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ABSTRACT
3D volumetric video provides immersive experience and is gaining traction in digital media. Despite its rising
popularity, the streaming of volumetric video content poses significant challenges due to the high data bandwidth
requirement. A natural approach to mitigate the bandwidth issue is to reduce the volumetric video’s data rate by
downsampling the content prior to transmission. The video can then be upsampled at the receiver’s end using a
super-resolution (SR) algorithm to reconstruct the high-resolution details. While super-resolution techniques have
been extensively explored and advanced for 2D video content, there is limited work on SR algorithms tailored for
volumetric videos.

To address this gap and the growing need for efficient volumetric video streaming, we have developed VoLUT
with a new SR algorithm specifically designed for volumetric content. Our algorithm uniquely harnesses the power
of lookup tables (LUTs) to facilitate the efficient and accurate upscaling of low-resolution volumetric data. The
use of LUTs enables our algorithm to quickly reference precomputed high-resolution values, thereby significantly
reducing the computational complexity and time required for upscaling. We further apply adaptive video bit rate
algorithm (ABR) to dynamically determine the downsampling rate according to the network condition and stream
the selected video rate to the receiver. Compared to related work, VoLUT is the first to enable high-quality 3D
SR on commodity mobile devices at line-rate. Our evaluation shows VoLUT can reduce bandwidth usage by
70% , boost QoE by 36.7% for volumetric video streaming and achieve 8.4× 3D SR speed-up with no quality
compromise.

1 INTRODUCTION

Empowered by advances in 3D capture and rendering tech-
nologies, volumetric video applications are revolutionizing
how we experience digital content across entertainment (vol,
2024), education (Emad et al., 2022), virtual reality (efe,
2024), etc. These applications enable users to freely navi-
gate and interact with dynamic 3D scenes with six degrees
of freedom (6DoF), providing an unprecedented level of
immersion that traditional 2D videos cannot match. Among
various 3D representations, point cloud has emerged as a pre-
ferred format for volumetric content due to its rendering ef-
ficiency and capturing availability (Yang et al.; Zhang et al.).
The recent breakthrough in 3D Gaussian splatting (Luiten
et al.), which can be viewed as a specialized point cloud
format, further demonstrates the potential of point-based
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representations for high-quality volumetric content delivery.

A key challenge in deploying volumetric video applica-
tions is the substantial bandwidth requirement for streaming
high-quality point cloud content at line-rate (i.e., 30 FPS),
which can demand as much as 720Mbps for high-quality
content with 200K points per frame (Zhang et al.). As a
result, viewers watching volumetric content over the In-
ternet always suffer from drastically compromised quality-
of-experience (QoE). While various approaches have been
proposed to address this challenge, each has significant
limitations. Viewport-adaptive streaming techniques re-
duce bandwidth usage by streaming only the content within
the user’s future viewport (Han et al., 2020; Lee et al.,
2020; Liu et al., 2024), but suffer from quality degrada-
tion under rapid viewer movement or when rendering wide-
angle scenes. Remote-rendering-based solutions employ
a cloud/edge server to transcode 3D scenes to regular 2D
frames that consume much less bandwidth (Gül et al., 2020b;
Liu et al., 2022b). However, these approaches introduce
non-negligible latency (50-200ms) and require complex in-
frastructure support to scale up to multiple concurrent users.

Recently, super-resolution (SR) based approaches (Zhang
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et al.) have demonstrated their potentials in reducing the
bandwidth consumption while boosting the users QoE for
volumetric video streaming. These approaches offload the
network-side burden to the client-side computation over-
head, by deploying a deep 3D SR model on the client de-
vices to enhance the visual quality of low-resolution point
cloud content. Nevertheless, off-the-shelf deep 3D SR mod-
els (Li et al., 2019; Qian et al.; Yu et al.; Wang et al., 2021;
Long et al., 2022) are still too heavyweight to perform real-
time (i.e., 30 FPS) SR on resource-constrained mobile de-
vices such as Meta Quest 3 (met, 2024), even after extensive
optimizations for inference acceleration (Zhang et al.). In
addition, existing SR-based solutions struggle with limited
upsampling ratios and growing training cost, as they require
training an SR model for each upsampling ratio per video.

This paper presents VoLUT, a novel SR-enhanced volumet-
ric video streaming system for commodity mobile devices
by addressing all the above limitations. We make two vital
insights for developing VoLUT. First, the computational
complexity of 3D SR can be drastically reduced by decom-
posing this task into two stages (Liu et al., 2020): (1) a
traditional interpolation phase that performs basic SR on
the input point cloud, followed by (2) a refinement deep
neural network (DNN) model that fine-tunes the SR out-
put in (1). This brand new 3D SR pipeline also provides
several side benefits, such as good generalization across
different content types, and flexible upsampling ratios with
only a single refinement DNN model (Liu et al., 2020) . Sec-
ond, the on-device memory is not well-utilized in previous
SR-based volumetric video streaming systems. Therefore,
we have rich opportunities to trade the on-device memory
for efficient model inference thus further SR speedup, by
transferring a DNN model to a lookup table (LUT) offline.

We face several key challenges when building VoLUT. First,
vanilla kNN-based interpolation introduces noticeable vi-
sual distortions (see Figure 4) and high computation latency,
while diminishing these distortions and accelerating the in-
terpolation simultaneously is a non-trivial task. Second,
while LUT has been explored to speed up 2D image SR (Jo
& Joo Kim, 2021; Liu et al., 2022a; Yang et al., 2022),
applying it to 3D SR poses a unique difficulty given the
continuous nature of point cloud: converting the refinement
DNN to a LUT that preserves the SR quality and fits the
limited on-device memory requires sophisticated designs
to balance the trade-off. Furthermore, the arbitrary SR ra-
tio ensured by our two-stage SR brings a necessity for an
adaptive bitrate (ABR) streaming algorithm that can rapidly
determine the highly fine-grained {to-be-fetched point den-
sity, SR ratio} for the volumetric frames, to fully utilize the
network/compute resource. We address these challenges
through three core technical innovations:

● Enhanced dilated interpolation: We develop a novel

interpolation technique that introduces controlled dilation,
octree-based parallelism and neighbor relationship reuse in
neighbor point selection. Our approach achieves 4× faster
processing compared to traditional k-NN interpolation with
no quality compromise.

● Position-aware LUT refinement: We enable efficient 3D
LUT application through a novel position encoding scheme
that effectively normalizes and quantizes the continuous 3D
space into discrete bins. Our method reduces the refinement
computation latency by over 99.9% compared to neural
network inference (sub-milliseconds v.s. seconds) while
maintaining the quality benefits.

● Continuous-ratio streaming pipeline: We design an
end-to-end system that integrates our SR pipeline with con-
tinuous quality adaptation, providing fine-grained control
over the quality-bandwidth tradeoff.

We implement VoLUT and evaluate it on both desktop PCs
and mobile devices like Orange Pi (ora, 2024) that has
similar computation and memory capability as Meta Quest
3 (met, 2024). Our evaluation shows that VoLUT achieves
real-time performance (30+ fps) on mobile devices while
reducing bandwidth requirements by up to 70% compared
to raw point cloud streaming. Notably, our LUT-based SR
achieves 8.4× speedup compared to YuZu (Zhang et al.)’s
neural SR approach, the state-of-the-art SR-based volumet-
ric video streaming system, and our system achieves 36.7%
better QoE than Yuzu system under both stable and LTE
traces. Our key contributions include:

● An dilated interpolation technique with spatial informa-
tion pruning and reusing that significantly improves both
visual quality and processing speed for point cloud super-
resolution

● A position encoding mechanism designed for applying
LUT to 3D continuous space that enables efficient 3D super-
resolution on resource-constrained devices

● An end-to-end system design that orchestrates the SR
pipeline with continuous quality adaptation for volumetric
video streaming

2 BACKGROUND AND MOTIVATION
2.1 Point Cloud Super-Resolution
Point cloud super-resolution (PCSR) has emerged as a
promising technique for enhancing volumetric video quality
while reducing bandwidth requirements. Early PCSR meth-
ods like PU-Net (Yu et al., 2018), MPU (Yifan et al., 2019),
and PUGAN (Li et al., 2019) demonstrated the potential of
learning-based approaches but were constrained by fixed
upsampling ratios and high computational demands. The re-
cent GradPU (He et al., 2023) overcame the ratio limitation
by introducing a two-stage approach (shown in Figure 1):
first performing midpoint interpolation in Euclidean space,
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Figure 1. DL-based Point Cloud Super-resolution:
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Figure 2. The System Architecture of VoLUT.
then refining point positions through iterative optimization
to minimize point-to-point distances with ground truth.

While GradPU’s flexible upsampling ratio and improved
generalization make it particularly attractive for volumet-
ric video streaming, its computational requirements remain
prohibitive for consumer devices. YuZu (Zhang et al.), the
first system to apply PCSR for volumetric video streaming,
demonstrates this challenge—despite achieving significant
quality improvements, it requires high-end GPUs and in-
troduces substantial latency due to neural network infer-
ence. This computational barrier has limited the practical
deployment of PCSR-based streaming solutions on resource-
constrained devices like mobile VR headsets.

2.2 LUT-based Image Super-resolution
Look-up table (LUT) based approaches have recently shown
promise in accelerating 2D image super-resolution by replac-
ing expensive neural network computations with efficient
table lookups (Tang et al., 2023; Jo & Joo Kim, 2021; Liu
et al.; Yang et al., 2022). These methods work by training
a deep SR network with a constrained receptive field, then
transferring the learned mappings to a lookup table. During
inference, the system uses the local input pattern as an index
to retrieve pre-computed high-resolution outputs, dramat-
ically reducing computational overhead compared to full
neural network inference.

However, extending LUT-based optimization to 3D point
clouds introduces fundamental challenges not present in
2D scenarios. Unlike image pixels that exist on a discrete
grid, point clouds occupy continuous 3D space, making it
impossible to directly index all potential local point config-
urations. The indexing space grows exponentially with the
number of neighboring points considered, and naive quanti-
zation schemes can lead to significant quality degradation.
Additionally, while 2D images have regular neighborhoods
defined by fixed pixel grids, point cloud neighborhoods vary
in size and spatial distribution, further complicating the
design of an effective lookup mechanism.

These challenges motivate our development of positional en-
coding (§ 4.2.1) that can effectively bridge the gap between
2D LUT-based approaches and 3D point cloud processing
while maintaining the quality benefits of learning-based
PCSR methods. By carefully addressing the continuous
space quantization and neighborhood encoding problems,
we can make PCSR practical for real-time volumetric video
streaming on consumer devices.

3 SYSTEM OVERVIEW

VoLUT enables high-quality streaming of volumetric video
content by combining adaptive bitrate streaming with super-
resolution enhancement. The server segments videos into
fixed-length chunks and encodes them at requested point
densities.

As shown in Figure 2, the client processes received low-
resolution frames through three stages: kNN-based interpo-
lation with dilation to increase point density (§4.1), coloriza-
tion based on spatial relationships (§4.1), and LUT-based
fine-tuning to enhance visual quality (§4.2). To achieve
real-time performance, VoLUT transforms neural networks
into memory-efficient LUTs and reuses kNN results across
pipeline stages, ensuring stable quality and latency across
different upscaling ratios.

The system dynamically selects optimal downsampling ra-
tios based on network conditions and buffer status (§5).
Through this combination of adaptive downsampling and
efficient super-resolution, VoLUT delivers high-quality vol-
umetric video while optimizing bandwidth utilization across
varying network conditions.

4 LUT BASED POINT CLOUD
SUPER-RESOLUTION

4.1 Enhanced Interpolation with Colorization
Given a downsampled point cloud along with a desired up-
sampling ratio, we first perform interpolation to increase
the point density. The quality of the final super-resoluted
point cloud critically depends on the initial interpolation
stage. Our qualitative results reveal that poor initial point
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Figure 3. The pipeline of two-stage Super-resolution with LUT refinement

Figure 4. Qualitative upsampling results (from left to right):
Groundtruth, Interpolation with dilation, Naive knn-based inter-
polation. Our method achieves more uniform point distribution
while preserving geometric details.
distributions create artifacts (Figure 4) that persist even
after neural refinement. Additionally, traditional interpola-
tion methods create a severe performance bottleneck—our
measurements on GradPU show that naive kNN-based in-
terpolation consumes over 70% of the frame time, making
real-time operation infeasible.

Central to both interpolation and subsequent refinement is
the concept of receptive fields (RF)—the local spatial re-
gions considered when processing each point. As illustrated
in Figure 5, the receptive field determines which neighbor-
ing points influence the position and attributes of newly
generated points. In traditional kNN approaches, each new
point is generated by considering only its k closest neigh-
bors, which causes two distinct problems. First, this method
tends to reinforce existing density patterns because points
in dense regions have closer neighbors than those in sparse

Figure 5. Interpolation with and without dilation. Receptive Field
size = 𝑘× dilation. The dilated approach significantly improves
point distribution uniformity and surface coverage.

regions, leading to uneven point distributions. Second, the
neighbor search operations required for each new point are
computationally expensive, especially as the point cloud
size grows. VoLUT enables two optimizations in interpola-
tion stage.

Dilated Interpolation for Uniform Upsampling Our key
insight is that by carefully expanding the sampling neigh-
borhood through dilation, we can break the artifact intro-
duced by traditional kNN interpolation while still preserving
important geometric features. As shown in Figure 5, our
dilated approach examines a broader spatial region during
interpolation, defined by a receptive field of size 𝑘×𝑑, where
𝑘 is the number of neighbors and 𝑑 is the dilation factor.

For a point cloud 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, we define a dilated
neighborhood for each point 𝑝𝑖 as:

𝑁𝑑𝑘 (𝑝𝑖) = {𝑝 𝑗 ∈ 𝑃𝑛 |𝑃𝑛 = Top𝑑×𝑘 ( | |𝑝 𝑗 − 𝑝𝑖 | |2)} (1)

where 𝑑 is the dilation factor, 𝑘 is the desired neighbor count,
and | |𝑥 | |2 denotes Euclidean distance. The Top function
orders points by distance increasingly and keeps the first
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Figure 6. LUT look up example.

𝑑 × 𝑘 ones, similar as the request of vanilla kNN. From this
expanded neighborhood, we randomly select a subset 𝑆𝑖 of
points for interpolation based on the target upsampling ratio
requirement.

An alternative solution may interpolate the point cloud to
a higher density and perform Farthest Point Sampling (Li
et al., 2022) (FPS) to the target upsampling ratio. FPS iter-
atively samples the farthest point and updates the distance,
which can preserve geometry feature but introduce unac-
ceptable computation latency (≥ 5 minutes to downsample
a 200K points to 100K points on a commodity desktop).

Hierarchical kNN Computation with Relationship Reuse
To achieve real-time performance on mobile devices, we
adopt an efficient two-layer octree (Schnabel & Klein) struc-
ture that balances spatial organization against traversal over-
head. Our measurements show that naive dilated interpola-
tion takes over 100ms per 100K-points-frame on an Orange
Pi, making optimization essential for real-time operation.

The octree divides the point cloud into eight major regions
at the first layer, with each region further subdivided into
eight sub-regions. While the construction of the octree takes
limited effort, its leaf nodes store a subset of the points
whose neighbour points are highly likely self-contained.
This hierarchical structure enables rapid neighbor search
through efficient spatial pruning.

We further accelerate computation through neighbor rela-
tionship reuse. For each interpolated point 𝑝′ generated
between points 𝑝 and 𝑞, we observe that:

𝑁𝑘 (𝑝′) ≈ MergeAndPrune(𝑁𝑘 (𝑝), 𝑁𝑘 (𝑞)) (2)

where 𝑁𝑘 (𝑝′) represents the k-nearest neighbors of 𝑝′.
This approximation eliminates redundant neighbor searches
while maintaining accuracy.

We colorize new points based on the nearest original point,
reusing spatial relationships from geometric interpolation to

avoid redundant computations.

4.2 Interpolation Refinement with LUT
As discussed in § 2.1, a refinement function is required to
adjust the interpolated point clouds for better visual quality.
We propose an LUT-based refinement approach (shown in
Figure 3) that first captures refinement patterns through of-
fline neural network training, then transfers this knowledge
into an efficient lookup table for real-time inference.

4.2.1 Position Encoding and LUT Construction

The key challenge in constructing a lookup table for point
refinement is converting continuous 3D point positions into
discrete indices while preserving geometric relationships.
As shown in Figure 6, we address this through a systematic
encoding pipeline that transforms raw 3D coordinates into
quantized indices for efficient lookup and refinement.

Position Encoding Pipeline Our encoding process con-
sists of three key steps:

● Position Input(Stage (a)): The pipeline takes as input a
neighborhood of 3D points represented as (𝑥, 𝑦, 𝑧) coordi-
nates. For a receptive field of size 𝑛, we process the target
point along with its 𝑛 − 1 neighboring points’ positions in
3D space.

● Normalization(Stage (b)): To ensure consistent lookup
behavior, we normalize the coordinates relative to the center
point:

n𝑖 =
r𝑖 − r𝑐
𝑅

(3)

where r𝑐 is the center point coordinates and 𝑅 is the neigh-
borhood radius (maximum distance from any point to the
center). This transforms ensuring all points lie within the
unit cube [−1, 1]3.

● Quantization(Stage (c)): The normalized coordinates
are then discretized into fixed-size 𝑏 bins to create lookup
indices:

q𝑖 = ⌊(n𝑖 + 1

2
) × (𝑏 − 1)⌋ (4)

This step converts continuous normalized values into dis-
crete integer indices suitable for table lookup, effectively
creating a finite set of possible neighborhood configurations.

LUT Construction and Usage The lookup table stores
precomputed refinement offsets for all possible quantized
neighborhood configurations. For a receptive field of size
𝑛 points with 3 coordinates in 3D space and 𝑏 quantization
bins per dimension, the total number of possible combina-
tions for input indices is:

𝑁𝑒𝑛𝑡𝑟𝑖𝑒𝑠 = 𝑏
𝑛 × 3 (5)

As illustrated in step (d) of Figure 6, each LUT entry maps
a sequence of quantized coordinates to a refinement offset
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RF Size (𝑛) Bins (𝑏) Entries (𝑏𝑛 × 3) Size (2B/offset)

3 128 1283 × 3 12 MB
3 64 643 × 3 1.5 MB

4 128 1284 × 3 1.61 GB
4 64 644 × 3 100 MB

5 128 1285 × 3 201 GB
5 64 645 × 3 6.25 GB

Table 1. Memory analysis for different LUT configurations with
float16 (2B) storage
in three dimensions:

LUT[quantize(q1, . . . , q𝑛)] = NN(q1, . . . , q𝑛) (6)

The memory requirement for storing these entries with 2-
byte floating-point values (float16) for three coordinate off-
sets is:

𝑀 = 𝑁𝑒𝑛𝑡𝑟𝑖𝑒𝑠 × 2 bytes (7)

Table 1 analyzes the memory requirements for different con-
figurations. The selection of bin size 𝑏 presents a crucial
trade-off between memory efficiency and refinement preci-
sion. Our implementation uses 𝑏 = 128 (7-bit quantization)
with a receptive field size 𝑛 = 4, resulting in a 1.6 GB
lookup table that stores 3D coordinate offsets in 𝑓 𝑙𝑜𝑎𝑡16
format. This configuration achieves a good balance between
memory efficiency and refinement precision, making the
approach practical for real-world deployment.

During runtime operation (Stage (a-f) in Figure 6), we fol-
low this encoding pipeline: given an interpolated point along
with its neighbors, we normalize and quantize the coordi-
nates to obtain lookup indices, retrieve the corresponding
offset from the table, and apply it to refine the center point’s
position. Notably, the interpolated point will be placed at
first in the index.

4.2.2 Neural Network for LUT Construction

The refinement network follows the design from
GradPU (He et al., 2023). Given a interpolated point as
the central point p𝑐 and its 𝑛 − 1 nearest neighbors {p𝑖}𝑛−1𝑖=1 ,
our network NN computes a refinement offset through:

𝜹 = NN(p𝑐, {p𝑖}𝑛−1𝑖=1 ) (8)

The receptive field size 𝑛 is specifically chosen to balance
LUT memory requirements and refinement quality. The
offset 𝜹 represents the mean displacement between the in-
terpolated points and their groundtruth counterparts:

𝜹 =
1

|𝑃 |
∑︁

𝑝𝑐 ∈ 𝑃 | |p𝑔𝑡 − p𝑐 | |2 (9)

Training NN is equivalent to minimize the target loss func-
tion 𝜹.

To assist robust LUT construction, we incorporate two key
design elements into the network training. First, Gaussian
noise injection (𝜎 = 0.02) to interpolated points during
training improves the network’s resilience to quantization
artifacts that may arise during the discretization process.
Second, we constrain the network’s prediction space through
normalized coordinate inputs, ensuring the learned function
maps well to the LUT’s discrete indexing scheme. The
complete network training process is detailed in Section 7.1.

5 CONTINUOUS ADAPTIVE BITRATE
STREAMING

Existing volumetric video streaming systems (Han et al.,
2020; Zhang et al.; Lee et al., 2020) are constrained by dis-
crete quality levels, typically offering fixed point densities
(e.g., 100K, 200K points per frame). We introduce a contin-
uous adaptive bitrate (ABR) mechanism that dynamically
optimizes streaming quality through fine-grained point den-
sity adjustments. This approach is made possible by our
upsampling algorithm’s consistent latency across varying
upsampling ratios (detailed in § 7.3). The ability to support
arbitrary downsampling ratios through our super-resolution
pipeline enables more precise adaptation to network condi-
tions, allowing for smoother quality transitions and better
bandwidth utilization compared to traditional discrete-level
approaches.

5.1 MPC-based Quality Optimization
We formulate quality adaptation using Model Predictive
Control (MPC) (Yin et al.), which optimizes streaming qual-
ity over a finite horizon of k future frames. We borrow the
QoE formulation from Yuzu (Zhang et al.) since it pro-
vides an SR-targeting definition validated by real user study.
The optimization objective balances three key components:
visual quality, quality variation, and stall:

max
𝑟𝑡 ,...,𝑟𝑡+𝑘

𝑡+𝑘∑︁
𝑖=𝑡

(𝛼𝑄(𝑟𝑖) − 𝛽𝑉 (𝑟𝑖 , 𝑟𝑖−1) − 𝛾𝑆(𝑟𝑖)) (10)

The quality term 𝑄(𝑟) denotes the post-SR point density
viewed by the user. The variation penalty 𝑉 (𝑟𝑖 , 𝑟𝑖−1) pre-
vents rapid quality fluctuations by penalizing changes be-
tween consecutive frames, with higher weights for quality
drops that are more noticeable to viewers. The stall term
𝑆(𝑟𝑖) ensures smooth playback by maintaining sufficient
buffer levels above a minimum threshold.

The MPC solver takes network throughput estimates (com-
puted via harmonic mean over sliding windows) and current
buffer levels as input, outputting the optimal {to-be-fetched
point density, SR ratio} pair by solving a simple constrained
optimization problem.
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5.2 Random Downsampling
Given a target ratio 𝑟 from the MPC solver, we employ
random point selection for downsampling with a simple
selection probability 𝑃𝑠𝑒𝑙𝑒𝑐𝑡 (𝑝𝑖) = 𝑟 for each point 𝑝𝑖 ∈ P .
Similarly, we choose random sampling approach over FPS
stated in § 4.1 to avoid the high computation cost. Com-
bined with our robust upsampling pipeline, simple random
downsampling provides sufficient quality while meeting the
strict latency requirements of VoD streaming.

6 IMPLEMENTATION

We integrate all the components described in §4 into VoLUT.
Our implementation consists of 8.1K lines of code (LoC)
in total, with 2.8K LoC for the c++ version client and 3.4K
LoC for the cuda version client.

For offline training of the point cloud super-resolution mod-
els, we use PyTorch 3.7.11 (Paszke et al., 2017) as the
deep learning framework. We modify the source code of
GradPU (He et al., 2023), to incorporate our proposed inter-
polation with dilation and multi-LUT fusion techniques.

Our Look Up Table is generated using c++ code and stored
as an npy file which is language- and platform- neutral, fa-
ciliating for future use. The c++ verison client pipelined is
optimized for performance by leveraging multi-threading
and system pipelining. The CUDA client features parallel
kNN search, interpolation, and colorization kernels based on
cuKDTree (Wald, 2023), along with efficient LUT lookup.
The server is also implemented in C++ for efficient process-
ing and serving of volumetric video content. We develop
a custom DASH-like protocol over TCP for client-server
communication.

7 EVALUATION
7.1 Evaluation Setup
Volumetric Videos. We use four point-cloud-based volu-
metric videos in our evaluations:

● The Long Dress (Dress) and Loot Videos: Each has 300
frames lasting 10 seconds and containing approximately
100K points. We loop these videos ten times in our evalua-
tions due to their short duration.

● The Haggle Video: Comprises 7,800 frames (4.3 minutes)
each containing approximately 100K points.

● The Lab Video: Features 3,622 frames (2 minutes) each
with approximately 100K points.

Model Training and LUT Generation. We use
GradPU (He et al., 2023) as our reference model, train-
ing it exclusively on the Long Dress video. The training
process involves downsampling the original frames to dif-
ferent densities and using pairs of low/high-resolution point
clouds as training data. The trained model is then trans-
formed into a single LUT table with 𝑅𝐹 = 4 and 𝑏𝑖𝑛 = 128

(approximately 1.5GB) following the process described in
§ 4.2. We apply this LUT for super-resolution across all test
videos to evaluate its generalization capability.

Evaluation Metrics. We assess VoLUT’s performance
using both geometric and perceptual metrics: Point-to-
point (P2P) Chamfer Distance (CD) (Wu et al.; Li et al.,
2019) measure geometric accuracy between upsampled and
ground truth point clouds. Peak Signal-to-Noise Ratio
(PSNR) evaluates the visual quality of upsampled points.
These metrics are computed per-frame and averaged over
all frames. Runtime performance is measured through
CPU/GPU memory utilization, frame processing latency
and frame per second (FPS). For streaming evaluation, we
assess Quality of Experience (QoE) discussed in § 5 and data
usage during transmission. § 7.2.1 and § 7.2.2 present qual-
ity results, § 7.3 examines computational efficiency, while
§ 7.4 § 7.5 analyzes end-to-end streaming performance.

Network traces We consider the following network condi-
tions that are representative of today’s wired and wireless
networks. (1) Wired network with stable bandwidth (e.g.,,
50, 75, and 100 Mbps) and a round-trip time (RTT) of ap-
proximately 10ms. (2) Fluctuating bandwidth captured from
real-world LTE networks, with average bandwidths varying
from 32.5 to 176.5 Mbps and standard deviations ranging
from 13.5 to 26.8 Mbps. Among these traces, we include
a LTE trace with an average throughput of 32.5 Mbps to
represent lower-bandwidth wireless network scenarios.

Devices. Our server setup includes a commodity machine
with an Intel Xeon Gold 6230 CPU @ 2.10GHz and 32GB
of RAM. We utilize two client hosts: (1) a desktop with
an Intel Core i9-10900X CPU @ 3.70GHz, an NVIDIA
GeForce RTX 3080Ti GPU, and 32GB of RAM, serving as
our standard evaluation client; (2) an Orange Pi embedded
system equipped with a Rockchip RK3588S 8-core 64-bit
processor @ 2.4GHz and 8GB of RAM, comparable to
the Meta Quest 3 (Meta, 2024) with a Qualcomm XR2
chip (Qualcomm, 2024).

User Traces. We employ multi-user 6DoF motion traces
during video playback, replicating user movements in some
experiments.

Baselines for SR Quality Evaluation: For evaluating the
quality of super-resolution (SR) techniques, we employ
three primary baselines: GradPU (He et al., 2023), and
a naive interpolation method with a dilation factor of 1.
GradPU serves not only as a baseline for assessing SR qual-
ity but also as a benchmark for runtime performance. Addi-
tionally, we implemented Yuzu (Zhang et al.) with its SR
pipeline, for runtime comparisons and end-to-end evalua-
tions. To ensure a fair comparison, we disable Yuzu’s cache
and delta-coding mechanisms, as these features are orthogo-
nal to our SR approach. We also compare with Vivo (Han
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et al., 2020), a visibility-aware volumetric video streaming
system with preemptive viewport adaptation.

7.2 SR Quality
To rigorously evaluate the impact of super-resolution (SR)
techniques on image and geometric quality, we conduct
a comprehensive set of experiments. These experiments
involve multiple users watching videos while their 6 De-
grees of Freedom (6DoF) motion traces are recorded. For
each SR setting, we render viewports as images, denoted
as {ISR}, and repeat this process with the original videos
to capture the baseline images, denoted as {Igt}. We then
compute the Peak Signal-to-Noise Ratio (PSNR) by com-
paring each image in {ISR} against its corresponding image
in {Igt}. Additionally, we measure the Chamfer Distance
to evaluate the geometric accuracy by comparing the SR-
enhanced point clouds with the corresponding ground truth
point clouds. The corresponding videos are downsampled
to 100K and upsampled to ×2 and ×4.

7.2.1 Interpolation with dilation

In this analysis, we explore the effect of varying the dilation
factor (”d”) within the kNN interpolation process used in
SR. Specifically, we assess the PSNR outcomes for both
×2 and ×4 super-resolution settings, presented in Figures 7
and 9. The results indicate a clear improvement in PSNR
values when dilation is increased from 𝐾4𝑑1 to 𝐾4𝑑2, sug-
gesting better image quality across different upsampling
ratios. Concurrently, the Chamfer Distance results, shown
in Figures 8 and 10, reveal a reduction in geometric discrep-
ancies as dilation is incorporated. These findings illustrate
that enhanced dilation provides a broader spatial context
during interpolation which not only improves visual clarity
but also significantly enhances the geometric accuracy of
the super-resolved images.

7.2.2 LUT refinement

The LUT refinement process targets the optimization of
interpolated point cloud data by looking up the precomputed
offsets stored in the Look-Up Table. This step is crucial for
enhancing the final SR quality. 𝐾4𝑑2 − 𝑙𝑢𝑡 represents our
approach using network generated LUT. By analyzing both
PSNR and Chamfer Distance metrics post-refinement, as
depicted in Figures 7, 9, 8, and 10, we observe noticeable
improvements in image fidelity and geometric accuracy. By
comparing the GradPU and our lut results, we show that the
integration of our interpolation with dilation adjustments
and subsequent LUT refinement ensures that the accelerated
SR process does not compromise on visual or geometric
quality.

Overall, our experimental analysis demonstrates that the
applied SR techniques not only preserve but significantly
enhance both the visual and geometric qualities of the im-

ages. Notably, achieving consistent PSNR values over 30
dB across various settings underscores the excellent visual
quality of our SR process (Thomos et al., 2005; Dasari et al.,
2020).

7.3 Runtime Performance
We now focus on analyzing how different parts of our SR
system contribute to the overall latency in both desktop
and mobile settings. The experiments are conducted using
100Mbps wired netork with our continuous ABR disabled.

Interpolation Speedup: As shown in Figures 11, our op-
timized interpolation achieves significant speedups across
different platforms. On the Orange Pi, we maintain 3.7×-
3.9× speedup over vanilla interpolation, reaching 31.2 FPS
at 8× upsampling (vs vanilla’s 8.0 FPS). The improvement is
even more substantial on the commordity GPU empowered
by the cuda implementation, where we achieve 7.5×-8.1×
speedup, processing at 357.1 FPS for 2× upsampling and
maintaining 138.9 FPS even at 8× upsampling. This consis-
tent performance across upsampling ratios demonstrates the
effectiveness of our spatial-parallel optimization in reducing
the kNN search overhead.

GPU Memory Usage: As shown in Figure 15, Our ap-
proach using one LUT can improve the GPU memory usage
by 86% compared to GradPU and is comparable to Yuzu
with frozen tensorflow model in c++, which is particularly
beneficial for devices with limited GPU resources.

Runtime Breakdown: Figure 16 provides a detailed break-
down of the time spent in each stage of the SR process
on both desktop and Orange Pi platforms. On both GPU
(desktop) and mobile scenario, kNN search takes the most
significant portion of time, followed by interpolation, with
LUT refinement consuming the least time.

SR Performance on Different Platforms: Figure 17 and
Figure 18 further illustrate the SR runtime on a commodity
GPU and the impact of various upsampling ratios on the
Orange Pi, respectively. We show the average upsampling
rate(in FPS). On the desktop (Figure 17), our method out-
performing Yuzu by 8.4× and outperforming GradPU by
46400×. Our approach is mainly benefited by the efficient
LUT look up compared to heavy neural network inferenc-
ing even if accelerated in a frozen cpp implementation as
Yuzu (Zhang et al.) did. As shown in Figure 18, the up-
sampling speed on the Orange Pi maintains relatively stable
even as the upsampling ratio increases. This is due to the
fact that the main bottleneck (shown in Figure 16) of our
SR approach lies in the kNN based interpolation which is
mainly related to the number of input points.
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Figure 7. PSNR for ×2 SR Figure 8. Chamfer Distance for ×2 SR

Figure 9. PSNR for ×4 SR Figure 10. Chamfer Distance for ×4 SR

7.4 QoE measurement under various network
conditions

We evaluate the QoE of our system under different net-
work conditions, using various videos and associated mo-
tion traces. We compare our approach with Yuzu-SR, a
re-implementation of Yuzu (Zhang et al.) with caching and
delta coding disabled for fair comparison. The normalized
QoE results are shown in Figure 12 and the data usage (de-
fined by the total downloaded bytes including SR models
for yuzu SR and meta data) results are shown in Figure 13.

Stable Bandwidth. We first consider a stable bandwidth
scenario with a throughput of 50Mbps. Under this condition,
our system achieves a normalized QoE of 100, while Yuzu-
SR and Vivo (Han et al., 2020), on the other hand, achieves
a normalized QoE of 75.8 and 43.2, respectively. VoLUT
is mainly benefited from the fast SR speed for any-scale
upsampling compared to Yuzu-SR and the efficacy of SR
compared to Vivo.

In terms of data usage, VoLUT can reduce it by 23% com-
pared to Yuzu-SR because our fine-grained ABR algorithms
allows any-scale downsampling rate for transmission while
Yuzu-SR’s discrete SR options (1x2, 2x2, 1x3, 1x4, 4x1,
2x1) provide less optimal decision. VoLUT can reduce data
usage by 31% compared to Vivo due to the significant point
cloud reduction during streaming with our downsampling
and SR manner.

Fluctuating Bandwidth. We also evaluate the performance
of our system under fluctuating bandwidth conditions using
real-world LTE traces(§ 7.1). In this scenario, our system

achieves a normalized QoE of 83 while consuming only 17%
of the data. In comparison, Yuzu-SR achieves a normalized
QoE of 57 but requires 31% of the data. Notably, QoE
performance gain is higer under LTE (26) traces compared
to the stable trace (24) is due to the the limited bandwidth,
which pushes the systems to fetch content with lower density
and introduces more SR workload. Thus VoLUT’s fast SR
will benefit more under limited network resources.

7.5 Ablation study
How the system is compared to Yuzu and simple Adaptation
in terms of FPS and resource consumption?

Our ablation study evaluate three variants of our system (In
Table 2). Figure 14 shows the normalized QoE vs. data
usage trade-off for these system variants under fluctuating
bandwidth conditions.

Our proposed system (H1) achieves the best balance be-
tween QoE and data usage. It maintains a high normalized
QoE of 98 while consuming only 31% of the data com-
pared to the baseline. Using discrete ABR (H2) instead of
continuous ABR leads a reduction of normalized QoE by
15.3% and increases the data usage by 14% compared to
H1. This highlights the advantage of our continuous ABR
approach in fine-grained bitrate adaptation, which allows
better utilization of available bandwidth and reduces data
consumption.

Replacing our faster SR method with Yuzu’s SR (H3) results
in a notable drop in QoE by 36.7% compared to H1 while
still consuming 48% of the data. This emphasizes the faster
SR speed will also benefit the stall time which is a major
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Figure 11. Interpolation FPS on Orange Pi (Left) and NVDIA 3080Ti (Right)

Figure 12. Normalized QoE Figure 13. Data usage

Figure 14. QoE vs. Data usage over
fluctuating bandwidth (LTE traces)

H1 VoLUT with Continuous ABR
H2 VoLUT with Discrete ABR
H3 VoLUT with Discrete ABR

and Yuzu SR

Table 2. Variants of VoLUT

Figure 15. GPU memory usage
(3080Ti Desktop).

Figure 16. End to End SR Run-
time breakdown

Figure 17. SR Runtime on com-
modity GPU

Figure 18. SR Runtime on Or-
angePi under various upsampling
ratio

components of the QoE(§ 5).

8 RELATED WORK

Volumetric video streaming: Volumetric video streaming
has gained significant attention in recent years due to its
ability to provide immersive and interactive experiences.
Several studies have focused on point-cloud-based volumet-
ric video streaming (Lee et al., 2020; Han et al., 2020; Gül
et al., 2020a;b; Hosseini & Timmerer, 2018; Park et al.,
2018; Qian et al., 2019; Van Der Hooft et al., 2019). DASH-
PC (Hosseini & Timmerer, 2018) extends the Dynamic
Adaptive Streaming over HTTP (DASH) protocol to sup-
port volumetric videos. ViVo (Han et al., 2020) introduces
visibility-aware optimizations to improve the streaming ef-
ficiency of volumetric videos. GROOT (Lee et al., 2020)
focuses on optimizing point cloud compression for volumet-
ric video streaming.MuV2 (Liu et al., 2024) and Vues (Liu
et al., 2022b) applies transcoding to 3D contents at server
and transmit 2D frames to clients. YuZu (Zhang et al.) is a
recently proposed volumetric video streaming system that

employs deep learning-based point cloud super-resolution
to enhance the visual quality of low-resolution content at
the receiver’s end. However, these existing works do not ex-
plore the potential of interpolation and lut-based approaches
for efficient point cloud super-resolution in volumetric video
streaming.

Look-up table (LUT) based inference speed-up: Look-up
tables have been widely used in various domains to accel-
erate computation and reduce memory footprint. In the
context of image processing, several works have explored
LUT-based approaches. Jo et al. (Jo & Joo Kim, 2021) and
Liuet al. (Liu et al.) propose LUT-based method for effi-
cient single-image super-resolution. LUT-NN (Tang et al.,
2023) introduces a LUT-based neural network inference
framework that achieves significant speedup and memory
reduction compared to traditional neural network inference.
DLUX (Gu et al., 2020) presents a LUT-based near-bank ac-
celerator for efficient deep learning training in data centers.
Sutradhar et al. (Sutradhar et al., 2021) explores the use of
LUTs in processing-in-memory architectures for deep learn-
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ing workloads. These works demonstrate the effectiveness
of LUT-based approaches in various domains. However, to
the best of our knowledge, no prior work has investigated
the application of LUTs for point cloud super-resolution in
volumetric video streaming.

9 CONCLUSION

In this paper, we present VoLUT, a novel system that lever-
ages LUT-based point cloud super-resolution for efficient
and high-quality volumetric video streaming. Through com-
bining accelerated dilated interpolation and Look Up table
based refinement, VoLUT achieves real-time performance
even on mobile devices, significantly reduces bandwidth
requirements, and enhances the user experience. Our ex-
tensive evaluations demonstrate the effectiveness of VoLUT
in delivering high-quality volumetric video content while
adapting to network conditions and user preferences. The
contributions of our work lay the foundation for future re-
search and development in the field of volumetric video
streaming, opening up new possibilities for immersive and
accessible volumetric experiences.
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