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ABSTRACT

From human physiology to environmental evolution, important processes in nature often exhibit
meaningful and strong periodic or quasi-periodic changes. Due to their inherent label scarcity,
learning useful representations for periodic tasks with limited or no supervision is of great ben-
efit. Yet, existing self-supervised learning (SSL) methods overlook the intrinsic periodicity in
data, and fail to learn representations that capture periodic or frequency attributes. In this paper,
we present SimPer, a simple contrastive SSL regime for learning periodic information in data.
To exploit the periodic inductive bias, SimPer introduces customized augmentations, feature
similarity measures, and a generalized contrastive loss for learning efficient and robust periodic
representations. Extensive experiments on common real-world tasks in human behavior analy-
sis, environmental sensing, and healthcare domains verify the superior performance of SimPer
compared to state-of-the-art SSL methods, highlighting its intriguing properties including bet-
ter data efficiency, robustness to spurious correlations, and generalization to distribution shifts.
Code and data are available at: https://github.com/YyzHarry/SimPer.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Freq. (Hz)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Freq. (Hz)

Supervised Self-Supervised

SimCLR CVRL SimPer (Ours)

Figure 1: Learned representations of different methods on a periodic learning dataset, RotatingDigits (details
in Section 4). Existing self-supervised learning schemes fail to capture the underlying periodic or frequency
information in data. In contrast, SimPer learns robust periodic representations with high frequency resolution.

1 INTRODUCTION

Practical and important applications of machine learning in the real world, from monitoring the earth
from space using satellite imagery (Espeholt et al., 2021) to detecting physiological vital signs in a
human being (Luo et al., 2019), often involve recovering periodic changes. In the health domain,
learning from video measurement has shown to extract (quasi-)periodic vital signs including atrial
fibrillation (Yan et al., 2018), sleep apnea episodes (Amelard et al., 2018) and blood pressure (Luo
et al., 2019). In the environmental remote sensing domain, periodic learning is often needed to
enable nowcasting of environmental changes such as precipitation patterns or land surface temper-
ature (Sønderby et al., 2020). In the human behavior analysis domain, recovering the frequency
of changes or the underlying temporal morphology in human motions (e.g., gait or hand motions) is
crucial for those rehabilitating from surgery (Gu et al., 2019), or for detecting the onset or progres-
sion of neurological conditions such as Parkinson’s disease (Liu et al., 2022; Yang et al., 2022b).

While learning periodic targets is important, labeling such data is typically challenging and resource
intensive. For example, if designing a method to measure heart rate, collecting videos with highly
synchronized gold-standard signals from a medical sensor is time consuming, labor intensive, and
requires storing privacy sensitive bio-metric data. Fortunately, given the large amount of unlabeled
data, self-supervised learning that captures the underlying periodicity in data would be promising.
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Yet, despite the great success of self-supervised learning (SSL) schemes on solving discrete classifi-
cation or segmentation tasks, such as image classification (Chen et al., 2020; He et al., 2020), object
detection (Xiao et al., 2021), action recognition (Qian et al., 2021), or semantic labeling (Hu et al.,
2021), less attention has been paid to designing algorithms that capture periodic or quasi-periodic
temporal dynamics from data. Interestingly, we highlight that existing SSL methods inevitably over-
look the intrinsic periodicity in data: Fig. 1 shows the UMAP (McInnes et al., 2018) visualization
of learned representations on RotatingDigits, a toy periodic learning dataset that aims to recover the
underlying rotation frequency of different digits (details in Section 4). As the figure shows, state-of-
the-art (SOTA) SSL schemes fail to capture the underlying periodic or frequency information in the
data. Such observations persist across tasks and domains as we show later in Section 4.

To fill the gap, we present SimPer, a simple self-supervised regime for learning periodic information
in data. Specifically, to leverage the temporal properties of periodic targets, SimPer first introduces
a temporal self-contrastive learning framework, where positive and negative samples are obtained
through periodicity-invariant and periodicity-variant augmentations from the same input instance.
Further, we identify the problem of using conventional feature similarity measures (e.g., cos(·)) for
periodic representation, and propose periodic feature similarity to explicitly define how to measure
similarity in the context of periodic learning. Finally, to harness the intrinsic continuity of augmented
samples in the frequency domain, we design a generalized contrastive loss that extends the classic
InfoNCE loss to a soft regression variant that enables contrasting over continuous labels (frequency).

To support practical evaluation of SSL of periodic targets, we benchmark SimPer against SOTA SSL
schemes on six diverse periodic learning datasets for common real-world tasks in human behavior
analysis, environmental remote sensing, and healthcare. Rigorous experiments verify the robustness
and efficiency of SimPer on learning periodic information in data. Our contributions are as follows:

• We identify the limitation of current SSL methods on periodic learning tasks, and uncover intrinsic
properties of learning periodic dynamics with self-supervision over other mainstream tasks.

• We design SimPer, a simple & effective SSL framework that learns periodic information in data.
• We conduct extensive experiments on six diverse periodic learning datasets in different domains:

human behavior analysis, environmental sensing, and healthcare. Rigorous evaluations verify the
superior performance of SimPer against SOTA SSL schemes.

• Further analyses reveal intriguing properties of SimPer on its data efficiency, robustness to spuri-
ous correlations & reduced training data, and generalization to unseen targets.

2 RELATED WORK

Periodic Tasks in Machine Learning. Learning or recovering periodic signals from high dimen-
sional data is prevailing in real-world applications. Examples of periodic learning include recover-
ing and magnifying physiological signals (e.g., heart rate or breathing) (Wu et al., 2012), predicting
weather and environmental changes (e.g., nowcasting of precipitation or land surface temperatures)
(Sønderby et al., 2020; Espeholt et al., 2021), counting motions that are repetitious (e.g., exercises
or therapies) (Dwibedi et al., 2020; Ali et al., 2020), and analyzing human behavior (e.g., gait) (Liu
et al., 2022). To date, much prior work has focused on designing customized neural architectures
(Liu et al., 2020; Dwibedi et al., 2020), loss functions (Starke et al., 2022), and leveraging relevant
learning paradigms including transfer learning (Lu et al., 2018) and meta-learning (Liu et al., 2021)
for periodic learning in a supervised manner, with high-quality labels available. In contrast to these
past work, we aim to learn robust & efficient periodic representations in a self-supervised manner.

Self-Supervised Learning. Learning with self-supervision has recently attracted increasing inter-
ests, where early approaches mainly rely on pretext tasks, including exemplar classification (Doso-
vitskiy et al., 2014), solving jigsaw puzzles (Noroozi & Favaro, 2016), object counting (Noroozi
et al., 2017), clustering (Caron et al., 2018), and predicting image rotations (Gidaris et al., 2018).
More recently, a line of work based on contrastive losses (Oord et al., 2018; Tian et al., 2019; Chen
et al., 2020; He et al., 2020) shows great success in self-supervised representations, where similar
embeddings are learned for different views of the same training example (positives), and dissimilar
embeddings for different training examples (negatives). Successful extensions have been made to
temporal learning domains including video understanding (Jenni et al., 2020) or action classification
(Qian et al., 2021). However, current SSL methods have limitations in learning periodic information,
as the periodic inductive bias is often overlooked in method design. Our work extends existing SSL
frameworks to periodic tasks, and introduces new techniques suitable for learning periodic targets.
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Figure 2: An overview of the SimPer framework. Input sequence is first passed through periodicity-variant
transformations τ(·) to create a series of speed (frequency) changed samples, where each augmented sample ex-
hibits different underlying periodic signals due to the altered frequency, and can be treated as negative examples
for each other. The augmented series are then passed through two sets of periodicity-invariant transformations
σ(·) to create different invariant views (positives). All samples are then encoded in the feature space through a
shared encoder f(·). The SimPer loss is calculated by contrasting over continuous speed (frequency) labels of
different feature vectors, using customized periodic feature similarity measures.

3 THE SIMPER FRAMEWORK

When learning from periodic data in a self-supervised manner, a fundamental question arises:
How do we design a self-supervised task such that periodic inductive biases are exploited?

We note that periodic learning exhibits characteristics that are distinct from prevailing learning tasks.
First, while most efforts on exploring invariances engineer transformations in the spatial (e.g., image
recognition) or temporal (e.g., video classification) domains, dynamics in the frequency domain are
essential in periodic tasks, which has implications for how we design (in)variances. Second, unlike
conventional SSL where a cosine distance is typically used for measuring feature similarity, repre-
sentations learned for repetitious targets inherently possess periodicity that is insensitive to certain
shifts (e.g., shifts in feature index), which warrants new machinery for measuring periodic similarity.
Third, labels of periodic data have a natural ordinality and continuity in the frequency domain, which
inspires the need for strategies beyond instance discrimination, that contrast over continuous targets.

We present SimPer (Simple SSL of Periodic Targets), a unified SSL framework that addresses each
of the above limitations. Specifically, SimPer first introduces a temporal self-contrastive learning
scheme, where we design periodicity-invariant and periodicity-variant augmentations for the same
input instance to create its effective positive and negative views in the context of periodic learning
(Section 3.1). Next, SimPer presents periodic feature similarity to explicitly define how one should
measure the feature similarity when the learned representations inherently possess periodic infor-
mation (Section 3.2). Finally, in order to exploit the continuous nature of augmented samples in the
frequency domain, we propose a generalized contrastive loss that extends the classic InfoNCE loss
(Oord et al., 2018) from discrete instance discrimination to continuous contrast over frequencies,
which takes into account the meaningful distance between continuous labels (Section 3.3).

3.1 TEMPORAL SELF-CONTRASTIVE LEARNING FRAMEWORK

Problem Setup. LetD = {(xi)}Ni=1 be the unlabeled training set, where xi ∈ RD denotes the input
sequence. We denote as z = f(x; θ) the representation of x, where f(·; θ) is parameterized by a
deep neural network with parameter θ. To preserve the full temporal dynamics and information, z
typically extracts frame-wise feature of x, i.e., z has the same length as input x.

As motivated, frequency information is most essential when learning from periodic data. Precisely,
augmentations that change the underlying frequency effectively alter the identity of the data (period-
icity), and vice versa. This simple insight has implications for how we design proper (in)variances.

Periodicity-Variant Augmentations. We construct negative views of data through transformations
in the frequency domain. Specifically, given input sequence x, we define periodicity-variant aug-
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mentations τ ∈ T , where T represents the set of transformations that change x with an arbitrary
speed that is feasible under the Nyquist sampling theorem. As Fig. 2 shows, SimPer augments x
by M times, obtaining a series of speed (frequency) changed samples {τ1(x), τ2(x)}, . . . , τM (x)},
whose relative speeds satisfy s1 < s2 < ... < sM , si ∝ freq(τi(x)). Such augmentation effectively
changes the underlying periodic targets with shifted frequencies, thus creating different negative
views. Therefore, although the original target frequency is unknown, we effectively devise pseudo
speed (frequency) labels for unlabeled x. In practice, we limit the speed change range to be within
[smin, smax], ensuring the augmented sequence is longer than a fixed length in the time dimension.

Periodicity-Invariant Augmentations. We further define periodicity-invariant augmentation σ ∈
S, where S denotes the set of transformations that do not change the identity of the original input.
When the set is finite, i.e., S = {σ1, . . . , σk}, we have freq(σi(x)) = freq(σj(x)),∀i, j ∈ [k].
Such augmentations can be used to learn invariances in the data from the perspective of periodicity,
creating different positive views. Practically, we leverage spatial (e.g., crop & resize) and temporal
(e.g., reverse, delay) augmentations to create different views of the same instance (see Fig. 2).

Table 1: Differences of view constructions.

Algorithm Positives Negatives

Conventional
SSL methods

Instance: Same
Aug.: Invariant

Instance: Different
Aug.: Invariant

SimPer
Instance: Same

Aug.: Period.-Invariant
Instance: Same

Aug.: Period.-Variant

Temporal Self-Contrastive Learning. Unlike conven-
tional contrastive SSL schemes where augmentations are
exploited to produce invariances, i.e., creating different
positive views of the data, SimPer introduces periodicity-
variant augmentations to explicitly model what variances
should be in periodic learning. Concretely, negative views
are no longer from other different instances, but directly
from the same instance itself, realizing a self-contrastive scheme. Table 1 details the differences.

We highlight the benefits of using the self-contrastive framework. First, it provides arbitrarily large
negative sample sizes, as long as the Nyquist sampling theorem is satisfied. This makes SimPer not
dependent on the actual training set size, and enables effective contrasting even under limited data
scenarios. We show in Section 4.2 that when drastically reducing the dataset size to only 5% of the
total samples, SimPer still works equally well, substantially outperforming supervised counterparts.
Second, our method naturally leads to hard negative samples, as periodic information is directly
being contrasted, while unrelated information (e.g., frame appearance) are maximally preserved
across negative samples. This makes SimPer robust to spurious correlations in data (Section 4.5).

3.2 FEATURE SIMILARITY IN THE CONTEXT OF PERIODIC LEARNING

We identify that feature similarity measures are also different in the context of periodic representa-
tions. Consider sampling two short clips x1,x2 from the same input sequence, but with a frame shift
t. Assume the frequency does not change within the sequence, and its period T > t. Since the un-
derlying information does not change, by definition their features should be close in the embedding
space (i.e., high feature similarity). However, due to the shift in time, when extracting frame-level
feature vectors, the indexes of the feature representations (which represent different time stamps)
will no longer be aligned. In this case, if directly using a cosine similarity as defined in conventional
SSL literature, the similarity score would be low, despite the fact that the actual similarity is high.

Periodic Feature Similarity. To overcome this limitation, we propose to use periodic feature sim-
ilarity measures in SimPer. Fig. 3 highlights the properties and differences between conventional
feature similarity measures and the desired similarity measure in periodic learning. Specifically, ex-
isting SSL methods adopt similarity measures that emphasize strict “closeness” between two feature
vectors, and are sensitive to shifted or reversed feature indexes. In contrast, when aiming for learning
periodic features, a proper periodic feature measure should retain high similarity for features with
shifted (sometimes reversed) indexes, while also capturing a continuous similarity change when the
feature frequency varies, due to the meaningful distance in the frequency domain.

Concrete Instantiations. We provide two practical instantiations to effectively capture the periodic
feature similarity. Note that these instantiations can be easily extended to high-dimensional features
(in addition to the time dimension) by averaging across other dimensions.

• Maximum cross-correlation (MXCorr) measures the maximum similarity as a function of offsets
between signals (Welch, 1974), which can be efficiently computed in the frequency domain.

• Normalized power spectrum density (nPSD) calculates the distance between the normalized PSD
of two feature vectors. The distance can be a cosine or L2 distance (details in Appendix D.4.3).
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Figure 3: Differences between (a) conventional feature similarity, and (b) periodic feature similarity. A proper
periodic feature similarity measure should induce high similarity for features with shifted (sometimes reversed)
indexes, while capturing a continuous similarity change when the feature frequency varies.

3.3 GENERALIZED CONTRASTIVE LOSS WITH CONTINUOUS TARGETS

Motivated by the fact that the augmented views are continuous in frequency, where the pseudo speed
labels {si}Mi=1 are known through augmentation (i.e., a view at 1.1× is more similar to the original
than that at 2×), we relax and extend the original InfoNCE contrastive loss (Oord et al., 2018) to a
soft variant, where it generalizes from discrete instance discrimination to continuous targets.

From Discrete Instance Discrimination to Continuous Contrast. The classic formulation of the
InfoNCE contrastive loss for each input sample x is written as

LInfoNCE = − log
exp(sim(z, ẑ)/ν)∑

z′∈Z\{z} exp(sim(z, z′)/ν)
, (1)

where ẑ = f(x̂) (x̂ is the positive pair of x obtained through augmentations), Z is the set of features
in current batch, ν is the temperature constant, and sim(·) is usually instantiated by a dot product.
Such format indicates a hard classification task, where target label is 1 for positive pair and 0 for all
negative pairs. However, negative pairs in SimPer inherently possess a meaningful distance, which
is reflected by the similarity of their relative speed (frequency). To capture this intrinsic continuity,
we consider the contributions from all pairs, with each scaled by the similarity in their labels.

Generalized InfoNCE Loss. For an input sample x, SimPer creates M variant views with different
speed labels {si}Mi=1. Given the features of two sets of invariant views {zi}Mi=1, {z′i}Mi=1, we have

LSimPer =
∑
i

ℓiSimPer =
∑
i

−
M∑
j=1

exp(wi,j)∑M
k=1 exp(wi,k)

log
exp(sim(zi, z

′
j)/ν)∑M

k=1 exp(sim(zi, z′k)/ν)
, wi,j := simlabel(si, sj),

(2)
where sim(·) denotes the periodic feature similarity as described previously, and simlabel(·) denotes
the continuous label similarity measure. In practice, simlabel(·) can be simply instantiated as inverse
of the L1 or L2 label difference (e.g., 1/|si − sj |).
Interpretation. LSimPer is a simple generalization of the InfoNCE loss from discrete instance dis-
crimination (single target classification) to a weighted loss over all augmented pairs (soft regression
variant), where the soft target exp(wi,j)/

∑
k exp(wi,k) is driven by the label (speed) similarity wi,j

of each pair. Note that when the label becomes discrete (i.e., wi,j ∈ {0, 1}), LSimPer degenerates to
the original InfoNCE loss. We demonstrate in Appendix D.4.4 that such continuity modeling via a
generalized loss helps achieve better downstream performance than simply applying InfoNCE.

4 EXPERIMENTS

Datasets. We perform extensive experiments on six datasets that span different domains and tasks.
Complete descriptions of each dataset are in Appendix B, Fig. 7, and Table 11.

• RotatingDigits (Synthetic Dataset) is a toy periodic learning dataset consists of rotating MNIST
digits (Deng, 2012). The task is to predict the underlying digit rotation frequency.

• SCAMPS (Human Physiology) (McDuff et al., 2022) consists of 2,800 synthetic videos of avatars
with realistic peripheral blood flow. The task is to predict averaged heart rate from input videos.

• UBFC (Human Physiology) (Bobbia et al., 2019) contains 42 videos with synchronized gold-
standard contact PPG recordings. The task is to predict averaged heart rate from input video clips.
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Table 2: Feature evaluation results on RotatingDigits.

FFT 1-NN

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓

SIMCLR (Chen et al., 2020) 2.96 109.27 0.98 48.30
MOCO V2 (He et al., 2020) 2.83 90.78 0.62 32.74
BYOL (Grill et al., 2020) 2.20 78.43 0.46 22.08
CVRL (Qian et al., 2021) 1.69 49.09 0.38 14.41
SIMPER 0.22 16.49 0.09 4.51

GAINS +1.47 +32.60 +0.29 +9.90

Table 3: Feature evaluation results on SCAMPS.

FFT 1-NN

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓

SIMCLR (Chen et al., 2020) 27.48 38.39 34.09 40.79
MOCO V2 (He et al., 2020) 28.16 40.23 35.61 42.47
BYOL (Grill et al., 2020) 26.15 37.34 32.77 38.26
CVRL (Qian et al., 2021) 27.67 38.80 33.32 39.54
SIMPER 14.45 22.09 13.75 18.64

GAINS +11.70 +15.25 +19.02 +19.62

Table 4: Feature evaluation results on UBFC.

FFT 1-NN

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓

SIMCLR (Chen et al., 2020) 16.92 14.73 16.23 18.62
MOCO V2 (He et al., 2020) 14.64 13.17 15.12 16.56
BYOL (Grill et al., 2020) 17.86 16.90 18.13 19.34
CVRL (Qian et al., 2021) 11.75 10.67 12.36 13.38
SIMPER 8.78 7.46 8.92 10.21

GAINS +2.97 +3.21 +3.44 +3.17

Table 5: Feature evaluation results on PURE.

FFT 1-NN

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓

SIMCLR (Chen et al., 2020) 23.70 22.07 29.48 31.44
MOCO V2 (He et al., 2020) 24.23 24.08 30.82 33.95
BYOL (Grill et al., 2020) 23.24 21.78 29.27 31.03
CVRL (Qian et al., 2021) 19.27 18.94 22.08 23.75
SIMPER 13.97 12.88 14.03 15.35

GAINS +5.30 +6.06 +8.05 +8.40

Table 6: Feature evaluation results on Countix.

FFT 1-NN

Metrics MAE↓ GM↓ MAE↓ GM↓

SIMCLR (Chen et al., 2020) 3.90 2.26 4.43 3.19
MOCO V2 (He et al., 2020) 3.75 2.18 3.96 3.04
BYOL (Grill et al., 2020) 3.26 1.87 3.72 2.66
CVRL (Qian et al., 2021) 2.81 1.38 3.15 2.12
SIMPER 2.06 0.98 2.76 1.84

GAINS +0.75 +0.40 +0.99 +0.28

Table 7: Feature evaluation results on LST.

Linear Probing

Metrics MAE↓ MAPE↓ ρ↑

SIMCLR (Chen et al., 2020) 5.12 0.20 0.89
MOCO V2 (He et al., 2020) 5.16 0.20 0.89
BYOL (Grill et al., 2020) 5.71 0.24 0.86
CVRL (Qian et al., 2021) 4.88 0.18 0.91
SIMPER 4.84 0.18 0.90

GAINS +0.04 +0.00 -0.01

• PURE (Human Physiology) (Stricker et al., 2014) contains 60 videos with synchronized gold-
standard contact PPG recordings. The task is to predict averaged heart rate from input video clips.

• Countix (Action Counting). The Countix dataset (Dwibedi et al., 2020) is a subset of the Kinetics
(Kay et al., 2017) dataset annotated with segments of repeated actions and corresponding counts.
The task is to predict the count number given an input video.

• Land Surface Temperature (LST) (Satellite Sensing). LST contains hourly land surface tempera-
ture maps over the continental United States for 100 days (April 7th to July 16th, 2022). The task
is to predict future temperatures based on past satellite measurements.

Network Architectures. We choose a set of logical architectures from prior work for our experi-
ments. On RotatingDigits and SCAMPS, we employ a simple 3D variant of the CNN architecture
as in (Yang et al., 2022a). Following (Liu et al., 2020), we adopt a variant of TS-CAN model for ex-
periments on UBFC and PURE. Finally, on Countix and LST, we employ ResNet-3D-18 (He et al.,
2016; Tran et al., 2018) as our backbone network. Implementations details are in Appendix C.

Baselines. We compare SimPer to SOTA SSL methods, including SimCLR (Chen et al., 2020),
MoCo v2 (He et al., 2020), BYOL (Grill et al., 2020), and CVRL (Qian et al., 2021), as well as a
supervised learning counterpart. We provide detailed descriptions in Appendix C.1.

Evaluation Metrics. To assess the prediction of continuous targets (e.g., frequency, counts), we use
common metrics for regression, such as the mean-average-error (MAE), mean-average-percentage-
error (MAPE), Pearson correlation (ρ), and error Geometric Mean (GM) (Yang et al., 2021).

4.1 MAIN RESULTS

We report the main results in this section for all datasets. Complete training details, hyper-parameter
settings, and additional results are provided in Appendix C and D.
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Table 8: Fine-tune evaluation results on all datasets. We first pre-train the feature encoder using different SSL
methods, then fine-tune the whole network initialized with the pre-trained weights.

RotatingDigits SCAMPS UBFC PURE Countix LST

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ GM↓ MAE↓ ρ↑

SUPERVISED 0.72 28.96 3.61 5.33 5.13 4.72 4.25 4.93 1.50 0.73 1.54 0.96

SIMCLR (Chen et al., 2020) 0.69 26.54 4.96 6.92 5.32 4.96 4.86 5.32 1.58 0.80 1.54 0.95
MOCO V2 (He et al., 2020) 0.64 24.73 5.33 7.24 5.05 4.64 4.97 5.60 1.54 0.79 1.53 0.95
BYOL (Grill et al., 2020) 0.39 20.91 3.49 5.27 5.51 5.07 4.28 4.97 1.47 0.71 1.62 0.92
CVRL (Qian et al., 2021) 0.34 18.82 5.52 7.34 5.07 4.70 4.19 4.71 1.48 0.71 1.49 0.96
SIMPER 0.20 14.33 3.27 4.89 4.24 3.97 3.89 4.01 1.33 0.59 1.47 0.96

GAINS VS. SUPERVISED +0.52 +14.63 +0.34 +0.44 +0.89 +0.75 +0.36 +0.92 +0.17 +0.14 +0.07 +0.00
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Figure 4: Data efficiency analysis of SimPer. (a) Learned representations of different algorithms on Rotat-
ingDigits when training dataset size reduces from 100% to 5%. (b) The quantitative MAPE errors on SCAMPS
with varying training dataset sizes. Complete quantitative results are provided in Appendix D.1.

Feature Evaluation. Following the literature (He et al., 2020; Chen et al., 2020), we first evaluate
the representations learned by different methods. For dense prediction task (e.g., LST), we use the
linear probing protocol by training a linear regressor on top of the fixed features. For tasks whose
targets are frequency information, we directly evaluate the learned features using a Fourier transform
(FFT) and a nearest neighbor classifier (1-NN). Table 2, 3, 4, 5, 6, 7 show the feature evaluation
results of SimPer compared to SOTA SSL methods. As the tables confirm, across different datasets
with various common tasks, SimPer is able to learn better representations that achieve the best
performance. Furthermore, in certain datasets, the relative improvements are even larger than 50%.

Fine-tuning. Practically, to harness the power of pre-trained representations, fine-tuning the whole
network with the encoder initialized using pre-trained weights is a widely adopted approach (He
et al., 2020). To evaluate whether SimPer pre-training is helpful for each downstream task, we
fine-tune the whole network and compare the final performance. The details of the setup for each
dataset and algorithm can be found in Appendix C. As Table 8 confirms, across different datasets,
SimPer consistently outperforms all other SOTA SSL methods, and obtains better results compared
to the supervised baseline. This demonstrates that SimPer is able to capture meaningful periodic
information that is beneficial to the downstream tasks.

4.2 DATA EFFICIENCY

In real-world periodic learning applications, data is often prohibitively expensive to obtain. To study
the data efficiency of SimPer, we manually reduce the overall size of RotatingDigits, and plot the
representations learned as well as the final fine-tuning accuracy of different methods in Fig. 4.

As the figure confirms, when the dataset size is large (e.g., using 100% of the data), both supervised
learning baseline and SimPer can learn good representations (Fig. 4(a)) and achieve low test errors
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Figure 5: Zero-shot generalization analysis. We create training sets with missing target frequencies and keep
test sets evenly distributed across the target range. Green regions indicate successful generalization with high
frequency resolution. Yellow regions indicate successful generalization but with low frequency resolution. Red
regions represent failed generalization. SimPer learns robust representations that generalize to unseen targets.

(Fig. 4(b)). However, when the training dataset size becomes smaller, the learned representations
using supervised learning get worse, and eventually lose the frequency information and resolution
when only 5% of the data is available. Correspondingly, the final error in this extreme case also
becomes much higher. In contrast, even with small number of training data, SimPer can consistently
learn the periodic information and maintain high frequency resolution, with significant performance
gains especially when the available data amount is small.

4.3 TRANSFER LEARNING

Table 9: Transfer learning results.

UBFC → PURE PURE → UBFC

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓

SUPERVISED 7.83 8.85 3.15 3.11
SIMCLR 7.86 8.79 3.46 3.80
SIMPER 6.46 6.98 2.76 2.38

GAINS +1.37 +1.87 +0.39 +0.73

We evaluate whether the self-supervised representa-
tions are transferable across datasets. We use UBFC
and PURE, which share the same prediction task.
Following (Chen et al., 2020), we fine-tune the pre-
trained model on the new dataset, and compare the
performance across both SSL and supervised meth-
ods. Table 9 reports the results, where in both cases,
SimPer is able to achieve better final performance
compared to supervised and SSL baselines, showing
its ability to learn transferable periodic representations across different datasets.

4.4 ZERO-SHOT GENERALIZATION TO UNSEEN TARGETS

Given the continuous nature of the frequency domain, periodic learning tasks can (and almost cer-
tainly will) have unseen frequency targets during training, which motivates the need for target (fre-
quency) extrapolation and interpolation. To investigate zero-shot generalization to unseen targets,
we manually create training sets that have certain missing targets (Fig. 5), while making the test sets
evenly distributed across the target range. As Fig. 5 confirms, in the interpolation case, both super-
vised learning and SimPer can successfully interpolate the missing targets. However, the quality of
interpolation varies: For supervised learning, the frequency resolution is low within the interpolation
range, resulting in mixed representations for a wide missing range. In contrast, SimPer learns better
representations with higher frequency resolution, which has desirable discriminative properties.

Table 10: Mean absolute error (MAE, ↓) results
for zero-shot generalization analysis.

Interpolation Extrapolation

Seen Unseen Seen Unseen

SUPERVISED 0.09 0.85 0.03 1.74
SIMPER 0.05 0.07 0.02 0.02

GAINS +0.04 +0.78 +0.01 +1.72

Furthermore, in the extrapolation case, in the lower
frequency range, both methods extrapolate reason-
ably well, with SimPer capturing a higher frequency
resolution. However, when extrapolating to a higher
frequency range, the supervised baseline completely
fails to generalize, with learned features largely
overlapping with the existing frequency targets in the
training set. In contrast, SimPer is able to generalize
robustly even for the higher unseen frequency range,
demonstrating its effectiveness of generalization to
distribution shifts and unseen targets. Quantitative results in Table 10 confirm the observations.
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Figure 6: Robustness to spurious correlations. We make the target frequency spuriously correlated with digit
appearances in training set, while removing this correspondence in test set. SimPer is able to capture underlying
periodic information & learn robust representations that generalize. Quantitative results are in Appendix D.3.

4.5 ROBUSTNESS TO SPURIOUS CORRELATIONS

We show that SimPer is able to deal with spurious correlations that arise in data, while existing SSL
methods often fail to learn generalizable features. Specifically, RotatingDigits dataset naturally has
a spurious target: the digit appearance (number). We further enforce this information by coloring
different digits with different colors as in (Arjovsky et al., 2019). We then construct a spuriously
correlated training set by assigning a unique rotating frequency range to a specific digit, i.e., [0.5Hz,
1Hz] for digit 0, [1Hz, 1.5Hz] for digit 1, etc, while removing the spurious correlations in test set.

As Fig. 6 verifies, SimCLR is easy to learn information that is spuriously correlated in the training
data, but not the actual target of interest (frequency). As a result, the learned representations do not
generalize. In contrast, SimPer learns the underlying frequency information even in the presence of
strong spurious correlations, demonstrating its ability to learn robust representations that generalize.

4.6 FURTHER ANALYSIS AND ABLATION STUDIES

Amount of labeled data for fine-tuning (Appendix D.2). We show that when the amount of labeled
data is limited for fine-tuning, SimPer still substantially outperforms baselines by a large margin,
achieving a 67% relative improvement in MAE even when the labeled data fraction is only 5%.

Ablation: Frequency augmentation range (Appendix D.4.1). We study the effects of different
speed (frequency) augmentation ranges when creating periodicity-variant views (Table 15). While a
proper range can lead to certain gains, SimPer is reasonably robust to different choices.

Ablation: Number of augmented views (Appendix D.4.2). We investigate the influence of differ-
ent number of augmented views (i.e., M ) in SimPer. Interestingly, we find SimPer is surprisingly
robust to different M in a given range (Table 16), where larger M often delivers better results.

Ablation: Choices of different similarity metrics (Appendix D.4.3). We explore the effects of
different periodic similarity measures in SimPer, where we show that SimPer is robust to all afore-
mentioned periodic similarity measures, achieving similar performances (Table 17).

Ablation: Effectiveness of generalized contrastive loss (Appendix D.4.4). We confirm the effec-
tiveness of the generalized contrastive loss by showing its consistent performance gains across all
six datasets, as compared to the vanilla InfoNCE loss (Table 18).

5 CONCLUSION

We present SimPer, a simple and effective SSL framework for learning periodic information from
data. SimPer develops customized periodicity-variant and invariant augmentations, periodic feature
similarity, and a generalized contrastive loss to exploit periodic inductive biases. Extensive experi-
ments on different datasets over various real-world applications verify the superior performance of
SimPer, highlighting its intriguing properties such as better efficiency, robustness & generalization.
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A PSEUDO CODE FOR SIMPER

We provide the pseudo code of SimPer in Algorithm 1.

Algorithm 1 Simple Self-Supervised Learning of Periodic Targets (SimPer)
Input: Unlabeled training setD = {(xi)}Ni=1, total training epochs E, periodicity-variant augme-
ntations τ(·), periodicity-invariant augmentations σ(·), number of variant views M , encoder f
for e = 0 to E do

repeat
Sample a mini-batch {(x(l))}nl=1 from D
for l = 1 to n (in parallel) do
{x(l)

i }Mi=1 ← τ
(
x(l)

)
// M variant views for l-th sample

{x(l)
i }Mi=1, {x′

i
(l)}Mi=1 ← σ

(
{x(l)

i }Mi=1

)
// two sets of invariant views

{z(l)i }Mi=1, {z′i(l)}Mi=1 ← f
(
{x(l)

i }Mi=1

)
, f

(
{x′

i
(l)}Mi=1

)
Calculate ℓ

(l)
SimPer for l-th sample using {z(l)i }Mi=1, {z′i(l)}Mi=1 based on Eqn. (2)

end for
Calculate LSimPer using 1

n

∑n
l=1 ℓ

(l)
SimPer and do one training step

until iterate over all training samples at current epoch e
end for

B DATASET DETAILS

In this section, we provide the detailed information of the six datasets we used in our experiments.
Fig. 7 shows examples of each dataset, and Table 11 provides the statistics of each dataset.

RotatingDigits (Synthetic Dataset). We create RotatingDigits, a synthetic periodic learning dataset
of rotating MNIST digits (Deng, 2012), where samples are created with the original digits rotating
on a plain background at rotational frequencies between 0.5Hz and 5Hz. The training set consists of
1, 000 rotating video clips (100 samples per digit number), each sample with a frame length of 150
and a sampling rate of 30Hz. The test set consists of 2, 000 rotating video clips (200 samples per
digit number).

SCAMPS (Human Physiology). The SCAMPS dataset (McDuff et al., 2022) contains 2, 800 syn-
thetic videos of avatars with realistic peripheral blood flow and breathing. The faces are synthe-
sized using a blendshape-based rig with 7, 667 vertices and 7, 414 polygons and the identity basis is
learned from a set of high-quality facial scans. These texture maps were sampled from 511 facial
scans of subjects. The distribution of gender, age and ethnicity of the subjects who provided the
facial scans can be found in (Wood et al., 2021). Blood flow is simulated by adjusting properties of
the physically-based shading material1. We randomly divide the whole dataset into training (2, 000
samples), validation (400 samples), and test (400 samples) set. Each video clip has a frame length
of 600 and a sampling rate of 30Hz.

UBFC (Human Physiology). The UBFC dataset (Bobbia et al., 2019) contains a total of 42 videos
from 42 subjects. The videos were recorded using a Logitech C920 HD Pro at 30Hz. A pulse
oximeter was used to obtain the gold-standard PPG data (30Hz). The raw resolution is 640×480 and
videos are recorded in a uncompressed 8-bit RGB format. We postprocess the videos by cropping
the face region and resizing them to 36× 36. We manually divide each video into non-overlapping
chunks (Liu et al., 2020) with a window size 180 frames (6 seconds). The resulting number of
training and test samples are 518 and 106, respectively.

PURE (Human Physiology). The PURE dataset (Stricker et al., 2014) includes 60 videos from 10
subjects (8 male, 2 female). The subjects were asked to seat in front of the camera at an average
distance of 1.1 meters and lit from the front with ambient natural light through a window. Each
subject was then instructed to perform six tasks with varying levels of head motion such as slow/fast
translation between camera plane and head motion as well as small/medium head rotations. Gold-

1https://www.blender.org/
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RotatingDigits

(a) RotatingDigits

SCAMPSSCAMPSSCAMPSSCAMPS

(b) SCAMPS (McDuff et al., 2022)
Land Surface Temperature
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13th April 2022
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15th April 2022

(c) Land Surface Temperature (LST)
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(e) PURE (Stricker et al., 2014)
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(f) Countix (Dwibedi et al., 2020)

Figure 7: Examples of sequences from the datasets used in our experiments.

standard measurements were collected with a pulse oximeter at 60Hz. The raw video resolution is
640×480. We postprocess the videos by cropping the face region and resizing them to 36×36, and
downsample the ground-truth PPG signal to 30Hz from 60Hz. We manually divide each video into
non-overlapping chunks (Liu et al., 2020) with a window size 180 frames (6 seconds). The resulting
number of training and test samples are 1, 028 and 226, respectively.

14



Published as a conference paper at ICLR 2023

Table 11: Detailed statistics of the datasets used in our experiments.

Targets Sampling freq. Frame length # Training set # Val. set # Test set

RotatingDigits Rotation frequency 30Hz 150 1,000 − 2,000

SCAMPS (McDuff et al., 2022) Heart rate 30Hz 600 2,000 400 400

UBFC (Bobbia et al., 2019) Heart rate 30Hz 180 518 − 106

PURE (Stricker et al., 2014) Heart rate 30Hz 180 1,028 − 266

Countix (Dwibedi et al., 2020) Action counts 20∼30Hz 200 1,712 457 963

LST Temperature Hourly 100 276 − 92

Countix (Action Counting). The Countix dataset (Dwibedi et al., 2020) is a subset of the Kinet-
ics (Kay et al., 2017) dataset annotated with segments of repeated actions and corresponding counts.
The creators crowdsourced the labels for repetition segments and counts for the selected classes. We
further filter out videos that have a frame length shorter than 200, and make all videos have a fixed
length of 200 frames. The resulting dataset has 1, 712 training samples, 457 validation samples, and
963 test samples, with a resolution of 96× 96.

Land Surface Temperature (LST) (Satellite Sensing). Land surface temperature is an indicator of
the Earth surface energy budget and is widely required in applications of hydrology, meteorology
and climatology. It is of fundamental importance to the net radiation budget at the Earth’s surface
and for monitoring the state of crops and vegetation, as well as an important indicator of both
the greenhouse effect and the energy flux between the atmosphere and earth surface. We created
a snapshot of data from the NOAA GOES-16 Level 2 LST product comprising of hourly land
surfaces temperature outputs over the continental United States (CONUS). The LST measurements
are sampled hourly over a 100 day period leading to 2, 400 LST maps at a resolution of 1, 500 ×
2, 500. As the spatial resolution is high, we divide each map into four quarters (North-West US,
North-East US, South-West US, and South-East US). We create each input sample using a
window size of 100 frames with a step size of 24 (a day). The target signal is the temperature time
series of the future 100 frames. The resulting dataset has 276 training samples and 92 test samples,
with a spatial resolution of 100× 100.

C EXPERIMENTAL SETTINGS

C.1 COMPETING ALGORITHMS

We employ the following state-of-the-art SSL algorithms for comparisons.

SimCLR (Chen et al., 2020). SimCLR learns feature representations by contrasting images with
data augmentation. The positive pairs are constructed by sampling two images with different aug-
mentations on one instance. The negative pairs are sampled from two different images.

MoCo v2 (He et al., 2020). MoCo learns feature representations by building large dictionaries along
with a contrastive loss. MoCo maintains the dictionary as a queue of data samples by enqueuing
the current mini-batch and dequeuing the oldest mini-batch. The keys are encoded by a slowly
progressing encoder with a momentum moving average and the query encoder.

BYOL (Grill et al., 2020). BYOL leverages two neural networks to learn the feature representations:
the online and target networks. The online network has an encoder, a projector, and a predictor
while the target network shares the same architecture but with a different set of weights. The online
network is trained by the regression targets provided by the target network.

CVRL (Qian et al., 2021). Contrastive Video Representation Learning (CVRL) is a self-supervised
learning framework that learns spatial-temporal features representations from unlabelled videos.
CVRL generates positive pairs by adding temporally consistent spatial augmentation on one videos
clip and generate negative pairs by sampling two different video clips. The goal of contrastive loss
is to minimize the embedding distance from the positive augmented video clips but maximize the
distance from negative video clips.
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C.2 IMPLEMENTATION DETAILS

We describe the implementation details in this section. We first introduce parameters that are fixed
to be the same across all methods, then detail the specific parameters for each dataset.

For all SSL methods, we follow the literature (Chen et al., 2020; He et al., 2020) and apply the
same standard data augmentations in contrastive learning. For spatial augmentations, we employ
random crop resize, random brightness, random gaussian blur, random grayscale, and
random flip left right. For temporal augmentations, we mainly employ random reverse and
random delay (with shorter clip subsampling (Qian et al., 2021)). Unless specified, all augmenta-
tion hyper-parameters follow the original setup of each method.

RotatingDigits. On RotatingDigits, we adopt the network architecture as a simple 3D variant of the
MNIST CNN used in (Yang et al., 2022a; Gulrajani & Lopez-Paz, 2021). In the supervised setting,
we train all models for 20 epochs using the Adam optimizer (Kingma & Ba, 2014), with an initial
learning rate of 10−3 and then decayed by 0.1 at the 12-th and 16-th epoch, respectively. We fix the
batch size as 64 and use the checkpoint at the last epoch as the final model for evaluation. In the
self-supervised setting, we train all models for 60 epochs, which ensures convergence for all tested
algorithms. We again employ the Adam optimizer and decay the learning rating at the 40-th and
50-th epoch, respectively. Other training hyper-parameters remain unchanged.

SCAMPS. Similar to RotatingDigits, we employ the same 3D CNN architecture for all the SCAMPS
experiments. In the supervised setting, we train all of the models for 30 epochs using the Adam
optimizer, with an initial learning rate of 10−3 and then decayed by 0.1 at the 20-th and 25-th epoch,
respectively. We fix the batch size as 32 and use the last checkpoint for final evaluation. In the
self-supervised setting, we follow the same training regime in RotatingDigits as described in the
previous section.

UBFC & PURE. Following (Liu et al., 2020; 2021), we use the temporal shift convolution attention
network (TS-CAN) as our backbone model. To adapt TS-CAN on SimPer, we remove the attention
branch and make a variant of TS-CAN which only requires 3-channel as the input instead of 6-
channel. In the supervised setting, we use the Adam optimizer, learning rate of 10−3 and train the
network for a total of 10 epochs. On the inner-dataset evaluation (i.e., test and validation are the
same), we use last epoch from the training of 80% for the dataset and evaluate the pre-trained model
on the last 20% dataset. On the cross-dataset evaluation, we use 80% of the dataset for training
and 20% for checkpoint selection then evaluate the pre-trained model on a different dataset. In the
self-supervised setting, all other parameters remain unchanged except that we train for 60 epochs to
ensure the SSL loss converges for all algorithms.

Countix. We use a ResNet-3D-18 (Tran et al., 2018; He et al., 2016) architecture for all Countix
experiments, which is widely used for video-based vision tasks. In the supervised setting, we train
all models for 90 epochs using the Adam optimizer with an initial learning rate of 10−3 and then
decayed by 0.1 at the 60-th and 80-th epoch. We fix the batch size as 32 for all experiments. In the
self-supervised setting, we train all models for 200 epochs, and leave other parameters unchanged.

LST. Similar to Countix, we use the ResNet-3D-18 (Tran et al., 2018) network architecture for LST
experiments. In the supervised setting, we train all models for 30 epochs using the Adam optimizer
with a learning rate of 10−3 and a batch size of 16. In the self-supervised setting, we train all models
for 60 epochs while having other hyper-parameters the same for all methods.

C.3 EVALUATION METRICS

We describe in detail all the evaluation metrics we used in our experiments.

MAE. The mean absolute error (MAE) is defined as 1
N

∑N
i=1 |yi−ŷi|, which represents the averaged

absolute difference between the ground truth and predicted values over all samples.

MAPE. The mean absolute percentage error (MAPE) is defined as 1
N

∑N
i=1 |yi−ŷi

yi
|, which assesses

the averaged relative differences between the ground truth and predicted values over all samples.

GM. We use error Geometric Mean (GM) as another evaluation metric (Yang et al., 2021). GM is
defined as (

∏N
i=1 ei)

1
N , where ei ≜ |yi − ŷi| represents the L1 error of each sample. GM aims to
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characterize the fairness (uniformity) of model predictions using the geometric mean instead of the
arithmetic mean over the prediction errors.

Pearson correlation ρ. We employ Pearson correlation for performance evaluation on LST, where
Pearson correlation evaluates the linear relationship between predictions and corresponding ground
truth values.

D ADDITIONAL RESULTS AND ANALYSIS

D.1 DATA EFFICIENCY W.R.T. REDUCED TRAINING DATA

We provide quantitative results to verify the data efficiency of SimPer in the presence of reduced
training data. Specifically, we use SCAMPS dataset, and vary the training dataset size from 100%
to only 5%, and use it for both pre-training and fine-tuning. We show the final performance in Table
12, where SimPer is able to achieve consistent performance gains compared to baselines when the
dataset size varies. Furthermore, the gains are more significant when the dataset size is smaller (e.g.,
5%), demonstrating that SimPer is particularly robust to reduced training data.

Table 12: Data efficiency w.r.t. reduced training data. We vary the training dataset size of SCAMPS (size
fixed for both pre-training and fine-tuning), and show the final fine-tuning performance of different methods.

Dataset size 100% 50% 20% 10% 5%

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓

SUPERVISED 3.61 5.33 3.85 5.60 4.57 7.16 7.13 10.08 12.24 15.42

SIMCLR (Chen et al., 2020) 4.96 6.92 6.55 9.39 6.01 9.25 7.63 10.19 13.75 15.72
CVRL (Qian et al., 2021) 5.52 7.34 3.66 5.64 4.86 7.77 7.08 9.45 14.11 15.91
SIMPER 3.27 4.89 3.38 5.24 3.93 5.67 4.65 7.06 4.75 7.64

GAINS VS. SUPERVISED +0.34 +0.44 +0.47 +0.36 +0.64 +1.49 +2.48 +3.02 +7.49 +7.78

D.2 AMOUNT OF LABELED DATA FOR FINE-TUNING

We investigate the impact of the amount of labeled data for fine-tuning. Specifically, we use the
whole training set of SCAMPS as the unlabeled dataset, and vary the labeled data fraction for fine-
tuning. As Table 13 confirms, when the amount of labeled data is limited for fine-tuning, SimPer
still substantially outperforms baselines by a large margin, achieving a 67% relative improvement in
MAE even when the labeled data fraction is only 5%. The results again demonstrate that SimPer is
data efficient in terms of the amount of labeled data available.

Table 13: Data efficiency w.r.t. amount of labeled data for fine-tuning. We use all data from SCAMPS as
unlabeled training set for self-supervised pre-training, and vary size of labeled data for fine-tuning.

Labeled data fraction 100% 50% 20% 10% 5%

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓

SUPERVISED 3.61 5.33 3.85 5.60 4.57 7.16 7.13 10.08 12.24 15.42

SIMCLR (Chen et al., 2020) 4.96 6.92 4.92 7.09 5.57 8.46 7.82 10.53 13.21 15.64
CVRL (Qian et al., 2021) 5.52 7.34 3.79 5.83 4.83 7.71 6.82 9.06 12.18 13.25
SIMPER 3.27 4.89 3.32 5.13 3.58 5.44 3.98 5.81 4.02 6.27

GAINS VS. SUPERVISED +0.34 +0.44 +0.53 +0.47 +0.99 +1.72 +3.15 +4.27 +8.22 +9.15

D.3 ROBUSTNESS TO SPURIOUS CORRELATIONS

We provide detailed quantitative results for the spurious correlations experiment in Section 4.5.
Recall that SimCLR is easy to learn information that is spuriously correlated in the training data,
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Table 14: Feature evaluation results on RotatingDigits with spurious correlations in training data. Quan-
titative results in addition to Fig. 6 further verify that state-of-the-art SSL methods (e.g., SimCLR) are vulner-
able to spurious correlations, and could easily learn information that is irrelevant to periodicity; In contrast,
SimPer learns desirable periodic representations that are robust to spurious correlations.

FFT 1-NN

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓

SIMCLR (Chen et al., 2020) 3.06 125.48 1.49 80.28
SIMPER 0.36 15.04 0.78 27.03

GAINS +2.70 +110.44 +0.71 +53.25

and the learned representations do not generalize. Table 14 further confirms the observation, where
SimCLR achieves bad feature evaluation results with large MAE & MAPE errors.

In contrast, SimPer is able to learn the underlying frequency information even in the presence of
strong spurious correlations, obtaining substantially smaller errors compared to SimCLR. The re-
sults demonstrate that SimPer is robust to spurious correlations, and can learn robust representations
that generalize.

D.4 ABLATION STUDIES FOR SIMPER

In this section, we perform extensive ablation studies on SimPer to investigate the effect of different
design choices as well as its hyper-parameter stability.

D.4.1 RANGE OF PERIODICITY-VARIANT FREQUENCY AUGMENTATION

We study the effect of using different ranges of the variant speed augmentations in SimPer. We use
the SCAMPS dataset, and vary the speed range during SimPer pre-training. As Table 15 reports,
using different speed ranges does not change the downstream performance by much, where all the
results outperform the supervised baseline by a notable margin.

Table 15: Ablation study on the range of speed (frequency) augmentation. Default settings used in the
main experiments for SimPer are marked in gray .

SPEED RANGE [0.5, 1.5] [0.8, 1.8] [0.5, 2] [0.5, 3] Supervised

MAPE↓ 4.97 4.92 4.89 4.98 5.33

D.4.2 NUMBER OF PERIODICITY-VARIANT AUGMENTED VIEWS

We study the effect of different number of periodicity-variant augmented views M on SimPer. We
again employ the SCAMPS dataset, and vary the number of augmented views as M ∈ {3, 5, 10, 20}.
Table 16 shows the results, where we can observe a clear trend of decreased error rates when in-
creasing M . Yet, when M ≥ 5, the benefits of increasing M gradually diminish, indicating that a
moderate M might be enough for the task. In the experiments of all tested datasets, to balance the
efficiency while maintaining the contrastive ability, we set M = 10 by default.

Table 16: Ablation study on the number of periodicity-variant augmented views. Default settings used in
the main experiments for SimPer are marked in gray .

NUM. VIEWS 3 5 10 20 Supervised

MAPE↓ 5.12 4.96 4.89 4.87 5.33
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Table 17: Ablation study on the choices of different periodic similarity measures. Default settings used in
the main experiments for SimPer are marked in gray .

SIMILARITY METRICS MXCorr nPSD (cos(·)) nPSD (L2) Supervised

MAPE↓ 4.89 4.88 4.92 5.33

D.4.3 CHOICES OF DIFFERENT SIMILARITY METRICS

We investigate the impact of different choices of periodic similarity measures introduced in Section
3.2. Specifically, we study three concrete instantiations of periodic similarity measures: MXCorr,
nPSD (cos(·)), and nPSD (L2). As Table 17 shows, SimPer is robust to all aforementioned periodic
similarity measures, achieving similar downstream performances. The results also demonstrate the
effectiveness of the proposed similarity measures in periodic learning.

D.4.4 EFFECTIVENESS OF THE GENERALIZED CONTRASTIVE LOSS

We assess the effectiveness of the generalized contrastive loss, as compared to the classic InfoNCE
contrastive loss. Table 18 highlights the results over all six datasets, where consistent gains can be
obtained when using the generalized contrastive loss in SimPer formulation.

Table 18: Ablation study on the effectiveness of using generalized contrastive loss in SimPer. We show the
feature evaluation results (FFT, MAE↓) with and without generalized contrastive loss across different datasets.
Note that generalized contrastive loss with no continuity considered degenerates to InfoNCE (Oord et al., 2018).

RotatingDigits SCAMPS UBFC PURE Countix LST

SimPer (InfoNCE) 0.23 18.27 9.53 15.74 2.42 4.84
SimPer (Generalized) 0.22 14.45 8.78 13.97 2.06 4.84

Gains +0.01 +3.82 +0.75 +1.77 +0.36 +0.00

D.4.5 CHOICES OF DIFFERENT INPUT SEQUENCE LENGTHS

Finally, we investigate the effect of different sequence lengths on the final performance in periodic
learning. To make the observations more general and comprehensive, we choose three datasets from
different domains (i.e., RotatingDigits, SCAMPS, and LST) to study the effect of sequence length.
We fix all the experimental setups the same as in Appendix B & C, and only vary the frame/sequence
lengths with different yet reasonable choices for each dataset.

As highlighted from Table 19, the results illustrate the following interesting observations:

• For “clean” periodic learning datasets with the periodic targets being the only dominating signal
(i.e., RotatingDigits), using different frame lengths do not inherently change the final result.

• For dataset with relatively high SNR (i.e., LST), SimPer is also robust to different frame lengths.
The supervised results however are worse with shorter clips, which could be attributed to the fact
that less information is used in the input.

• Interestingly, for datasets where other periodic signals might exist (i.e., SCAMPS), using shorter
(but with reasonable length) videos seems to slightly improve the performance of SimPer. We
hypothesize that for a complex task such as video-based human physiological measurement, some
videos may contain multiple periodic processes (e.g., PPG, breathing, blinking, etc.). A smaller
frame length may not be enough to capture some of the “slow” periodic processes (e.g., breathing),
thus the features learned by SimPer can become even more representative for PPG or heart beats
estimation. Nevertheless, the differences between various choices are still small, indicating that
SimPer is pretty robust to different frame lengths.
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Table 19: Ablation study on the input sequence lengths. We show the fine-tune evaluation results (MAE↓)
using different yet reasonable sequence lengths across various datasets.

RotatingDigits SCAMPS LST

# Frames 150 120 90 600 450 300 100 80 60

SUPERVISED 0.72 0.71 0.72 3.61 3.57 3.63 1.54 1.56 1.61
SIMPER 0.20 0.19 0.20 3.27 3.11 3.12 1.47 1.47 1.48

GAINS +0.52 +0.52 +0.52 +0.34 +0.46 +0.51 +0.07 +0.09 +0.13

D.5 COMPARISONS AND COMPATIBILITY WITH SOTA SUPERVISED LEARNING METHODS

As motivated in the main paper, for each specific periodic learning application, supervised learning
methods (Dwibedi et al., 2020; McDuff et al., 2022; Liu et al., 2023) have achieved remarkably
good results via incorporating certain domain knowledge tailored for a specific task. Therefore, we
provide additional results and comparisons using SOTA algorithms on each of the tested dataset. In
the following, we show existing SOTA baselines and demonstrate that SimPer could further boost
the performance when jointly applied.

Table 20: Compatibility of SimPer with SOTA supervised techniques across different datasets. SOTA
refers to RepNet (Dwibedi et al., 2020) on Countix, and refers to EfficientPhys (Liu et al., 2023) on SCAMPS,
UBFC & PURE. SimPer delivers robust performance and complements the performance of SOTA models.

Countix SCAMPS UBFC PURE

Metrics MAE↓ GM↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓

SOTA 1.03 0.41 2.42 4.10 4.14 3.79 2.87 2.89

SIMCLR + SOTA 1.06 0.43 2.56 4.17 4.31 4.02 2.94 3.25
SIMPER + SOTA 0.72 0.22 1.96 3.45 3.27 3.06 2.29 2.21

GAINS +0.29 +0.19 +0.46 +0.65 +0.87 +0.73 +0.58 +0.68

Countix. In the video repetition counting domain, RepNet (Dwibedi et al., 2020), a novel neural
network architecture that composed of a ResNet-50 encoder and a Transformer based predictor, is
proposed to achieve advanced results for repetitious counting in the wild. We verify the compatibility
of SimPer with RepNet by changing the encoder on Countix to RepNet, and compare with the
vanilla supervised training as well as SimCLR. To ensure a fair and comparable setting, we train
RepNet from scratch instead of using ImageNet pre-trained ResNet-50 backbones as in the original
paper (Dwibedi et al., 2020).

SCAMPS, UBFC & PURE. In video-based human physiological sensing domain (i.e., SCAMPS,
UBFC, and PURE), the main advances in the field have stemmed from better backbone architec-
tures and network components (Liu et al., 2020; 2023; Gideon & Stent, 2021). In the main pa-
per, for SCAMPS, since it is a synthetic dataset, we employed a simple 3D ConvNet; as for real
datasets UBFC and PURE, we used a more advanced backbone model (Liu et al., 2020). To further
demonstrate that SimPer can improve upon SOTA methods, we employ a recent architecture, called
EfficientPhys (Liu et al., 2023), which is specialized for learning physiology from videos.

As confirmed in Table 20, when jointly applied with SOTA models, SimPer can further boost the
performance and consistently achieves the best results regardless of datasets and tasks. In contrast,
SimCLR is not able to improve upon SOTA supervised learning techniques. The results indicate that
SimPer is orthogonal to SOTA models for learning periodic targets.

D.6 COMPARISONS TO SSL METHODS IN HUMAN PHYSIOLOGICAL MEASUREMENT

In video-based human physiological measurement domain, recent works (Wang et al., 2022; Gideon
& Stent, 2021) have proposed to leverage contrastive SSL for better learned features and downstream
performance in the corresponding application (e.g., heart rate estimation). They studied specific SSL

20



Published as a conference paper at ICLR 2023

Table 21: Comparisons between SimPer and additional SSL baselines on human physiological measure-
ment datasets. Compared to customized SSL algorithms in the specific domain, SimPer still delivers robust
performance and consistently achieves the best results.

SCAMPS UBFC PURE

Metrics MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓

Without face saliency module:

(Gideon & Stent, 2021) 3.53 5.26 4.98 4.61 4.18 4.70
(Wang et al., 2022) 3.71 5.54 5.07 4.88 4.32 4.95
SIMPER 3.27 4.89 4.24 3.97 3.89 4.01

With face saliency module:

(Gideon & Stent, 2021) 3.51 5.15 4.88 4.29 4.03 4.28
(Wang et al., 2022) 3.61 5.40 5.02 4.86 4.07 4.33
SIMPER 2.94 4.35 4.01 3.68 3.47 3.76

Table 22: Comparisons between SimPer and additional SSL baselines on general periodic learning
datasets other than human physiological measurement ones. When extending to general periodic learning
tasks, SSL baselines tailored for human physiological measurement (Wang et al., 2022; Gideon & Stent, 2021)
no longer provide benefits, and sometimes perform even worse than the vanilla supervised learning. In contrast,
SimPer consistently and substantially exhibits strengths in general periodic learning across all domains.

RotatingDigits Countix LST

Metrics MAE↓ MAPE↓ MAE↓ GM↓ MAE↓ ρ↑

SUPERVISED 0.72 28.96 1.50 0.73 1.54 0.96

(Gideon & Stent, 2021) 0.70 28.03 1.58 0.81 1.62 0.92
(Wang et al., 2022) 0.77 29.44 1.68 0.94 1.64 0.89
SIMPER 0.20 14.33 1.33 0.59 1.47 0.96

methods tailored for video-based human physiological measurement, and as a result, many of the
proposed techniques therein only apply to that specific domain (e.g., the face detector, the saliency
sampler, and the strong assumptions that are derived from the application context, cf. Table 1 in
(Gideon & Stent, 2021)). Nevertheless, it is possible to extend the SSL objectives therein to other
general periodic learning domains. In this section, we provide additional experimental results and
further discussions, which distinguish SimPer from these prior works.

Comparisons on the human physiological measurement task. We first compare SimPer against
the aforementioned SSL methods (Gideon & Stent, 2021; Wang et al., 2022) on the human phys-
iological measurement task. To provide a fair comparison, we fix all methods to use a simple 3D
ConvNet backbone (Gulrajani & Lopez-Paz, 2021) on SCAMPS, and a TS-CAN backbone (Liu
et al., 2020) on UBFC and PURE as stated in Appendix C. As Table 21 demonstrates, SimPer out-
performs these SSL baselines across all tested human physiology datasets by a notable margin. We
break the results out to confirm that they hold regardless of whether we include the customized face
saliency module (Gideon & Stent, 2021) or not.

Comparisons on other periodic learning tasks. We further extend the comparisons to other gen-
eral periodic learning tasks. We directly apply the SSL objectives in (Gideon & Stent, 2021; Wang
et al., 2022) to other domains and datasets involving periodic learning, and show the corresponding
results in Table 22. The table clearly shows that the SSL objectives in the referenced papers do not
provide a benefit in other periodic learning domains, and sometimes perform even worse than the
vanilla supervised baseline. The above results further emphasize the significance of SimPer, which
consistently and substantially exhibits strengths in general periodic learning across all domains.

D.7 VISUALIZATION OF LEARNED FEATURES

Since representations learned in periodic data naturally preserves the periodicity information, we can
directly plot the learned 1-D features for visualization. Fig. 8 shows the learned feature comparison
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Figure 8: Visualization of learned periodic representations. We directly plot the 1-D feature vector of data
in the test set of RotatingDigits with different underlying target frequencies (left), via different self-supervised
learning methods (right). Existing SSL solutions (Qian et al., 2021; Chen et al., 2020) fail to learn meaningful
periodic representations, whereas SimPer is able to capture the underlying periodicity information.

between SimCLR, CVRL, and SimPer, together with the underlying periodic information (rotation
angle & frequency) in RotatingDigits. As the figure verifies, SimPer consistently learns the pe-
riodic information with different frequency targets, delivering meaningful periodic representations
that are robust and interpretable. In contrast, existing SSL methods cannot capture the underlying
periodicity, and fail to learn useful representations for periodic learning tasks.

E BROADER IMPACTS AND LIMITATIONS

Limitations. There are some limitations to our approach in its current form. The SimPer features
learnt in some cases were not highly effective without certain fine-tuning on a downstream task.
This may be explained by the fact that some videos may contain multiple periodic processes (e.g.,
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pulse/PPG, breathing, blinking, etc.). A pure SSL approach will learn features related to all these
periodic signals, but not information that is specific to any one. One practical solution for this
limitation could be incorporating the frequency priors of the targets of interest. Precisely, one can
filter out unrelated frequencies during SimPer pre-training to force the network to learn features that
are constrained within a certain frequency range. We leave this part as future work.

Broader Impacts. While our methods are generic to tasks that involve learning periodic signals, we
have selected some specific tasks on which to demonstrate their efficacy more concretely. The mea-
surement of health information from videos has tremendous potential for positive impact, helping
to lower the barrier to access to frequent measurement and reduce the discomfort or inconvenience
caused by wearable devices. However, there is the potential for negative applications of such tech-
nology. Whether by negligence, or bad intention, unobtrusive measurement could be used to mea-
sure information covertly and without the consent of a user. Such an application would be unethical
and would also violate laws in many parts of the world2. It is important that the same stringent
measures applied to traditional medical sensing are also applied to video-based methods. We will be
releasing code for our approach under a Responsible AI License (RAIL) (Contractor et al., 2022) to
help practically mitigate unintended negative behavioral uses of the technology while still making
the code available.

2https://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=3004&ChapterID=57
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