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ABSTRACT

We consider the problem of de novo peptide sequencing in tandem mass spec-
trometry, where the goal is to predict the underlying peptide sequence given a
spectrum’s fragment peaks and precursor information. We present PLMNovo, a
constrained learning framework that leverages pre-trained protein language mod-
els (PLMs) to guide the training process. In particular, we cast peptide-spectrum
matching as a constrained optimization problem that enforces alignment between
spectrum and peptide embeddings produced by a spectrum encoder and a PLM,
respectively. We use a Lagrangian primal-dual algorithm to train the spectrum
encoder and the peptide decoder by solving the proposed constrained learning
problem, while optionally fine-tuning the pre-trained PLM. Through numerical
experiments on established benchmarks, we demonstrate that PLMNovo outper-
forms several state-of-the-art deep learning-based de novo sequencing algorithms.

1 INTRODUCTION

Tandem mass spectrometry (MS/MS) is central to bottom-up proteomics, wherein proteins are di-
gested into peptides, fragmented, and recorded as spectra that capture sequence information (Neagu
et al., 2022). The central computational problem is to translate each spectrum into its underlying
peptide sequence (and often its modifications), enabling downstream protein inference, quantifica-
tion, and biological interpretation. Accurate and scalable peptide identification underpins biomedi-
cal applications ranging from pathway mapping to biomarker and therapeutic development (Schirle
et al., 2012; Liu et al., 2013; Pejchinovski et al., 2024). Yet, it remains challenging due to, among
other reasons, noisy and incomplete fragmentation, instrument variability, and the sheer volume of
data generated in modern experiments (McDonnell et al., 2022; Mao et al., 2023; Du et al., 2025).

Most production pipelines rely on database search methods: candidate peptides are enumerated
from an in silico–digested protein database (with specified enzyme rules and optional variable mod-
ifications), theoretical fragment spectra are generated, and candidate matches are scored with pro-
cedures that enable false discovery rate (FDR) control (Kapp & Schütz, 2007). This strategy is
robust when the database is appropriate and the search space is limited. However, it inherits sev-
eral structural limitations. The primary challenge with database search methods is that they cannot
identify peptides absent from the database, such as single-amino-acid variants or sequences from
unmodeled organisms (van Puyenbroeck et al., 2025). Moreover, the computational burden grows
combinatorially, e.g., with variable post-translational modifications (PTMs). As the candidate space
expands, runtimes increase, scores become less discriminative, and FDR control becomes extremely
challenging (Neuhauser, 2013).

De novo peptide sequencing removes the reliance on a fixed database by inferring sequences di-
rectly from spectra, casting the task as a structured supervised prediction problem under strict mass
constraints. Recent deep learning approaches, ranging from transformer-based encoder–decoder
models (Yilmaz et al., 2022; 2024; Eloff et al., 2025) to graph-based pipelines (Mao et al., 2023),
have learned to incorporate precursor mass and charge to map spectra to amino acid sequences.
Trained on large-scale spectral libraries and adaptable across instruments and fragmentation modes,
these models can recover peptides not found in any database and reveal biology otherwise missed
by search-based pipelines.
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Most state-of-the-art deep learning-based de novo peptide sequencing pipelines create intermediate
representations, or embeddings, of the fragment peaks contained in the spectrum, which are then
used by a peptide decoder to reconstruct the underlying amino acid sequence. In essence, during
training, this is a multi-modal learning problem, where we have access to two different modalities
of the same data (i.e., spectrum peaks and peptide sequence). While prior efforts have been made to
regularize this embedding space using both modalities (Jin et al., 2024), they have relied on peptide
encoders that are trained from scratch and lack prior biological knowledge of the corresponding
amino acid sequences, as compared to large-scale pre-trained biological foundation models.

In this work, we leverage protein language models (PLMs) (Bepler & Berger, 2021; Rives et al.,
2021; Elnaggar et al., 2021; Lin et al., 2023; Hayes et al., 2025) to enhance the training procedure
of deep learning de novo peptide sequencing pipelines. We propose a constrained learning for-
mulation of de novo peptide sequencing, referred to as PLMNovo, where the spectra embeddings
generated by the spectrum decoder are forced to be aligned with their corresponding peptide em-
beddings generated by a pre-trained PLM. We use a primal-dual training algorithm that identifies
the right balance between minimizing the primary amino acid classification objective, while respect-
ing the above alignment constraints between the spectra and peptide embeddings. By training our
model over a massive dataset of 2 million peptide-spectrum matches (PSMs), we demonstrate the
superiority of PLMNovo over state-of-the-art baselines. Moreover, we provide additional results
that highlight the interplay between our proposed alignment constraints and the characteristics of
peptides and spectra.

Our contributions are as follows:

• We propose, for the first time, a constrained learning pipeline that integrates pre-trained
protein language models (PLMs) into the de novo peptide sequencing procedure.

• We provide a Lagrangian duality-based method for solving the sequencing problem under
peptide-spectrum embedding alignment constraints.

• We numerically demonstrate that our proposed method outperforms state-of-the-art deep
learning de novo sequencing pipelines across standard benchmarks.

2 RELATED WORK

2.1 De Novo PEPTIDE SEQUENCING

Building on the limitations of database search, de novo sequencing has become essential in settings
where relevant peptide sequences are missing or incomplete, such as metaproteomics, immunopep-
tidomics, antibody sequencing, and paleoproteomics. Recent progress has been primarily driven by
deep learning since the introduction of DeepNovo (Tran et al., 2017). Contemporary models span
convolutional, transformer, and graph-based architectures. Representative examples include Point-
Novo (Qiao et al., 2021), Casanovo and its follow-up versions (Yilmaz et al., 2022; 2024; Melendez
et al., 2024), PepNet (Liu et al., 2023), GraphNovo (Mao et al., 2023), InstaNovo (Eloff et al.,
2025), and MassNet (Jun et al., 2025). Beyond accuracy, interpretability has begun to receive atten-
tion, with π-xNovo (Wang et al., 2024b) utilizing multi-head attention to link predicted residues to
specific spectral peaks, thereby offering post-hoc explanations of model decisions.

Alongside methodological advances, the field has grappled with evaluation and reliability. Key
open issues include principled false discovery rate (FDR) control that jointly considers database
search and de novo results, understanding the tradeoff between database size and detection power,
and estimating the fraction of “foreign” spectra in a dataset to contextualize performance gains.
Benchmarking also requires care: retraining and hyperparameter tuning are often necessary for fair
comparisons, as default settings can yield suboptimal results and distort conclusions (Zhou et al.,
2024). Despite these challenges, rapid progress, the expansion of public datasets, and improvements
in instrumentation suggest that de novo deep learning pipelines will continue to mature and broaden
their impact in proteomics.
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2.2 PROTEIN LANGUAGE MODELS

Large-scale language models for text have demonstrated that attention-based transformers (Vaswani
et al., 2017) are powerful general-purpose sequence learners. The same recipe has been adopted
for proteins: the availability of hundreds of millions of natural sequences (for example, from
UniRef (Suzek et al., 2007; 2015) and BFD (Jumper et al., 2021)) enables pretraining at internet
scale, turning protein sequences into the “language” on which to learn syntax (motifs), semantics
(function), and long-range dependencies (contacts). This line of work has produced protein lan-
guage models (PLMs) that learn rich contextual embeddings directly from amino-acid sequences
and transfer surprisingly well to downstream biological tasks.

PLMs differ in architecture and objective but share the core idea of self-supervision. Masked lan-
guage models, such as the ESM family (Rives et al., 2021; Lin et al., 2023; ESM Team, 2024; Hayes
et al., 2025) and ProtT5 Elnaggar et al. (2021), learn to recover hidden residues from context and of-
ten scale to billions of parameters. Autoregressive generators, such as ProtGPT2 (Ferruz et al., 2022)
and ProGen (Nijkamp et al., 2023), model next-token distributions and are used for controllable se-
quence generation. Moreover, context-based PLMs exploit multiple sequence alignment, or MSAs,
that encode evolutionary variation explicitly (Rao et al., 2021; Truong Jr & Bepler, 2025; Akiyama
et al., 2025). Recent efforts have extended the context length and improved efficiency (Chen et al.,
2025a) and adopted diffusion-style generative processes for discrete sequences (Wang et al., 2024a).

The resulting representations from pre-trained PLMs have driven state-of-the-art or competitive per-
formance across diverse applications, such as zero-shot and few-shot prediction of mutational ef-
fects (Meier et al., 2021; Brandes et al., 2023), functional annotation (Martı́nez-Redondo et al.,
2025), and controllable protein and peptide design (Lee et al., 2024; Chen et al., 2025b). In pro-
teomics specifically, PLM embeddings and priors have been utilized to enhance peptide property
predictors, such as retention time, detectability, and MS/MS fragmentation pattern (Nakai-Kasai
et al., 2025).

In this work, we present a novel application of PLMs in proteomics by integrating them into the de
novo peptide sequencing pipeline, as described next.

3 METHOD

De novo peptide sequencing can be formulated as a supervised classification problem. Assume we
have access to a set of N annotated training samples {(pi, si, preci)}Ni=1. For every i ∈ {1, . . . , N},
pi ∈ YLi represents the peptide sequence of length Li, with Y denoting the amino acid alphabet,
and si ∈ (R+ × R+)

Ki denotes the observed spectrum composed of Ki peaks, with each peak
represented as a pair of m/z (mass to charge ratio) and intensity values. Moreover, preci ∈ R3

+

denotes the precursor information of the ith training sample, consisting of the precursor mass, pre-
cursor charge, and retention time. The goal of de novo peptide sequencing is to reconstruct the
ground-truth peptide sequence given the observed spectrum and the precursor information. More
precisely, we are interested in a parameterized function fθ that solves the following empirical risk
minimization problem:

min
θ∈Θ

1

N

N∑
i=1

ℓCE

(
fθ(si, preci),pi

)
, (1)

where ℓCE(·, ·) denotes the cross-entropy reconstruction loss function between the predicted and
ground-truth peptide sequences, and Θ denotes the set of all possible model parameters. The super-
vised learning formulation in (1) has been used in the majority of the recent work on deep learning-
based de novo peptide sequencing (Yilmaz et al., 2022; 2024; Eloff et al., 2025). Most of these
studies break down the end-to-end function fθ into an encoder gθenc and a decoder hθdec , where the
encoder maps the observed spectrum into intermediate peak-level representations, which are then
used by the decoder, alongside the precursor information, to reconstruct the peptide sequence at the
output, i.e.,

fθ(si, preci) = hθdec

(
gθenc(si), preci

)
, (2)

with the encoder and decoder parameterized using transformer architectures (Vaswani et al., 2017).
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In this paper, we take a different approach from the supervised learning formulation in (1). Given
the success of pre-trained protein language models (PLMs) in deriving informative representations
from amino acid sequences, we hypothesized that including a PLM in the training process could
benefit the generalization power of the de novo sequencing pipeline. More specifically, for a given
peptide-spectrum match (PSM) (p, s), we propose aligning the peptide embedding generated by a
PLM with the spectrum embedding gθenc(s) created by the spectrum encoder.

For a peptide p of length L, let mθPLM(p) ∈ RL×d′
denote the residue-level embeddings generated by

a PLM mθPLM . Moreover, assume the peak-level embeddings generated by the spectrum encoder gθenc
lie in Rd, i.e., gθenc(s) ∈ RK×d for a spectrum s with K peaks. We then aggregate these embeddings
using two pooling modules. To derive a unified spectrum-peptide co-embedding space, we further
use a projection module to map the peptide embedding to Rd. With a slight abuse of notation, we
let eθs(·) ∈ Rd denote the pooling function for the spectrum embeddings and eθp(·) ∈ Rd represent
the combined pooling and projection function for the peptide embeddings.

Our proposed method, PLMNovo, enforces the peptide-spectrum embedding alignment via a con-
strained learning approach (Chamon et al., 2022). Formally, we solve the following constrained
optimization problem:

min
θenc,θdec,θs,θp,θPLM

1

N

N∑
i=1

ℓCE

[
hθdec

(
gθenc(si), preci

)
,pi

]
, (3a)

s.t.
∥∥∥∥eθs(gθenc(si))− eθp

(
mθPLM(pi)

)∥∥∥∥2
2

≤ ϵ, ∀i ∈ {1, . . . , N}, (3b)

where ∥x − y∥2 denotes the Euclidean distance between two vectors x,y ∈ Rd. The learning
problem in (3) attempts to find the model parameters that not only minimize the primary de novo
sequencing objective in (3a), but also ensure that the spectra and peptide embeddings are closely
aligned. The alignment is introduced as a per-PSM constraint in (3b), where the squared Euclidean
distance between the aggregated spectrum and peptide embeddings, both in Rd, is at most ϵ. The
upper bound, ϵ, is treated as a hyperparameter: extremely low values of ϵ could make the problem
infeasible or lead to degenerate solutions (where all embeddings collapse to a small subset of the
embedding space), while ϵ → ∞ reverts the problem to the original unconstrained problem in (1).
Therefore, its choice is critical in generating informative spectrum (and peptide) embeddings. Fig-
ure 1 illustrates an overview of PLMNovo.

Observe that the optimization variables in (3) include those of the spectrum encoder θenc, the peptide
decoder θdec, the spectrum pooling θs, the peptide pooling and projection θp, and the PLM θPLM.
While all these parameters are involved during the training phase, only the spectrum encoder and
peptide decoder parameters (i.e., θenc, θdec) are used during inference. Furthermore, the PLM param-
eters can be kept frozen (at a pre-trained checkpoint), or trained end-to-end (e.g., via fine-tuning (Hu
et al., 2022; Schmirler et al., 2024; Sledzieski et al., 2024)). We note that such an MSE-based align-
ment approach resembles the BYOL self-supervised learning method (Grill et al., 2020), but instead
of augmentations, here we consider embeddings from two different data modalities and correspond-
ing feature extractors.

3.1 PRIMAL-DUAL TRAINING

To solve the constrained learning problem in (3), we move to the dual domain (Boyd & Vanden-
berghe, 2004) and write the Lagrangian function as
L(θenc, θdec, θs, θp, θPLM,λ)

=
1

N

N∑
i=1

ℓCE

[
hθdec

(
gθenc(si), preci

)
,pi

]
+

N∑
i=1

λi

[∥∥∥eθs(gθenc(si))− eθp

(
mθPLM(pi)

)∥∥∥2
2
− ϵ

]
,

(4)
where λi ≥ 0 is the Lagrangian dual multiplier corresponding to the ith training sample, and λ ∈
RN

+ denotes the vector of all dual multipliers. The dual of problem (3) is then given by the saddle-
point problem

max
λ∈RN

+

min
θenc,θdec,θs,θp,θPLM

L(θenc, θdec, θs, θp, θPLM,λ). (5)
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Figure 1: Our proposed architecture, PLMNovo, consists of an encoder-decoder pair, whose inter-
mediate embeddings are constrained by a protein language model (PLM). In particular, the spectrum
fragment peak information (comprising K (m/z, intensity) pairs) is mapped to a peak-level K × d
spectrum embedding using a spectrum encoder. These intermediate embeddings are then fed into
a peptide decoder, alongside the precursor mass and charge, to predict the corresponding peptide
sequence. The predicted peptide sequence is compared to the ground-truth peptide sequence us-
ing the cross-entropy loss, which constitutes the primary objective function. Simultaneously, the
ground-truth peptide sequence (comprising L amino acids) is mapped to a residue-level L × d′

peptide embedding using a PLM. The spectrum and peptide embeddings are aggregated using two
pooling modules, and the aggregated peptide embedding is projected to the same embedding space
as the spectrum embedding (i.e., Rd). The squared Euclidean distance between the resulting peptide
and spectrum embeddings is then enforced to be bounded by a constant, which acts as a per peptide-
spectrum match (PSM) constraint in the optimization problem. While the spectrum encoder-decoder
pair, as well as the pooling and projection modules, are trained end-to-end, the PLM is fine-tuned
from a pre-trained checkpoint via the alignment loss gradients.

To solve this problem, we can use a primal-dual approach (Boyd & Vandenberghe, 2004; Fioretto
et al., 2021; Elenter et al., 2022), where we alternate between updating the model parameters and
the dual multiplier. More specifically, in each primal iteration, the model parameters are updated
using gradient descent on the Lagrangian, i.e.,

θ ← θ − ηθ
∂L
∂θ

, (6)

where ηθ denotes the primal learning rate, and to ease the notation, we aggregate all the model
parameters into θ = [θenc, θdec, θs, θp, θPLM]. Then, in each dual iteration, the dual multipliers are
updated using projected gradient ascent on the Lagrangian, i.e.,

λ←
[
λ+ ηλ

∂L
∂λ

]
+

, (7)

where ηλ denotes the dual learning rate, and [·]+ := max(·, 0) represents elementwise mapping
onto the RN

+ . Combining (4) and (7), we can rewrite the update of each Lagrangian multiplier in
closed form as

λi ←
[
λi + ηλ

(∥∥∥eθs(gθenc(si))− eθp

(
mθPLM(pi)

)∥∥∥2
2
− ϵ

)]
+

. (8)

The closed-form update in (8) implies that the dual multiplier corresponding to each PSM accumu-
lates the alignment constraint violations over the course of the training process. In other words, if
for a PSM, the spectra and peptide embeddings are perfectly aligned, its corresponding dual mul-
tiplier remains at zero, whereas in the case of a PSM for which there is a significant misalignment
between the spectra and peptide embeddings, its dual multiplier keeps increasing. This shows how
the proposed constrained formulation adapts the importance of different training sample alignments
by dynamically adjusting the importance of each PSM in the Lagrangian in (4).

5
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4 NUMERICAL RESULTS

4.1 EXPERIMENTAL SETTINGS

We base PLMNovo’s implementation on Casanovo 4.2 (Melendez et al., 2024), a state-of-the-art
autoregressive de novo sequencing pipeline trained on a dataset of 2 million PSMs, all of which are
digested using trypsin, the standard enzyme used in tandem mass spectrometry (Melendez, 2024).
We train all PLMNovo models on this dataset. This dataset originates from the MassIVE Knowl-
edge Base (Wang et al., 2018) and is accompanied by a test split containing 200,000 tryptic samples.
In what follows, we refer to this dataset as the MSKB dataset. Casanovo 4.2 is built on the previ-
ous versions of Casanovo (Yilmaz et al., 2022; 2024). We follow the exact hyperparameters used
by Melendez et al. (2024), including using a 9-layer transformer-based encoder-decoder architec-
ture with a d = 512-dimensional embedding space, and a beam search decoding mechanism with
k = 10 beams. The rest of the hyperparameters and model details are mentioned in Appendix A.
We retrain Casanovo v4.2 on the MSKB training set, and all results reported below corresponding
to this architecture are based on our retrained version.

As for the PLMs, we use two PLM architectures from the ESM-2 family (Lin et al., 2023), namely
the 8M (with d′ = 320) and 650M (with d′ = 1280) versions. We remove any post-translational
modifications (PTMs) from the ground-truth peptide sequences before feeding them to the PLMs to
respect their token vocabularies, which are based on the canonical amino acids. To manage com-
putational complexity, we leverage low-rank adaptation, or LoRA (Hu et al., 2022), to fine-tune the
PLM parameters, focusing on only the key and value parameter matrices in the self-attention layers,
as recommended in prior work (Sledzieski et al., 2024). We utilize average pooling to aggregate
both peptide and spectrum embeddings.

We perform grid search on two important hyperparameters: the alignment constraint bound (ϵ ∈
{10−1, 10−2, 10−3}) in (3b), and the LoRA fine-tuning rank (r ∈ {0, 2, 4}). Treating the MSKB
test set as a validation split, for each PLM, we select the (ϵ, r) combination that leads to the lowest
amino acid classification loss. Our implementation code can be found at https://github.
com/AnonMS2/PLMNovo.

4.2 PERFORMANCE ON THE MSKB AND MULTI-ENZYME TEST SETS

The top portion of Table 1 compares the performance of PLMNovo and Casanovo v4.2 on the MSKB
test set. Across all amino acid-level and peptide-level metrics, PLMNovo, especially with the 8M
version of ESM-2, outperforms the base Casanovo v4.2 model, demonstrating the performance boost
that the PLM-guided alignment constraints provide in PLMNovo.

While the MSKB test set provides an in-distribution evaluation setting, we also tested our models on
a held-out non-tryptic multi-enzyme dataset (Melendez, 2024; Melendez et al., 2024). As the bottom
portion of the Table 1 shows, PLMNovo also outperforms Casanovo v4.2 on this out-of-distribution
dataset. Interestingly, ESM-2 650M significantly outperforms ESM-2 8M on this dataset, suggesting
that the smaller-scale PLM may have led to slight overfitting of PLMNovo on tryptic data.

Dataset Method Classification Loss (↓) AA Precision (↑) AA Recall (↑) Peptide Precision (↑)

MSKB (Tryptic)
Casanovo v4.2 (Melendez et al., 2024) 0.1983 0.8919 0.8884 0.7381

PLMNovo (ESM-2 8M) 0.1919 0.8973 0.8921 0.7411

PLMNovo (ESM-2 650M) 0.1941 0.8976 0.8915 0.7400

Multi-Enzyme (Non-Tryptic)
Casanovo v4.2 (Melendez et al., 2024) 0.9949 0.5200 0.5211 0.2467

PLMNovo (ESM-2 8M) 0.9723 0.5249 0.5283 0.2410

PLMNovo (ESM-2 650M) 0.9714 0.5356 0.5323 0.2483

Table 1: Amino acid-level and peptide-level performance comparison on the MSKB and multi-
enzyme test sets (Melendez, 2024). Numbers in bold represent the best result under each (metric,
dataset) combination.
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4.3 PERFORMANCE ON THE NINE-SPECIES BENCHMARK

We next evaluated PLMNovo, pre-trained on the MSKB training set, on the nine-species benchmark,
which is a standard dataset used by the majority of prior work on de novo peptide sequencing. As
Table 2 shows, while PLMNovo provides competitive performance in terms of peptide recall, it
outperforms all other baselines in terms of the amino acid precision.

Metric Method
Species

Average
Bacillus C. bacteria Honeybee Human M. mazei Mouse Ricebean Tomato Yeast

AA Precision (↑)

DeepNovo (Tran et al., 2017) 0.742 0.602 0.630 0.610 0.694 0.623 0.679 0.731 0.750 0.673

PointNovo (Qiao et al., 2021) 0.768 0.589 0.644 0.606 0.712 0.626 0.730 0.733 0.779 0.687

Casanovo (Yilmaz et al., 2022) 0.749 0.603 0.629 0.586 0.679 0.689 0.668 0.721 0.684 0.667

AdaNovo (Xia et al., 2024) 0.739 0.642 0.650 0.618 0.728 0.646 0.719 0.740 0.793 0.697

Casanovo v2 (Yilmaz et al., 2024) 0.790 0.681 0.706 0.676 0.755 0.760 0.748 0.785 0.752 0.739

Casanovo v4.2 (Melendez et al., 2024) 0.793 0.678 0.705 0.668 0.687 0.756 0.753 0.791 0.768 0.733

PLMNovo (ESM-2 8M) 0.794 0.684 0.707 0.670 0.755 0.759 0.764 0.790 0.755 0.742

PLMNovo (ESM-2 650M) 0.797 0.688 0.709 0.676 0.755 0.760 0.766 0.795 0.771 0.746

Peptide Recall (↑)

DeepNovo (Tran et al., 2017) 0.449 0.253 0.330 0.293 0.422 0.286 0.436 0.454 0.462 0.376

PointNovo (Qiao et al., 2021) 0.518 0.298 0.396 0.351 0.478 0.355 0.511 0.513 0.534 0.439

CasaNovo (Yilmaz et al., 2022) 0.537 0.330 0.406 0.341 0.478 0.426 0.506 0.521 0.490 0.448

AdaNovo (Xia et al., 2024) 0.528 0.372 0.431 0.373 0.496 0.467 0.546 0.530 0.593 0.481

Casanovo v2 (Yilmaz et al., 2024) 0.622 0.446 0.493 0.446 0.557 0.483 0.589 0.618 0.599 0.539

Casanovo v4.2 (Melendez et al., 2024) 0.603 0.421 0.478 0.437 0.498 0.468 0.558 0.608 0.584 0.517

PLMNovo (ESM-2 8M) 0.602 0.423 0.484 0.434 0.544 0.470 0.565 0.606 0.571 0.522

PLMNovo (ESM-2 650M) 0.601 0.425 0.483 0.432 0.544 0.464 0.576 0.606 0.579 0.523

Table 2: Performance comparison results in terms of amino acid precision and peptide recall on
the nine-species dataset (Tran et al., 2017). The performance of the baseline methods, except for
Casanovo v4.2, is reported from (Zhang et al., 2025b). Bolded and underlined results represent
the first and second best performance per species (or averaged across species in the last column),
respectively.

4.4 IMPACT OF THE CONSTRAINTS ON THE EMBEDDING SPACE

Figure 2-(a) provides a two-dimensional visualization of the embedding space occupied by the pep-
tide and spectrum embeddings of the MSKB test set using t-SNE (Maaten & Hinton, 2008) under
different alignment constraint bounds. As the figure shows, our proposed alignment constraints
highly regularize the peptide-spectrum co-embedding space, where matching peptide and spectrum
embeddings lie close to each other. This is in contrast to the unconstrained case (ϵ → ∞), where
peptides and spectra embeddings are very far from each other.

Furthermore, as shown in Figure 2-(b), tighter constraint bounds generally lead to lower Euclidean
distances for the PSMs in the embedding space, even though enforcement of such alignment gets
more and more challenging as ϵ is reduced.

4.5 INTERPRETATION OF EMBEDDING ALIGNMENT

Alignments for Different Peptide and Spectrum Scales. Figures 3-(a) and 3-(b) show the
squared Euclidean distance between peptide and spectrum embeddings for different peptide lengths
and number of spectrum peaks. Interestingly, the PSM co-embedding distance increases for ex-
tremely short or long peptides, and decreases with an increasing number of peaks. The latter phe-
nomenon is intuitive, since having more peaks can lead to a more informative representation of the
spectrum, hence improving the peptide decoding process. The former phenomenon has also been
previously reported in the literature (Zhou et al., 2024), where longer peptide sequences are gener-
ally more complicated to decode, especially when using autoregressive methods, and shorter peptide
sequences suffer from a lack of sufficient training data. The inclusion of more sophisticated pooling
methods for spectrum and peptide embeddings (Zhang et al., 2020; Stärk et al., 2021; NaderiAl-
izadeh & Singh, 2025; Amir & Dym, 2025; Tartici et al., 2025; NaderiAlizadeh et al., 2025)), as
well as non-autoregressive decoding algorithms (Zhang et al., 2025a;b)), could enhance the perfor-
mance of PLMNovo, especially for longer peptide sequences.
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Figure 2: (a) t-SNE (Maaten & Hinton, 2008) visualization of the peptide-spectrum co-embedding
space produced by PLMNovo at various alignment constraint bounds (ϵ) levels on a subset of 1000
PSMs from the MSKB test set. (b) Empirical cumulative distributions of the peptide-spectrum em-
bedding distances under different constraint levels, alongside the corresponding optimal Lagrangian
dual multipliers, averaged across the training samples.
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Figure 3: Squared Euclidean distance of PSM embeddings vs. (a) peptide length and (b) number
of peaks in the spectrum. (c) Distribution of the squared Euclidean PSM embedding distance for
different numbers of modified amino acids in the peptide sequences.

Impact of Post-Translational Modifications. Post-Translational Modifications, or PTMs, are bi-
ological processes where proteins are chemically modified after translation. While prevalent in pro-
teomics, modified amino acids resulting from PTMs, such as oxidation of methionine and deami-
dation of asparagine or glutamine, constitute a small fraction of the amino acids in tandem mass
spectrometry training datasets. This has led to previous de novo sequencing models struggling to
decode PTMs, thereby motivating methods especially designed to handle modified residues, such
as AdaNovo (Xia et al., 2024) and PrimeNovo (Zhang et al., 2025a). We sought to understand the
impact of PTMs on PLMNovo’s learned co-embedding space. Figure 3-(c) shows the histograms
of squared peptide-spectrum embedding distances for peptide sequences with different numbers of
modified amino acids on the MSKB test set. As the figure demonstrates, the embedding gap be-
tween a spectrum and its corresponding peptide increases with the number of PTMs in the peptide
sequence. We hypothesize that this limitation stems from the inability of common PLMs, such as
the ESM-2 family, to handle PTMs. PLM architectures specifically designed to handle PTM tokens,
such as PTM-Mamba (Peng et al., 2025), can potentially bridge this gap and enhance PLMNovo’s
ability to identify modified amino acids during the decoding process.

4.6 ABLATION STUDY

Figure 4 presents an ablation study of PLMNovo in terms of different alignment constraint bounds
and PLM fine-tuning ranks for 8M and 650M versions of ESM-2. As the figure shows, fine-tuning
the PLM generally helps improve PLMNovo’s performance compared to keeping the PLM frozen
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Figure 4: Ablation study of PLMNovo’s performance on the MSKB test set in terms of the alignment
constraint bound (ϵ) in (3b), as well as the fine-tuning rank of the PLM, where a rank of zero implies
that the PLM was frozen. Boxes highlighted in green correspond to the selected hyperparameter
combination. Furthermore, the black lines in the colorbars represent Casanovo 4.2’s performance,
which is equivalent to PLMNovo’s unconstrained performance (i.e., ϵ→∞).

(LoRA rank = 0). While the majority of the configurations in our grid search exceed the performance
of Casanovo v4.2, these results show that tuning these hyperparameters is critical to maximize PLM-
Novo’s predictive power.

5 DISCUSSION AND CONCLUDING REMARKS

We presented PLMNovo, a novel deep learning method for de novo peptide sequencing, which en-
forces the proximity of matching peptides and spectra in a co-embedding space. While the spectrum
embeddings are generated using a spectrum encoder, we use pre-trained protein language models
(PLMs) to create the peptide embeddings. We formulate the sequencing problem using a constrained
learning framework and adopt a primal-dual algorithm to train the spectrum encoder and peptide de-
coder, while fine-tuning the PLM. Numerical experiments demonstrated that PLMNovo surpasses
other baseline deep learning de novo peptide sequencing methods in various benchmarks.

In the future, we envision several immediate enhancements to PLMNovo, such as investigating other
PLM architectures and families (e.g., (Elnaggar et al., 2021; Nijkamp et al., 2023; ESM Team, 2024;
Truong Jr & Bepler, 2025; Peng et al., 2025)) and alternative embedding pooling strategies (e.g.,
(Tartici et al., 2025; NaderiAlizadeh & Singh, 2025)). While our pipeline is implemented based
on Casanovo 4.2 (Melendez et al., 2024), we expect our gains to transfer to more recent de novo
sequencing pipelines that employ techniques such as curriculum learning (Zhang et al., 2025b),
sequence re-ranking (Qiu et al., 2025), missing fragmentation imputation (Du et al., 2025), and
non-autoregressive decoding (Zhang et al., 2025a). Finally, extension of the proposed constrained
learning approach to data-independent acquisition (DIA) (Sanders et al., 2025), a more challenging
protocol than the data-dependent acquisition (DDA) setting studied in this work, is an essential
avenue for further impact of PLMNovo in mass spectrometry research.

6 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized to aid in manuscript review and editorial refinement.
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A ADDITIONAL PLMNOVO IMPLEMENTATION DETAILS

Architecture. Similar to Casanovo 4.2 (Melendez et al., 2024), PLMNovo utilizes transform-
ers (Vaswani et al., 2017) to map spectral information onto amino acid sequences via an encoder-
decoder architecture. Peak characteristics (m/z ratios and intensities) undergo distinct encoding
procedures, with sinusoidal functions for mass values and learnable linear mappings for intensities,
producing unified high-dimensional representations through summation. The encoder component
processes these peak embeddings using multi-head attention to establish inter-peak relationships
and contextual understanding across the entire spectrum. The peak embeddings then guide the de-
coder’s sequential amino acid prediction task.

Sequence generation operates through step-wise autoregressive decoding initiated with precursor in-
formation. In particular, precursor mass and charge values undergo a sinusoidal transformation and
a linear layer, respectively, before being integrated into unified embeddings. The decoder leverages
both spectral context and precursor information to initiate the construction of amino acid sequences.
At each decoding step, the decoder processes embeddings corresponding to the precursor charac-
teristics and all previously predicted amino acids. Beam search maintains diversity by tracking the
top k scoring hypotheses throughout decoding, expanding sequences until natural termination or
mass constraint violation occurs, with the output sequence being the maximum-scoring complete
sequence. Quality control applies mass accuracy filters, penalizing predictions whose theoretical
precursor masses exceed specified deviation limits (50 ppm threshold) from observed values.

Hyperparameters. The length of predicted peptides is set to be between a minimum of 6 and a
maximum of 100 amino acids. We select at most 150 peaks within each spectrum, with a minimum
intensity of 0.01, and a m/z ratio between 50 and 2500. We use a batch size of 32 during training
and train the model for 7 epochs (Melendez et al., 2024). We use the Adam optimizer with a primal
learning rate of ηθ = 5× 10−4 and a weight decay of 10−5 and a dual learning rate of ηλ = 10−2.
The primal learning rate is warmed up linearly in the first 105 iterations, followed by a cosine-
shaped decay with a half period of 6 × 105 iterations. A label smoothing factor of 10−2 is used
when calculating the training classification loss. The encoder and decoder each have 9 self-attention
layers, each containing 8 attention heads, with a latent representation dimension of 512 and a fully-
connected layer dimension of 1024. For LoRA, we set α = 4× r for any selected rank r (Sledzieski
et al., 2024).
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