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ABSTRACT

We study an important variant of the stochastic multi-armed bandit (MAB) prob-
lem, which takes fairness into consideration. Instead of directly maximizing cu-
mulative expected reward, we need to balance between the total reward and fair-
ness level. In this paper, we present a new insight in MAB with fairness and
formulate the problem in the penalization framework, where rigorous penalized
regret can be well defined and more sophisticated regret analysis is possible. Un-
der such a framework, we propose a hard-threshold UCB-like algorithm, which
enjoys many merits including asymptotic fairness, nearly optimal regret, better
tradeoff between reward and fairness. Both gap-dependent and gap-independent
upper bounds have been established. Lower bounds are also given to illustrate the
tightness of our theoretical analysis. Numerous experimental results corroborate
the theory and show the superiority of our method over other existing methods.

1 INTRODUCTION

The multi-armed bandit (MAB) problem is a classical framework for sequential decision-making in
uncertain environments. Starting with the seminal work of Robbins (1952), over the years, a signifi-
cant body of work has been developed to address both theoretical aspects and practical applications
of this problem. In a traditional stochastic multi-armed bandit (MAB) problem (Lai & Robbins,
1985; Auer et al., 2002; Vermorel & Mohri, 2005; Bubeck & Cesa-Bianchi, 2012), a learner has ac-
cess to K arms and pulling arm k generates a stochastic reward for the principal from an unknown
distribution Fk with an unknown expected reward µk. If the mean rewards were known as prior in-
formation, the learner could just repeatedly pull the best arm given by k∗ = arg maxk µk. However,
the learner has no such knowledge of the reward of each arm. Hence, one should use some learning
algorithm π which operates in rounds, pulls arm πt ∈ {1, . . . ,K} in round t, observes the stochastic
reward generated from reward distribution Fπt , and uses that information to learn the best arm over
time. The performance of learning algorithm π is evaluated based on its cumulative regret over time
horizon T , defined as

R̄π(T ) = µk∗T −
T∑
t=1

Eµπt
. (1)

To achieve the minimum regret, a good learner should make a balance between exploration (pulling
different arms to get more information of reward distribution of each arm) and exploitation (pulling
the arm currently believed to have the highest reward).

In addition to the above classical MAB problem, many variations of the MAB framework have been
extensively studied in the literature recently. Various papers study MAB problems with additional
constraints which include bandits with knapsack constraints (Badanidiyuru et al., 2013), bandits
with budget constraints (Xia et al., 2015), sleeping bandits (Kleinberg et al., 2010; Chatterjee et al.,
2017), etc. Except these, there is a huge research interest in fairness within machine learning field.
Fairness has been a hot topic of many recent application tasks, including classification (Zafar et al.,
2017a;b; Agarwal et al., 2018; Roh et al., 2021), regression (Berk et al., 2017; Rezaei et al., 2019),
recommendation (Celis et al., 2017; Singh & Joachims, 2018; Beutel et al., 2019; Wang et al., 2021),
resource allocation (Baruah et al., 1996; Talebi & Proutiere, 2018; Li et al., 2020), Markov decision
process (Khan & Goodridge, 2019), etc. There are two popular definitions of fairness in the MAB
literature. 1). The fairness is introduced into the bandit learning framework by saying that it is unfair
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to preferentially choose one arm over another if the chosen arm has lower expected reward than the
unchosen arm (Joseph et al., 2016). In other words, the learning algorithm cannot favor low-reward
arms. 2). The fairness is introduced such that the algorithm needs to ensure that uniformly (i.e.,
at the end of every round) each arm is pulled at least a pre-specified fraction of times (Patil et al.,
2020). In other words, it imposes an additional constraint to prevent the algorithm from playing
low-reward arms too few times.

In this paper, we adopt a new perspective, e.g., in addition to maximizing the cumulative expected
reward, it also allows the user to specify how “hard” or how “soft” the fairness requirement on each
arm is. In this view, it is not always easy even to formulate the problem and to introduce an appro-
priate notion of regret. We thus propose a new formulation of fairness MAB by introducing penalty
termAk max(τkT−Nk(T ), 0), whereAk, τk are the penalty rate and fairness fraction for arm k and
Nk(T ) is the number of times pulling arm k. Hence it gives penalization when the algorithm fails
to meet the fairness constraint and penalty term is proportional to the gap between pulling number
and its required level. To solve this regularized MAB problem, we also propose a hard-threshold
upper confidence bound (UCB) algorithm. It is similar to the classical UCB algorithm but adds an
additional term to encourage the learner to favor those arms whose pulling numbers are below the
required level at each round. The advantage of our approach is that it allows the user to distinguish ,
if desired, between arms for which is more important to sample an arm with required frequency and
those arms for which it is less important to do so.

To the best of our knowledge, there is no work on mathematical framework of fairness MAB with
regularization term in the literature. In this paper, we provide a relatively complete theory for the
fairness MAB. We rigorously formalize the penalized regret which can be used for evaluating the
performance of learning algorithm under fairness constraints. On theoretical side, the hard-threshold
UCB algorithm is proved to achieve asymptotic fairness when a large penalty rate is chosen. The al-
gorithm is shown to obtain O(log T ) regret when the sub-optimality gap is assumed to be fixed. Ad-
ditionally, the characterization of fluctuation of non-fairness level, max1≤t≤T max(τkt−Nk(t), 0)
is also given. Its magnitude is also shown to be O(log T ). Moreover, we establish a sub-optimal
gap-free regret bound of proposed method and provide insights on how hard-threshold based UCB
index works. We also point out that the analysis of proposed hard-threshold UCB algorithm is much
harder than the classical UCB due to the existence of interventions between different sub-optimal
arms. On numerical side, the experimental results confirm our theory and show that the perfor-
mance of the proposed algorithm is better than other popular methods. Our method achieves a better
trade-off between reward and fairness.

Notations. For real number x, (x)+ stands for max{0, x}; bxc is the largest integer smaller or equal
to x. For integer n, we use [n] to represent the set {1, . . . , n}. We say a = O(b); a = Ω(b) if there
exists a constant C such that a ≤ Cb; a ≥ b/C. The symbols E and P(·) denote generic expectation
and probability under a probability measure that may be determined from the context. We let π be a
generic policy / learning algorithm.

2 ACHIEVING FAIRNESS VIA PENALIZATION

Consider a stochastic multi-armed bandit problem with K arms and unknown expected rewards
µ1, . . . , µK associated with these arms. The notion of fairness we introduce consists of proportions
τk ≥ 0, k = 1, . . . ,K with τ1 + · · ·+ τK < 1. We use T ∈ {1, 2, . . . , } to denote the time horizon
and Nk,π(t) to denote the number of times that arm k has been pulled by time t ∈ [T ] using policy
π. For notational simplicity, we may write Nk,π(t) as Nk(t). It is desired to pull arm k at least at
the uniform rate of τk, k = 1, . . . ,K. In other words, the learner should obey the constraint that
Nk(t) ≥ τkt for any t ∈ [T ]. Thus a good policy aims to solve the following optimization problem,

arg max
π

E
∑
k

µkNk,π(T ), subject to Nk,π(t) ≥ τkt for all k and t. (2)

Instead of directly working with such a constrained bandit problem, we consider a penalization
problem. That is, one gets penalized if the arm is not pulled sufficiently often. To reflect this, we
introduce the following design problem. Let Sπ(T ) be the sum of the rewards obtained by time
t under policy π, i.e., Sπ(T ) =

∑T
t=1 rπt where πt is the arm index chosen by policy π at time
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t ∈ [T ] and rπt
is the corresponding reward. Then the penalized total reward is defined as

Spen,π(T ) = Sπ(T )−
K∑
k=1

Ak
(
τkT −Nk,π(T )

)
+
, (3)

where A1, . . . , AK are known nonnegative penalty rates. Our goal is to design a learning algorithm
to make the expectation of Spen,π(T ) as large as possible. By taking the expectation, we have

E[Spen,π(T )] =

K∑
k=1

µkE[Nk,π(t)]−
K∑
k=1

AkE[
(
τkT −Nk,π(T )

)
+

], (4)

which is the penalized reward achieved by policy π and we would like to maximize it over π. Now
we are ready to introduce the penalized regret function, which is the core for the regret analysis.

To derive the new regret, we first note that maximizing E[Spen,π(T )] is the same as minimizing the
following loss function,

L(T ) = µ∗T − E[Spen,π(T )] =

K∑
k=1

[
∆kE[Nk(t)] +AkE[

(
τkT −Nk(T )

)
+

]
]
, (5)

where we denote
µ∗ = max

k=1,...,K
µk, ∆k = µ∗ − µk, k = 1, . . . ,K.

In order to find the minimum possible value of L(T ), let us understand what a prophet (who knows
the expected rewards µ1, . . . , µK) would do. Clearly, a prophet (who, in addition, is not constrained
by integer value) would solve the following optimization problem,

min
x1,...,xK

K∑
k=1

[
∆kxk +AkE

(
τkT − xk

)
+

]
subject to

K∑
k=1

xk = T, xk ≥ 0, k = 1, . . . ,K,

and pull arm k for xk times (k = 1, . . . ,K). By denoting yk = xk/T, k ∈ [K], we transform this
problem into

min
y1,...,yK

K∑
k=1

[
∆kyk +Ak

(
τk − yk

)
+

]
subject to

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . ,K. (6)

We will solve the problem (6) by finding y1, . . . , yK that satisfy the constraints and that minimize
simultaneously each term in the objective function. It is not hard to observe the following facts.

1. For A ≥ 0, function y 7→ A(τ − y)+ achieves its minimum value of 0 for y ≥ τ .
2. For A ≥ ∆ > 0, function y 7→ ∆y +A(τ − y)+ achieves its minimum of ∆τ at y = τ .
3. For ∆ > A ≥ 0, function y 7→ ∆y +A(τ − y)+ achieves its minimum of Aτ at y = 0.

As a result, we introduce the following three sets

Aopt =
{
k ∈ [K] : µk = µ∗

}
,Acr =

{
k ∈ [K] : Ak ≥ ∆k > 0

}
,Anon−cr =

{
k ∈ [K] : ∆k > Ak

}
,

where Aopt consists of all optimal arms, Acr consists of sub-optimal arms with penalty rate larger
than (or equal to) the sub-optimal gap and Anon−cr includes sub-optimal arms with penalty rate
smaller than the sub-optimal gap. Therefore an optimal solution to the problem (6) can be con-
structed as follows. Let k∗ be an arbitrary arm in Aopt, and choose

yk =

 1−
∑
j∈Acr∪(Aopt\{k∗}) τj , k = k∗,

τk, k ∈ Acr ∪ (Aopt \ {k∗}),
0, k ∈ Anon−cr.

(7)

Therefore, a prophet would choose (modulo rounding) in (5)

Nk(T ) =


(

1−
∑
j∈Acr∪(Aopt\{k∗}) τj

)
T, k = k∗,

τkT, k ∈ Acr ∪ (Aopt \ {k∗}),
0, k ∈ Anon−cr,

(8)
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leading to the following optimal value of L(T ),

L∗(T ) =
∑
k∈Acr

∆kτkT +
∑

k∈Anon−cr

AkτkT =

(
K∑
k=1

min(∆k, Ak)τk

)
T. (9)

Given an arbitrary algorithm π, we can therefore define the penalized regret as

Rπ(T ) = Lπ(T )− L∗(T ) =
∑

k∈Aopt

AkE
(
τkT −Nk,π(T )

)
+

(10)

+
∑
k∈Acr

[
∆kE

(
Nk,π(T )− τkT

)
+AkE

(
τkT −Nk,π(T )

)
+

]
+

∑
k∈Anon−cr

[
∆kENk,π(T ) +Ak

(
E
(
τkT −Nk,π(T )

)
+
− τkT

)]
.

3 A HARD-THRESHOLD UCB ALGORITHM

We now introduce a UCB-like algorithm which aims to achieve the minimum penalized regret de-
scribed in the previous section. We assume that all rewards take values in the interval [0, 1]. We
denote by X(k)

n the reward obtained after pulling arm k for the nth time, k ∈ [K], n = 1, 2, . . .. Let

m̂k(n) =
1

Nn(k)

Nn(k)∑
i=1

X
(k)
i , k = 1, . . . ,K, n = 1, 2, . . . (11)

and introduce the following index: for k = 1, . . . ,K, n = 1, 2, . . . set

ik(n) = m̂k(n− 1) +Ak1
(
Nk(n− 1) < τkn

)
+

√
2 log n

Nk(n− 1)
. (12)

The algorithm proceeds as follows. It starts by pulling each arm once. Then at each subsequent step,
we pull an arm with the highest value of the index ik(n). In equation 12, there is an additional term
Ak1(Nk(n− 1) < τkn) compared with classical UCB algorithm. It takes the hard threshold form.
Once the number of times that arm k has been pulled before time n is less than the fairness level
(τkn) at round n, penalty rateAk will be added to the UCB index. In other words, the proposed algo-
rithm favors those arms which does not meet the fairness requirement. The detailed implementation
is given in Algorithm 1.

4 THEORETICAL ANALYSIS OF THE HARD-THRESHOLD UCB ALGORITHM

In this section, we present theoretical results for the hard-threshold UCB algorithm introduced in
Section 3. Throughout this section, we need to introduce additional notation and concepts. We say
τk = Ω̃(1) if it is a positive constant which is independent of T . We assume that there exists a
positive constant c0 such that

∑
k τk ≤ 1− c0 and T is much larger than K. The penalty rates Ak’s

are assumed to be known fixed constants. The expected reward µk (k ∈ [K]) is assumed between 0
and 1. Hence sub-optimality gap ∆k is between 0 and 1 as well.

Asymptotic Fairness. Given the large penalty rates, the proposed algorithm can guarantee the
asymptotic fairness for any arm k ∈ [K]. In other words, the algorithm can guarantee that the
number of times that arm k has been pulled up to time T is at least bτkT c with high probability.

Theorem 1 If Ak −∆k ≥ min{
√

32 log T
τkT

, 1} and τk = Ω̃(1) for all k, we have Nk(T ) ≥ bτkT c
for any k with probability going to 1 as T →∞.

Theorem 1 tells us that the proposed algorithm treats every arm fairly when the penalty rate domi-
nates the sub-optimality gap.
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Algorithm 1 Hard-Threshold UCB Algorithm.
1: Input. Number of arms K, fairness proportions τk’s, penalty rates Ak’s, time horizon T .
2: Output. Cumulative reward, the number of times that each arm is played (Nk(T ), k ∈
{1, . . . ,K}.)

3: Initialization.
For each k ∈ {1, . . . ,K}, we set initial count Nk = 0 and arm-specific cumulative reward
Rk = 0.

4: while n ≤ T do
5: If n ≤ K, we choose kn = n.
6: If n > K, we choose kn = arg maxk ik(n).
7: We observe reward rn. We update countNkn = Nkn +1 and update rewardRkn = Rkn +rn.

8: We update hard-threshold index for each arm k ∈ {1, . . . ,K} by calculating

ik(n+ 1) = Rk/Nk +Ak1(Nk < τk(n+ 1)) +

√
2 log n

Nk
.

9: Increase time index n by 1.
10: end while
11: Return vector (Nk).

4.1 REGRET ANALYSIS: UPPER BOUNDS

In this section, we provide upper bounds on the penalized regret defined in equation 10 under two
scenarios. (1) We establish the gap-dependent bound when the sub-optimality ∆k’s are fixed con-
stants. (2) We prove the gap-independent bound when ∆k’s vary within the interval [0, 1].

Theorem 2 (Gap-dependent Upper bound.) Assume that Ak −∆k ≥ ca (ca is a positive constant)
holds for any arm k ∈ Aopt ∪ Acr and ∆k − Ak ≥

√
8K log T
c20T

holds for any k ∈ Anon-cr. We then
have the following results.

For any k ∈ Aopt ∪ Acr, it holds

E[(τkT −Nk(T ))+] = O(1).

For any k ∈ Acr, it holds

E[Nk(T )] ≤ max{8 log T

∆2
k

, τkT}+O(1).

For any arm kj ∈ Anon-cr, it holds

E[Nk(T )] ≤ max{min{ 8 log T

(∆k −Ak)2
, τkT},

8 log T

∆2
k

}+O(1).

Therefore, we have

Rπ(T ) ≤
∑
k∈Acr

(
8 log T

∆k
− τkT )+ +

∑
k∈Anon-cr

max{min{ 8 log T

∆k −Ak
, (∆k −Ak)τkT},

8 log T

∆k
}+O(K). (13)

Theorem 2 tells us that the number of times that each arm k in critical set Acr is played is at least
around fairness requirement τkT when the the penalty rate is larger than the sub-optimality gap by
some constant. On the other hand, for each arm k in non-critical set Anon-cr, it could be played less
than fairness requirement when sub-optimality gap substantially dominates the penalty rate. The
total penalized regret has order of log T and is hence nearly not improvable. In addition, when
Ak ≡ 0 and it degenerates to the classical settings, then all arms become non-critical arms and our
bound reduces to O(

∑
k

8 log T
∆k

) which matches the existing result (Auer et al., 2002).

Maximal Inequality. In Theorem 2 above we have shown that E[(τkT −Nk(T ))+] = O(1) for any
k ∈ Aopt ∪ Acr under mild conditions on ∆k’s. In the result below, we derive a maximal inequality
for the non-fairness level, (τkt−Nk(t))+, t ∈ [T ].
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Theorem 3 Order the K arms in such a way that

Ak1 + µk1 ≥ . . . ≥ Akj + µkj ≥ . . . ≥ AkK + µkK .

Then for any arm kj ∈ Aopt ∪ Acr, we have

E[ max
1≤t≤T

(τkj t−Nkj (t))+] ≤ aj log T +O(1),

where the coefficient aj is defined as

aj = 8

j∑
d=1

(j − d+ 1)

(
d−1∑
m=1

1

(µkd +Akd − µkm)2
+

K∑
m=d+1

1

(µkd +Akd − µkm −Akm)2

)
.

(14)

Theorem 3 nearly guarantees the ANY-ROUND fairness for all arms k ∈ [K] up to a O(log T )
difference.

Gap-independent Upper bound. We now switch to establishing a gap-independent upper bound. It
relies on the following observations. The key challenge is how to bound the term E[(τkT−Nk(T ))+]
for k ∈ Aopt ∪ Acr.

(Observation 1) If Ak − ∆k ≤ 4
√

2 log T
T 2/3 , then (Ak − ∆k)E[(τkT − Nk(T ))+] ≤

4τkT
2/3(2 log T )1/2.

Lemma 1 (Observation 2) If arm k satisfies that Ak −∆k ≥ 4
√

2 log T
T 2/3 and τk = Ω̃(1), then we

have E[(τkT −Nk(T ))+] = O(τkKT
2/3).

Based on above observations, we have the following regret bound.

Theorem 4 When τk = Ω̃(1), it holds that

Rπ(T ) ≤ 8
√
T log T (

∑
k

√
τk) + 8

√
(1− τmin)KT log T +AmaxKT

2/3(2 log T )1/2, (15)

where τmin = mink τk and Amax = maxk Ak.

The first term in (15) is forAk(E(τkT −Nk(T ))+) with k ∈ Anon-cr. The second term gives a bound
for ∆kE(Nk(T )− τkT ) for k ∈ [K]. The third term in (15) is for bounding AkE(τkT −Nk(T ))+

for k ∈ Aopt ∪ Acr.

4.2 REGRET ANALYSIS: LOWER BOUNDS

Gap-dependent Lower Bound. In this part, we first show that the bound given in inequality (13)
is tight. To see this, the results are stated in the following theorems.

Theorem 5 There exists a bandit setting for which the regret of proposed algorithm has the follow-
ing lower bound,

Rπ(T ) ≥
∑

k∈Anon-cr,τk>0

log T

∆k −Ak
. (16)

Theorem 6 There exists a bandit setting for which the regret of proposed algorithm has the follow-
ing lower bound,

Rπ(T ) ≥
∑
k∈Acr

∆k(
log T

∆2
k

− τkT ). (17)

Theorem 5 says that the term log T/(∆k − Ak) is nearly optimal up a multiplicative constant 8 for
any arm in the non-critical set. Similarly, Theorem 6 tells us that ( 8 log T

∆k
− τkT )+ is also nearly
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optimal for arms in the critical set. Therefore, Theorem 2 gives a relatively sharp gap-dependent
upper bound. It is almost impossible to improve the regret bound analysis for our proposed hard-
threshold UCB algorithm in the instance-dependent scenario.

Gap-independent Lower Bound. We also obtain a gap-independent lower bound as follows.

Theorem 7 Let K > 1 and T be a large integer. Penalty rates A1, A2, . . . , AK are fixed positive
constants. Assume that the fairness parameters τ1, . . . , τK ∈ [0, 1] with

∑
k τk < 1. Then, for any

policy π, there exists a mean vector µ = (µ1, . . . , µK) such that

Rπ(T ) ≥ C(1− 2 max
k

τk)
√

(K − 1)T ,

where C is a universal constant which does not depend on Ak, τk’s.

By comparing Theorems 4 and 7, we can see that there is a substantial gap. This is because term
AkE[(τkT − Nk(T ))+] is very hard to handle. This term can be trivially lower bounded below by
zero for any algorithm. However, this term is proved to be O(T 2/3) (ignoring log T factor) by our
current techniques under the proposed algorithm. Whether we can improve the gap-independent
upper bound to be O(T 1/2) is an open question in the future work.

5 COMMENTS ON THE HARD-THRESHOLD UCB ALGORITHM

On hard threshold. In the proposed algorithm, we use a hard-threshold term Ak1(Nk(n − 1) <
τkn) in constructing a UCB-like index ik(n). A natural question is whether we can use a soft-
threshold index by defining

ĩk(n) = m̂k(n− 1) +Ak
max(τkn−Nk(n− 1), 0)

τkn
+

√
2 log n

Nk(n− 1)
?

The answer is negative in the sense that ĩk(n) becomes a continuous function of Nk and does not
have a jump point at the critical value τkn. Hence it does not give sufficient penalization to those
arms k which are below the fairness proportion τk. Hence, a soft-threshold UCB-like index fails to
guarantee the asymptotic fairness and nearly-optimal penalized regret.

When τk is not constant. In our theoretical analysis, we only consider the case that τk = Ω̃(1) for
ease of presentation. The current results could also apply when threshold τk is dependent on time
horizon T with τk(T ) = 1/T b(0 < b < 1).

Technical Challenges. Since the index ik(n) is a discontinuous function of Nk, this brings addi-
tional difficulties in analyzing the regret bound. The most distinguished feature from the classical
regret analysis is that we cannot analyze term Nk(T ) separately for each sub-optimal gap k. In fact,
the optimal arm (arg maxk µk) is fixed for all rounds in the classical setting. In contrast, the “opti-
mal arm” (arg maxk µk + Ak1{Nk < τkn}) varies as the algorithm progresses in our framework.
Due to such interventions among different arms, term (τkT −Nk(T ))+ should be treated carefully.

Connections to LASSO problems. We would like to point out that our current framework shares
similarities with LASSO problem (Tibshirani, 1996; Zhao & Yu, 2006; Zou, 2006) in linear regres-
sion models. Both of them introduces the penalization terms to enforce the solution to obey fairness
constraints / sparsity to some degree. In our penalized MAB framework, whether an arm k is played
at least τkT times or not depends on the penalty rate Ak and the sub-optimality gap ∆k. Similarly,
in the LASSO framework, whether a coefficient is to be estimated as zero depends on the penalty
parameter and its true coefficient value.

Comparison with Baselines. We compare the proposed methods with related existing methods.

Learning with Fairness Guarantee (LFG, Li et al. (2019)). It is implemented via following steps.

• For each round n, we compute the index for each arm, īk(n) = min{m̂k(n − 1) +√
2 logn
Nk(n−1) , 1} and compute queue length for each arm, Qk(n) = max{Qk(n − 1) +

τk − 1{arm k is pulled}, 0}.
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• The learner plays the arm which maximizes Qk(n) + η0wkik(n) and receive the corre-
sponding reward, where η0 is the tuning parameter and wk is the known weight. Without
loss of generality, we assume wk ≡ 1 by treating each arm equally when we have no
additional information.

Fair-Learn (Flearn, Patil et al. (2020)). Its main procedure is given as below.

• For each round n, we compute set A(n), A(n) := {k : τk(n − 1) − Nk(n − 1) > α},
which contains those arms which are not fair at round n at level.

• If A(n) 6= ∅, we play arm which maximizes τk(n− 1)−Nk(n− 1). Otherwise, we play

arm which maximizes m̂k(n− 1) +
√

2 logn
Nk(n−1) .

Fair-learn method can enforce each arm k should be played at proportion level τk only when α = 0.
LFG method fails to guarantee the asymptotic fairness when η0 > 0. Neither of these methods can
well balance between total rewards and fairness constraint as our method does.

6 EXPERIMENT RESULTS

A In this experimental setting, we examine the relationship between number of times that non-
critical arm k has been pulled at T (=20000) rounds and the inverse gap 1/(∆k −Ak)2. In
particular, we construct the following three parameter settings (τk ≡ 1/20).
Case 1: K = 9; µ = (0.9, 0.8, 0.7, 0.6, 0.6, 0.4, 0.3, 0.2, 0.1); Ak ≡ 0.45.
Case 2: K = 9; µ = (0.95, 0.8, 0.7, 0.6, 0.6, 0.4, 0.3, 0.2, 0.1); Ak ≡ 0.41.
Case 3: K = 9; µ = (0.9, 0.8, 0.7, 0.6, 0.6, 0.425, 0.4, 0.375, 0.35); A ≡ 0.45.

B Similarly, we examine the relationship between number of times that critical arm k has been
pulled at T (=20000) rounds and the inverse gap 1/∆2

k. We set τk ≡ 1/20, Ak ≡ 0.45.
Case 1: K = 9; µ = (0.9, 0.86, 0.84, 0.82, 0.6, 0.4, 0.3, 0.2, 0.1).
Case 2: K = 9; µ = (0.95, 0.85, 0.84, 0.83, 0.82, 0.4, 0.3, 0.2, 0.1).
Case 3: K = 9; µ = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1).

C We investigate the relationship between cumulative penalized regret and total time hori-
zon (T ) under three algorithms (proposed method, LFG, and Flearn). The parameters
are constructed as follows. The number of arms (K) is set to be 5 or 20. The total
time horizon (T ) varies from 500 to 16000. The fairness proportion τk of each arm is
set to be τk = τ/K with τ ∈ {0.2, 0.4, 0.8}. The penalty rate Ak is constructed as
Ak ≡ (maxk µk − mink µk)/2. Each entry of the mean reward vector (µk) is randomly
generated between [0, 1]. The reward distribution of each arm is a Gaussian distribution,
e.g., N(µk,

1
K2 ). For Flearn algorithm, we take tuning parameter α = 0. For LFG algo-

rithm, we take η0 =
√
T . Each case is replicated for 50 times.

From Figure 1, we can see that the pulling number Nk(T ) is proportional to 1/(∆k − Ak)2 for
k ∈ Anon-cr when Nk(T ) does not reach fairness level τkT . We also see that Nk(T ) is proportional
to 1/∆2

k for k ∈ Acr when the pulling number is larger than fairness level τkT . These phenomena
match the results in Theorem 2. From Figure 2, we observe that the proposed method achieves
smaller penalized regret compared with LFG and Flearn. This confirms that our method is indeed a
good learning algorithm under penalization framework.

In the appendix, we also study the paths of unfairness level ((τkT −Nk(T ))+) when tuning parame-
ter varies and investigate the relationship between total expected reward (

∑T
t=1 µπt

) and unfairness
level (

∑
k∈[K](τkT − Nk(T ))+) for three algorithms. From Figure 3 (See Appendix A), the paths

of unfairness level show different behaviors under three algorithms. For our method, with scale
parameter decreasing, each arm becomes unfair one by one. By contrast, all arms under both Flearn
and LFG methods suddenly become unfair once scale parameter decreases from 1. This suggests
that our method has sparsity feature as LASSO does, e.g., making arms with small sub-optimality
gap fair. From Figure 4 (See Appendix A), we can tell that the proposed method always achieves
the highest reward given the same unfairness level under different parameter settings. This gives
evidence that hard-threshold UCB algorithm makes better balance between total reward and fairness
constraints compared with other competing methods.
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Figure 1: Upper row: Nk(T ) vs 1/(∆k − Ak)2 for arm k ∈ Anon-cr. Bottom row: Nk(T ) vs 1/∆2
k

for arm k ∈ Acr. In all plots, the blue horizontal line stands for fairness level τkT .

Figure 2: Penalized Regret (Rπ(T )) vs Different Time Horizon (T ) under different settings.

7 CONCLUSION

In this paper, we provide a new framework of fairness MAB problem by introducing regularization
terms. The advantage of our new approach is that it allows the user to distinguish between arms for
which is more important to sample an arm with required frequency level and arms for which it is
less important to do so. A hard-threshold UCB algorithm is proposed and is shown to have good
performance under this framework. Unlike other existing algorithms, the proposed algorithm not
only achieves the asymptotic fairness but also handles well in balance between reward and fairness
constraints. A relatively complete theory, including both gap-dependent / independent bounds, has
been established. The new theoretical results contribute to the fairness in machine learning field and
bring better insights in how to play smartly in the exploitation and exploration games.
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APPENDICES

In this appendix, the first section is dedicated for experimental results of Experiments D and E. In
the rest, we collect all technical proofs. Specifically, the proofs of gap-dependent upper and lower
bounds are given in Section B and C. The proofs of gap independent upper and lower bounds are
given in Section E and F, respectively. The proof of E[max1≤t≤T (τkt−Nk(t))]+ is given in Section
D.

A THE PLOTS FOR EXPERIMENTS D AND E

D We investigate the path of unfairness level ((τkT −Nk(T ))+) of each arm when the tuning
parameter varies. The parameters of two settings are constructed as follows.
Setting 1: K = 8, T = 10000; (µ1, . . . , µ8) = (0.9, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1); τ1 =
. . . = τ8 = 1

2K . The reward distribution of each arm is a Gaussian distribution, e.g.,
N(µk,

1
K2 ).

Setting 2: K = 8, T = 10000; (µ1, . . . , µ8) = (0.95, 0.7, 0.65, 0.6, 0.2, 0.15, 0.1, 0.05);
τ1 = . . . = τ4 = 0.8 1

K and τ5 = . . . = τ8 = 0.4τ1. Again, the reward distribution of each
arm is a Gaussian distribution, e.g., N(µk,

1
K2 ).

The penalty ratesAk ≡ η, where we call η is the scale parameter which takes value between
0 and 1. For Flearn algorithm, the tuning parameter α = (1 − η)τ1T with η varying from
0 to 1. For LFG algorithm, the tuning parameter η0 = (1− η)T with η ∈ (0, 1].
When scale parameter η → 1, three algorithms will prefer to exploit the arm with highest
reward and pay less attention to the fairness. On the other hand, η → 0, three algorithms
tend to treat the fairness as the priority. (Due to space limit, the results are in Appendix A)

E We investigate the relationship between total expected reward (
∑T
t=1 µπt

) and unfairness
level (

∑
k∈[K](τkT −Nk(T ))+) for three algorithms. The parameters are given as follows.

We set K ∈ {5, 20} and τk ≡ τ/K with τ ∈ {0, 20.5}. Each element in mean reward
vector (µk) is generated between 0 and 1. Moreover, we generate the reward from three
different distributions, (1) Gaussian N(µk,

1
K2 ), (2) Beta Beta(µk, 1− µk), (3) Bernoulli

Bern(1, µk).

Figure 3: Unfairness path ((τkT − Nk(T ))+, k ∈ [K]) for three algorithms under two settings
described in Experiment D. (Upper row is for Setting 1 and bottom row is for Setting 2.) For
sub-optimal arms, the proposed method can guarantee the fairness with a wider range of tuning
parameter. By contrast, Flearn and LFG can break the fairness easily.
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Figure 4: Total regret vs unfairness level for three algorithms under different settings described in
Experiment E. (The first row is for 5 arms with required fraction of times τ = 0.2; The second row
is for 5 arms with required fraction of times τ = 0.5; The third row is for 20 arms with required
fraction of times τ = 0.2; The fourth row is for 20 arms with required fraction of times τ = 0.5.
The first column is for Gaussian reward distribution; the second column is for Beta distribution; and
the third column is for Bernoulli distribution.) Given the fixed unfairness level, the proposed method
can have larger total reward than other two methods consistently over all experimental settings.
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Highlight of the proof. The technical challenge lies in handling the term (τkT − Nk(T ))+. (1)
Our main task in proving upper bound is to show that, for any k ∈ Acr, (τkT − Nk(T ))+ is O(1)

for in gap-dependent setting and it is Õ(T 2/3) for gap-independent setting. Unlike the classical
UCB algorithm analysis, we cannot bound Nk(T ) separately for each arm k. Instead, we need to
study the relationship between any pair of critical arms and the relationship between critical arm
and non-critical arm. A key step is to find a stopping time n1 such that any arm k ∈ Acr satisfies
Nk(n1) ≥ τkn1. Therefore, between rounds n1 and T , the behavior of (τkT − Nk(T ))+ can
be well controlled. (2) In proving maximal inequality, we need to order K arms according to the
values of µk + Ak. Then the bound of max1≤t≤T (τkt − Nk(T ))+ can be obtained by a recursive
formula (see equation 30) starting from k = k1 to k = kK , where k1 := arg max{µk + Ak} and
kK := arg min{µk +Ak}.

B PROOF OF GAP-DEPENDENT UPPER BOUNDS

Proof of Theorem 1 Its proof is essentially same as the proof of first part in Theorem 2 by treating
the non-critical set Anon-cr empty.

Proof of Theorem 2 We first prove the first part: E[(τkT−Nk(T ))+] = O(1) for any k ∈ Aopt∪Acr.

Suppose at time n that a critical arm k is played less than τkn. We can prove that the algorithm
pulls critical arm k′ at time n such that Nk′(n) ≥ 8 log T/c2a and Nk′(n) > τkn with vanishing
probability. This is because

P(Ak +mk(n) +

√
2 log n

Nk(n)
≤ mk′(n) +

√
2 log n

Nk′(n)
)

≤ P(Ak + µk ≤ +µ′k + 2

√
2 log n

Nk′(n)
) +

2

n2

≤ P(Ak −∆k ≤ −∆k′ + 2

√
2 log n

Nk′(n)
) +

2

n2

= 2/n2. (18)

By the same reason, the algorithm pulls non-critical arm k′′ at time n when Nk′′(n) ≥ 8 log T/c2a
with vanishing probability.

(Observation 3) In other words, it holds with high probability that once a critical arm k is played
with proportion less than required level τk’s, it must be pulled in next round when all other arms is
played with proportion greater than level τk’s and is played more than 8 log T/c2a times.

(Observation 4) It also holds with high probability that once a non-critical arm is played more than
8 log T/c2a, it can be only played when all critical arms are played with frequency more than the
required level τk’s.

Moreover, we can show that Nk′(n) ≥ 8 log T/c2a at time n = c0T/2 for each critical arm k′. If
not, note that 8 log T/c2a ≤ τk′c0T/4, then N ′k(n) < τ ′kn for any n ∈ {dc0T/4e, . . . , bc0T/2c}.
Hence, for any critical arm k′ can be played at most max{τk′c0T/4, 8 log T/c2a} times between
rounds c0T/2 and c0T ; every non-critical arm k′′ can be played at most 8 log T/c2a times. Then, we
must have

c0T/2− c0T/4 ≤
∑
k

τkc0T/4 +
∑
k

8 log T/c2a.

However, the above inequality fails to hold when T/ log T ≥ 16c20K/c
2
a. This leads to the contra-

diction. Thus, we have Nk′(n) ≥ 8 log T/c2a for any critical arm k′ at time n = c0T/2.

Actually, this further gives us that we must have Nk′(n) ≥ bτk′nc for all very critical arms at some
time n ∈ [c0T/2, T ]. To see this, we observe the fact that for any arm k̄, it will be played with prob-
ability less than 2

T 2 at time n onceNk̄(n) ≥ max{τkn, 8 log T/c2a} and one critical arm k′ is played
less than τk′n. (In other words, this tells us that once arm k̄ has been played max{τk̄n, 8 log T/c2a}
times, then it can only be played at time when all very critical arms k′s have been played for τk′n
times or bτk̄nc jumps by one with probability greater than 1− 2/T 2.)
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Let n1(≥ c0T/2) be the first ever time such that Nk′(n1) ≥ bτk′n1c for all critical arms k′s. By
straightforward calculation, it gives that n1 must be bounded by

n1 ≤ c0T/2 +
∑

k:non-critical

8 log T/c2a + (
∑

k:critical

τk)T

with probability greater than 1− 2K/T . That is, n1 is well defined between c0T and T . At time n1,
we have all critical arms k′ such that Nk′(n1) ≥ τk′n1.

Moreover, we consider the first time n2(> n1) such that every non-critical arm k′′ has been played

for at least 8 log T/c2a times when ∆k′′ ≤
√
ca

log(c0T/2)
16 log T (If ca > 4, it automatically holds for

any ∆k′′ ). We claim that n2 ≤ n1 + c0T/2. This is because, between rounds n1 and n2, the
algorithm will choose non-critical arm k′′ when Nk′(n) ≥ τk′(n) for all critical arms k′s and
Nk′′(n) ≤ log(c0T/2)/2∆2

k′′ . To see this, we know that

P(mk′(n) +

√
2 log n

Nk′(n)
≥ mk′′(n) +

√
2 log n

Nk′′(n)
)

≤ P(µ′k + 2

√
2 log n

Nk′(n)
≥ µk′′ +

√
log n

Nk′′(n)
)

≤ P(µ′k + 2

√
2 log T

τk′c0T/2
≥ µk′′ +

√
log(c0T/2)

Nk′′(n)
)

≤ 2/c0T. (19)

That is, index of arm k′′ is larger than k′ with high probability.

In other words, for each round between n1 and n2, each critical arm k′ can be only
pulled at most τk′(n2 − n1) before every non-critical arm k′′ has been played for
min{8 log T/c2a, log(c0T/2)/2∆2

k′′}. Additionally, each non-critical arm k′′ can be only played
for at most 8 log T/(∆k −Ak)2 with high-probability. Therefore, it must hold that

n2 − n1 ≤ (
∑
k

τk)(n2 − n1) +
∑
k

8 log T/(∆k −Ak)2.

However, the above inequality fails to hold when n2−n1 ≥ c0T/2 under assumption that ∆k−Ak ≥√
8K log T
c20T

. This validates the claim n2 ≤ n1 + c0T/2.

Starting from time n2, by the observations 3 and 4, it can be seen that the maximum values of
(τk′n −Nk′(n))+ for any critical arm k′ is always bounded by 1 with probability 1 − 2K/T (n ∈
[n2, T ]). This completes the proof of the first part.

For the second part, we need to prove E[Nk(T )] ≤ max{ 8 log T
∆2

k
, τkT}+O(1) for k ∈ Acr.

When 8 log T
∆2

k
> τkT , we can calculate the probability

P(arm k is pulled at round n+ 1 |Nk(n) ≥ 8 log T

∆2
k

)

≤ P(ik(n+ 1) ≥ ik∗(n+ 1))

≤ P(m̂k(n+ 1) +

√
2 log(n+ 1)

Nk(n)
≥ m̂k∗(n+ 1) +

√
2 log(n+ 1)

Nk(n)
)

≤ 1/n2 ≤ 1/(8 log T/∆k)2 ≤ 1/(τkT )2. (20)
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When 8 log T
∆2

k
≤ τkT , we can similarly calculate the probability

P(arm k is pulled at round n+ 1 |Nk(n) ≥ τkT )

≤ P(ik(n+ 1) ≥ ik∗(n+ 1))

≤ P(m̂k(n+ 1) +

√
2 log(n+ 1)

Nk(n)
≥ m̂k∗(n+ 1) +

√
2 log(n+ 1)

Nk(n)
)

≤ 1/n2 ≤ 1/(τkT )2. (21)

Hence we can easily obtain that E[Nk(T )] ≤ max{ 8 log T
∆2

k
, τkT}+O(1) by union bound.

For the third part that E[Nk(T )] ≤ min{ 8 log T
(∆k−Ak)2 , τkT}+O(1) (kj ∈ Anon-cr), it follows from the

fact that we can treat µk +Ak as new expected reward for arm k ∈ Anon-cr. Thus the corresponding
sub-optimality gap is ∆k −Ak. The result follow by using standard technique in the classical UCB
algorithm. Hence we omit the details here.

Finally, by combining three parts and straightforward calculation, we obtain the desired gap-
dependent upper bounds. This concludes the proof.

C PROOF OF GAP-DEPENDENT LOWER BOUNDS

Proof of Theorem 5. We consider the following setting, where arm 1 is the optimal arm with a
deterministic reward ∆ and arms k, (k ≥ 2) are sub-optimal arms with reward zero. Let penalty
rate Ak = A for all k ∈ [K] with ∆ > A. Assuming that 8 log T

(∆−A)2 ≤ τkT/2, we construct a lower
bound as follows.

We claim that each arm k ≥ 2 will be played at least n1 := log T
(∆−A)2 times. If there exists an arm k0

has not been played for n1 times, we then consider the time index na = T/2+1+(K−2) 8 log T
(∆−A)2 +

n1. At this time, we have that arm 1 is the arm with largest index since that for each sub-optimal
arm k 6= k0, its index will never exceeds ∆ once it has been played 8 log T

(∆−A)2 times. According to
assumption that arm k0 has been played less than n1 times, thus arm 1 is the arm with largest index
at time na.

However, the index of arm 1 at time na is never larger than
√

2 log T
T/2 + ∆. The index of arm k0 at

time na is always larger than A+
√

2 log(T/2)
n1

. It gives

i1(na) ≤

√
2 log T

T/2
+ ∆ < A+

√
2 log(T/2)

n1
≤ ik0(na), (22)

which leads to the contradiction of the mechanism of the proposed algorithm. Hence, we have that
each sub-optimal should have been played for at least log T

(∆−A)2 times.

Proof of Theorem 6. We consider the another setting, where where arm 1 is the optimal arm with
deterministic reward ∆1 + ∆2, arm k’s (k ∈ Acr) are sub-optimal arms with reward being ∆1 and
arm k’s (k ∈ Anon−cr) ar sub-optimal arms with reward being ∆2. Let penalty rate Ak = A2 for
all k ∈ Acr with ∆2 < A2 and penalty rate Ak = A1 for all k ∈ Anon−cr with ∆1 > A1. Assume
that

∑
k∈Anon−cr

8 log T
(∆1−A1)2 +

∑
k∈Acr

8 log T
∆2

2
< T/2 and τkT ≤ log T

∆2
2

for k ∈ Acr, we then have
the following lower bound.

We claim that for each arm k ∈ Acr will be played for at least n2 := log T
∆2

2
times. If not, there will

be at least one arm k1 ∈ Acr has been played for less than n2 times. We consider the time stamp,
nb = T/2+1+

∑
k∈Anon−cr

8 log T
(∆1−A1)2 +

∑
k∈Acr;k 6=k1

8 log T
∆2

2
+n2. At this time, we have that arm

1 is the arm with the largest index since that for each arm in Anon−cr, its index is always smaller
than ∆1 +∆2 once it has been played for 8 log T

(∆1−A1)2 times. For each arm k ∈ Acr (k 6= k1), its index

is also smaller than ∆1 +∆2 once it has been played for 8 log T
∆2

2
times. According to assumption that

arm k1 has been played less than n2 times, thus arm 1 is the arm with largest index at time nb.
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However, on other hand, the index of arm 1 at time nb is never larger than
√

2 log T
T/2 + ∆1 + ∆2. The

index of arm k1 is not smaller than ∆1 +
√

2 log(T/2)
n2

. It leads to

i1(nb) ≤

√
2 log T

T/2
+ ∆1 + ∆2 ≤ ∆1 +

√
2 log(T/2)

n2
≤ i2(nb),

this contradicts with arm 1 is arm with largest index at time nb. Hence, any arm in Acr should be
played at least log T

∆2
2

times.

D PROOF OF MAXIMAL INEQUALITY (PROOF OF THEOREM 3)

We can order K arms according to the sums µk +Ak’s. Specifically, let the order k1, k2, . . . , kK be
defined by

µk1 +Ak1 > µk2 +Ak2 > · · · > µkK +AkK . (23)
For simplicity we assume no ties in equation 23. We also assume that Ak > ∆k for all k ∈
Aopt ∪ Acr.

We now aim to bound expectations of the Emaxt∈[T ]

(
τkt−Nk(t)

)
+

for k ∈ Aopt ∪ Acr. We will
use the ordering of the arms k1, k2, . . . , kK defined in equation 23. Take any arbitrary t ∈ [T ] and
let kj ∈ Aopt ∪ Acr,

m
(j)
t = sup

{
n = 1, . . . , t : τkjn ≤ Nkj (n)

}
. (24)

Suppose for a moment that m(j)
t < t. We have(

τkj t−Nkj (t)
)

+
≤ τkj (25)

+τkj#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1) for some d = 1, . . . , j − 1

}
+τkj#

{
n = m

(j)
t + 1, . . . , t : τkdn ≤ Nkd(n− 1) for all d = 1, . . . , j − 1,

arm kj not pulled at time n
}

−(1− τkj )#
{
n = m

(j)
t + 1, . . . , t : τkdn ≤ Nkd(n− 1) for all d = 1, . . . , j − 1,

arm kj pulled at time n
}

=τkj + τkj#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1) for some d = 1, . . . , j − 1

}
−(1− τkj )#

{
n = m

(j)
t + 1, . . . , t : τkdn ≤ Nkd(n− 1) for all d = 1, . . . , j − 1

}
+#

{
n = m

(j)
t + 1, . . . , t : τkdn ≤ Nkd(n− 1) for all d = 1, . . . , j − 1,

arm kj not pulled at time n
}

=τkj + #
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1) for some d = 1, . . . , j − 1

}
+#

{
n = m

(j)
t + 1, . . . , t : τkdn ≤ Nkd(n− 1) for all d = 1, . . . , j − 1,

arm kj not pulled at time n
}

−(1− τkj )(t−m(j)
t ).

The final bound is, clearly, also valid in the case m(j)
t = t.

Next,

#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1) for some d = 1, . . . , j − 1

}
(26)

=

j−1∑
d=1

#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1

}
.

For d = 1, . . . , j − 1 denote

m
(j,d)
t = sup

{
n = m

(j)
t , . . . , t : τkdn > Nkd(n− 1)

}
. (27)
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Suppose, for a moment, that m(j,d)
t > m

(j)
t . Then

0 < τkdm
(j,d)
t −Nkd

(
m

(j,d)
t − 1

)
= τkdm

(j)
t −Nkd

(
m

(j)
t − 1

)
+τkd

(
m

(j,d)
t −m(j)

t −#
{
n = m

(j)
t + 1, . . . ,m

(j,d)
t : arm kd pulled

})
−(1− τkd)#

{
n = m

(j)
t + 1, . . . ,m

(j,d)
t : arm kd pulled

}
=τkdm

(j)
t −Nkd

(
m

(j)
t − 1

)
+ τkd

(
m

(j,d)
t −m(j)

t

)
−#

{
n = m

(j)
t + 1, . . . ,m

(j,d)
t : arm kd pulled

}
.

We conclude that
#
{
n = m

(j)
t + 1, . . . ,m

(j,d)
t : arm kd pulled

}
≤ max
n=1,...,t

(
τkdn−Nkd(n)

)
+

+ τkd
(
m

(j,d)
t −m(j)

t

)
.

Therefore,

#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1

}
=#

{
n = m

(j)
t + 1, . . . ,m

(j,d)
t : τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1

}
≤#

{
n = m

(j)
t + 1, . . . ,m

(j,d)
t : arm kd pulled

}
+#

{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1,

arm kd not pulled
}

≤ max
n=1,...,t

(
τkdn−Nkd(n)

)
+

+ τkd
(
t−m(j)

t

)
+#

{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1,

arm kd not pulled
}
,

and the final bound is clearly valid even if m(j,d)
T = m

(j)
T . Substituting this bound into equation 26

we obtain
#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1) for some d = 1, . . . , j − 1

}
≤
(
t−m(j)

t

) j−1∑
d=1

τkd +

j−1∑
d=1

max
t′=1,...,t

(
τkdt

′ −Nkd(t′)
)

+

+

j−1∑
d=1

#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1,

arm kd not pulled
}
,

Substituting this bound into equation 25 gives us(
τkj t−Nkj (t)

)
+
≤ τkj (28)

+

j−1∑
d=1

max
t′=1,...,t

(
τkdt

′ −Nkd(t′)
)

+
−
(
t−m(j)

t

)(
1−

j∑
d=1

τkd

)

+

j∑
d=1

#
{
n = m

(j)
t + 1, . . . , t : τkdn > Nkd(n− 1),

τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1, arm kd not pulled
}

≤τkj +

j−1∑
d=1

max
t′=1,...,t

(
τkdt

′ −Nkd(t′)
)

+

+

j∑
d=1

#
{
n = 1, . . . , t : τkdn > Nkd(n− 1),

τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1, arm kd not pulled
}
.
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Taking the maximum over t on both sides of above inequality, we then have

max
t=1,...,T

(
τkj t−Nkj (t)

)
+
≤ τkj +

j−1∑
d=1

max
t=1,...,T

(
τkdt−Nkd(t)

)
+

(29)

+

j∑
d=1

#
{
n = 1, . . . , T : τkdn > Nkd(n− 1),

τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1, arm kd not pulled
}
.

Therefore, we arrive at

E
(

max
t=1,...,T

(
τkj t−Nkj (t)

)
+

)
(30)

≤τkj + E

(
j−1∑
d=1

max
t=1,...,T

(
τkdt−Nkd(t)

)
+

)

+

j∑
d=1

E
( T∑
n=1

1
(
τkdn > Nkd(n− 1),

τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1, arm kd not pulled
))
.

We will prove that for kd ∈ Aopt ∪ Acr

E
( T∑
n=1

1
(
τkdn > Nkd(n− 1), (31)

τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1, arm kd not pulled
))

≤bd log T +O(1)

for bd > 0 that we will compute. It is elementary that kj ∈ Aopt ∪ Acr implies kd ∈ Aopt ∪ Acr

for d = 1, . . . , j − 1. Therefore, it will follow from equation 31, equation 30 and a simple inductive
argument that for any kj ∈ Aopt ∪ Acr,

E
(

max
t=1,...,T

(
τkj t−Nkj (t)

)
+

)
≤ aj log T +O(1) (32)

with a1 = b1 and for j > 1,

aj =

j−1∑
d=1

ad +

j∑
d=1

bd,

which means that

aj =

j∑
d=1

(j − d+ 1)bd. (33)

We now prove equation 31. We have

Eπ

( T∑
n=1

1
(
τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), m = 1, . . . , d− 1, arm kd not pulled

))

=

d−1∑
m=1

Eπ

( T∑
n=1

1
(
τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), arm km is pulled at time n

))

+

K∑
m=d+1

Eπ

( T∑
n=1

1
(
τkdn > Nkd(n− 1), arm km is pulled at time n

))
.
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Observe that a “no-tie” assumption imposed at the beginning of the section implies that
µkd +Akd > µ∗ ≥ µkm .

Therefore, we can use once again the usual UCB-type argument to see that for anym = 1, . . . , d−1,
for any B > 0,

Eπ

( T∑
n=1

1
(
τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), arm km is pulled at time n

))

≤B log T +

T∑
n=1

Pπ
(
Nkm(n− 1) > B log T,

τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), arm km is pulled at time n
)

≤B log T +

T∑
n=1

Pπ
(
Nkm(n− 1) > B log T,

τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), ikm(n) ≥ ikd(n)
)

≤B log T +

T∑
n=1

Pπ

(
Nkm(n− 1) > B log T, m̂km(n− 1) +

√
2 log n

Nkm(n− 1)

≥ m̂kd(n− 1) +Akd +

√
2 log n

Nkd(n− 1)

)
.

By carefully choosing

B =
8

(µkd +Akd − µkm)2
,

we obtain the bound

Eπ

( T∑
n=1

1
(
τkdn > Nkd(n− 1), τkmn ≤ Nkm(n− 1), arm km is pulled at time n

))
(34)

≤ 8

(µkd +Akd − µkm)2
log T +O(1),

m = 1, . . . , d− 1. The same argument shows that for every m = d+ 1, . . . ,K,

Eπ

( T∑
n=1

1
(
τkdn > Nkd(n− 1), arm km is pulled at time n

))
(35)

≤ 8

(µkd +Akd − µkm −Akm)2
log T +O(1).

Now equation 34 and equation 35 imply equation 31 with

bd =

d−1∑
m=1

8

(µkd +Akd − µkm)2
+

K∑
m=d+1

8

(µkd +Akd − µkm −Akm)2
. (36)

Now it follows from equation 36 and equation 33 that for every j such that kj ∈ Aopt ∪ Acr,

aj = 8

j∑
d=1

(j − d+ 1)

(
d−1∑
m=1

1

(µkd +Akd − µkm)2
+

K∑
m=d+1

1

(µkd +Akd − µkm −Akm)2

)
.

(37)
We conclude by equation 32 that every j such that kj ∈ Aopt ∪ Acr,

Eπ
(
τkjT −Nkj (T )

)
+
≤ aj log T +O(1), (38)

with aj given in equation 37.

Remark. In the proof, we assume that there is no tie, i.e., Akj1 + µkj1 6= Akj2 + µkj2 for any
j1 6= j2 ∈ [K]. This assumption is not restrictive since the probability that event “Akj1 + µkj1 6=
Akj2 +µkj2 for some j1 6= j2 ∈ [K].” is zero when we pick penalty rates Ak’s uniformly randomly.
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E PROOF OF GAP-INDEPENDENT UPPER BOUNDS

Proof of Lemma 1 We first prove that the algorithm pulls arm k′ with Ak′ − ∆k′ ≤ 2
√

2 log T
T 2/3 at

time n when Nk′(n) ≥ T 2/3 and Nk(n) < τkn with vanishing probability. This is because

P(Ak +mk(n) +

√
2 log n

Nk(n)
≤ Ak′ +mk′(n) +

√
2 log n

Nk′(n)
)

≤ P(Ak + µk ≤ A′k + µ′k + 2

√
2 log n

Nk′(n)
) +

2

n2

≤ P(Ak −∆k ≤ A′k −∆k′ + 2

√
2 log n

Nk′(n)
) +

2

n2

= 2/n2. (39)

Next, we say arm k is a very critical arm if arm k satisfies Ak − ∆k ≥ 2
√

2 log T
T 2/3 . Otherwise k

is a non-very critical arm. In other words, each non-very critical arm can be only played at most
O(T 2/3) times with high probability.

Furthermore, we can show that Nk′(n) ≥ T 2/3 at time n = c0T/2 for each very critical arm k′.
If not, note that T 2/3 ≤ τk′c

2
0T/4, then N ′k(n) < τ ′kn for any n ∈ {dc20T/4e, . . . , bc0T/2c}.

Hence, for any arm k′′ can be played at most max{τk′′c0T/2, T 2/3} times between rounds c20T/4
and c0T/2. Then, we must have

c0T/2− c20T/4 ≤
∑
k

τkc0T/2 +
∑
k

T 2/3.

However, the above inequality fails to hold when T ≥ (4K/c20)3. This leads to the contradiction.
Thus, we have Nk′(n) ≥ T 2/3 for any very critical arm k′ at time n = c0T/2.

This further gives us that we must have Nk′(n) ≥ bτk′nc for all very critical arms at some time
n ∈ [c0T, T ]. To prove this, we observe the fact that for any arm k̄, it will be played with probability
less than 2

T 2 at time n once Nk̄(n) ≥ max{τkn, T 2/3} and one critical arm k′ is played less than
τk′n. (In other words, this tells us that once arm k̄ has been played max{τk̄n, T 2/3} times, then it
can only be played at time when all very critical arms k′s have been played for τk′n times or bτk̄nc
jumps by one with probability greater than 1− 2/n2.)

Let n1(≥ c0T/2) be the first ever time such that Nk′(n1) ≥ bτk′n1c. By straightforward calcula-
tion, it gives that n1 must be bounded by

n1 ≤ c0T/2 +
∑

k′′ :non-very critical

T 2/3 + (
∑
k′

τk′)T ≤ (c0 +
∑
k′

τk′)T

with probability greater than 1− 2K/T .

That is, n1 is well defined between c0T/2 and T . At time n1, we have all very critical arms k′
such that Nk′(n1) ≥ τk′n1. Therefore, starting from time n1, the maximum difference between any
non-fairness level (τk′n−Nk′(n))+’s with k′ in the set of very-critical arms is always bounded by
1 with probability 1− 2K/T for all n ∈ [n1, T ].

Lastly, suppose n2 be the last time that arm k is above fairness level. We know at time n = n2, each
very critical arm k′ is played for at least τk′n2 − 1. by previous argument. Then in the remaining
T − n2 rounds, we know that each very critical arm is played at most τk′T − τk′n2 + 1. Then we
must have

T − n2 ≤ (
∑

k′:very critical

τk′)(T − n2) +K +
∑

k:non-very critical

T 2/3,

which implies T − n2 ≤ (KT 2/3 + K)/c0. This finally implies that Nk(T ) ≥ Nk(n2) ≥ τkT −
τk(KT 2/3 + K)/c0 − 1 with probability at least 1 − 2K/T . That is, E[(τkT − Nk(T ))+] =
τk(KT 2/3 +K)/c0 + 1 = O(τkKT

2/3).
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We prove the gap-independent upper bound (Theorem 4) by considering the following situations.

Situation 1.a For arm k ∈ Anon-cr and ∆k ≤ 4
√

log T
T , the regret on arm k is upper bounded by

(∆k −Ak)(τkT −Nk(T )) (40)

if 0 ≤ Nk(T ) ≤ τkT ; or bounded by

∆k(Nk(T )− τkT ) + (∆k −Ak)τkT (41)

if Nk(T ) ≥ τkT .

Situation 1.b For arm k ∈ Anon-cr and ∆k > 4
√

log T
T ,

• if ∆k −Ak > 4
√

log T/τkT the regret on arm k is upper bounded by

(∆k −Ak)(
8 log T

(∆k −Ak)2
+O(1)). (42)

• if ∆k −Ak ≤ 4
√

log T/τkT the regret on arm k is upper bounded by

(∆k −Ak)τkT + ∆k[(
8 log T

∆2
k

− τkT )+ +O(1)]. (43)

In other words, for any arm k ∈ Anon-cr, its regret is always bounded by

4

√
log T

T
τkT + 4

√
τkT log T + 4

√
log T

T
(Nk(T )− τkT )+. (44)

Situation 2 We then split set Aopt ∪ Acr into two subsets, Acr, large and Acr,small, where

Acr, large := {k : Ak −∆k > 4

√
2 log T

T 2/3
}

and

Acr, small := {k : Ak −∆k ≤ 4

√
2 log T

T 2/3
}.

For arm k ∈ Acr,large, we have E[(τkT − Nk(T ))+] = O(τkKT
2/3) by Lemma 1. The regret on

arm k is then bounded by

∆kE[Nk(T )− τkT ] +O(AkτkKT
2/3)

≤ ∆k min{8 log T

∆2
k

− τkT,Nk(T )− τkT}+O(AkτkKT
2/3). (45)

For arm k ∈ Acr,small, the regret on arm k is then bounded by

(Ak −∆k)(τkT −Nk(T )) ≤ 4τkT
2/3(log T )1/2 (46)

if 0 ≤ Nk(T ) ≤ τkT , or

∆k min{8 log T

∆2
k

− τkT +O(1), Nk(T )− τkT} (47)

if Nk(T ) ≥ τkT .

In summary, for any arm k ∈ Aopt ∪ Acr,

∆k min{8 log T

∆2
k

− τkT,Nk(T )− τkT}+O(max{AkτkKT 2/3, 4τkT
2/3(log T )1/2}). (48)
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Combining above situations, the total regret is upper bounded by∑
k∈Anon-cr

max{8
√
τkT log T + 4

√
log T

T
(Nk(T )− τkT )+}

+
∑

k∈Aopt∪Acr

∆k min{8 log T

∆2
k

− τkT,Nk(T )− τkT}+O(max{AkτkKT 2/3, 4τkT
2/3(log T )1/2})

≤ 8
√
T log T (

∑
k∈Anon-cr

√
τk) +AmaxKT

2/3(log T )1/2(
∑

k∈Acr∪Aopt

τk) + 4

√
log T

T

∑
k∈Anon-cr

(Nk(T )− τkT )+

+
∑

k∈Aopt∪Acr

√
8(Nk(T )− τkT )+ log T

≤ 8
√
T log T (

∑
k

√
τk) +AmaxKT

2/3(log T )1/2 + 4

√
log T

T
(1− τmin)T +

√
8 log T

√
KT (1− τmin)

, (49)

where 49 uses the fact that
∑
k∈Acr∪Aopt

τk ≤
∑
k τk ≤ 1;

∑
k∈Anon-cr

(Nk(T ) − τkT )+ ≤ T (1 −
τmin) and∑

k∈Aopt∪Acr

√
(Nk(T )− τkT )+ ≤

∑
k

√
(Nk(T )− τkT )+ ≤

√
K
∑
k

(Nk(T )− τkT )+ ≤
√
KT (1− τmin)

by Jenson’s inequality.

F PROOF OF GAP-INDEPENDENT LOWER BOUNDS

Consider a K-arm setting with µ2 = µ3 = . . . = µK = 0, µ1 = ∆ (0 < ∆ < 1/2),
A1, A2, . . . , AK > 0, ∆ < Ak for k ∈ [K], τ1, τ2, . . . , τK ∈ [0, 1].

Since
∑T
k=2Nk(T ) ≤ T , then it holds Eπ[Nk1(T )] ≤ T/(K − 1) with k1 =

arg mink>1 Eπ[Nk(T )] for any policy π. We then construct another K-arm setting with µk1 = 2∆
and all other parameters remain the same.

For policy π, the regret of the first setting is

R1,π(T ) ≥ AE[(τ1T −N1(T ))+] + {∆E[Nk1(T )− τk1T ] +AE(τk1T −Nk1(T ))+}

and the regret of the second setting is

R2,π(T ) ≥ AE[(τk1T −Nk1(T ))+] + {∆E[N1(T )− τ1T ] +AE(τ1T −N1(T ))+}

If N1(T ) < (1 + τ1 − τk1)T/2, then R1,π(T ) ≥ ∆
1−τ1−τk1

2 T . While N1(T ) > (1 + τ1 − τk1)/2,
then R2,π(T ) ≥ ∆

1−τ1−τk1

2 T . In other words, for policy π,

worst regret ≥ 1

2
(R1,π(T ) +R2,π(T ))

≥ 1

2
(∆T

1− τ1 − τk1
2

P(N1(T ) <
1 + τ1 − τk1

2
) + ∆T

1− τ1 − τk1
2

P(N1(T ) ≥ 1 + τ1 − τk1
2

))

≥ (1− τ1 − τk1)∆T

8
exp{−KL(P1‖P2)} (50)

≥ (1− τ1 − τk1)∆T

8
exp{−CT∆2/(K − 1)}, (51)

where P1 and P2 are two probability distributions under two settings associated with policy
π; 50 follows from the Bretagnolle–Huber inequality. Inequality 51 holds since KL-divergence
KL(P1‖P2) ≤ CT∆2/(K − 1) for many probability distributions. (E.g. C = 1/2 if the reward of
each arm follows Gaussian distribution with variance 1.)
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Taking ∆ =
√

K−1
CT , we have

worst regret ≥ (1− τ1 −maxk 6=1 τk)∆T

8
exp{−CT∆2/(K − 1)}

≥
(1− 2 maxk τk)

√
(K − 1)T/C

8e
, (52)

where e = exp{1}. This completes the proof of Theorem 7.
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