
IMPLICIT REGULARIZATION VIA SPECTRAL NEURAL
NETWORKS AND NON-LINEAR MATRIX SENSING

Anonymous authors
Paper under double-blind review

ABSTRACT

The phenomenon of implicit regularization has attracted interest in recent years as a
fundamental aspect of the remarkable generalizing ability of neural networks. In a
nutshell, it entails that gradient flow dynamics in many neural nets, even without any
explicit regularizer in the loss function, converges to the solution of a regularized
learning problem. However, known results attempting to theoretically explain
this phenomenon focus overwhelmingly on the setting of linear neural nets, and
the simplicity of the linear structure is particularly crucial to existing arguments.
In this paper, we explore this problem in the context of more realistic neural
networks with a general class of non-linear activation functions, and rigorously
demonstrate the implicit regularization phenomenon for such networks in the
setting of matrix sensing problems. This is coupled with rigorous rate guarantees
that ensure exponentially fast convergence of gradient descent, complemented
by matching lower bounds which stipulate that the exponential rate is the best
achievable. In this vein, we contribute a network architecture called Spectral
Neural Networks (abbrv. SNN) that is particularly suitable for matrix learning
problems. Conceptually, this entails coordinatizing the space of matrices by their
singular values and singular vectors, as opposed to by their entries, a potentially
fruitful perspective for matrix learning. We demonstrate that the SNN architecture
is inherently much more amenable to theoretical analysis than vanilla neural nets
and confirm its effectiveness in the context of matrix sensing, supported via both
mathematical guarantees and empirical investigations. We believe that the SNN
architecture has the potential to be of wide applicability in a broad class of matrix
learning scenarios.

1 INTRODUCTION

A longstanding pursuit of deep learning theory is to explain the astonishing ability of neural networks
to generalize despite having far more learnable parameters than training data, even in the absence of
any explicit regularization. An established understanding of this phenomenon is that the gradient
descent algorithm induces a so-called implicit regularization effect. In very general terms, implicit
regularization entails that gradient flow dynamics in many neural nets, even without any explicit
regularizer in the loss function, converges to the solution of a regularized learning problem. In a sense,
this creates a learning paradigm that automatically favors models characterized by “low complexity”.

A standard test-bed for mathematical analysis in studying implicit regularization in deep learning
is the matrix sensing problem. The goal is to approximate a matrix X⋆ from a set of measurement
matrices A1, . . . , Am and observations y1, . . . , ym where yi = ⟨Ai, X

⋆⟩. A common approach,
matrix factorization, parameterizes the solution as a product matrix, i.e., X = UV ⊤, and optimizes
the resulting non-convex objective to fit the data. This is equivalent to training a depth-2 neural
network with a linear activation function.

In an attempt to explain the generalizing ability of over-parameterized neural networks, Neyshabur
et al. (2014) first suggested the idea of an implicit regularization effect of the optimizer, which entails
a bias towards solutions that generalize well. Gunasekar et al. (2017) investigated the possibility of an
implicit norm-regularization effect of gradient descent in the context of shallow matrix factorization.
In particular, they studied the standard Burer-Monteiro approach Burer & Monteiro (2003) to
matrix factorization, which may be viewed as a depth-2 linear neural network. They were able to

1

theoretically demonstrate an implicit norm-regularization phenomenon, where a suitably initialized
gradient flow dynamics approaches a solution to the nuclear-norm minimization approach to low-
rank matrix recovery Recht et al. (2010), in a setting where the involved measurement matrices
commute with each other. They also conjectured that this latter restriction on the measurement
matrices is unnecessary. This conjecture was later resolved by Li et al. (2018) in the setting where the
measurement matrices satisfy a restricted isometry property. Other aspects of implicit regularization
in matrix factorization problems were investigated in several follow-up papers (Neyshabur et al.,
2017; Arora et al., 2019; Razin & Cohen, 2020; Tarmoun et al., 2021; Razin et al., 2021). For instance,
Arora et al. (2019) showed that the implicit norm-regularization property of gradient flow, as studied
by Gunasekar et al. (2017), does not hold in the context of deep matrix factorization. Razin & Cohen
(2020) constructed a simple 2× 2 example, where the gradient flow dynamics lead to an eventual
blow-up of any matrix norm, while a certain relaxation of rank—the so-called e-rank—is minimized
in the limit. These works suggest that implicit regularization in deep networks should be interpreted
through the lens of rank minimization, not norm minimization. Incidentally, Razin et al. (2021) have
recently demonstrated similar phenomena in the context of tensor factorization.

Researchers have also studied implicit regularization in several other learning problems, including
linear models (Soudry et al., 2018; Zhao et al., 2019; Du & Hu, 2019), neural networks with one or
two hidden layers (Li et al., 2018; Blanc et al., 2020; Gidel et al., 2019; Kubo et al., 2019; Saxe et al.,
2019). Besides norm-regularization, several of these works demonstrate the implicit regularization
effect of gradient descent in terms of other relevant quantities such as margin (Soudry et al., 2018),
the number of times the model changes its convexity (Blanc et al., 2020), linear interpolation (Kubo
et al., 2019), or structural bias (Gidel et al., 2019).

A natural use case scenario for investigating the implicit regularization phenomenon is the problem of
matrix sensing. Classical works in matrix sensing and matrix factorization utilize convex relaxation
approaches, i.e., minimizing the nuclear norm subject to agreement with the observations, and
deriving tight sample complexity bound (Srebro & Shraibman, 2005; Candès & Recht, 2009; Recht
et al., 2010; Candès & Tao, 2010; Keshavan et al., 2010; Recht, 2011). Recently, many works
analyze gradient descent on the matrix sensing problem. Ge et al. (2016) and Bhojanapalli et al.
(2016) show that the non-convex objectives on matrix sensing and matrix completion with low-
rank parameterization do not have any spurious local minima. Consequently, the gradient descent
algorithm converges to the global minimum.

Despite the large body of works studying implicit regularization, most of them consider the linear
setting. It remains an open question to understand the behavior of gradient descent in the presence of
non-linearities, which are more realistic representations of neural nets employed in practice.

In this paper, we make an initial foray into this problem, and investigate the implicit regularization
phenomenon in more realistic neural networks with a general class of non-linear activation functions.
We rigorously demonstrate the occurrence of an implicit regularization phenomenon in this setting
for matrix sensing problems, reinforced with quantitative rate guarantees ensuring exponentially
fast convergence of gradient descent to the best approximation in a suitable class of matrices. Our
convergence upper bounds are complemented by matching lower bounds which demonstrate the
optimality of the exponential rate of convergence.

In the bigger picture, we contribute a network architecture that we refer to as the Spectral Neural
Network architecture (abbrv. SNN), which is particularly suitable for matrix learning scenarios.
Conceptually, this entails coordinatizing the space of matrices by their singular values and singular
vectors, as opposed to by their entries. We believe that this point of view can be beneficial for tackling
matrix learning problems in a neural network setup. SNNs are particularly well-suited for theoretical
analysis due to the spectral nature of their non-linearities, as opposed to vanilla neural nets, while at
the same time provably guaranteeing effectiveness in matrix learning problems. We also introduce a
much more general counterpart of the near-zero initialization that is popular in related literature, and
our methods are able to handle a much more robust class of initializing setups that are constrained
only via certain inequalities. Our theoretical contributions include a compact analytical representation
of the gradient flow dynamics, accorded by the spectral nature of our network architecture. We
demonstrate the efficacy of the SNN architecture through its application to the matrix sensing problem,
bolstered via both theoretical guarantees and extensive empirical studies. We believe that the SNN
architecture has the potential to be of wide applicability in a broad class of matrix learning problems.
In particular, we believe that the SNN architecture would be natural for the study of rank (or e-rank)

2

minimization effect of implicit regularization in deep matrix/tensor factorization problems, especially
given the fact that e-rank is essentially a spectrally defined concept.

2 PROBLEM SETUP

Let X⋆ ∈ Rd1×d2 be an unknown rectangular matrix that we aim to recover. Let A1, . . . , Am ∈
Rd1×d2 be m measurement matrices, and the label vector y ∈ Rm is generated by

yi = ⟨Ai, X
⋆⟩, (1)

where ⟨A,B⟩ = tr(A⊤B) denotes the Frobenius inner product. We consider the following squared
loss objective

ℓ(X) :=
1

2

m∑
i=1

(yi − ⟨Ai, X⟩)2. (2)

This setting covers problems including matrix completion (where the Ai’s are indicator matrices),
matrix sensing from linear measurements, and multi-task learning (in which the columns of X are
predictors for the tasks, and Ai has only one non-zero column). We are interested in the regime where
m≪ d1 × d2, i.e., the number of measurements is much less than the number of entries in X⋆, in
which case 2 is under-determined with many global minima. Therefore, merely minimizing 2 does
not guarantee correct recovery or good generalization.

Following previous works, instead of working with X directly, we consider a non-linear factorization
of X as follows

X =

K∑
k=1

αkΓ(UkV
⊤
k), (3)

where α ∈ R, Uk ∈ Rd1×d, Vk ∈ Rd2×d, and the matrix-valued function Γ : Rd1×d2 → Rd1×d2

transforms a matrix by applying a nonlinear real-valued function γ(·) on its singular values. We
focus on the over-parameterized setting d ≥ d2 ≥ d1, i.e., the factorization does not impose any rank
constraints on X . Let α = {α1, . . . , αK} be the collection of the αk’s. Similarly, we define U and
V to be the collections of Uk’s and Vk’s.

2.1 GRADIENT FLOW

For each k ∈ [K], let αk(t), Uk(t), Vk(t) denote the trajectories of gradient flow, where
αk(0), Uk(0), Vk(0) are the initial conditions. Consequently, X(t) =

∑K
k=1 αk(t)Γ(Uk(t)Vk(t)

⊤).
The dynamics of gradient flow is given by the following differential equations, for k ∈ [K]

∂tαk = −∇αk
ℓ(X(t)), ∂tUk = −∇Uk

ℓ(X(t)), ∂tVk = −∇Vk
ℓ(X(t)). (4)

3 THE SNN ARCHITECTURE

In this work, we contribute a novel neural network architecture, called the Spectral Neural Network
(abbrv. SNN), that is particularly suitable for matrix learning problems. At the fundamental level,
the SNN architecture entails an application of a non-linear activation function on a matrix-valued
input in the spectral domain. This may be followed by a linear combination of several such spectrally
transformed matrix-structured data.

To be precise, let us focus on an elemental neuron, which manipulates a single matrix-valued input
X . If we have a singular value decomposition X = ΦX̄Ψ⊤, where Φ,Ψ are orthogonal matrices and
X̄ is the diagonal matrix of singular values of X . Let γ be any activation function of choice. Then
the elemental neuron acts on X as follows :

X 7→ Φ γ(X̄) Ψ⊤, (5)

where γ(X̄) is a diagonal matrix with the non-linearity γ applied entrywise to the diagonal of X̄ .

A block in the SNN architecture comprises of K ≥ 1 elemental neurons as above, taking in K matrix-
valued inputs X1, . . . , XK . Each input matrix Xi is then individually operated upon by an elemental

3

Figure 1: Visualization of the anatomy of an SNN block and a depth-D SNN architecture. Each SNN
block takes as input K matrices and outputs one matrix, both the input and output matrices are of
size Rd1×d2 . In layer i of the SNN, there are Li blocks, which aggregate matrices from the previous
layers to produce Li output matrices as inputs for the next layer. The number of input matrices to
a block equals the number of neurons in the previous layer. For example, blocks in layer 1 have
K = L0, blocks in layer 2 have K = L1, and blocks in layer i have K = Li−1.

neuron, and finally, the resulting matrices are aggregated linearly to produce a matrix-valued output
for the block. The coefficients of this linear combination are also parameters in the SNN architecture,
and are to be learned during the process of training the network.

The comprehensive SNN architecture is finally obtained by combining such blocks into multiple
layers of a deep network, as illustrated in 1.

4 MAIN RESULTS

For the purposes of theoretical analysis, in the present article, we specialize the SNN architecture
to focus on the setting of (quasi-) commuting measurement matrices Ai and spectral near zero
initialization; c.f. Assumptions 1 and 2 below. Similar settings have attracted considerable attention
in the literature, including the foundational works of Gunasekar et al. (2017) and Arora et al. (2019).
Furthermore, our analysis holds under very general analytical requirements on the activation function
γ; see Assumption 3 in the following.

Assumption 1. The measurement matrices A1, . . . , Am share the same left and right singular vectors.
Specifically, there exists two orthogonal matrices Φ ∈ Rd1×d1 and Ψ ∈ Rd2×d2 , and a sequence of
(rectangular) diagonal matrices 1 Ā1, . . . , Ām ∈ Rd1×d2 such that for any i ∈ [m], we have

Ai = ΦĀiΨ
⊤. (6)

Let σ(i) be the vector containing the singular values of Ai, i.e., σ(i) = diag(Āi). Furthermore, we
assume that there exist real coefficients a1, . . . , am that

a1σ
(1) + · · ·+ amσ

(m) = 1. (7)

1Rectangular diagonal matrices arise in the singular value decomposition of rectangular matrices, see
Appendix D.

4

We let X⋆ = Φ⊤X⋆Ψ and σ⋆ be the vector containing the diagonal elements of X⋆, i.e., σ⋆ =
diag(X⋆). Without loss of generality, we may also assume that σ⋆ is coordinatewise non-zero. This
can be easily ensured by adding the rectangular identity matrix (c.f. Appendix D) cId1×d2

to X∗ for
some large enough positive number c.

Eq. 6 postulates that the measurement matrices share the same (left- and right-) singular vectors.
This holds if and only if the measurement matrices pair-wise quasi-commute in the sense that for any
i, j ∈ [m], we have

AiA
⊤
j = AjA

⊤
i , A⊤

i Aj = A⊤
j Ai. (8)

A natural class of examples of such quasi-commuting measurement matrices comes from families
of commuting projections. In such a scenario Eq. 7 stipulates that these projections cover all the
coordinate directions, which may be related conceptually to a notion of the measurements being
sufficiently informative. For example, in this setting, Eq. 7 would entail that the trace of X⋆ can be
directly computed on the basis of the measurements.

Eq. 7 acts as a regularity condition on the singular values of the measurement matrices. For example,
it prohibits peculiar scenarios where σ(i)

1 = 0 for all i, i.e., all measurement matrices have 0 as their
smallest singular values, which makes it impossible to sense the smallest singular value of X⋆ from
linear measurements.

Note that

yi = ⟨Ai, X
⋆⟩ = Tr(A⊤

i X
⋆) = Tr(ΨĀiΦ

⊤X⋆) = Tr(ĀiΦ
⊤X⋆Ψ) = ⟨Āi,Φ

⊤X⋆Ψ⟩, (9)

where in the above we use the fact that Āi = Ā⊤
i (since Āi is diagonal) and the cyclic property of

trace. We have

yi = ⟨Āi, X
⋆⟩ = ⟨σ(i), σ⋆⟩ = σ(i)⊤σ⋆, (10)

where the second equality is due to Āi being diagonal.

We further define vectors z(k) and three matrices B, C, and H as follows

z
(k)
i = [Ūk]ii[V̄k]ii

B =
[
σ(1) | . . . |σ(m)

]
∈ Rd1×m

C = BB⊤ ∈ Rd1×d1

H =
[
γ(z(1)) | . . . | γ(z(K))

]
∈ Rd1×K .

Under these new notations, we can write the label vector y as y = B⊤σ⋆.

Assumption 2. (Spectral Initialization) Let Φ and Ψ be the matrices containing the left and right
singular vectors of the measurement matrices from Assumption 1. Let G ∈ Rd×d is any arbitrary
orthogonal matrix. We initialize X(0) such that the following condition holds: for any k = 1, . . . ,K,
we have

(a) Uk(0) = ΦŪk(0)G and Vk = ΨV̄ (0)G, and

(b) Ūk(0) and V̄k(0) are diagonal, and

(c)
∑K

k=1 αkγ(Ūk(0)iiV̄k(0)ii) ≤ σ⋆
i for any i = 1, . . . , d1.

Assumption 2, especially part (c) therein, may be thought of as a much more generalized counterpart
of the “near-zero” initialization which is widely used in the related literature (Gunasekar et al. (2017);
Li et al. (2018); Arora et al. (2019)). A direct consequence of Assumption 2 is that at initialization, the
matrix X(0) has Φ and Ψ as its left and right singular vectors. As we will see later, this initialization
imposes a distinctive structure on the gradient flow dynamics, allowing for an explicit analytical
expression for the flow of each component of X .

Assumption 3. The function γ : R → R is bounded between [0, 1], and is differentiable and
non-decreasing on R.

5

Assumption 3 imposes regularity conditions on the non-linearity γ. Common non-linearities that are
used in deep learning such as Sigmoid, ReLU or tanh satisfy the differentiability and non-decreasing
conditions, while the boundedness can be achieved by truncating the outputs of these functions if
necessary.

Our first result provides a compact representation of the gradient flow dynamics in suitable coordinates.
The derivation of this dynamics involves matrix differentials utilizing the Khatri-Rao product Ψ⊠ Φ
of the matrices Ψ and Φ (see Eq. 21 in Appendix A of the supplement).
Theorem 1. Suppose Assumptions 1, 2, 3 hold. Then the gradient flow dynamics in 4 are

∂tα = H⊤C(σ⋆ −Hα),

∂tUk = ΦLkΨ
⊤Vk, and

∂tVk = (ΦLkΨ
⊤)⊤Uk,

where Lk ∈ Rd1×d2 is a diagonal matrix whose diagonal is given by

diag(Lk) = λ(k) = [λ
(k)
1 , . . . , λ

(k)
d1

]⊤ = αkγ
′(z(k)) ◦ C(σ⋆ −Hα). (11)

Proof. (Main ideas – full details in Appendix A). We leverage the fact that the non-linearity γ(·)
only changes the singular values of the product matrix UkV

⊤
k while keeping the singular vectors

intact. Therefore, the gradient flow in 4 preserves the left and right singular vectors. Furthermore,
by Assumption 2, UkV

⊤
k has Φ and Ψ as its left and right singular vectors at initialization, which

remains the same throughout. This property also percolates to ∇UkV ⊤
k
ℓ. Mathematically speaking,

∇UkV ⊤
k
ℓ becomes diagonalizable by Φ and Ψ, i.e.,

∇UkV ⊤
k
ℓ = ΦΛkΨ

⊤

for some diagonal matrix Λk. It turns out that Λk = Lk as given in the statement of the theorem.
In view of Eq. 4, this explains the expressions for ∂tUk and ∂tVk. Finally, since αk is a scalar, the
partial derivative of ℓ with respect to αk is relatively straightforward to compute.

Theorem 1 provides closed-form expressions for the dynamics of the individual components of X ,
namely αk, Uk and Vk. We want to highlight that the compact analytical expression and the simplicity
of the gradient flow dynamics on the components are a direct result of the spectral non-linearity. In
other words, if we use the conventional element-wise non-linearity commonly used in deep learning,
the above dynamics will be substantially more complicated, containing several Hadamard products
and becoming prohibitively harder for theoretical analysis.

As a direct corollary of Theorem 1, the gradient flow dynamics on Ūk and V̄k are

∂tŪk = LkV̄k, ∂tV̄k = L⊤
k Ūk. (12)

Under Assumption 2, Ūk(0) and V̄k(0) are diagonal matrices. From the gradient flow dynamics in
Eq. 12, and recalling that the Lk’s are diagonal, we infer that ∂tŪk(0) and ∂tV̄k(0) are also diagonal.
Consequently, Ūk(t) and V̄k(t) remain diagonal for all t ≥ 0 since the gradient flow dynamics in
Eq. 12 does not induce any change in the off-diagonal elements. Thus, Ūk(t)V̄ (t)⊤k also remains
diagonal throughout.

A consequence of the spectral initialization is that the left and right singular vectors of X(t) stay
constant at Φ and Ψ throughout the entire gradient flow procedure. To this end, the gradient flow
dynamics is completely determined by the evolution of the singular values of X(t), i.e., Hα. The
next result characterizes the convergence of the singular values of X(t).
Theorem 2. Under Assumptions 1 and 2, for any i = 1, . . . , d1, there are constants ηi, Ci > 0 such
that we have :

0 ≤ σ⋆
i − (H(t)α(t))i ≤ Cie

−ηit.

On the other hand, we have the lower bound

∥σ⋆ − (H(t)α(t))∥2 ≥ Ce−ηt,

for some constants η, C > 0.

6

Proof. (Main ideas – full details in Appendix B). By part (c) of Assumption 2, at initialization, we
have that H(0)α(0) ≤e σ

⋆, in which the symbol ≤e denotes the element-wise less than or equal to
relation. Therefore, to prove Theorem 2, it is sufficient to show that H(t)α(t) is increasing to σ⋆

element-wise at an exponential rate. To achieve that, we show that the evolution of Hα over time can
be expressed as

∂t(Hα) = 4

K∑
k=1

α2
k ·

(
γ′(z(k))2 ◦ C(σ⋆ −Hα) ◦

(∫
λ(k) ◦ z(k)dt+ C(k)

))
+HH⊤C(σ⋆ −Hα).

By definition, the matrix B contains the singular values of the Ai’s, and therefore its entries are non-
negative. Consequently, since C = BB⊤, the entries of C are also non-negative. By Assumption 3,
we have that γ(·) ∈ [0, 1], thus the entries of H are non-negative. Finally, by Assumption 2, we have
H(0)α(0) < σ⋆ entry-wise. For these reasons, each entry in ∂t(Hα) is non-negative at initialization,
and indeed, for each i, the quantity (Hα)i is increasing as long as (Hα)i < σ∗

i . As Hα approaches
σ⋆, the gradient ∂t(Hα) decreases. If it so happened that Hα = σ⋆ at some finite time, then ∂t(Hα)
would exactly equal 0, which would then cause Hα to stay constant at σ∗ from then on.

Thus, each (Hα)i is non-decreasing and bounded above by σ∗
i , and therefore must converge to a

limit ≤ σ∗
i . If this limit was strictly smaller than σ∗

i , then by the above argument (Hα)i would be
still increasing, indicating that this cannot be the case. Consequently, we may deduce that

lim
t→∞

H(t)α(t) = σ⋆.

It remains to show that the convergence is exponentially fast. To achieve this, we show in the detailed
proof that each entry of ∂tHα is not only non-negative but also bounded away from 0, i.e.,

∂t(Hα)i ≥ ηi(σ
⋆
i − (Hα)i),

for some constant ηi > 0. This would imply that Hα converges to σ⋆ at an exponential rate.

The limiting matrix output by the network is, therefore, ΦDiag(σ∗)Ψ⊤, and given the fact that
σ∗ = diag(Φ⊤X∗Ψ), this would be the best approximation ofX∗ among matrices with (the columns
of) Φ and Ψ as their left and right singular vectors. This is perhaps reasonable, given the fact that the
sensing matrices Ai also share the same singular vectors, and it is natural to expect an approximation
that is limited by their properties. In particular, when the Ai are symmetric and hence commuting,
under mild linear independence assumptions, ΦDiag(σ∗)Ψ⊤ would be the best approximation of
X∗ in the algebra generated by the Ai-s, which is again a natural class given the nature of the
measurements.

We are now ready to rigorously demonstrate the phenomenon of implicit regularization in our setting.
To this end, following the gradient flow dynamics, we are interested in the behavior of X∞ in the
limit when time goes to infinity.
Theorem 3. Let X∞ = limt→∞X(t). Under Assumptions 1 and 2, the following hold:

(a) ℓ(X∞) = 0, and

(b) X∞ solves the optimization problem

min
X∈Rd1×d2

∥X∥∗ subject to yi = ⟨Ai, X⟩ ∀i ∈ [m]. (13)

Proof. (Main ideas – full details in Appendix C). A direct corollary of Theorem 2 is that

H(∞)α(∞) = σ⋆.

By some algebraic manipulations, we can show that the limit of X takes the form

X∞ = Φ
[
Diag(σ⋆)

]
Ψ⊤.

Now, let us look at the prediction given by X∞. For any i = 1, . . . ,m, we have

⟨Ai, X∞⟩ = ⟨ΦĀiΨ
⊤,ΦDiag(σ⋆)Ψ⊤⟩ = ⟨σ(i), σ⋆⟩ = yi,

7

where the last equality holds due to 10. This implies that ℓ(X∞) = 0, proving (a).

To prove (b), we will show that X∞ satisfies the Karush-Kuhn-Tucker (KKT) conditions of the
optimization problem stated in Eq. 74. The conditions are

∃ν ∈ Rm s.t. ∀i ∈ [m], ⟨Ai, X⟩ = yi and ∇X∥X∥∗ +
m∑
i=1

νiAi = 0.

The solution matrix X∞ satisfies the first condition as proved in part (a). As for the second condition,
note first that the gradient of the nuclear norm of X∞ is given by

∇∥X∞∥ = ΦΨ⊤.

Therefore the second condition becomes

ΦΨ⊤ +

m∑
i=1

νiAi = 0 ⇔ Φ
(
I −

m∑
i=1

νiĀi

)
Ψ⊤ = 0 ⇔ Bν = 1.

However, by Assumption 1, the vector 1 lies in the column space of B, which implies the existence
of such a vector ν. This concludes the proof of part (b).

5 NUMERICAL STUDIES

In this section, we present numerical studies to complement our theoretical analysis. Additional
experiments on the multi-layer SNN architecture, as well as with relaxed assumptions, can be found
in Appendix E.

We highlight that gradient flow can be viewed as gradient descent with an infinitesimal learning rate.
Therefore, the gradient flow model only acts as a good proxy to study gradient descent when the
learning rate is sufficiently small. Throughout our experiments, we shall consider gradient descent
with varying learning rates, and demonstrate that the behavior suggested by our theory is best achieved
using small learning rates.

We generate the true matrix by sampling each entry of X⋆ independently from a standard Gaussian
distribution, suitably normalized. For every measurement matrix Ai, i = 1, . . . ,m, we sample each
entry of the diagonal matrix Āi from the uniform distribution on (0, 1), sort them in decreasing
order, and set Ai = ΦĀiΨ

⊤, where Φ and Ψ are randomly generated orthogonal matrices. We then
record the measurements yi = ⟨Ai, X

⋆⟩, i = 1, . . . ,m. For every k = 1, . . . ,K, we initialize Ū(0)
and V̄ (0) to be diagonal matrices, whose diagonal entries are sampled uniformly from (0, 10−3),
and sorted in descending order. Similarly, αk is also sampled uniformly from (0, 10−3). We take
d1 = d2 = 10 (thus X⋆ has 100 entries), m = 60 measurement matrices, and K = 3. As for the
non-linearity, we use the sigmoid γ(x) = 1/(1 + e−x).

In the first experiment (c.f. Fig. 2), we empirically demonstrate that the singular values of the solution
matrices converge to σ⋆ at an exponential rate as suggested by Theorem 2. From the leftmost plot
of Fig. 2, we observe that when running gradient descent with a small learning rate, i.e., 10−4, the
singular values of X converges to σ⋆ exponentially fast. By visual inspection, it takes only less
than 4000 iterations of gradient descent for the singular values of X to converge. As we increase
the learning rate, the convergence rate slows down significantly, as demonstrated by the middle and
rightmost plots of Fig. 2. For the learning rates of 10−3 and 10−2, it takes approximately 6000 and
more than 10000 iterations respectively to converge. We re-emphasize that our theoretical results are
for gradient flow, which only acts as a good surrogate to study gradient descent when the learning
rates are infinitesimally small. As a result, our theory cannot characterize the behavior of gradient
descent algorithm with substantially large learning rates.

In the second experiment (c.f. Fig. 3), we show the evolution of the nuclear norm over time.
Interestingly, but perhaps not surprisingly, the choice of the learning rate dictates the speed of
convergence. Moderate values of the learning rate seem to yield the quickest convergence to
stationarity.

8

Figure 2: The evolution of X largest 3 singular values when running gradient descent on the matrix
sensing problem with learning rates of different magnitudes. The first 100 iterations have vastly
different values and are omitted for clarity of presentation.

Figure 3: The evolution of X’s training error (left panel) and nuclear norm (right panel) over time
with learning rates (LR) of different magnitudes.

6 SUMMARY OF CONTRIBUTIONS AND FUTURE DIRECTIONS

In this work, we investigate the phenomenon of implicit regularization via gradient flow in neural
networks, using the problem of matrix sensing as a canonical test bed. We undertake our investigations
in the more realistic scenario of non-linear activation functions, compared to the mostly linear
structure that has been explored in the literature. In this endeavor, we contribute a novel neural
network architecture called Spectral Neural Network (SNN) that is particularly well-suited for matrix
learning problems. SNNs are characterized by a spectral application of a non-linear activation function
to matrix-valued input, rather than an entrywise one. Conceptually, this entails coordinatizing the
space of matrices by their singular values and singular vectors, as opposed to by their entries. We
believe that this perspective has the potential to gain increasing salience in a wide array of matrix
learning scenarios. SNNs are particularly well-suited for theoretical analysis due to their spectral
nature of the non-linearities, as opposed to vanilla neural nets, while at the same time provably
guaranteeing effectiveness in matrix learning problems. We also introduce a much more general
counterpart of the near-zero initialization that is popular in related literature, and our methods are
able to handle a much more robust class of initializing setups that are constrained only via certain
inequalities. Our theoretical contributions include a compact analytical representation of the gradient
flow dynamics, accorded by the spectral nature of our network architecture. We demonstrate a
rigorous proof of exponentially fast convergence of gradient descent to an approximation to the
original matrix that is best in a certain class, complemented by a matching lower bound, Finally, we
demonstrate the matrix-valued limit of the gradient flow dynamics achieves zero training loss and is a
minimizer of the matrix nuclear norm, thereby rigorously establishing the phenomenon of implicit
regularization in this setting.

Our work raises several exciting possibilities for follow-up and future research. A natural direction is
to extend our analysis to extend our detailed analysis to the most general setting when the sensing
matrices Ai are non-commuting. An investigation of the dynamics in the setting of discrete time
gradient descent (as opposed to continuous time gradient flow) is an important question, wherein the
optimal choice of the learning rate appears to be an intriguing question, especially in the context of
our numerical studies (c.f. Fig. 3). Finally, it would be of great interest to develop a general theory of
SNNs for applications of neural network-based techniques to matrix learning problems.

9

7 REPRODUCIBILITY STATEMENT

In our paper, we dedicate substantial effort to improving the reproducibility and comprehensibility
of both our theoretical results and numerical studies. We formally state and discuss the necessity
and implications of our assumptions (please see the paragraphs following each assumption) before
presenting our theoretical results. We also provide proof sketches of our main theoretical results.
In these sketches, we present the key ideas and high-level directions and refer the reader to more
detailed and complete proofs in the Appendices. For the numerical studies, we provide details of
different settings in Section 5 and Appendix E. The python code used to conduct our experiments
is included in the supplementary material as a zip file and is also publicly available at https:
//github.com/porichoy-gupto/spectral-neural-nets.

REFERENCES

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low
rank matrix recovery. Advances in Neural Information Processing Systems, 29, 2016.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process. In Conference on learning theory, pp.
483–513. PMLR, 2020.

Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772, 2009.

Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

Simon Du and Wei Hu. Width provably matters in optimization for deep linear neural networks. In
International Conference on Machine Learning, pp. 1655–1664. PMLR, 2019.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. Advances
in neural information processing systems, 29, 2016.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems,
30, 2017.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few
entries. IEEE transactions on information theory, 56(6):2980–2998, 2010.

Masayoshi Kubo, Ryotaro Banno, Hidetaka Manabe, and Masataka Minoji. Implicit regularization in
over-parameterized neural networks. arXiv preprint arXiv:1903.01997, 2019.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pp. 2–47. PMLR, 2018.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. Advances in neural information processing systems, 30, 2017.

10

https://github.com/porichoy-gupto/spectral-neural-nets
https://github.com/porichoy-gupto/spectral-neural-nets

Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be explainable by
norms. Advances in neural information processing systems, 33:21174–21187, 2020.

Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in tensor factorization. In
International Conference on Machine Learning, pp. 8913–8924. PMLR, 2021.

Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learning Research,
12(12), 2011.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537–11546, 2019.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In International Conference on
Computational Learning Theory, pp. 545–560. Springer, 2005.

Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the
dynamics of gradient flow in overparameterized linear models. In International Conference on
Machine Learning, pp. 10153–10161. PMLR, 2021.

Peng Zhao, Yun Yang, and Qiao-Chu He. Implicit regularization via hadamard product over-
parametrization in high-dimensional linear regression. arXiv preprint arXiv:1903.09367, 2019.

11

Supplementary Material
Implicit regularization via Spectral Neural Networks

and non-linear matrix sensing

A PROOF OF THEOREM 1

Before presenting the Proof of Theorem 1, we define the few notations. Let A ∈ Rd1×d2 , d1 < d2 be
a rectangular matrix and a ∈ Rd1 be a vector. We let Aij denote the (i, j)-entry of A, Ai∗ denote the
i-th row of A, and A∗j denote the j-th column of A. We define the following functions on the matrix
A.

vec : Rd1×d2 → Rd1d2 vec(A) =
[
A⊤

∗1 . . . A⊤
∗d2

]⊤
(14)

diag : Rd1×d2 → Rd1 diag(A) = [A11 . . . Ad1d1]
⊤ (15)

Diag : Rd1 → Rd1×d22 Diag(a) =

a1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · ad1

0 · · · 0

 . (16)

We are now ready to present the Proof of Theorem 1. We first recall the definition of X in Eq. 3

X =

K∑
k=1

αkΓ(UkV
⊤
k),

where Γ(·) is a matrix-valued function that applies a non-linear scalar-valued function γ(·) on the
matrix’s singular values. Under Assumption 1, we can write Uk and Vk as

UkV
⊤
k = (ΦŪkΨ

TG)(G⊤V̄ ⊤
k Ψ⊤) = ΦŪkV̄

⊤
k Ψ⊤.

Since both Ūk and V̄k are diagonal matrices, their product ŪkV̄
⊤
k is also diagonal. Consequently, we

can write

Γ(UkV
⊤
k) = Φγ(ŪkV̄

⊤
k)Ψ⊤,

where γ(·) is applied entry-wise on the matrix ŪkV̄
⊤
k . We can now write the matrix X as

X =

K∑
k=1

αkΦγ(ŪkV̄
⊤
k)Ψ⊤ = Φ

(K∑
k=1

αkγ(ŪkV̄
⊤
k)

)
Ψ⊤. (17)

For notational convenience, we define the following notations to be used throughout this section:

X =

K∑
k=1

αkγ(ŪkV̄
⊤
k) ∈ Rd1×d2 : Diagonal matrix containing the singular values of X (18)

x = diag(X) ∈ Rd1 : Vector containing the singular values of X (19)

x = vec(X) ∈ Rd1d2 : The matrix X expressed as a vector (20)

Θ = Ψ⊠ Φ ∈ Rd1d2×d1 : Khatri–Rao product between Ψ and Φ (21)

G =
∂ℓ(X)

∂X
= −

m∑
j=1

(yj − ⟨Aj , X⟩)Aj ∈ Rd1×d2 : Gradient of ℓ(X) with respect to X (22)

g = vec(G) ∈ Rd1d2 : The gradient G expressed as a vector (23)

Zk = UkV
⊤
k ∈ Rd1×d2 : Product matrix between Uk and V ⊤

k . (24)

The Khatri–Rao product in Eq. 21 is defined as follows: the columns of the matrix Θ are Kronecker
products of the corresponding columns of Ψ and Φ. In other words, the i-th column of Θ can be

12

expressed as the vectorization of the outer product between the i-th column of Φ and the i-th column
of Ψ, i.e.,

Θ∗i = vec(ϕiψ
⊤
i). (25)

We shall see in the next paragraph that by leveraging the Khatri–Rao product, we can write the
differentials of many quantities of interest compactly, facilitating the derivation of the gradient flow
dynamics in Theorem 4.

Therefore, we can use the Khatri–Rao product to expand vec(X) as follows:

X = ΦXΨ⊤ =

d1∑
i=1

Xiiϕiψ
⊤
i (26)

x = vec(X) =

d1∑
i=1

Xiivec(ϕiψ
⊤
i) =

d1∑
i=1

XiiΘ∗i = Θx. (27)

From here, we can write the differential of X as

dx = Θdx. (28)

Since xi is the i-th singular value of the matrix X , we can express the differential of xi as follows:

dxi = ⟨ϕiψ⊤
i , dX⟩ = ⟨ϕiψ⊤

i , αkγ
′(z

(k)
i)dZk⟩ = ⟨αkγ

′(z
(k)
i)ϕiψ

⊤
i , dZk⟩, (29)

where the first equality is due to Eq. 3, and the second equality is due to αk and γ′(z(k)i) being
scalars. Notice that we can write the vector x as a sum over its entries as follow

x =

d1∑
i=1

xi · ei,

where ei denote the i-th canonical basis vectors of Rd1 . We have

dx =

d1∑
i=1

dxi · ei =
d1∑
i=1

⟨αkγ
′(z

(k)
i)ϕiψ

⊤
i , dZk⟩ · ei = αkγ

′(z
(k)
i)

〈 d1∑
i=1

ei ⋆ ϕiψ
⊤
i , dZk

〉
, (30)

where ⋆ denotes the tensor product, i.e., ei ⋆ ϕiψ⊤
i ∈ Rd1×d1×d2 is a third-order tensor. Since dZk

has dimension d1 × d2, the above Frobenius product returns a vector of dimension d1, which matches
that of dx. Substituting Eq. 30 this into the differential of ℓ(X) gives

dℓ(X) =
〈 ∂ℓ

∂X
, dX

〉
= ⟨G, dX⟩ = g⊤dx = g⊤Θdx

= αkγ
′(z

(k)
i)

〈 d1∑
i=1

(g⊤Θei)(ϕiψ
⊤
i), dZk

〉
. (31)

Let us define the scalar λ(k)i as

λ
(k)
i = −αkγ

′(z
(k)
i) g⊤Θei

(a)
= −αkγ

′(z
(k)
i) g⊤Θ∗i

(b)
= −αkγ

′(z
(k)
i) g⊤vec(ϕiψ

⊤
i)

= −αkγ
′(z

(k)
i)⟨G,ϕiψ⊤

i ⟩

(c)
= αkγ

′(z
(k)
i)

〈 m∑
j=1

(yj − ⟨Aj , X⟩)Aj , ϕiψ
⊤
i

〉
= αkγ

′(z
(k)
i)

m∑
j=1

(yj − ⟨Aj , X⟩)
〈
Aj , ϕiψ

⊤
i

〉

13

(d)
= αkγ

′(z
(k)
i)

m∑
j=1

(
⟨σ(j), σ⋆⟩ −

K∑
l=1

αl⟨σ(j), γ(z(l))⟩
)
· σ(j)

i

(e)
= αkγ

′(z
(k)
i)

m∑
j=1

(
B⊤σ⋆ −B⊤Hα

)
· σ(j)

i

= αkγ
′(z

(k)
i) · rowi(B)B⊤(σ⋆ −Hα),

where (a) is due to Θei equals to the i-column of Θ, (b) is due to Eq. 25, (c) is due to the definition
of the matrix G in Eq. 22, (d) is due to Eq. 10, and (e) is due to the definitions of B and H .

Let λ(k) ∈ Rd1 denote the vector containing the λ(k)i , we can write

λ(k) = αk · γ′(z(k)) ◦BB⊤(σ⋆ −Hα) = αk · γ′(z(k)) ◦ C(σ⋆ −Hα). (32)

The differential of dℓ(X) becomes

dℓ(X) = −
〈 d1∑

i=1

λ
(k)
i ϕiψ

⊤
i , dZk

〉
,

∂ℓ(X)

∂Zk
= −

d1∑
i=1

λ
(k)
i ϕiψ

⊤
i = −ΦL(k)Ψ⊤, (33)

where L(k) is a diagonal matrix whose diagonal entries are λ(k)i , i.e., L(k) = Diag(λ(k)). Since
Zk = UkV

⊤
k , we have

∂ℓ(X)

∂Uk
= −

d1∑
i=1

λ
(k)
i ϕiψ

⊤
i = −ΦL(k)Ψ⊤Vk, (34)

∂ℓ(X)

∂Vk
= −

d1∑
i=1

λ
(k)
i ϕiψ

⊤
i = −(ΦL(k)Ψ⊤)⊤Uk. (35)

This concludes the proof for the gradient flow dynamics on Uk and Vk. In the remaining, we shall
derive the gradient of ℓ(X) with respect to the scalar αk.

∂ℓ(X)

∂αk
= −

m∑
j=1

(yj − ⟨Aj , X⟩)⟨Γ(UkV
⊤
k), Aj⟩

= −
m∑
j=1

(〈
σ(i), σ⋆ −

K∑
l=1

αlγ(z
(l))

〉
·
〈
σ(i), γ(z(k))

〉)

= −γ(z(k))⊤C
(
σ⋆ −

K∑
l=1

αlγ(z
(l))

)
= −γ(z(k))⊤C(σ⋆ −Hα),

where the second equality is due to Eq. 10. Consequently, the gradient of ℓ(X) with respect to the
vector α is

∂ℓ(X)

∂α
= −H⊤C(σ⋆ −Hα), (36)

which concludes the proof of Theorem 1.

B PROOF OF THEOREM 2

Let us direct our attention to the evolution of the diagonal elements. Restricting 12 to the diagonal
elements gives us a system of differential equations for each i ∈ [m]:

[∂tŪk]ii = λ
(k)
i [V̄k]ii, [∂tV̄k]ii = λ

(k)
i [Ūk]ii. (37)

14

We can re-write the above into a single matrix differential equation as

∂t

[
[Ūk]ii
[V̄k]ii

]
= λi

[
0 1
1 0

] [
[Ūk]ii
[V̄k]ii

]
. (38)

For the remaining of this section, we define the following notations for ease of presentation:

x
(k)
i =

[
[Ūk]ii
[V̄k]ii

]
(39)

A =

[
0 1
1 0

]
(40)

w
(k)
i =

1

2
x
(k)⊤
i x

(k)
i =

1

2
(Ū2

ii + V̄ 2
ii) (41)

∂tw
(k)
i = x

(k)⊤
i ∂tx

(k)
i (42)

z
(k)
i =

1

2
x
(k)⊤
i Ax

(k)
i = [Ūk]ii[V̄k]ii (43)

∂tz
(k)
i = x

(k)⊤
i A∂tx

(k)
i . (44)

The above matrix differential equation becomes

∂tx
(k)
i = λ

(k)
i Ax

(k)
i

x
(k)⊤
i ∂tx

(k)
i = x

(k)⊤
i λ

(k)
i Ax

(k)
i

∂tw
(k)
i = 2λ

(k)
i z

(k)
i (45)

On another note, we also have

∂tx
(k)
i = λ

(k)
i Ax

(k)
i

x
(k)⊤
i A∂tx

(k)
i = λ

(k)
i x

(k)⊤
i AAx

(k)
i

∂tz
(k)
i = 2λ

(k)
i w

(k)
i . (46)

We are now ready to prove the main result. In the remaining proof, we will derive the differential
equation for Hα. By the product rule of calculus, we have

∂t(Hα) = (∂tH)α+H(∂tα). (47)

We shall derive ∂tHα and H∂tα separately. First, let us consider the evolution of H over time.

∂tH =
[
. . . | γ′(z(k))∂tz(k) | . . .

]
(48)

=
[
. . . | γ′(z(k)) ◦ 2λ(k) ◦ w(k) | . . .

]
(49)

=
[
. . . | γ′(z(k))2 ◦ 2C(σ⋆ −Hα) ◦ w(k) | . . .

]
Diag(α), (50)

where the first equality follows from the definition of H and the chain rule of calculus, the second
equality is due to Eq. 46, and the last equality follows from Theorem 1. Multiplying the vector α
from the right on both sides gives:

(∂tH)α = 2

K∑
k=1

α2
k ·

(
γ′(z(k))2 ◦ C(σ⋆ −Hα) ◦ w(k)

)
. (51)

Recall that from Theorem 1, we have

∂tα = H⊤C(σ⋆ −Hα). (52)

Multiplying the matrix H from the left on both sides gives

H(∂tα) = HH⊤C(σ⋆ −Hα). (53)

Combining Eq. 51 and Eq. 53 gives

∂t(Hα) = 4

K∑
k=1

α2
k ·

(
γ′(z(k))2 ◦ C(σ⋆ −Hα) ◦ w(k)

)
+HH⊤C(σ⋆ −Hα). (54)

15

Notice that by definition, the matrix B contains the singular values of Ai’s, and therefore its entries
are non-negative. Consequently, since C = BB⊤, C’s entries are also non-negative. Finally, by
definition in Eq. 41,w(k) has non-negative entries. Therefore, all quantities in Eq. 54 are non-negative
entry-wise, except for the vectors (σ⋆ −Hα). Consequently, both quantities (∂tH)α and H(∂tα)
have the same sign as (σ⋆ −Hα). By our initialization, this sign is non-negative.

Furthermore, this non-negativity implies that

∂t(Hα) ≥ HH⊤C(σ⋆ −Hα). (55)

∂t(Hα) ≥ 4

K∑
k=1

α2
k ·

(
γ′(z(k))2 ◦ C(σ⋆ −Hα) ◦ w(k)

)
. (56)

We will have the occasion to use both inequalities depending on the situation. Finally, we can also
write down a similar differential equation for each (Hij from Eq. 50 as

∂tHij = 2 · αjγ
′(z

(j)
i)2[C(σ⋆ −Hα)]ijw

(k)
i . (57)

By Assumption 2, part (c), at initialization, we have H(0)α(0) < σ⋆ entry-wise. This implies that
each entry in ∂t(Hα) is positive at initialization, and therefore Hα is increasing in a neighborhood
of 0. As Hα approaches σ⋆, the gradient ∂t(Hα) decreases and reaches 0 exactly when Hα = σ⋆,
which then causes Hα to stay constant from then on. Thus, we have shown that

lim
t→∞

H(t)α(t) = σ⋆ and ∂t(Hα) ≥ 0. (58)

Combining Eq. 46 and Eq. 45, we have

∂tw
(k)
i · w(k)

i − ∂tz
(k)
i · z(k)i = 0. (59)

Integrating both sides with respect to time, we have that for any t > 0

(w
(k)
i (t))2 − (z

(k)
i (t))2 = Q. (60)

for some constant Q which does not depend on time. Since w(k)
i is non-negative by definition, the

above implies that w(k)
i (t) ≥

√
|Q| for all t > 0; note that Q > 0 can be ensured via initialization,

as discussed below. To this end, notice that

(w
(k)
i (0))2 − (z

(k)
i (0))2 =

1

4
(Ūk,ii(0)

2 + V̄k,ii(0)
2)2 − Ūk,ii(0)

2V̄k,ii(0)
2

=
1

4
(Ūk,ii(0)

2 − V̄k,ii(0)
2)2.

Thus this can always be arranged simply by initializing Ūk(0), V̄k(0) suitably.

This, in particular, implies that w(k)
i is bounded away from 0 in time.

In the remainder of this section, we will show that the convergence rate is exponential. In the below,
we shall establish a lower bound on ∂t(Hα).

Case 1: The αk are upper bounded by a finite constant αmax > 0 for all k ∈ [K] and t ∈ R+.

Let h1, . . . , hd1 denote the rows of H , and b1, . . . , bd1 denote the rows of B. We have

H∂tα = HH⊤C(σ⋆ −Hα) = (HH⊤)(BB⊤)(σ⋆ −Hα) (61)

=

 h
⊤
1 h1 h⊤1 h2 . . . h⊤1 hd1

...
...

. . .
...

h⊤1 hd1 h⊤2 hd1 . . . h⊤d1
hd1


 b

⊤
1 b1 b⊤1 b2 . . . b⊤1 bd1

...
...

. . .
...

b⊤1 bd1 b⊤2 bd1 . . . b⊤d1
bd1

 (σ⋆ −Hα) (62)

≥


h⊤1 h1

h⊤2 h2
. . .

h⊤d1
hd1



b⊤1 b1

b⊤2 b2
. . .

b⊤d1
bd1

 (σ⋆ −Hα) (63)

16

=


h⊤1 h1 · b⊤1 b1

h⊤2 h2 · b⊤2 b2
. . .

h⊤d1
hd1 · b⊤d1

bd1

 (σ⋆ −Hα) (64)

=
[
h⊤1 h1 · b⊤1 b1 . . . h⊤d1

hd1 · b⊤d1
bd1

]⊤ ◦ (σ⋆ −Hα), (65)

where the first inequality is due to the non-negativity of the entries of H and B. Let us focus our
attention on the evolution of the i-th entry of Hα.

∂t(Hα)i = [(∂tH)α]i + [H(∂tα)]i ≥ [H(∂tα)]i ≥ (h⊤i hi · b⊤i bi)(σ⋆
i − (Hα)i), (66)

where the first inequality is due to [H(t)α(t)]i ≤ σ⋆
i , which causes (∂tH)αi to be non-negative.

Notice that bi are constants with respect to time, and are non-zero because of the condition that the
all-ones vector lies in the range of B. Therefore, to show a lower bound on ∂t(Hα)i, it remains to
show that h⊤i hi (or ∥hi∥) is bounded away from 0.

In the previous part, we have shown that H(t)α(t) approaches σ⋆ as t → ∞. Therefore, for any
ϵ > 0, there exists a time t0 after which |σ⋆

i − (Hα)i| ≤ ϵ. Notice that (Hα)i = h⊤i α. By
Cauchy-Schwarz inequality, we have for t > t0:

∥hi(t)∥ · ∥α(t)∥ ≥ |hi(t)⊤α(t)| ≥ |σ⋆
i | − |σ⋆

i − hi(t)
⊤α(t)| ≥ |σ⋆

i | − ϵ, (67)

where the second inequality is due to the Triangle inequality. Choose ϵ = |σ⋆
i |/2, we have

∥hi(t)∥ ≥ |σ⋆
i |

2∥α(t)∥
≥ |σ⋆

i |
2
√
Kαmax

. (68)

Let us define the constant ηi = |σ⋆
i |/(2

√
Kαmax) · b⊤i bi, and βi = σ⋆

i − (Hα)i. Notice that ηi is a
constant with respect to t. We have the following differential inequality:

∂tβi = −∂t(Hα)i ≤ −ηiβi. (69)

Integrating the above differential inequality we get that

βi(t) = σ⋆
i − (H(t)α(t))i ≤ Ce−ηit, (70)

for some constant C > 0 for all large enough t. This shows thatHα converges to σ⋆ at an exponential
rate.

Definition. In the complement of Case 1, we define the subset S ⊆ [K] such that j ∈ S implies that
limt→∞ αj(t) = +∞.

In order to deal with the complement of Case 1 above, we now proceed to handle the convergence of
Hα to σ∗ coordinate-wise. To this end, we consider two types of coordinates i ∈ [d1], depending on
the limiting behavior of the Hij in tandem with that of αj (as j ranges over S for this i).

Case 2 : The index i ∈ [d1] is such that Hijαj → 0 as t → ∞ for all j ∈ S. In this case, we
consider the left and right sides of Eq 54 for the i-th co-ordinate, and notice that in fact we have
σ∗
i = limt→∞

∑
j /∈S Hijαj . Since αj for each j /∈ S converges to a finite real number, this implies

that for this particular index i ∈ [d1] we can employ the argument of Case 1, with a lower dimensional
vector (αj)j /∈S instead of (αj)j∈[K].

Case 3 : The index i ∈ [d1] is such that ∃j ∈ S with Hijαj does not converge to zero as t → ∞
and Hij remains bounded away from 0 for this j. In this case, we notice that the i-th row of H ,
denoted hi, satisfies the condition that ∥hi∥2 is bounded away from 0 as t→ ∞, thanks to the above
co-ordinate j. As such, we are able to apply the exponential decay argument of Case 1 by combining
Eq 66 and Eq 69.

Case 4 : The index i ∈ [d1] is such that ∃j ∈ S with Hijαj does not converge to zero as t→ ∞ and
Hij → 0 for this j. For the proof of Case 4 in Theorem 2, we further assume that if x0 is a zero of
the activation function γ, then γ′(x) ≥ cγ(x) for x sufficiently close to x0, and c > being a constant.
This covers the case of x0 = −∞, as in the case of sigmoid functions, where the condition would be
taken to be satisfied for x sufficiently large and negative. This condition is satisfied by nearly all of

17

the activation functions of our interest, including sigmoid functions, the tanh function, and truncated
ReLu with quadratic smoothing, among others. We believe that this condition is a technical artifact
of our proof, and endeavor to remove it in an upcoming version of the manuscript.

In this setting, we invoke Eq 54 in its i-th component and lower bound its right-hand side by the
k = j summand therein; in other words, we write

∂t(Hα)i ≥ 4α2
jγ

′(z
(j)
i)2[C(σ⋆ −Hα)]iw

(k)
i . (71)

Since Hij = γ(z
(j)
i), therefore for large enough t, we have z(j)i is close to z0, the zero of γ (in

the event z0 = −∞, this means that z(j)i is large and negative). By the properties of the activation
function γ, this implies that the inequality γ′(z(j)i) ≥ cγ(z

(j)
i) holds true with an appropriate constant

c > 0 for large enough t. Notice that αj ↑ +∞ and from Eq (57) we have ∂tHij ≥ 0 for large enough
time t, which implies that Hij is non-decreasing for large time. As a result, Hijαj is non-decreasing
for large time. But recall that Hijαj does not converge to zero as t→ ∞ by the defining condition
of this case, which when combined with the non-decreasing property established above, implies that
Hijαj is bounded away from 0 for large time. Finally, recall that wk

i ≥
√
|Q|. Combining these

observations, we may deduce from Eq 72 that, for an appropriate constants c1, c2 > 0 we have

∂t(Hα)i ≥ c1α
2
jγ(z

(j)
i)2[C(σ⋆ −Hα)]iw

(k)
i ≥ c2 · [C(σ⋆ −Hα)]i. (72)

We now proceed as in Eq 69 and obtain exponentially fast convergence, as desired.

Establishing a matching exponential lower bound on βi(t) is not very important from a practical
point of view. So, we only show such a bound under the assumption that the αk(t) remains bounded
by some constant αmax > 0, for all k. For simplicity, we also assume that the non-linearity γ is such
that γ′(x) = O

(
1√
|x|

)
as x→ ±∞. (This is a mild assumption, satisfied, e.g., by the logistic or the

tanh non-linearities.) Since w(k)
i can grow at most linearly in z(k)i (see Eq. (60)), this assumption

ensures that γ′(z(k)i)2w
(k)
i remains bounded uniformly for all i and k. Further, the entries of H are

uniformly bounded, and C is a fixed matrix. Therefore, for some constant ζ > 0, we have, for all
i ∈ [d1], that

∂t(Hα)i = 4

K∑
k=1

α2
k(γ

′(z
(k)
i))2w

(k)
i (C(σ⋆ −Hα)i +

∑
j

(HH⊤)ij(C(σ
⋆ −Hα))j

≤ ζ
∑
ℓ

(σ⋆ −Hα)ℓ.

A fortiori,

∂t
∑
i

βi =
∑
i

∂tβi = −
∑
i

∂t(Hα)i

≥ −ζ
∑
i

∑
ℓ

βℓ

= −d1ζ
∑
i

βi.

Integrating this differential inequality, we conclude that for some constant C1 > 0,∑
i

βi(t) ≥ C1e
−d1ζt,

for all t > 0. The Cauchy-Schwartz bound
∑

i βi(t) ≤
√
d1∥β(t)∥2 then implies that for all t > 0,

∥σ⋆ −H(t)α(t)∥2 = ∥β(t)∥2 ≥ C1√
d1
e−d1ζt = Ce−ηt,

where C = C1√
d1

and η = d1ζ. This completes the proof of the lower bound.

18

C PROOF OF THEOREM 3

By our definition of X∞, we have

X∞ = lim
t→∞

X(t)

= lim
t→∞

K∑
k=1

αk(t)Γ
(
Uk(t)Vk(t)

⊤)
= lim

t→∞

K∑
k=1

αk(t)Γ
(
ΦŪk(t)G ·G⊤V̄k(t)

⊤Ψ⊤)
= lim

t→∞

K∑
k=1

αk(t)Γ
(
ΦŪk(t)V̄k(t)

⊤Ψ⊤)
= lim

t→∞

K∑
k=1

αk(t)Φγ(Ūk(t)V̄k(t)
⊤Ψ⊤

= Φ

[
lim
t→∞

K∑
k=1

αk(t)γ
(
Ūk(t)V̄k(t)

⊤)]Ψ⊤

= Φ

[
lim
t→∞

Diag
(K∑

k=1

αk(t)γ
(
z(k)(t)

))]
Ψ⊤

= Φ

[
lim
t→∞

Diag
(
H(t)α(t)

)]
Ψ⊤

= Φ

[
Diag

(
lim
t→∞

H(t)α(t)
)]

Ψ⊤

= Φ
[
Diag(σ⋆)

]
Ψ⊤,

where the fourth equality is due to the orthogonality of G, and the last equality is due to Theorem 1.
Now, let us look at the prediction given by X∞, for any i = 1, . . . ,m, we have

⟨Ai, X∞⟩ = ⟨ΦĀiΨ
⊤,ΦDiag(σ⋆)Ψ⊤⟩ = ⟨σ(i), σ⋆⟩ = yi, (73)

where the last equality is due to Equation 10.This implies that ℓ(X∞) = 0, proving (a).

To prove (b), we will show that X∞ satisfies the Karush-Kuhn-Tucker (KKT) conditions of the
following optimization problem

min
X∈Rd1×d2

∥X∥∗ subject to yi = ⟨Ai, X⟩,∀i ∈ [m]. (74)

The KKT optimality conditions for the optimization in 74 are

∃ν ∈ Rm s.t. ∀i ∈ [m], ⟨Ai, X⟩ = yi and ∇X∥X∥∗ +
m∑
i=1

νiAi = 0. (75)

The solution matrix X∞ satisfies the first condition from the first claim of Theorem 3, it remains to
prove that X∞ also satisfies the second condition. The gradient of the nuclear norm of X∞ is given
by

∇∥X∞∥ = ΦΨ⊤. (76)
Therefore, the second condition becomes

ΦΨ⊤ +

m∑
i=1

νiAi = 0

⇔ ΦΨ⊤ +

m∑
i=1

νiΦĀiΨ
⊤ = 0

19

⇔ Φ
(
I −

m∑
i=1

νiĀi

)
Ψ⊤ = 0

⇔
m∑
i=1

νiσ
(i)
j = 1,∀j ∈ [d1]

⇔ Bν = 1.

By Assumption 1, the vector 1 lies in the column space of B, which implies the existence of a vector
ν that satisfies the condition above. This proves (b) and concludes the proof of Theorem 3.

D SINGULAR VALUE DECOMPOSITION

In this appendix, we explain in detail the singular value decomposition of a rectangular matrix. By
doing so, we also explain some of the non-standard notations used in the paper (e.g., a rectangular
diagonal matrix).

In our paper, we consider a rectangular measurement matrix A of dimension d1 × d2 and rank r.
Without loss of generality, we assume that r ≤ d1 ≤ d2. Then the singular value decomposition of
the matrix A is given by

A = ΦĀΨ⊤, (77)

where Φ ∈ Rd1×d1 ,Ψ ∈ Rd2×d1 are two orthogonal matrices whose columns represent the left and
right singular vectors of A, and Ā ∈ Rd1×d1 is a diagonal matrix whose diagonal entries represent
the singular values of A.

This is similar to the notion of compact SVD commonly used in the literature, but we truncate the
matrix Ψ to d1 columns, instead of r columns like in compact SVD.

This choice of compact SVD is not taken lightly, it is crucial for the proof of Theorem 1 via the
use of the Khatri–Rao product. More specifically, the Khatri–Rao product in Eq. 21 requires that Φ
and Ψ have the same number of columns. This is generally not true in the standard singular value
decomposition.

Next, we precisely define the notion of a rectangular diagonal matrix. Suppose A ∈ Rd1×d2 with
d1 < d2 is a diagonal matrix, then A takes the following form:

A =

a1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · ad1

0 · · · 0

 . (78)

Here, we start with a standard square diagonal matrix of size d1 × d1, and add d2 − d1 columns of
all 0’s to the right of that matrix. Similarly, we define a rectangular identity matrix of size d1 × d2 by
setting a1 = · · · = ad1 = 1.

E ADDITIONAL NUMERICAL STUDIES

In this section, we complement the numerical studies in the main paper with some simulation results
on the SNN architecture of Fig. 1. We empirically demonstrate that gradient descent dynamics
in SNN minimizes the nuclear norm of the solution matrix, and leads to favorable generalization
performance. We also investigate some settings in which the assumptions made in our theoretical
study are relaxed.

Do the results in Theorem 2 and Theorem 3 extend to multi-layer SNN?

We generate the true matrix by sampling each entry of X⋆ independently from a standard Gaussian
distribution, suitably normalized. For every measurement matrix Ai, i = 1, . . . ,m, we sample each
entry of the diagonal matrix Āi from the uniform distribution on (0, 1), sort them in decreasing order,
and set Ai = ΦĀiΨ

⊤, where Φ and Ψ are randomly generated orthogonal matrices. We then record
the measurements yi = ⟨Ai, X

⋆⟩, i = 1, . . . ,m. A total of 120 measurement matrices are generated,
half of them are used for training and the other half are used for testing (m = 60 in this case).

20

We use a two-layer SNN of size [5, 3, 1], i.e., the input layer has 5 blocks, the hidden layer has 3
blocks, and the output layer has 1 block. These blocks are initialized with spectral initialization (see
Assumption 2).

We take d1 = d2 = 10 (thus X⋆ has 100 entries), m = 60 measurement matrices, and K = 3. As
for the non-linearity, we use the shifted and scaled sigmoid

γ(x) =
[1

1 + e−x
− 1

2

]
∗ 0.8. (79)

In the figures below, we demonstrate the evolution of the nuclear norm, the train error, and the test
error of our SNN over time as we run gradient descent. Even though we only analyze gradient flow
dynamics for a single block in our theoretical investigation, the empirical results suggest that the
same phenomenon extends to more general multi-layer SNN.

0 100000 200000
Iterations

4.3

4.4

4.5

4.6

Nu
cle

ar
 N

or
m

 (l
og

 sc
ale

)

0 100000 200000
Iterations

−20

−15

−10

−5

0
Tr

ain
 L

os
s (

log
 sc

ale
)

0 100000 200000
Iterations

−20

−15

−10

−5

0

Te
st

Lo
ss

 (l
og

 sc
ale

)

5×10−4 1×10−4 5×10−5 1×10−5 5×10−6

Figure 4: The evolution of SNN’s nuclear norm, train error, and test error over time with learning
rates (LR) of different magnitudes. In the left plot, the nuclear norm decays over time and converges
to the same minimum value regardless of the learning rates.

0 100000 200000
Iterations

Nu
cle

ar
 N

or
m

 (l
og

 sc
ale

)

0 100000 200000
Iterations

−5

0

Tr
ain

 L
os

s (
log

 sc
ale

)

0 100000 200000
Iterations

−5

0

Te
st

Lo
ss

 (l
og

 sc
ale

)

1-block 1-layer 2-layer 3-layer

Figure 5: The evolution of SNN’s nuclear norm, train error, and test error over time with various SNN
architectures. We use a learning rate of 10−5. The left plot shows that gradient descent minimizes the
nuclear norm of the solution matrix for all architectures, although they converge to slightly different
final solutions. In the right plot, we observe that there is a substantial difference in the test error
between different architectures. In this particular simulation, a 2-layer SNN achieves the lowest test
error. This hints at the advantage of going beyond a single block to multi-layer SNN architecture as
we proposed in Section 3.

Do the results in Theorem 2 and Theorem 3 still hold when we relax the assumptions?

We investigate a scenario in which Assumption 1 (commuting measurement matrices) and Assumption
2 (spectral initialization) are relaxed.

We generate the true matrix by sampling each entry of X⋆ independently from a standard Gaussian
distribution, suitably normalized. For every measurement matrix Ai, i = 1, . . . ,m, we sample each
entry of Ai from a standard Gaussian distribution. We then record the measurements yi = ⟨Ai, X

⋆⟩,
i = 1, . . . ,m. A total of 120 measurement matrices are generated, half of them are used for training
and the other half are used for testing (m = 60 in this case).

21

In this setting, we still observe that the nuclear norm generally decreases over time, although not in a
strict sense like before. We again observe that there are advantages in going from a single block to a
multi-layer SNN from the generalization perspective.

0 100000 200000
Iterations

2.53

2.54

2.55

2.56

2.57

2.58

Nu
cle

ar
 N

or
m

 (l
og

 sc
ale

)

0 100000 200000
Iterations

−20

−15

−10

−5

Tr
ain

 L
os

s (
log

 sc
ale

)

0 100000 200000
Iterations

−20

−15

−10

−5

Te
st

Lo
ss

 (l
og

 sc
ale

)

5×10−4 1×10−4 5×10−5 1×10−5 5×10−6

Figure 6: The evolution of SNN’s nuclear norm, train error, and test error over time with learning
rates (LR) of different magnitudes. From the left plot, the nuclear norm generally decreases over time
and converges to the same value albeit with some erratic movements in the early iterations.

0 100000 200000
Iterations

Nu
cle

ar
 N

or
m

 (l
og

 sc
ale

)

0 100000 200000
Iterations

−15

−10

−5

0

Tr
ain

 L
os

s (
log

 sc
ale

)

0 100000 200000
Iterations

−15

−10

−5

0

Te
st

Lo
ss

 (l
og

 sc
ale

)

1-block 1-layer 2-layer 3-layer

Figure 7: The evolution of SNN’s nuclear norm, train error, and test error over time with various
numbers of layers. We use a learning rate of 10−5. In the middle and right plots, it shows that the
single-block 1-layer SNN is the easiest to optimize but does not result in the best generalization
performance: the error decreases quickly at first, but then plateaus; on the other hand, for the more
complex SNNs, the loss improves slowly but reaches better solutions.

F CODE AVAILABILITY

The python code used to conduct our experiments is publicly available at https://github.com/
porichoy-gupto/spectral-neural-nets.

22

https://github.com/porichoy-gupto/spectral-neural-nets
https://github.com/porichoy-gupto/spectral-neural-nets

	Introduction
	Problem Setup
	Gradient Flow

	The SNN architecture
	Main Results
	Numerical studies
	Summary of contributions and future directions
	Reproducibility Statement
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Singular value decomposition
	Additional numerical studies
	Code availability

