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ABSTRACT

With the help of large-scale pre-training, generative Vision-Language Models
(VLMs) have acquired general-purpose capabilities. As downstream applications
diversify, it is imperative for VLMs to learn and adapt continuously without experi-
encing catastrophic forgetting or necessitating complete retraining. In this work,
we analyze the forgetting behavior of VLMs and propose a solution to enhance
their incremental learning abilities. We introduce a Task Codebook within VLMs,
enabling efficient retrieval of task-specific parameters for model adaptation. Our
evaluation encompasses a diverse set of tasks spanning a wide range of visual
domains and textual instructions. Experiments demonstrate that our approach
effectively mitigates forgetting, even under highly demanding task sequences.

1 INTRODUCTION

Recent advancements in generative vision-language models OpenAI (2023); Alayrac et al. (2022);
Chen et al. (2023c); Wang et al. (2022a); Google (2024) (VLMs) have demonstrated remarkable
success. These models leverage extensive pre-training corpora to acquire substantial world knowl-
edge, facilitating adaptation to downstream tasks. This paper investigates the incremental learning
capabilities of such models. Our objective is to incrementally adapt generative VLMs to multiple
tasks, rather than maintaining separate models specialized for each task.

A significant challenge in incremental learning is catastrophic forgetting McCloskey & Cohen (1989),
where models rapidly lose previously learned knowledge. An ideal incrementally trained model
should mitigate forgetting while retaining the ability to acquire new knowledge. Existing research has
primarily focused on class-incremental learning for classification, assuming sequential availability of
class subsets.

While class-incremental learning is an important research direction, general-purpose VLMs span
a much wider set of applications than simple classification. It is thus more realistic to consider a
diverse set of applications ranging from classification over detection to question answering. This
poses a greater challenge for the incremental learning setting, as the model now needs to learn new
applications instead of expanding a single application’s coverage. More recent studies have examined
catastrophic forgetting in vision-language models Garg et al. (2023); Zheng et al. (2023); Zhang et al.
(2023). However, these methods often assume task similarity (e.g., different VQA tasks) He et al.
(2023), limiting their practical applicability.

We propose a new incremental learning method for generative VLMs that improves their ability to
learn and adapt to various, and potentially very different, tasks over time. To that end, we introduce a
task codebook that stores adapters specialized for each encountered task. When presented with a new
task, the model learns to access its most relevant modules to enhance its performance. This design
allows our model to effectively learn diverse tasks without needing to know at inference time which
task it is being asked to do, all while avoiding the common issue of catastrophic forgetting Compared
to existing prompt-based solutions Wang et al. (2022c), we find that our method is more flexible and
performs well across a wide set of incremental-learning settings.

To comprehensively evaluate the incremental learning capabilities of generative VLMs, we present a
novel benchmark comprising diverse tasks, such as captioning Young et al. (2014); Gurari et al. (2020),
VQA Goyal et al. (2017); Marino et al. (2019), OCR-enhanced captioning and VQA Sidorov et al.
(2020); Wang et al. (2021), open-vocabulary classification Wang et al. (2022a), object detection Lin
et al. (2014), referring expression generation Kazemzadeh et al. (2014), grounding Kazemzadeh
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et al. (2014) and multi-modal instruction tuning Liu et al. (2023). This diverse set of tasks enables a
thorough assessment of incremental learning abilities under varying conditions, including different
classes, datasets, and applications.

Our contributions in this paper can be summarized as follows:

• We propose a novel adaptation strategy for generative models with a task codebook that
allows lookup and dynamic routing at inference time. This approach demonstrates efficacy
in scenarios involving sequential tasks of different natures.

• We propose a new multi-modal incremental learning benchmark for generative models,
spanning 36 datasets and 8 applications.

• We provide a comprehensive evaluation of our method under various scenarios, demonstrat-
ing our method’s superiority over existing baselines across a wide range of tasks.

2 RELATED WORK

Incremental learning. In this task, the assumption is that the training set of a dataset is not available
all at once. Data from previous timestamps are discarded as new data becomes available. Existing
studies mainly focus on single modality such as images Hsu et al. (2018); Van de Ven & Tolias
(2019) or texts Ke et al. (2023). For incremental learning in the vision domain, typical incremental
learning setups include: task-incremental learning Hsu et al. (2018); Van de Ven & Tolias (2019),
class-incremental learning Hsu et al. (2018); Van de Ven & Tolias (2019), domain-incremental
learning Hsu et al. (2018); Van de Ven & Tolias (2019), task-agnostic incremental learning Aljundi
et al. (2019a), and online continual learning Aljundi et al. (2019b).

Class-incremental learning. Existing approaches address this challenge through regularization
techniques such as knowledge distillation Li & Hoiem (2017), model expansion Rusu et al. (2016);
Wang et al. (2017) or representations Yan et al. (2021) and weight consolidation Aljundi et al. (2018);
Chaudhry et al. (2018); Kirkpatrick et al. (2017). Alternatively, replay-based methods retain a
small sample of data from previous classes Rebuffi et al. (2017); Chaudhry et al. (2019); Iscen et al.
(2020). More recent techniques introduce prompt retrieval for class-incremental learning Wang et al.
(2022c;b); Khan et al. (2023); Tang et al. (2023) without requiring a replay buffer.

Multi-modal incremental learning. Multi-modal incremental learning has seen recent interest due
to the advancement of multi-modal models Radford et al. (2021); Wang et al. (2022a); Li et al. (2023).
Some of the research has focused on dual-encoder models, e.g. CLIP Radford et al. (2021), examining
their performance on evolving data distributions Garg et al. (2023) and knowledge preservation Zheng
et al. (2023). Other studies focus on incremental learning for the Visual-Question Answering (VQA)
tasks, either by formulating it as a classification problem Qian et al. (2023); Srinivasan et al. (2022) or
a generative task Zhang et al. (2023); He et al. (2023). In this paper, we adopt a more practical setting
with varied tasks and leverage generative models like GIT Wang et al. (2022a) for their potential
across diverse settings.

Codebook learning. Codebook learning is an effective method for converting continuous features
into semantically rich, discrete codes. This technique has found widespread application in the field of
self-supervised representation learning Caron et al. (2020; 2021) and reconstruction Van Den Oord
et al. (2017); Ramesh et al. (2021). Inspired by recent advancements in retrieval mechanisms that
facilitate incremental learning in classifiers Prabhu et al. (2023); Wang et al. (2022c;b), this study
introduces the concept of a task codebook. Our approach enables sequential task learning in a
non-interfering manner, effectively addressing the challenge of catastrophic forgetting.

3 METHOD

Our goal is to incrementally adapt a generic auto-regressive model to various challenging (and
potentially very diverse) image-to-text tasks. In this section, we start by defining the task incremental
learning setup before describing our proposed task codebook incremental adaptation (TCIA) method.

3.1 PROBLEM SETUP

Auto-regressive vision-language models form the building blocks of most state-of-the-art systems
for challenging image-to-text tasks Chen et al. (2023b). While a large body of work has focused
on efficient ways to adapt these models to different tasks Hu et al. (2021); Lester et al. (2021); Li
& Liang (2021), we explore in this work how to adapt them to a sequential stream of tasks, in an
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Figure 1: Overview of TCIA. We introduce a task codebook in a generic auto-regressive generative
model. Task-specific codebook keys are used to retrieve task-specific codebook values, which are
adapter MLP parameters Houlsby et al. (2019) by default (left). We also consider prompt Lester et al.
(2021); Wang et al. (2022c) or prefix Li & Liang (2021) as alternative ways to condition the model
into different tasks (right).

incremental manner. Formally, let us consider a task mixture T of T different tasks: a data sample
for each task t ∈ T is represented as x ∼ Dt, such that x = (xv, xi, y) ∼ (Vt, It,Yt), where Vt, It
and Yt respectively denote the visual input, textual instruction input and textual target output spaces
of this task. For example, when considering a VQA task, Vt represents images, It questions and Yt

expected answers for this task.

Typically, models are adapted to each task t individually, hence resulting in a collection of T
specialized models. We refer to this strategy as single-tasking. On the other hand, it is also common
to train a single model on the entire task mixture T at once by, for example, randomly sampling a
different task from the mixture each step. We refer this as multi-tasking. In this work, we consider
another scenario where tasks come in a sequential manner. This mirrors real-world conditions where
practitioners adapt a single model on the fly due to the unavailability of all tasks upfront.

Sequential tasks. We consider the scenario where tasks arrive sequentially, requiring continuous
adaptation of a single model. Specifically, for task t, we assume access solely to Dt (data from the
corresponding task), and not to Di for any i ̸= t (data from the other tasks). The challenge of this
incremental learning setup is to learn over the different tasks while mitigating catastrophic forgetting.
In contrast to previous incremental learning methods focusing on incrementally growing label spaces
for image recognition Wang et al. (2022b;c), we assume that the nature of the task and the data
distribution Dt can vary significantly across tasks.

Auto-regressive generative models. Since our goal is to solve a mixture of image-to-text tasks, we
build upon standard auto-regressive generative vision-language models Wang et al. (2022a). Formally,
let us consider an input image-text data pair x = (xv, xi) ∼ (Vt, It) from task t. It is transformed
into a set of N d-dimensional embeddings X ∈ RN×d formed by concatenating the output of a visual
encoder processing xv and a text tokenizer processing xi. We use an auto-regressive text decoder g(·)
with L layers to generate the target text y ∈ Yt. Specifically, the decoder predicts each text token yk
from the target text (we denote its length by K) given both the set of preceding token embeddings
Y<k and the input image-text pair embeddings X. We train with a language modeling objective:

L =
1

K

K∑
i=1

ℓ(yk, g([X;Yy<k
]))

where [; ] corresponds to the concatenation operation in the first dimension and ℓ is the softmax
cross-entropy loss with label-smoothing Müller et al. (2019). We average this loss over minibatches
of examples drawn in (xv, xi, y) ∼ (Vt, It,Yt).

3.2 TASK CODEBOOK INCREMENTAL ADAPTATION (TCIA)

Incremental learning often employs buffer replay, using either past input data Chaudhry et al. (2019)
or past model weights Li & Hoiem (2017) to mitigate catastrophic forgetting. However, storing
extensive data or numerous model replicas becomes infeasible as task and model scales increase. In
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this paper, we introduce a novel task codebook method using task-specific keys and values. The task
keys are efficiently retrieved using a nearest neighbor lookup mechanism and dynamically updated.
Each retrieved task key is paired with a task value, which is then employed to efficiently condition the
remaining layers of the model Lester et al. (2021); Li & Liang (2021); Houlsby et al. (2019) to the
considered task. This design choice effectively integrates our task lookup module within the decoder,
enabling the deeper generative layers to adapt to a diverse set of tasks. An overview of our method is
presented in Fig. 1.
Task codebook. Formally, we introduce a task codebook at the lth decoder layer of the generative
model. This codebook contains a key-value pair (et, vt) for each task t of the task mixture T. The
task-specific keys et ∈ Rd are used to recognize which task to be dealt with while the task-specific
values vt are employed to adapt the last Nl = L− l layers of the model to the considered task.
Task-specific keys: recognizing tasks with lookups. Intuitively, we want a task-specific key et to
be able to recognize which task t we are currently solving, making it play the role of a prototype for
task t. A simple yet effective strategy to do so is to use an average of the input embeddings coming
from the considered task t. Specifically, at training time, we dynamically update the relevant task
keys with an exponential moving average (EMA) of the sequence representation at the lth decoder
layer, denoted by xl, coming from examples sampled from Dt. Formally, we have for each task
t: et = m · et + (1 − m) · xl where xl is the embedding of an example x = (xv, xi) ∼ (Vt, It)
sampled from task t and m is a decay rate. An alternative is to learn the task keys via gradient descent
using an additional loss term as in L2P Wang et al. (2022c). Our simple EMA design offers faster
adaptation and results in improved performance compared to learning the keys (see Sec. 5.5). We
empirically find that max-pooling exhibits robust advantages across all learning setups when it comes
to the choice of the sequence representation (see also Sec. 5.5).

At inference time, we simply select a relevant task index t for the evaluated input x by performing
a nearest-neighbor lookup, defined as t = argmaxiγ(ei,X

l
0) where γ is a similarity metric. In

practice, we use cosine similarity.
Task-specific values: parameter-efficient adaptation. In order to achieve efficient adaptation to
each task and minimal parameter overhead, we integrate the task-specific values vt as parameters
within an adapter module Houlsby et al. (2019). Specifically, the task-specific values vt represent
a set of Nl lightweight bottleneck multi-layer perceptron (MLP) parameters introduced after the
attention and feedforward layers of each of the last Nl transformer decoder blocks. We refer to this
way of adapting the decoder using task-specific MLPs by the adapter strategy and denote the resulting
model by TCIAA. As illustrated in the right panel of Fig. 1, we also evaluate alternative strategies
denoted by TCIAP (resp. TCIAPr) where task-specific values vt refer instead to a prompt Lester
et al. (2021); Wang et al. (2022c) (resp. to a prefix Li & Liang (2021)). We find in our experiments
(see Tab. 1) that while these two variants perform competitively and strongly allievate forgetting,
our variant using adapters, i.e. TCIAA, leads to the best version of our task codebook incremental
adaptation framework.

3.3 IMPLEMENTATION DETAILS

Auto-regressive model. We build upon GiT-Large Wang et al. (2022a), a decoder-only auto-
regressive model with 400M parameters. The image encoder is initialized from CLIP-L/14 Radford
et al. (2021) and we use a 6-layer text decoder with internal dimension d = 768. Our model is first
pre-trained jointly on WebLI-100M Chen et al. (2023c) and Conceptual Captions-12M Sharma et al.
(2018) as a general image captioner.
Task codebook. We insert the task codebook before the first layer of the decoder, i.e. we have l = 0.
For adapters Houlsby et al. (2019), we use two 2-layer MLP modules with an internal dimension
s = 256, resulting in a parameter increase of N l×T ×2(2ds+ s+d). The parameter count increase
for the other variants of TCIA are N l × T × ds for TCIAP and N l × T × 2ds for TCIAPr. The
decay rate m is set to 0.99 by default.
Upper-bounds. Our upper-bounds are single-tasking and multi-tasking. These variants do not
adapt the model sequentially, but either train multiple specialized models (single-tasking) or a general
model with all tasks at once (multi-tasking).
Baselines. For sequential task learning, we consider a simple baseline which consists in simply
fine-tuning the model to different tasks in a sequential manner. This usually leads to catastrophic
forgetting. Episodic Replay (E-Replay) Chaudhry et al. (2019) is another baseline where we store

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

MMIL
Benchmark

Captioning
generate the 

caption for this 
image. 

VQA
What phylum 

does this animal 
belong to?

Classification
What is the 

main object of 
this image?

Detection
detect:

coco flickr30k cifar100imagenet_r

space
shuttle

mush-
room

ice-
cream

in
st
ru
ct
io
n-
in
cr
em
en
ta
l

dataset-incremental

dataset-incremental
class-incrementalap

pli
ca
tio
n-i
nc
rem
en
tal

Figure 2: Multi-Modal Incremental Learning (MMIL) benchmark consists of 36 datasets across
8 applications (left) and 4 incremental learning setups (right).

previous samples in a memory buffer to re-use when learning new tasks. This constitutes a strong and
effective baseline for sequential tasks. We use 1% of the entire dataset as the size of the memory buffer
by default, similar to He et al. (2023). Finally, we extend L2P Wang et al. (2022c), a state-of-the-art
incremental learning method designed for classification, to our multi-modal benchmark , by using the
concatenated visual feature and textual instruction feature from CLIP-B Radford et al. (2021) as the
key. We call it L2P+. Prompts are then retrieved from the pool and used as additional input to the
decoder.

4 MULTI-MODAL INCREMENTAL LEARNING BENCHMARK

In this section, we first introduce the comprehensive set of tasks employed in our benchmark. We then
define different incremental learning paradigms utilized in our experiments. A schematic diagram is
demonstrated in Fig. 2.

4.1 APPLICATIONS

To assess the adaptability of VLMs in addressing a wide set of applications, we curate a benchmark of
8 multi-modal applications, including captioning, VQA, OCR-CV, classification, detection, referring
expression, grounding, and multi-modal instruction tuning, across a total of 36 datasets. These
applications span a wide range of visual and textual domains detailed in Appendix A.1 and Tab. 7.

4.2 INCREMENTAL-LEARNING SETUPS

In Sec. 3, we describe our method which adapts the model for each task t in a task mixture T. We now
define various incremental-learning setups with differing definitions for the mixture T and showcase
their connections in Fig. 2.

Dataset-incremental learning. In this setup, we define each task t as a single dataset. The
task mixture T refers to the union of different datasets within the same application. For example,
classification is an application and CIFAR-100 and ImageNet-R datasets are different tasks for this
application.

Class-incremental learning. This is the traditional incremental classification setup Wang et al.
(2022c;b); Khan et al. (2023), where each task t refers to a subset of classes of a classification dataset.
The entire task mixture T corresponds to a single dataset, such as CIFAR-100 in this scenario.

Instruction-incremental learning. We fix the visual input set V in this scenario and incrementally
modify the textual input I over different tasks. We use the COCO dataset Lin et al. (2014) and adapt
the model with different textual instructions in each task t. Different variations of textual instructions
include captioning, VQA (OK-VQA Marino et al. (2019)), object detection, referring expressions
(RefCOCO Kazemzadeh et al. (2014)) and grounding (RefCOCO Kazemzadeh et al. (2014)). The
respective textual inputs for these five tasks are the following: "Generate the caption for this image.",
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Table 1: Dataset-incremental learning where different tasks correspond to different datasets of the
same application. The considered applications are captioning, VQA, OCR-CV, and classification. F
and Acc. denote forgetting and average accuracy at the end of training. All numbers are run by us.

Captioning VQA OCR-CV Classification

Method F↓ Score ↑ F↓ Score ↑ F↓ Score ↑ F↓ Score ↑
Single-tasking
Finetuning – 121.4 – 56.7 – 49.1 – 97.1
Adapter – 104.7 – 56.4 – 48.4 – 94.7

Multi-tasking
Finetuning – 112.9 – 59.4 – 40.4 – 96.9
Adapter – 96.9 – 56.8 – 37.4 – 93.8

Sequential tasks
Finetuning 26.4 62.3 7.97 42.4 20.4 14.8 71.3 24.2
Adapter 12.1 57.5 13.6 36.4 20.1 9.63 82.0 11.9
E-Replay 15.9 77.3 3.67 52.7 4.25 30.3 23.0 67.0
L2P+ 3.14 83.2 0.55 48.9 1.50 35.4 0.39 90.8
TCIAP (Ours) 0.66 79.4 0.66 50.7 0.38 35.3 0.08 90.9
TCIAPr (Ours) 0.84 88.1 0.93 53.2 0.23 39.2 0.06 92.5
TCIAA (Ours) 0.47 100.8 0.54 55.1 0.31 45.7 0.15 94.0

"<question>", "detect:", "describe the box at <location>" and "detect <object>:". Overall, the task
mixture T is the COCO dataset seen five times, each associated with textual inputs of a different
nature.

Application-incremental learning. This setup increments over different applications. For each
task t, we adapt the model to a specific application, e.g. VQA, by training on the combined datasets
corresponding to that application. The union of all tasks i.e. T refers to the combination of 8
applications (see Section 4.1) in this scenario.

4.3 METRICS

To evaluate the efficacy of TCIA and the baseline methods, we employ distinct metrics appropriate to
each dataset and application. We report the average of all the metrics across different datasets and
tasks as correctness score (higher is better). We also report the widely-used forgetting metric Chaudhry
et al. (2018) (denoted by F in our experiments), which quantifies the extent to which a model has
forgotten a task based on its current state. See Appendix A.4 for detailed definition.

5 EXPERIMENTS

In this section, we first assess the performance of our proposed TCIA framework on the different
incremental learning setups described in Sec. 4.2. Second, we show an ablation study of different
important components of TCIA. Finally, we identify potential areas of improvement for our model by
analyzing the performance of an oracle model that always chooses the right task at inference.

5.1 DATASET-INCREMENTAL LEARNING

We conduct dataset-incremental learning across 4 diverse applications. These applications are all
comprised of different datasets as detailed in Tab. 7.

Baseline comparison. We see in Tab. 1 that TCIA models outperform all the considered baselines
in the sequential task learning scenario. First, as expected, the naive baseline of training the model
directly on sequential tasks yields severe forgetting: for example we observe −59.1 points of
performance drop on captioning compared to single-tasking for finetuning. Second, we see that the
strong E-Replay Chaudhry et al. (2019) and L2P+ Wang et al. (2022c) baselines alleviate partly
the forgetting but still suffer from performance degeneration. The two main design differences
between TCIAP and L2P+ methods are (i) exponential moving average (EMA) versus gradient
back-propagation to update the task-specific keys and (ii) the task-specific keys are built from decoder
inner layers rather than off-the-shelf backbones Dosovitskiy et al. (2020). We validate in Tab. 6i
that our design choices are favorable. Details of incremental learning scores across training steps
are provided in the Fig. 6. Overall, our TCIA models improve over strong baselines for incremental
learning, especially on complex multi-modal benchmarks.

6
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Table 2: State-of-the-art comparison in class-incremental learning. 10 class splits of CI-
FAR100 Krizhevsky et al. (2009); Wang et al. (2022c) and Split ImageNet-R Wang et al. (2022b) are
considered. Add. Models denotes the additional models used. For E-Replay Chaudhry et al. (2019),
we specify the size of the memory buffer in parenthesis. For reference, we also report the upper
bound by training on the entire dataset, corresponding to multi-tasking. We bold best results within
the two studied model size categories: base and large.

Method Model Add. Models Split CIFAR100 Split ImageNet-R

F↓ Score ↑ F↓ Score ↑
Upper-bound ViT-B – – 90.9 – 79.1
Upper-bound GiT-B – – 85.9 – 80.0
E-Replay (1k) ViT-B – 33.3 67.9 35.4 55.1
E-Replay (5k) ViT-B – 16.5 82.5 23.3 65.2
L2P ViT-B ViT-B Dosovitskiy et al. (2020) 7.35 83.9 9.73 61.6
DualPrompt ViT-B ViT-B Dosovitskiy et al. (2020) 5.16 86.5 4.68 68.1

LGCL ViT-B VIT-B Dosovitskiy et al. (2020)
& CLIP-B Radford et al. (2021) 5.10 87.2 4.20 69.5

B
as

e

TCIA GiT-B ViT-B Dosovitskiy et al. (2020) 9.25 84.6 3.70 72.9

Upper-bound GiT-L – – 94.1 – 93.5
E-Replay (5k) GiT-L – 12.9 84.9 12.5 71.5
TCIA GiT-L – 10.2 81.7 12.1 59.5L

ar
ge

TCIA GiT-L ViT-B Dosovitskiy et al. (2020) 9.16 87.0 3.02 77.6

Different TCIA variants. We observe in the last three rows of Tab. 1 that our model with adapters
(TCIAA) leads to better performance across different dataset-incremental learning benchmarks. The
superiority of the adapter variant compared to prompt or prefix variants is mainly explained by the
stronger transfer capability of the adapter module in general. Interestingly, we observe that TCIAP

and TCIAPr models also perform strongly and exhibit low forgetting. This shows that our TCIA
framework is robust to the choice of adaptation method. In the following experiments, we stick to the
best performing TCIAA variant and denote it as TCIA for brevity.

5.2 CLASS-INCREMENTAL LEARNING

Further, We apply our TCIA framework to the standard class-incremental learning scenario. This
allows us to compare our results with previously published numbers. Note that unlike existing
methods Wang et al. (2022c); Khan et al. (2023), TCIA is not designed specifically for discriminative
classification tasks. Yet, we show that our generative TCIA model is still effective and performs
decently well. To tailor our method for classification, we further consider using features from an
additional model (Add. Model) to learn task key representation. We further consider varying class
splits in the Appendix B.2, showcasing the unique advantage of TCIA when class splits increase.

Comparison with the state of the art. We compare TCIA to previously published results in the
traditional setting of class-incremental learning on CIFAR-100 and Split ImageNet-R Wang et al.
(2022c). In Tab. 2, we see that TCIA reaches competitive performance with recent state-of-the-art
class-incremental learning, though it is not specifically designed for this scenario. Notably, we
improve over previously published work Khan et al. (2023) on Split ImageNet-R by +8.1 points
(77.6 v.s. 69.5). Our performance on CIFAR100 is competitive but remains -0.2 points behind the
state of the art (87.0 v.s. 87.2), likely because CIFAR100 is a small dataset with limited visual and
task complexity and hence does not benefit from the potential of adapting large multi-modal models.
TCIA exhibit less forgetting compared to the E-Replay baseline as an increasing amount of classes
are presented, especially for a more complicated dataset like Split ImageNet-R.

5.3 INSTRUCTION-INCREMENTAL LEARNING

In this experiment, we consider the instruction-incremental learning setup as detailed under the
corresponding paragraph in Sec. 4.2. The goal is to incrementally learn to perform different tasks,
namely captioning, VQA, object detection, referring expressions and grounding, on the same set of
images. For all the entries in Tab. 3, we train the model with 60K iterations and a batch size of 1024.
We see in Tab. 3 that TCIA performs favorably against E-Replay Chaudhry et al. (2019) (+6.1 points)
and L2P+ baselines (+8.9 points), exhibiting minimal forgetting. Notably, our model almost closes
the gap with the multi-tasking upper-bound with only 1.5 points of performance drop (60.6 v.s. 62.1).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Instruction-incremental
learning on COCO Lin et al. (2014)
dataset with 5 different textual instruc-
tions and same visual input.

Method F↓ Score ↑
Multi-tasking
Finetuning – 66.8
Adapter – 62.1

Sequential tasks
E-Replay 13.7 53.9
L2P+ 0.47 51.1
TCIA 0.24 60.6

Table 4: Application-incremental learning
on 8 applications (App.) across 36 datasets
(Data.).

Method Score ↑
8 App. 36 Data.

Multi-tasking
Finetuning 72.7
Adapter 63.7

Sequential tasks
E-Replay 57.7 53.9
L2P+ 49.3 48.2
TCIA 59.2 67.2

5.4 APPLICATION-INCREMENTAL LEARNING

Lastly, in Tab. Tab. 4, we conduct experiments on the most challenging learning setup in terms of
both task diversity as well as task quantity. We curate a list of 8 applications consisting of 36 datasets,
detailed in the Tab. 7, and evaluate the model’s capacity in learning incrementally across very diverse
visual and textual instruction input. We consider two settings: (i) each application is taken as a task
with different datasets within that application combined directly (8 App. with 8 tasks in total) and
(ii) each dataset is taken as a task (36 Data. with 36 tasks in total). For all entries in Tab. Tab. 4, we
train the model with 400K iterations with a batch size of 1024. Our results with TCIA outperform
E-Replay Chaudhry et al. (2019) by a large margin of +1.5 points and +14.3 points on two settings,
respectively. This challenging setting validates our method’s effectiveness in alleviating forgetting
in realistic incremental learning environments. Notably, TCIA with 36 task codes outperforms the
multi-tasking adapter baseline by +3.5 points (67.2 v.s. 63.7). This suggests that the proposed task
codebook not only helps alleviate forgetting but also improves final performance upper-bound.

5.5 ABLATION STUDY

In this section, we thoroughly analyze TCIA to assess the impact of each component. To complement
the end-task incremental learning score, we introduce an additional metric, AccL, which directly
quantifies the lookup module’s performance by measuring the accuracy of selecting the correct task
key during inference.

Task key representation. We study the impact of different task key representations on codebook
lookup accuracy (Tabs. 5i and 5ii) and end-task incremental learning score (Tab. 5iii). We find that
using max-pooling over the sequence feature yields robust lookup accuracy over different incremental
learning setups. This echos studies on text classification Chen (2015); Conneau et al. (2017) finding
that max-pooling excels at capturing salient information for tasks like sentiment analysis where
the presence of certain keywords is informative. Notably, we find that [CLS] and [EOS] are
complementary-[CLS] excels at dataset-incremental learning while [EOS] excels at instruction-
incremental learning. Although their concatenation offers higher lookup accuracy hence end-task
score, it still lags behind from simply using max-pooling. See Tab. 17 for additional results on other
setups.

Task codebook depth. We incorporate the task codebook into the l-th decoder layer, effectively
adapting the subsequent N − l layers. We use a GiT decoder with N = 6 layers and investigate the
impact of task codebook depth by varying l in Tabs. 5i and 5ii. Results indicate that positioning the
codebook at the shallowest layer (l = 0) performs more robustly against an intermediate placement
(l ≥ 1) when using max-pooling as task key representation. For models with the task codebook
placed at deeper layers, the end-task score decline is primarily attributed to low AccL, suggesting
that the model struggles to identify the appropriate task key at inference.

Update strategy. We discuss two alternatives to update the task-specific keys described in Sec-
tion 3.2. As shown in Tab. 6i, employing Exponential Moving Average (EMA) with m = 0.99
for task code updates yields a higher performance for both captioning and VQA. In comparison to
learning the keys via gradient backpropagation as in L2P approach Wang et al. (2022c), we observe
improvements of +2.4 points and +1.1 points on captioning and VQA, respectively.
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Table 5: Ablation study on different choices of task key representations (Rep.) and task codebook
depth l. Left: Task codebook lookup accuracy (AccL) with the default setup underlined. Right:
incremental learning score with the optimal l. Task key representations including (a) [CLS]; (b)
[EOS]; (c) [[CLS];[EOS]]; (d) mean-pooling; (e) max-pooling; (f) [[CLS];max-pooling];
(g) [[CLS];[EOS];max-pooling] (h) CLIP-B Radford et al. (2021) are ablated.

l (a) (b) (c) (d) (e) (f) (g) (h)

0 45.7 93.7 95.3 49.2 94.6 87.3 95.0 89.5
1 46.9 92.0 96.0 62.2 95.1 83.0 94.6 89.5
2 66.6 91.3 95.4 66.9 96.2 96.0 95.0 89.5
3 83.7 92.9 95.2 86.6 94.7 90.8 96.3 89.5

(i) AccL. Dataset-incremental learning on VQA datasets.

l (a) (b) (c) (d) (e) (f) (g) (h)

0 53.6 40.2 80.5 58.9 96.9 87.6 82.6 71.3
1 59.7 42.2 81.4 66.9 94.3 85.9 83.1 71.3
2 72.1 51.5 82.7 74.1 87.0 83.3 85.0 71.3
3 79.3 54.8 82.1 74.6 82.8 83.2 85.6 71.3

(ii) AccL. Application-incremental learning on 36 datasets.

Rep. Data. Inst. App.
Cap. VQA

(a) 90.6 45.9 35.7 49.7
(b) 64.2 55.1 58.9 31.3
(c) 97.4 55.1 58.2 53.7
(d) 91.2 47.8 46.8 50.1
(e) 100.8 55.1 60.6 67.2
(f) 92.8 54.0 57.2 59.9
(g) 97.8 55.2 60.6 55.8

(h) 94.3 53.2 60.6 51.4
(iii) Incremental learning score. Data.,
Inst., and App. denotes dataset-,
instruction-, and application-incremental
learning setup, respectively.

Table 6: Ablation study on the design of the update strategy (left), internal dimensionality (middle),
and adaptation strategy (right) of the task codebook. We report the task score. +Param. refers to the
ratio of additional parameters introduced by TCIA compared to the entire model per layer per task.

Update m Cap. VQA

Backprop – 98.4 54.0
EMA 0.97 98.3 54.9
EMA 0.99 100.8 55.1
EMA 0.996 100.0 54.4

(i)

s +Param. Cap. VQA

128 0.1% 98.0 55.0
256 0.2% 100.8 55.1
512 0.4% 98.0 54.3

(ii)

Attn. MLP +Param. Cap. VQA

✓ 0.1% 96.8 54.9
✓ 0.1% 99.0 55.0

✓ ✓ 0.2% 100.8 55.1
(iii)

Internal dimensionality. As described in Sec. 3.2, TCIAA incorporates adapter-based task-specific
values consisting of 2-layer MLPs with internal dimensionality s. In Tab. 6ii, we assess the impact of
this parameter s both in terms of performance and parameter count increase. Our results show that a
value of s = 256 offers an optimal balance between accuracy and memory consumption. Beyond this
point, performance gains start to saturate, while the memory footprint keeps increasing.

Adaptation strategy. By default, we use two 2-layer MLPs to adapt the generative model, one
after the self-attention (Attn.) layer and the other after the MLP layer Houlsby et al. (2019). We
explore whether the memory consumption can be further decreased by discarding either one of the
two 2-layer MLPs. Results in Tab. 6iii indicate that adapting with two placements achieves optimal
results.

5.6 ANALYSIS

Confusion Matrix. We study the task key selection accuracy (AccL) further by showcasing the
confusion matrix between different datasets. In Fig. 3, we observe that the model can mostly retrieve
the correct task-specific key (i.e., 96.9% accuracy). TextVQA Singh et al. (2019) in the OCR-CV
application is mostly easily confused with TDIUC Kafle & Kanan (2017) in the VQA application.
Fashion-MNIST Xiao et al. (2017) and NotMNIST Bulatov (2011) in the classification application
are sometimes confused with COCO Lin et al. (2014) in the detection application and ChartQA Masry
et al. (2022) in the OCR-CV application.

Oracle. We present in Fig. 4 the performance of TCIA in the presence of an oracle, i.e. selecting the
ground-truth task key at inference time. This assesses the potential performance gains we could have
with better task lookup designs and represents an upper-bound for TCIA. Interestingly, we observe
that there are still potential gains by improving the task-specific lookup accuracy: i.e. +10.9 points
on CIFAR-100 and +6.6 points on 8 applications. On the other hand, there is virtually no gain by
having an oracle in VQA dataset incremental learning setup since AccL is already very high (94.6%
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Figure 3: Confusion matrix for application-
incremental learning across 36 datasets.
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Figure 5: Qualitative comparison between TCIA (T) and E-Replay Chaudhry et al. (2019) (E) with
incremental learning on 8 applications.

accuracy). This suggests that further enhancements in task lookup accuracy could lead to substantial
performance gains and is a promising direction for future work.

Qualitative Analysis. We showcase in Fig. 5 the qualitative comparison of the forgetting behaviour
between TCIA and the E-Replay method Chaudhry et al. (2019). Comparatively, the output from
E-Replay is more prone to drift from ground truth after subsequent tasks are finished. For example,
after being fine-tuned on the MMIT application, E-Replay mistakenly predicts “truck with strawberry
mascot that has big smile”, while TCIA robustly predicts the label name of the image “strawberry”.

6 CONCLUSION

In this paper, we expand the setting of incremental learning to the scope of VLMs. With a high
diversity of tasks, datasets and modalities, we model a realistic setting of adapting large multi-modal
models for various downstream applications while minimizing forgetting. We introduce a new
simple incremental learning method, TCIA, that improves over prior proposed methods and baselines,
especially for complex tasks. We extensively evaluate our new incremental learning method on 36
datasets and 8 applications. We hope that our paper will help the community to advance incremental
learning research for large multi-modal models.
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Table 7: Statistics for 36 datasets and 8 applications.

Dataset Visual Domain #Train #Val #Test Metric
Captioning
COCO Lin et al. (2014) Natural Images 113287 5000 5000

CIDEr

Flickr30K Young et al. (2014) Natural Images 29000 1014 1000
TextCaps Sidorov et al. (2020) (w/o OCR) Natural Images 109725 15830 -
VizWiz-Cap Gurari et al. (2018) (w/o OCR) Natural Images 100575 33145 -
Screen2Words Wang et al. (2021) (w/o OCR) UIs 15743 2364 4310
BLIP-LCS Li et al. (2022); Liu et al. (2023) Natural Images 446502 111626 -
ShareGPT4V-PT Chen et al. (2023a) Natural Images 997520 249381 -

VQA
VQAv2 Goyal et al. (2017) Natural Images 594917 26261 25829 VQA Acc.
OK-VQA Marino et al. (2019) Natural Images 8998 5033 - VQA Acc.
VizWiz-QA Gurari et al. (2018) (w/o OCR) Natural Images 20523 4319 - VQA Acc.
TextVQA Singh et al. (2019) (w/o OCR) Natural Images 34602 5000 - VQA Acc.
ST-VQA Biten et al. (2019) (w/o OCR) Natural Images 23446 2628 - VQA Acc.
GQA Hudson & Manning (2019) Natural Images 943000 132062 12578 VQA Acc.
TDIUC Kafle & Kanan (2017) Natural Images 1003061 50000 - VQA Acc.
TallyQA Acharya et al. (2019) Natural Images 249318 38589 - EM

OCR-CV
TextCaps Sidorov et al. (2020) Natural Images 109725 15830 - CIDEr
VizWiz-QA Gurari et al. (2020) Natural Images 20523 4319 - VQA Acc.
OCR-VQA Mishra et al. (2019) Illustrations 805110 31000 31000 EM
ChartQA Masry et al. (2022) Illustrations 28299 1920 2500 RA
DocVQA Mathew et al. (2021) Documents 39463 5349 5188 ANLS
Screen2Words Wang et al. (2021) UIs 15743 2364 4310 CIDEr
TextVQA Singh et al. (2019) Natural Images 34602 5000 - VQA Acc.
AI2D Kembhavi et al. (2016) Illustrations 12293 120 3088 EM
InfographicsVQA Mathew et al. (2022) Documents 23946 2801 3288 ANLS

Open-Vocabulary Classification
CIFAR10 Krizhevsky et al. (2009) Natural Images 50000 10000 -

EM

MNIST LeCun et al. (1998) Natural Images 60000 10000 -
Fashion-MNIST Xiao et al. (2017) Natural Images 60000 10000 -
SVHN Netzer et al. (2011) Natural Images 73257 26032 -
notMNIST Bulatov (2011) Natural Images 59916 14979 -
CIFAR100 Krizhevsky et al. (2009) Natural Images 50000 10000 -
ImageNet-R Hendrycks et al. (2021) Natural Images 24000 6000 -
Flowers Nilsback & Zisserman (2008) Natural Images 1020 1020 -

Detection
COCO Lin et al. (2014) Natural Images 113287 5000 5000 AP

Referring Expression Generation
RefCOCO Kazemzadeh et al. (2014) Natural Images 287604 26488 30969 CIDEr

Grounding
RefCOCO Kazemzadeh et al. (2014) Natural Images 287604 26488 30969 IoU

Multi-Modal Instructions
LLaVA-158K Liu et al. (2023) Natural Images 126169 31523 - CIDEr

A IMPLEMENTATION DETAILS

A.1 APPLICATIONS

In this section, we detail the definition considered 8 applications and a total of 36 datasets we curated.
See Tab. 7 for the statistics and full details.
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Table 8: Instruction template for 8 applications.

Captioning
Generate the caption for this image.
Generate the caption
Generate the alt_text:
Describe the image.
Caption this image.
A photo of
Caption
A short image caption
summarize the given photo
detail everything you see in this image
Provide a detailed description of this image, including objects, actions, and context.
What is going on in the image?
what is the main content of this image?
what is shown in the photo
Briefly describe the content of the image.
Use a few words to illustrate what is happening in the picture.

VQA
{Question}

OCR-CV
{Captioning or VQA Instruction} + <OCR text: ...>

Open-Vocabulary Classification
Identify the primary subject in this image.
Name the object in the image.
Classify this image
classify
What do you see here?
What category does this image belong to?
What is the main object of this image?
What is shown in the photo?
what is inside this image?
what’s in this picture

Detection
detect:

Referring Expression Generation
describe the box at {Location}:

Grounding
detect {Referring Expression}:

Multi-Modal Instructions
{Instruction}
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Captioning requires the model to provide a concise description of visual content. The following
datasets with short captions are considered: COCO Captions Lin et al. (2014) with the split defined
in Karpathy & Fei-Fei (2015), Flickr30K Young et al. (2014), TextCaps Sidorov et al. (2020),
VizWiz-Cap Gurari et al. (2020), Screen2Words Wang et al. (2021), and BLIP-LCS Li et al. (2022).
To account for the increasing length and quality of captions generated by multi-modal instruction-
following models, the ShareGPT4V-PT Chen et al. (2023a) dataset is also included, which features
significantly longer and more descriptive captions.

Visual Question Answering (VQA) aims at generating textual answers based on both a textual
question and visual context. For our benchmark, we use datasets where the visual context con-
sists of natural images Chen et al. (2023b): VQAv2 Goyal et al. (2017), OKVQA Marino et al.
(2019), TextVQA Singh et al. (2019), VizWiz-QA Gurari et al. (2018), ST-VQA Biten et al. (2019),
GQA Hudson & Manning (2019), TDIUC Kafle & Kanan (2017), and TallyQA Acharya et al. (2019).

OCR-enhanced captioning and VQA (OCR-CV) leverage the output of an upstream OCR model
to solve captioning and VQA applications. We consider the following datasets: TextCaps Sidorov
et al. (2020), Screen2Words Wang et al. (2021), VizWiz-QAGurari et al. (2018), OCR-VQA Mishra
et al. (2019), ChartQA Masry et al. (2022), DocVQA Mathew et al. (2021), TextVQA Singh et al.
(2019), AI2D Kembhavi et al. (2016) and InfographicsVQA Mathew et al. (2022). In these datasets,
OCR text tokens are extracted by an upstream OCR system Chen et al. (2023b) and provided as
additional text inputs.

Open-vocabulary classification categorizes object-centric images into their corresponding classes.
In our benchmark, we redefine classification as a generative task. Instead of training a set of
classifier weights Chaudhry et al. (2019); Wang et al. (2022c), we use a generative model with
open-world vocabulary to directly generate class names Wang et al. (2022a). The considered datasets
are CIFAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky et al. (2009), MNIST LeCun et al.
(1998), notMNIST Bulatov (2011), FashionMNIST Xiao et al. (2017), SVHN Netzer et al. (2011),
ImageNet-R Wang et al. (2022b), and Flowers Nilsback & Zisserman (2008).

Spatial recognition assesses the model’s ability to comprehend and generate output based on
spatial coordinates of the image, typically represented as bounding boxes. Following the approach of
Pix2Seq Chen et al. (2021; 2023c;b), we directly incorporate discretized bounding boxes into the text
input by concatenating them with the relevant object or concept. We evaluate the model for three
distinct applications: i) Detection, where the bounding boxes for all objects are regarded as the target
Y , ii) Referring Expression Generation, where the bounding box for a specific object is included in
the instruction I, iii) Grounding, where the bounding box for a specific object is present in target Y .
All three of these applications are performed on the COCO Lin et al. (2014) dataset.

Multi-modal instruction tuning considers more complex textual I inputs, including but not
limited to conversational-style QA, detailed descriptions, and complex reasoning. They can be seen
as a super-set of all previously considered applications. For this purpose, we employ the 158K
supervised fine-tuning dataset from LLaVA Liu et al. (2023) derived from COCO Lin et al. (2014)
dataset.

A.2 DATASETS

Here we specify the details of 36 datasets used in our experiments. Unless specified otherwise as
below, we use default train and validation sets.

BLIP-LCS Li et al. (2022) & ShareGPT4V-PT Chen et al. (2023a). We use 80% of the original
data as the training set and the rest of 20% as the validation set.

TDIUC Kafle & Kanan (2017). We use 10% of the original validation set as the validation set
here.

OCR-VQA Mishra et al. (2019). We use 15% of the original validation set as the validation set
here and another 15% as the test set.
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RefCOCO Kazemzadeh et al. (2014). We count the object numbers since the evaluation is
instance-wise for referring expression generation and grounding.

LLaVA-158K Liu et al. (2023). We use 158K unique language-image instruction-following sam-
ples that collected in LLaVA Liu et al. (2023). The instructions are much more diverse comparing
with ones from other applications, including conversation, detailed captioning, and complex reasoning.
The images are sampled from COCO Lin et al. (2014) and the answers are taken via interacting with
language-only GPT-4. We use 80% of the original data as the training set and the rest of 20% as the
validation set.

A.3 PRE-PROCESSING

In this section, we detail necessary pre-processing steps for reproduction purposes. By default, we
resize the image with a ratio uniformly sampled from [0.75, 1.25] and pad the image’s shorter side.
See Tab. 8 for the instruction template we use for different applications. We tokenize the textual
instructions and targets using a BERT tokenizer Devlin et al. (2018) with a vocabulary size of 30522.

Captioning. We manually append an instruction randomly sampled from a pool detailed in Tab. 8.
We directly use the image caption as the target. For datasets with multiple captions (e.g., COCO
Captions Lin et al. (2014)), we randomly sample one.

VQA. We directly use the question as the instruction and the answer as the target from the original
dataset without any other extra processing. For datasets with multiple captions (e.g., VQAv2 Goyal
et al. (2017)), we randomly sample one.

OCR-CV. For visual input, we do not scale the image while resizing to make sure the entire image
is visible to the model. We follow the pre-processing steps as Chen et al. (2023b) using an upstream
OCR system, GCP Vision API, to extract the potential OCR texts in the image. The extracted OCR
texts are then appended in the format of “<OCR text: ...>” after the original captioning or VQA
instructions.

Open-vocabulary classification. We manually append an instruction randomly sampled from a
pool detailed in Tab. 8. For the target, we directly use the class label name if the mapping exists. We
use “digit {Class Label}” for MNIST LeCun et al. (1998) and SVHN Netzer et al. (2011), “letter
{Class Label}” for notMNIST Bulatov (2011).

Detection. For visual input, we resize the image with a ratio uniformly sampled from [0.3, 2.0] and
randomly flip the image. We simply use “detect:” as the instruction. For the target, we rescale the
range of original bounding boxes in COCO Lin et al. (2014) from 1.0 to 999 (int) and concatenate 4
coordinates directly with the instance label. Different instances are directly concatenated with “and”.
An exemplar target looks like “10 99 323 675 cat and 127 346 894 997 dog”. We do not use the
augmentation trick proposed in Chen et al. (2021).

Referring expression generation. The pre-processing for visual input follows the detection task.
For each instance, we use “describe the box at {Location}:” as the instruction and its referring
expression as the target.

Grounding. The pre-processing for visual input follows the detection task. For each instance, we
use “detect {Referring Expression}:” as the instruction and its location as the target. The formatting
of the bounding boxes follows the detection task.

Multi-modal instruction tuning. We directly use human instructions as the instruction and the
GPT-4 OpenAI (2023)’s output as the target.
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Table 9: Dataset-incremental learning for captioning and VQA with different task order shuffling
seed.

Seed 1 2 3 4 5 Mean Variance

F↓ Score↑ F↓ Score↑ F↓ Score↑ F↓ Score↑ F↓ Score↑ F↓ Score↑ F Score

captioning 0.47 100.8 0.04 99.8 0.32 100.6 0.59 96.2 0.09 96.1 0.30 98.7 0.04 4.44
VQA 0.54 55.1 0.77 54.9 54.9 0.03 54.8 0.71 54.4 0.09 0.43 54.8 0.10 0.05

Table 10: Dataset-incremental learning for the captioning application. Detailed results on each
dataset for single-tasking (ST), multi-tasking (MT) and sequential tasks (Seq) are reported. All
results are without OCR in the instruction.

Dataset
ST MT Seq

Fine-
tuning Adapter Fine-

tuningAdapter Fine-
tuningAdapterE-ReplayL2P+TCIAPTCIAPrTCIAA

Val Test Val Test Val Val Val Val Val Val Val Val Val
COCO 139.8 141.7134.2136.1 135.6 131.3 102.1 104.7 108.0 121.4 125.9 118.6 126.1
Flickr30K 102.6 100.9 97.8 98.0 102.4 93.9 97.5 95.0 96.4 92.5 92.1 87.6 91.2
TextCaps 100.9 - 93.4 - 105.9 88.7 61.3 57.0 74.1 85.0 84.8 80.3 86.8
VizWiz-Cap 101..7 - 92.5 - 101.3 91.6 57.3 58.9 71.2 84.5 84.0 81.9 88.0
Screen2Words 85.3 84.8 78.1 79.3 70.9 62.8 46.3 29.1 66.0 61.5 60.6 70.6 73.2
BLIP-LCS 133.8 - 122.6 - 136.4 117.8 71.4 58.1 94.9 108.8 108.7 104.8 120.9
ShareGPT4V-PT 185.8 - 114.6 - 138.2 92.3 0.0 0.0 30.2 28.4 0.0 73.0 119.1

Avg 121.4 - 104.7 - 112.9 96.9 62.3 57.5 77.3 83.2 79.4 88.1 100.8

A.4 METRICS

For task t sampled from task mixture T, let At,i be the evaluation result under task t’s metric after
training task i for any i ≥ t. We report the average correctness score after all the tasks are trained:

Score =
1

T

∑
i

Ai,T . (1)

The forgetting metric Chaudhry et al. (2018) (denoted by F in our experiments) is computed as

F =
1

T

∑
i

max(Ai,≥i)−Ai,T (2)

where max(Ai,≥i) is the peak evaluation result for task i after when it is trained.

Application-Incremental Learning. To equalize the importance of each application, we first
average the evaluation results across datasets within each application and then average the results
across applications.

A.5 TASK ORDER

For all experiments conducted with sequential tasks T, we shuffle it with a fixed seed 1, i.e., import
random; random.Random(1).shuffle(T). We include results with seeds 2, 3, 4, 5 for cap-
tioning and VQA in Tab. 9. We report the results of dataset-incremental learning for captioning and
VQA on 5 different shuffling seeds. Even though the task order is an important parameter because of
the similarity between different tasks, the result indicates that our method is robust to different task
orders.

B ADDITIONAL RESULTS

B.1 DATASET-INCREMENTAL LEARNING.

We detail the evaluation results for dataset-incremental learning on captioning, VQA, OCR-CV, and
open-vocabulary classification in Tab 10, Tab. 11, Tab. 12 and Tab. 13, respectively. Results on
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Table 11: Dataset-incremental learning for the VQA application. Detailed results on each
dataset for single-tasking (ST), multi-tasking (MT) and sequential tasks (Seq) are reported. All
results are without OCR in the instruction.

Dataset
ST MT Seq

Fine-
tuning Adapter Fine-

tuning Adapter Fine-
tuning Adapter E-Replay L2P TCIAP TCIAPr TCIAA

Val Test Val Test Val Val Val Val Val Val Val Val Val
VQAv2 75.1 74.6 74.6 74.5 74.8 72.1 62.4 55.1 72.1 51.2 65.5 69.8 72.8
OK-VQA 38.1 - 41.9 - 49.2 47.7 22.8 15.5 35.3 35.8 34.3 39.7 40.4
VizWiz-QA 56.9 - 56.3 - 57.6 55.3 56.5 55.2 54.3 52.9 53.3 53.5 56.4
TextVQA 32.6 - 30.7 - 33.9 30.3 21.5 20.0 22.4 26.6 25.7 28.5 29.8
ST-VQA 27.6 - 25.9 - 31.6 27.2 21.3 17.9 23.8 21.3 20.6 22.3 24.6
GQA 66.7 57.9 63.6 56.2 67.3 63.6 46.9 36.7 61.7 59.2 54.5 56.3 59.1
TDIUC 91.2 - 91.0 - 92.7 90.9 60.4 53.4 90.6 80.3 89.1 90.4 90.8
TallyQA 65.6 - 67.0 - 67.7 67.3 47.5 37.4 61.8 64.0 63.2 65.1 66.7

Avg 56.7 - 56.4 - 59.4 56.8 42.4 36.4 52.7 48.9 50.7 53.2 55.1

Table 12: Dataset-incremental learning for the OCR-CV application. Detailed results on each
dataset for single-tasking (ST), multi-tasking (MT) and sequential tasks (Seq) are reported. All
results are with OCR in the instruction.

Dataset
ST MT Seq

Fine-
tuning Adapter Fine-

tuning Adapter Fine-
tuning Adapter E-Replay L2P+ TCIAP TCIAPr TCIAA

Val Test Val Test Val Val Val Val Val Val Val Val Val
TextCaps 101.0 - 99.8 - 104.7 88.9 13.0 5.1 83.5 81.5 81.9 80.7 95.7
VizWiz-QA 56.9 - 55.8 - 57.1 53.0 16.0 7.0 42.9 52.3 51.1 53.3 56.4
OCR-VQA 70.1 70.3 62.6 63.0 61.5 56.8 61.0 58.2 61.0 48.0 46.6 51.5 60.3
ChartQA 18.3 17.4 19.8 19.5 19.2 18.4 10.7 3.1 12.9 12.7 12.6 14.3 18.9
DocVQA 16.4 4.2 20.3 6.6 7.2 4.2 1.9 1.0 3.7 4.5 3.2 9.1 14.5
Screen2Words 98.0 97.6 91.9 95.5 29.9 34.6 8.4 3.8 23.1 67.5 67.5 74.6 85.6
TextVQA 36.7 - 34.5 - 41.5 38.3 18.0 7.7 27.2 17.1 26.2 29.6 35.3
AI2D 35.0 30.6 40.0 35.3 37.5 40.0 3.3 0.8 15.8 28.3 24.2 31.7 37.5
InfographicsVQA 9.4 4.0 11.1 6.6 4.8 2.0 0.6 0.0 2.3 6.6 4.3 7.6 6.9

Avg 49.1 - 48.4 - 40.4 37.4 14.8 9.6 30.3 35.4 35.3 39.2 45.7

Table 13: Dataset-incremental learning for the open-vocabulary classification application.
Detailed results on each dataset for single-tasking (ST), multi-tasking (MT) and sequential tasks
(Seq) are reported.

Dataset
ST MT Seq

Fine-
tuning Adapter Fine-

tuning Adapter Fine-
tuning Adapter E-Replay L2P+ TCIAP TCIAPr TCIAA

Val Test Val Test Val Val Val Val Val Val Val Val Val
CIFAR10 99.4 - 98.6 - 98.7 96.9 73.7 2.2 95.8 97.4 97.6 97.8 98.3
MNIST 99.3 - 99.4 - 99.7 99.3 0.0 0.0 97.5 98.8 98.7 99.0 99.2
Fashion-MNIST 96.2 - 94.0 - 96.2 93.5 95.9 93.2 95.8 90.9 91.2 91.5 93.4
SVHN 98.0 - 90.8 - 98.1 89.2 0.0 0.0 88.2 81.6 81.5 84.8 89.3
notMNIST 97.9 - 95.9 - 97.8 95.1 0.0 0.0 62.4 92.6 92.4 93.7 95.1
CIFAR100 94.1 - 89.6 - 93.1 87.6 18.3 0.1 50.7 82.7 85.3 86.4 88.0
ImageNet-R 93.5 - 93.3 - 93.5 92.7 3.0 0.2 19.3 90.7 90.6 92.1 92.9
Flowers 98.0 - 96.3 - 98.2 96.2 2.2 0.0 26.5 91.9 91.2 94.7 95.9

Avg 97.1 - 94.7 - 96.9 93.8 24.2 11.9 67.0 90.8 90.9 92.5 94.0
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Figure 6: Dataset-incremental learning with incremental learning scores over training steps. We
compare TCIAA (bottom) to the E-Replay Chaudhry et al. (2019) method (top) with buffer size
being 1% of the entire training data. TCIAA exhibits minimal forgetting, hence better final accuracy
(Avg.).

Table 14: Instruction-incremental learning. Detailed results on each dataset for single-tasking
(ST), multi-tasking (MT), and sequential tasks (Seq) are reported.

Dataset
ST MT Seq

MetricsFine-
tuning Adapter Fine-

tuning Adapter E-Replay L2P+ TCIAA

Val Val Val Val Val Val Val
Captioning
COCO 139.8 134.2 132.8 130.5 114.2 132.3 130.2 CIDEr

VQA
OK-VQA 38.1 41.9 38.9 41.2 35.0 38.1 39.8 VQA Acc.

Detection
COCO 20.1 4.3 12.9 2.80 11.2 0.7 3.3 AP

Referring Expression Generation
RefCOCO 92.7 76.8 86.1 89.0 62.9 63.0 85.0 CIDEr

Grounding
RefCOCO 66.1 44.7 61.8 47.0 46.0 21.1 44.8 IoU

Avg 71.4 60.4 66.8 62.1 53.9 51.1 60.6 Score

detection, referring expression generation, and grounding are with an image resolution of 352, which
is chosen as the multiple of 32 closest to 336. All the other results are with an image resolution of
224. The 4 dataset-incremental learning settings on captioning, VQA, OCR-CV, and open-vocabulary
classification are trained with 60K, 60K, 45K, and 20K iterations, respectively. The training is
conducted with TPU v4 chips.

Incremental learning score curve. Additionally, we visualize the incremental learning scores over
training steps in Fig. 6. We see that the performance curves of TCIAA stay flat as training proceeds,
while those of the E-Replay method undergo a noticeable drop, indicating catastrophic forgetting.
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Table 15: Class-incremental learning on varying class splits of CIFAR100 Krizhevsky et al.
(2009); Wang et al. (2022c). Rep. denotes the task key representation we use to learn task-specific
keys. We specify the type of head used to perform classification: Classes refer to a standard
unfrozen linear classification head. Text Vocabulary is a frozen linear layer outputting word tokens
logits. In this case, classification is performed by auto-regressively generating the class label name.
All the numbers are run by us.

Method Model Rep. Head 5 splits 10 splits 20 splits 100 splits

F↓ Score ↑ F↓ Score ↑ F↓ Score ↑ F↓ Score ↑
Upper-bound ViT-B – Classes – 90.9 – 90.9 – 90.9 – 90.9
Upper-bound GiT-L – Classes – 94.1 – 94.1 – 94.1 – 94.1

L2P ViT-B ViT-B Classes 87.9 24.0 7.82 83.1 10.4 80.6 84.5 3.82
E-Replay GIT-L – Classes 5.37 85.3 6.12 83.9 7.44 82.8 76.2 20.4
TCIA GIT-L max-pooling Classes 4.60 86.5 6.41 87.6 7.34 83.1 4.50 11.2
TCIA GIT-L max-pooling Text Vocabulary 6.18 84.3 10.2 81.7 4.11 88.0 1.42 97.0
TCIA GIT-L CLIP-B Text Vocabulary 2.32 86.4 11.0 83.4 4.73 87.2 0.87 96.7
TCIA GIT-L ViT-B Text Vocabulary 2.54 90.3 9.16 87.0 2.18 94.3 0.75 98.1

B.2 CLASS-INCREMENTAL LEARNING.

Class-incremental learning with varying splits on CIFAR100. Here, we explore different ways
of splitting CIFAR100 for class-incremental learning. We vary the number of splits from 5 to 100
and report results in Tab. 15. Note that having more splits results in a lower number of classes per
split, which makes incremental learning more challenging. In fact, with 100 splits, there is only one
class per task. Note that this scenario may not be deemed very practical, but we use it to investigate
the performance of our method in an extreme setting.

We observe in Tab. 15 that TCIA is robust to the number of considered splits. Both L2P Wang et al.
(2022c) and E-Replay Chaudhry et al. (2019) fail when trained incrementally class per class (i.e. 100
splits). We find that this is mainly because these baselines use a standard unfrozen classification head,
which cannot be trained properly by seeing only one class at a time. In contrast, because we build on
a generative image-to-text model, we perform classification by auto-regressively generating class
names. This way, our default setting is to use a frozen text vocabulary classifier as the final head,
which outputs logits for word tokens. This alleviates the issue of having to learn a single classification
head vector at a time and explains why TCIA obtains a good performance in the 100 splits setting. In
fact, we get poor performance similar to L2P and E-Replay when using a classification head instead
of a vocabulary head in the TCIA framework. Finally, we see in Tab. 15 that building task-specific
keys from additional models CLIP-B Radford et al. (2021) or ViT-B Dosovitskiy et al. (2020) works
better than our default design of using inner GiT-L decoder features. Overall, our analysis in Tab. 15
shows the benefit of leveraging generative auto-regressive models for extreme class-incremental
learning such as learning one class at a time.

Accuracy score. We visualize the incremental learning scores of E-Replay and TCIA across the
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Figure 7: Class-incremental
learning with incremental
learning scores over training
steps.

training steps in Fig. 7.

B.3 INSTRUCTION-INCREMENTAL LEARNING.

We detail the evaluation results for instruction-incremental learning
from Tab. 4 in Tab. 14. Results are with an image resolution of 352
with 60K iterations. The training is conducted with TPU v4 chips.

B.4 APPLICATION-INCREMENTAL LEARNING.

We detail the evaluation results for application-incremental learning
from Tab. 5 in in Tab. 16. Results are with an image resolution of
352 with 400K iterations. The training is conducted with TPU v4
chips.
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Table 16: Application-incremental learning. Detailed results on each dataset for multi-tasking
(MT) and sequential tasks (Seq) are reported. For sequential tasks, two setup on 8 applications
(App.) and 36 datasets (Data.) are reported.

Dataset

MT Seq (8 App.) Seq (36 Data.)

MetricsFine-
tuning Adapter E-Replay L2P+ TCIAA E-Replay L2P+ TCIAA

Val Val Val Val Val Val Val Val
Captioning
COCO 121.3 118.0 103.5 90.5 27.1 95.3 42.2 119.3

CIDEr

Flickr30K 79.0 89.9 63.8 80.3 26.7 54.8 63.9 85.1
TextCaps (w/o OCR) 102.5 80.1 90.8 62.0 55.7 73.3 52.3 76.3
VizWiz-Cap (w/o OCR) 93.2 78.4 67.1 21.6 53.3 63.7 57.2 79.4
Screen2Words (w/o OCR) 36.7 29.6 25.7 17.0 19.6 37.6 11.1 65.2
BLIP-LCS 124.4 96.6 77.5 88.8 103.0 69.4 93.1 105.2
ShareGPT4V-PT 156.7 106.7 89.9 71.6 137.4 50.4 75.5 138.6

VQA
VQAv2 73.0 69.2 65.3 62.9 71.0 70.4 47.9 67.9

VQA Acc.

OK-VQA 46.2 45.1 31.2 21.9 43.1 44.1 29.4 40.4
VizWiz-QA (w/o OCR) 54.5 48.7 50.7 20.8 40.2 43.4 44.24 51.6
TextVQA (w/o OCR) 47.3 30.9 41.5 22.9 29.4 31.8 24.6 29.4
ST-VQA (w/o OCR) 42.2 27.5 35.1 19.4 26.7 27.7 20.5 24.7
GQA 63.9 63.2 54.7 57.2 63.6 59.1 42.4 58.1
TDIUC 46.2 90.2 88.6 88.0 90.6 88.9 86.3 88.8
TallyQA 54.5 67.1 59.5 61.1 68.2 61.3 65.3 64.4 EM

OCR-CV
TextCaps 47.3 96.2 100.2 40.5 95.6 75.7 54.8 85.5 CIDEr
VizWiz-QA 42.2 49.9 51.6 14.5 47.0 45.5 46.6 53.3 VQA Acc.
OCR-VQA 63.9 55.9 58.4 43.0 58.7 47.5 46.5 59.5 EM
ChartQA 91.1 21.5 26.1 12.4 25.9 14.4 14.0 20.0 RA
DocVQA 66.5 22.3 8.9 27.9 26.5 11.1 9.1 19.1 ANLS
Screen2Words 105.3 31.7 26.9 20.5 39.3 39.4 6.5 71.6 CIDEr
TextVQA 54.9 40.7 48.1 21.2 42.3 34.0 23.8 33.6 VQA Acc.
AI2D 40.8 35.0 42.5 2.5 36.7 8.3 24.2 35.0 EM
InfographicsVQA 12.8 10.4 11.3 5.6 10.5 6.0 3.4 6.9 ANLS

Open-Vocabulary Classification
CIFAR10 98.3 94.5 90.2 94.0 94.5 97.4 17.9 96.9

EM

MNIST 99.7 99.1 98.3 98.5 99.3 99.4 99.2 99.2
Fashion-MNIST 96.1 92.4 89.3 90.1 93.2 92.0 90.2 93.4
SVHN 97.9 88.3 92.0 82.6 89.5 93.8 85.5 91.0
notMNIST 98.1 94.4 95.0 92.3 94.8 91.9 89.2 95.2
CIFAR100 91.7 82.4 59.8 78.9 83.1 64.0 75.5 83.8
ImageNet-R 90.5 90.3 37.6 85.1 55.8 36.2 86.8 91.6
Flowers 98.0 94.5 28.5 87.4 95.4 24.6 87.5 96.1

Detection
COCO 14.1 1.2 8.9 0.3 3.2 10.9 0.3 3.5 AP

Referring Expression Generation
RefCOCO 97.6 73.7 55.3 60.4 74.7 61.4 67.1 81.2 CIDEr

Grounding
RefCOCO 65.9 31.3 41.8 20.1 47.0 50.8 20.8 47.1 IoU

Multi-Modal Instructions
LLaVA-158K 59.3 46.8 43.9 30.4 61.8 65.1 30.8 61.9 CIDEr

Avg 72.7 63.7 57.7 49.3 59.2 53.9 48.2 67.2 Score
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Table 17: Ablation study on different choices of sequence representation and task codebook depth
l with task codebook lookup accuracy (AccL). Task key representations including (a) [CLS]; (b)
[EOS]; (c) [[CLS];[EOS]]; (d) mean-pooling; (e) max-pooling; (f) [[CLS];max-pooling];
(g) [[CLS];[EOS];max-pooling] (h) CLIP-B Radford et al. (2021) are ablated. The default
setup is underlined.

l (a) (b) (c) (d) (e) (f) (g) (h)

0 89.2 28.2 93.4 89.2 96.1 91.0 92.8 85.3
1 88.7 36.4 89.4 90.6 94.1 92.0 93.9 85.3
2 88.4 66.9 89.6 92.2 93.9 92.2 93.4 85.3
3 90.3 53.8 88.4 92.7 87.1 92.7 91.2 85.3

(i) Dataset-incremental learning on captioning
datasets.

l (a) (b) (c) (d) (e) (f) (g) (h)

0 89.5 23.8 89.5 89.9 99.4 99.8 99.7 88.1
1 89.9 48.9 90.7 94.3 98.8 99.3 97.4 88.1
2 94.2 76.9 94.5 93.1 98.0 93.8 97.1 88.1
3 95.2 84.6 95.5 93.7 96.7 89.7 92.3 88.1

(ii) Dataset-incremental learning on OCR-CV
datasets.

l (a) (b) (c) (d) (e) (f) (g) (h)

0 99.5 12.4 97.3 99.9 99.9 99.9 98.4 99.7
1 99.5 17.0 97.6 99.9 93.8 99.8 97.6 99.7
2 98.4 55.4 99.1 99.9 95.3 99.7 99.4 99.7
3 98.2 61.7 95.9 99.9 95.8 99.7 99.4 99.7

(iii) Dataset-incremental learning on classification
datasets.

l (a) (b) (c) (d) (e) (f) (g) (h)

0 42.5 10.6 42.4 72.8 84.0 54.7 56.3 84.7
1 40.7 16.7 39.6 73.1 65.8 54.7 57.1 84.7
2 42.5 14.0 45.9 78.9 60.5 57.6 60.1 84.7
3 46.3 11.0 42.2 82.7 71.5 56.6 53.6 84.7

(iv) Class-incremental learning on 10 splits of the
CIFAR100 Krizhevsky et al. (2009) dataset.

l (a) (b) (c) (d) (e) (f) (g) (h)

0 25.5 99.9 99.9 47.0 100 95.4 100 100
1 27.7 99.7 99.9 50.4 99.9 90.7 100 100
2 57.6 99.9 100 76.2 98.1 94.9 99.9 100
3 86.5 100 99.9 78.9 93.2 98.4 99.9 100

(v) Instruction-incremental learning on the COCO Lin et al. (2014) dataset.
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Figure 8: Confusion matrix for application-incremental learning across 8 applications (left) and 36
datasets (right).

C ADDITIONAL ABLATION STUDY

Task key representation and codebook depth for other incremen-
tal learning setups. As shown in Tab. 17, we provide the lookup
accuracy in other incremental learning setup. Using max-pooling
consistently achieves desirable, if not optimal, selection accuracy.
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(c) [[CLS]; max-pooling]; l=0
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(d) CLIP Radford et al. (2021); l=0

Figure 9: Confusion matrix for application-incremental learning across 8 applications (left) and 36
datasets (right).

Confusion matrix. In Fig. 8, we provide the confusion matrix for
application-incremental learning experiments on 8 applications. The
lookup accuracy is 91.1%, which is -5.8% lower than application-
incremental learning on 36 datasets. Specifically, COCO Lin et al.
(2014) and Flickr30K Young et al. (2014) datasets in the captioning application are mistakenly
recognized as the VQA application, leading to undesirably low performances. This is potentially due
to the shared task key representation for the captioning application being dominated by BLIP-LCS Li
et al. (2022); Liu et al. (2023) and ShareGPT4V-PT Chen et al. (2023a) given the prevalence in
example amount (1.4M v.s. 142K).
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D LIMITATIONS AND POTENTIAL NEGATIVE IMPACT

D.1 LIMITATIONS

Requirement for Task ID at Training Time. One limitation of the proposed method is the
requirement of the training task ID for task codebook adaptation. The adaptation process relies
on identifying and retrieving the correct set of parameters at training time for a given task. This
requirement poses a significant challenge in scenarios where the task ID may not be readily available
or easily determined. It leaves for future work to explore training without the need of the task ID.

Memory Overheads. Although we aim to mitigate catastrophic forgetting without significant
memory overheads, the scalability of the task codebook and its efficiency in a scenario with an
extremely large number of tasks need further exploration. There could be practical limitations related
to the memory footprint.

Generalization across Diverse Domains. While we evaluate the method across a broad range of
tasks, the real-world applicability of the model’s adaptability and efficiency in continuously evolving
or extremely diverse domains remains to be examined. There might be domains or specific types of
tasks where the proposed method does not perform as effectively.

D.2 POTENTIAL NEGATIVE IMPACT

Biases. There is a risk of the model inheriting or amplifying biases present in the training data. The
continuous adaptation process might not adequately address these biases, potentially perpetuating
them in downstream applications.

Privacy. The adaptation of models to specific tasks could involve processing and storing sensitive or
personal information, especially in applications that deal with user-generated content. If not properly
handled, this could lead to privacy breaches and violations of data protection regulations.

Environmental Impact. Training and adapting large models require significant computational
resources, which can have a considerable environmental footprint. Incremental adaptation could
exacerbate this issue by requiring frequent retraining on new tasks.
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