.25 and a = 0.50, respectively. Results are shown across five seeds.

Task Order Average AUC BWT BWTt BWTλ

Random 0.796 ± 0.013 0.053 ± 0.023 0.018 ± 0.010 0.008 ± 0.016
Curriculum 0.744 ± 0.009 0.087 ± 0.011 0.038 ± 0.021 0.076 ± 0.037

Anti-curriculum 0.783 ± 0.022 0.058 ± 0.016 (0.013) ± 0.013 (0.003) ± 0.014

7 DISCUSSION AND FUTURE WORK

In this paper, we introduce a replay-based method applied to physiological signals, entitled CLOPS, to
mitigate destructive interference during continual learning. CLOPS consists of an importance-guided
buffer-storage and active-learning inspired buffer-acquisition mechanism. We show that CLOPS
outperforms the state-of-the-art methods, GEM and MIR, on both backward and forward weight
transfer. Furthermore, we propose learnable parameters, as a proxy for the difficulty with which
instances are classified, which can assist with quantifying task difficulty and improving network
interpretability. We now elucidate future avenues worth exploring.

Extensions to Task Similarity. The notion of task similarity was explored by Thrun & O’Sullivan
(1996); Silver & Mercer (1996). In this work, we proposed a definition of task similarity and used it
to order the presentation of tasks. The exploration of more robust definitions, their validation through
domain knowledge, and their exploitation for generalization is an exciting extension.

Predicting Destructive Interference. Destructive interference is often dealt with in a reactive man-
ner. By predicting the degree of forgetting that a network may experience once trained sequentially
can help alleviate this problem in a proactive manner.
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