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ABSTRACT

We introduce an order-invariant reinforcement learning framework for black-
box combinatorial optimization. Classical estimation-of-distribution algorithms
(EDAs) often rely on learning explicit variable dependency graphs, which can be
costly and fail to capture complex interactions efficiently. In contrast, we parame-
terize a multivariate autoregressive generative model trained without a fixed vari-
able ordering. By sampling random generation orders during training - a form of
information-preserving dropout - the model is encouraged to be invariant to vari-
able order, promoting search-space diversity and shaping the model to focus on the
most relevant variable dependencies, improving sample efficiency. We adapt Gen-
eralized Reinforcement Policy Optimization (GRPO) to this setting, providing sta-
ble policy-gradient updates from scale-invariant advantages. Across a wide range
of benchmark algorithms and problem instances of varying sizes, our method fre-
quently achieves the best performance and consistently avoids catastrophic fail-
ures.

1 INTRODUCTION

Black-box optimization (Audet & Kokkolaras, 2016; Brochu et al., 2010) consists of maximizing
a function f : X → R over the discrete space X without any structural or analytical knowledge
of f . The function f is typically costly to evaluate (e.g., computationally expensive simulation,
querying a physical experiment, or executing a complex algorithm). The interactions among the
variables of f are not available, making black-box optimization particularly challenging, especially
in high-dimensional and structured discrete domains (Doerr et al., 2019; Larranaga, 2002).

A wide range of methods and concepts have been explored to solve Black-box optimization prob-
lems. Among them, Bayesian optimization (BO) is a model-based optimization framework that con-
structs a probabilistic surrogate model over the objective function and uses an acquisition function
to determine where to sample next in the search space. It is particularly effective for global op-
timization under tight evaluation budgets, making it well-suited for expensive black-box problems
(Forrester & Keane, 2009; Frazier, 2018; Shahriari et al., 2015). Evolutionary Algorithms (EAs) are
also recognized as powerful methods for solving discrete black-box optimization problems. These
metaheuristics operate by iteratively evolving a population of candidate solutions through variation
operators (mutation, crossover) and selection mechanisms. Unlike Bayesian optimization, EAs do
not build explicit models of the objective function, making them more flexible and easier to imple-
ment (Back, 1996; Eiben & Smith, 2015).

As a specific subclass of EAs, Estimation-of-Distribution Algorithms (EDAs) are stochastic black-
box optimization methods that guide the search for optima by explicitly learning and sampling from
a probabilistic model P of promising candidate solutions by means of a distribution that captures
patterns among high-performing solutions (Larranaga, 2002; Mühlenbein & Paass, 1996). EDAs
can be conceptually positioned between the two main paradigms of black-box optimization, EAs
and BO. Some widely used and effective EDAs such as the Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) (Hansen & Ostermeier, 2001; Hansen, 2016)—designed for continuous
landscapes—and Population-Based Incremental Learning (PBIL) (Baluja, 1994)—for discrete land-
scapes—can also be interpreted within the Information-Geometric Optimization (IGO) framework
(Ollivier et al., 2017). This connection provides a formal interpretation of EDAs as performing
natural gradient descent in the space of probability distributions, thus explaining their ability to fine-
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tune solutions and converge reliably in continuous or discrete spaces. While continuous EDAs—
particularly CMA-ES—have attracted significant attention, a less explored body of research focuses
on EDAs for discrete and combinatorial spaces. Early work in this area has demonstrated the ef-
fectiveness of multivariate discrete EDAs in applications such as scheduling, routing, and constraint
satisfaction problems (Lozano, 2006). Algorithms such as Mutual Information Maximizing Input
Clustering (MIMIC) (De Bonet et al., 1996) and Bayesian Optimization Algorithm (BOA) (Pelikan,
2005) model dependencies between variables using directed acyclic graphs, enabling them to learn
the structure of the search space and capture conditional dependencies among decision variables.

In this paper, we revisit discrete multivariate EDAs by using a multivariate distribution parameter-
ized by neural networks to model the distribution of each variable conditionally on the others. The
resulting highly flexible model is capable of capturing complex interactions between variables while
controlling the total number of parameters in the joint generative distribution, which scales polyno-
mially with instance size. A neural network is associated with each variable and trained in parallel
using modern reinforcement learning techniques—based on policy gradients such as Generalized
Reinforcement Policy Optimization (GRPO) (Shao et al., 2024)—which have proven highly success-
ful in rapidly converging on effective policies, especially when discrete action choices must be made
in complex environments. The solution generation process is modeled as a sequential assignment
of variable values. Inspired by recent work (Pannatier et al., 2024)—which proposes permutation-
invariant autoregressive generation to mitigate exposure bias and increase robustness—and in con-
trast to classical EDAs such as MIMIC and BOA, which rely on an explicitly learned generation
order, we adopt a more agnostic stance. Rather than assuming or learning a sparse directed acyclic
graph, which may not reflect the true underlying structure of complex combinatorial problems, we
advocate for a multivariate undirected generative model that is invariant to the order of variable gen-
eration. Furthermore, we show that learning the model with random orders corresponds to a form of
structural dropout (Pal et al., 2020) inspired by recent advances in permutation-invariant modeling
and conditional masking in generative neural networks (Uria et al., 2016), where random subsets of
the context are provided during training. This technique enables each variable to depend on varying
combinations of others, allowing the model to flexibly learn interactions without committing to a
fixed generation path. We experimentally show that the resulting model is more robust to structural
uncertainty and better suited to complex, high-dimensional combinatorial search spaces. In our ap-
proach, the critical NP-hard combinatorial optimization problem at the core of graph learning used
in Bayesian multivariate EDAs (like BOA) is replaced by a single continuous optimization problem.

The remainder of this paper is organized as follows. Section 2 introduces the discrete black-box
optimization problem, reviews related work and discuss the motivations for this work. Section 3
presents the derivation of our proposed RL-EDA approach, which builds on a GRPO RL backbone
and is designed to tackle this class of problems. Section 4 reports empirical results comparing our
algorithm with state-of-the-art methods. Various versions of the approach are also compared to
analyze the benefits of each of its components. Section 5 discusses the contribution and presents
some perspectives for future work.

2 PRELIMINARIES: PROBLEM SETTING, RELATED WORK AND MOTIVATIONS

In this section, we first formally introduce the discrete black-box optimization problem. We then
review existing work on multivariate EDAs proposed to tackle such problems. Finally, we discuss
the opportunities offered by neural generators in this context, particularly regarding their flexibility
in capturing implicit inter-variable dependencies. We also highlight the potential benefits of lever-
aging random variable orderings for both generation and training under stringent sample-efficiency
constraints within the EDA training regime.

2.1 DISCRETE BLACK-BOX OPTIMIZATION

Let X = X1×· · ·×Xn be the discrete search space of size n, where each Xj is a finite set (binary or
categorical), and let f : X → R be an objective function accessible only as a black box, i.e., without
any structural information (such as convexity or smoothness). A combinatorial optimization (CO)
problem is then defined by the pair (X , f). Without loss of generality, the task is to maximize f :
maxx∈X f(x). In the following, x = (x1, . . . , xn) ∈ X denotes a candidate solution (not necessar-
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ily the best) of the CO problem. Xi denotes the variable associated to Xi, whose value in Xi is xi.
Various existing solving techniques for black-box CO include Bayesian optimization methods and
metaheuristics (local-search-based and population-based approaches), which have been improved
by machine learning techniques (Talbi, 2021). More related work on combinatorial optimization is
given in Appendix A.

2.2 MULTIVARIATE ESTIMATION OF DISTRIBUTION ALGORITHMS

Multivariate EDAs are evolutionary algorithms that solve a CO problem by iteratively building and
updating a probabilistic model over the search space X . An EDA with parameters (µ, λ) ∈ N2 with
0 < µ < λ performs the following steps at each generation t:

1. Draw a population of λ candidate solutions x1, . . . , xλ from the model Pt and compute
fitness values f i = f(xi), for i = 1, . . . , λ.

2. Select the µ best individuals St = {xri : i ∈ [1..µ]}, where (r1, . . . , rλ) is a permutation
of [1..λ] such that fr1 ≥ · · · ≥ frλ , and use St to estimate the updated probabilistic model
Pt+1.

Following this framework, EDAs mainly differ in how they model the generative distribution Pt

used to sample new candidate solutions at each generation t. Some approaches, such as PBIL
(Baluja, 1994) or UMDA (Mühlenbein & Paass, 1996), approximate Pt as a product of indepen-
dent univariate distributions: Pt(x) =

∏n
i=1 P

i
t (Xi = xi), where P i

t denotes the i-th marginal
distribution. While such approaches have proved effective on problems with little or no interaction
among variables, they suffer from important limitations: they can at best focus on a single mode
of the distribution, fail to capture complex inter-variable relationships (including combinatorial or
logical dependencies), and are prone to premature convergence or loss of diversity in multimodal
landscapes.

To overcome these limitations, classical multivariate EDAs need to employ more expressive proba-
bilistic models that explicitly capture dependencies between variables from best candidates in St

at each generation t. In the case of Bayesian networks, dependencies are represented by a di-
rected acyclic graph (DAG) G = (V, E), whose set of vertices V contains all the variables Xj

for j = 1, . . . , n and whose directed edges E represent causality relationships. Hence, at any itera-
tion t of the EDA process, the joint density Pt(x) can be factorized as the product of the densities
of each variable conditionally on its parents as Pt(x) =

∏n
j=1 Pt(Xj = xj |XPa(j;Gt) = xPa(j;Gt))

(Markov factorization) with Gt = (V, Et) the considered DAG at iteration, XPa(j;Gt) = {Xi ∈ V :
(Xi, Xj) ∈ Et} the set of the parents of the variable Xj in Gt and xPa(j;Gt) their corresponding
values.

Given a DAG Gt, such a factorization allows to significantly reduce the number of required parame-
ters to approximate Pt. It also permits sampling the variables sequentially according to a topological
ordering consistent with the causal dependencies encoded by the graph. However, optimal DAGs
are usually unknown at the beginning of the process, and need to be learned efficiently from se-
lected candidates St at each generation, together with the parameters of each factor of the Markov
factorization (more details on EDAs with DAGs can be found in Appendix A).

2.3 THE CASE ON NEURAL ESTIMATORS

Traditionally, EDAs based on Bayesian networks estimate each component of the Markov factor-
ization by contingency tables reporting counts of all joint realizations of the dependent variables
together with the combinations of its parents’ values. In this setting, restricting the dependencies
of each outcome to a small subset of causal variables is crucial to avoid the exponential growth of
complexity with the problem dimension. This limitation has motivated a long line of research on
structural learning heuristics, pruning strategies, and regularization techniques designed to control
the combinatorial explosion (Echegoyen et al., 2008).

Neural estimators fundamentally alter this picture. In classical EDAs, learning an explicit depen-
dency graph was unavoidable: the sampling model could only be specified once the graph structure
had been identified. Neural approaches dispense with this requirement. By parameterizing the joint
distribution directly—often through autoregressive factorizations with arbitrary variable orderings
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(Germain et al., 2015; Uria et al., 2016), or via invertible transformations in flow-based models
(Papamakarios et al., 2021)—they sidestep the need to commit to a learned structure at all. How-
ever, despite their success in density estimation and generative modeling, such neural approaches
have scarcely been explored in the context of multivariate EDAs. To the best of our knowledge, no
prior work has applied autoregressive to EDA, nor investigated their interaction with the iterative
optimization dynamics. This gap motivates our study.

In practice, fitting a flexible neural density estimator is frequently simpler and more robust than
inferring the “correct” graph, especially under the limited and evolving sample regimes typical of
EDAs. Following an autoregressive model, we can consider any given factorization using any order
of variables. That is, given an arbitrary order σ of the dimensions of the problem, we can write
P (X = x) =

∏n
i=1 P (xσi

|xσ<i), where xσi
stands as the value of the i-th dimension of x in

the permutation σ and xσ<i corresponds to the sequence of values of x with rank lower than i in
permutation σ (with xσ<1 standing as an empty sequence). Given N samples of P , this can be
estimated by a neural network Pθ, with parameters θ obtained via maximum likelihood estimation
(MLE): argmaxθ∈Θ

1
N

∑N
j=1

∏n
i=1 Pθ(x

j
σi
|xj

σ<i), where x1 . . . xN are sampled from the target
distribution P . We note that this is true for any given permutation σ. In particular, assuming infinite
amounts of data and infinite capacity of the used neural networks, at convergence of the MLE, we
get that: ∀σ, σ′ : Pθ(X|σ) = Pθ′(X|σ′), where θ and θ′ are optimal parameters (according to
MLE) for permutation σ and σ′ respectively. NADE (Uria et al., 2016) exploits this idea by defining
ensembles of models, each associated with a different variable ordering, which enables sampling
from a more diverse set of outcomes. Yet, to the best of our knowledge, such permutation-based
ensembles have never been explored in multivariate EDAs, despite population diversity being a key
ingredient for black-box optimization and effective exploration. Beyond sampling, we argue that
training a single model across multiple orderings provides an additional benefit: it acts as a form
of noise reduction when learning from limited data, as is typically the case in online EDAs. In
Appendix E, we show that this mechanism can be interpreted as an information-preserving analogue
of dropout, allowing the model to efficiently identify the dominant dependencies between variables
while mitigating overfitting to transient fluctuations.

3 MULTIVARIATE EDA WITH ORDER-INVARIANT REINFORCEMENT
LEARNING

Our proposed algorithm for discrete black-box problems is a multivariate EDA (see Section 2.2)
whose probabilistic model is encoded with a set of neural networks. The construction of a solution
of the CO problem is seen as an episodic Markov Decision Process (MDP) with a reinforcement
learning algorithm adapted for our setting.

3.1 DEEP REINFORCEMENT LEARNING FOR EDAS: SETTING AND ARCHITECTURES

The EDA framework presented above can be easily casted as a reinforcement learning problem,
defined on an MDPM = (S,A, P,R) where S is a set of states, A a set of actions, P (s′|s, a) is
the transition probability function, R : S → R is the reward function, that assigns a scalar reward
depending on reached states in S. In the setting of multivariate EDAs, S corresponds to incomplete
solutions from X (i.e. S ≡ {(∅, 0, σ) : σ ∈ Ω} ∪ {((xσ1

. . . xσk
), k, σ) : x ∈ X , σ ∈ Ω, k ∈

[[1, n]]}), with Ω the set of all possible generation orders of a sequence of indices 1 . . . n, and ∅ an
empty sequence that defines starting states s0. For a given state sk = (xσ≤k

, k, σ), the set of possible
actions Ak ⊆ A is the domain of the k + 1-th variable of the permutation σ (i.e., Ak ≡ Xσk+1

).
Thus, transitions are deterministic: for any triplet (s, a, s′), with s = (xσ≤k

, k, σ) and a ∈ Xσk+1
,

P (s′|s, a) is 1 iff s′ = (x′
σ≤k+1

, k + 1, σ) with x′
σ≤k

= xσ≤k
and x′

σk+1
= a. Finally, rewards are

non-zeros for states from S that correspond to complete solutions of the problem only (i.e., those
states that contain full instantiation of X ).

In that setting, our goal is to optimize a parameterized stochastic generative policy πθ(ak ∈
Xσk+1

|sk = (xσ≤k
, k, σ)), that defines the probability of taking action ak in state sk. For the

binary setting where the discrete search space is X = {−1, 1}n, we model this generative policy
as a neural logistic regressor as πθ(ak = 1|sk = (xσ≤k

, k, σ)) = sigmoid(gθdimσ(k)
(xσ≤k

)), with
gθi a neural network with parameter θi ∈ Rm and dimσ(k) the bijective function that returns the
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index of the dimension at rank k in permutation σ. For categorical domains Xi, we encode each of
their d categories as a one hot vector where Xi,j = 1 iff the represented category is j ∈ [[1, d]], −1
otherwise. For these outputs, we consider a softmax over the logits produced by g to produce the
corresponding categorical distribution.

Rather than dealing with neural models specifically dedicated for sequences, such as recurrent net-
works or Transformers (which are better suited for non structured inputs), we propose to define g
as a classical MLP, parameterized with a different set of parameters for each individual output of
the problem. For any order of generation σ and any step k, we want to feed g with a fixed-size
vector as input. For a given step k of a permutation σ, this is done by modeling the input xσ<k

as a
vector of size n, where each dimension xi = 0 (resp. xi is a zero vector for the categorical domains)
iff rankσ(i) = dim−1

σ (i) ≥ k. During training, this comes down to applying a causal mask to
candidate solutions, that masks future of k in permutation σ. Note that, while θ ∈ Rn×m in our
architecture, our work could be easily extended by sharing parameters of hidden layers for scaling
to very large problems without facing prohibitive training costs.

3.2 DEEP REINFORCEMENT LEARNING FOR EDAS: TRAINING

Given the setting stated above, the optimization seeks to maximize the expected global reward over
trajectories τ = (s0, a0, . . . , sn−1, an−1, sn): J(θ) = Eτ∼πθ

[R(τ)], where R(τ) in our setting
corresponds the fitness f(x) computed for the full candidate x ∈ X contained in the last state of
τ (i.e., R((s0, a0, . . . , sn)) = f(x), iff sn = (x, n, σ)). For a given σ, this is thus equivalent to
maximizing Jσ(θ) = Ex∼πθ(x|σ)[f(x)], where πθ(x|σ) stands for the probability of sampling x as
a sequence x = (xσ1

, . . . , xσn
) using our generative architecture1. Following the policy gradient

theorem (Sutton et al., 2000), we get that parameters θ can be obtained using gradient updates
defined as

∇θJ
σ(θ) = Ex∼πθ(x|σ)[f(x)

n∑
k=1

∇θ log πθ(xσk
|xσ<k

, σ)]. (1)

This formulation allows us to sample candidate solutions of the problem from the current distribu-
tion πθ(x|σ) (which corresponds to Pt(x) in the EDA framework described in Section 2.2), and then
estimate an update of the generative distribution by computing a weighted average of gradients of
log πθ(x|σ), with weights depending on the respective fitness of sampled x (which is the analogue
of step 2 from the EDA framework in Section 2.2). However, from updates defined in (1), each
sample x can be used for a unique gradient step only, which can reveal as very sample inefficient.
Moreover, updates of the policy are strongly dependent on its parametrization, which can lead to
hazardous moves that induce catastrophic forgetting when using such neural generators. To improve
sample efficiency and stabilize training, the Proximal Policy Optimization (PPO) algorithm (Schul-
man et al., 2017), following TRPO (Schulman et al., 2015a), optimizes a surrogate objective function
that penalizes deviations from a reference policy πθold , used for sampling, that will be denoted πθt

at generation t of our EDA. In our setting, the policy gradient update in (1) can be rewritten using
importance sampling as an expectation under πθt . Approximating the state distribution dπθ by dπθt ,
we obtain (see appendix B for details)

∇θJ
σ(θ) ≈ Eπθt (x|σ)

n∑
k=1

∇θπθ(xσk
|xσ<k

, σ)

πθt(xσk
|xσ<k

, σ)
Aπθt (xσ<k

, xσk
), (2)

where Aπθt (xσ<k
, xσk

) denotes the expected advantage of setting Xσk
= xσk

given xσ<k
, while

completing the trajectory with the reference policy. This formulation allows multiple gradient steps
for updating the policy (i.e., for obtaining Pt+1), given samples obtained using the policy (repre-
senting Pt) from the previous iteration t of our EDA RL framework. However, the approximation in
(2) (the choice of the KL version of PPO is discussed in section F), which should be understood at
the level of expected gradients, introduces an acceptable bias only when πθ and πθt are close (e.g.,
in KL divergence). Thus, following the KL version of PPO, we consider the maximization of the

1In the following of this section we consider a fixed arbitrary order σ for every state of the MDP. Using
random variations of σ is the subject of the next section.
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regularized objective:

Lσ(θ) = E
πθt (x|σ)

n∑
k=1

[
πθ(xσk

|xσ<k
, σ)

πθt(xσk
|xσ<k

, σ)
Aπθt (xσ<k

, xσk
)− βDKL

(
πθt(·|xσ<k

, σ) ∥πθ(·|xσ<k
, σ)
)]

(3)
where DKL(π||π′) stands for the Kullback-Leibler (KL) divergence of π from π′, and β > 0 is an
adaptive penalty coefficient that controls the strength of the KL regularization. While PPO classi-
cally uses critic neural networks to estimate advantages (e.g., using GAE (Schulman et al., 2015b)),
we rather take inspiration from the GRPO approach (Shao et al., 2024), specifically dedicated for
RL problems with global rewards from finite trajectories without discount, which avoids the need
for a critic, by estimating scale-invariant advantages using a normalization of rewards obtained on
a population of samples for a same problem. Scale-invariance is particularly desirable in black-box
optimization settings, as it enhances robustness to the scaling of objective values (Baluja, 1994; Do-
err & Dufay, 2022; Goudet et al., 2025). Given a set of λ candidate solutions Γt

λ = {xi}λi=1, each
sampled from πθt(x|σ), we thus consider at each iteration t of the process the maximization of

L̂σ
λ(θ) =

1

λ

∑
xi∈Γt

λ

n∑
k=1

[
πθ(x

i
σk
|xi

σ<k
, σ)

πθt(xi
σk
|xi

σ<k
, σ)

ÂΓt
λ
(xi)− βDKL

(
πθt(·|xi

σ<k
, σ) ∥πθ(·|xi

σ<k
, σ)
)]

,

(4)
where AΓt

λ
(x) is the relative performance of candidate x compared to other solutions from Γt

λ. In
this paper, we consider advantages computed as

AΓt
λ
(x) = U

(
rk(x,Γt

λ, f)

λ− 1

)
, (5)

where U is a non-increasing utility function and rk(xi,Γt
λ, f) is the rank of the individual i in

the population Γt
λ given its fitness f(xi). Formally, rk(x,Γ, f) = |{x′ ∈ Γ : f(x′) > f(x)}|.

This advantage formulation, which makes the algorithm invariant under monotone transformation
of the fitness function f , is grounded in the Information-Geometric Optimization (IGO) framework
(Ollivier et al., 2017). We discuss the connexion of our approach with IGO in Appendix G.

3.3 ORDER INVARIANT REINFORCEMENT LEARNING FOR EDAS

In the previous section, we introduced a multivariate-RL-EDA, that uses a predetermined arbitrary
generation order σ. The aim of this section is to adapt this algorithm for dealing with variations
of this generation order, which we claim can strongly benefit for exploration and learning in our
black-box optimization setting.

Given a generation order distribution ξ(σ), we can consider the expectation L(θ) = Eσ∼ξ(σ)L
σ(θ)

in place of using Lσ(θ) with a fixed known order σ. Let for convenience of the following σ(x)<k

denote a masking (i.e., removing) of any dimension from x whose rank in permutation σ is greater or
equal than the one of dimension k (i.e., ∀i ∈ [[1, n]], Xi ∈ σ(X)<k ⇐⇒ rankσ(i) < rankσ(k)).
Using this, we can rewrite the objective (3), as

L(θ) = Eσ∼ξ(σ)Eπθt (x|σ)

n∑
k=1

[
πθ(xk|σ(x)<k)

πθt(xk|σ(x)<k)
Aπθt (σ(x)<k, xk)

−βDKL (πθt(·|σ(x)<k) ∥πθ(·|σ(x)<k))] . (6)

A notable difference in this writing compared to previous ones is that the inner sum from k = 1 to n
is taken in the original dimension ordering of the problem, rather than in the generation order. While
fully equivalent, this formulation allows us to introduce a second source of variation, specifically
dedicated for incentivizing order-invariance of the policy. Let ξ(σ′|σ) be a conditional distribution
that samples a transformation σ′ ∈ Ω of a given initial permutation σ ∈ Ω. We propose to use this
transformed permutation σ′ to train the new policy πθ, given samples from the old policy using the
former permutation σ. We get (derivation detailed in section C)

L(θ) = E σ∼ξ(σ),
σ′∼ξ(σ′|σ)

Eπθt (x|σ)

n∑
k=1

[
πθ(xk|σ′(x)<k)

πθt(xk|σ(x)<k)
Aπθt (σ(x)<k, xk)

−βDKL (πθt(·|σ(x)<k) ∥πθ(·|σ′(x)<k))] . (7)
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As in previous section, we finally consider a Monte-Carlo approximation of this quantity at each
iteration, using scale normalized global advantages, given a set of λ i.i.d. candidate solutions asso-
ciated with their own order of generation Γt

λ = {(xi, σi)}λi=1. For each component i in this set, an
order σi is first sampled from ξ, then xi is sampled from πθt(.|σ). We get:

L̂λ(θ) =
1

λ

∑
(xi,σi)∈Γt

λ

Eσ′∼ξ(σ′|σi)

n∑
k=1

[
πθ(x

i
k|σ′(xi)<k)

πθt(xi
k|σi(xi)<k)

ÂΓt
λ
(x)

−βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)]
. (8)

This formulation allows us to experiment various versions of our training process:

• (δ, δ′)-RL-EDA: uses a fixed arbitrary order for both generation and training (i.e., ξ is a
Dirac centered on the original order of the problem and ξ(.|σ) is a Dirac centered on σ)

• (δ, σ′)-RL-EDA: uses a fixed arbitrary order for generation, but for training ξ(.|σ) is a
uniform distribution

• (σ, δ′)-RL-EDA: uses an identical random order σ for both generation and training, with ξ
an uniform distribution over Ω and ξ(.|σ) is a Dirac centered on σ.

• (σ, σ′)-RL-EDA: uses two sources of noises in the training process. Both generation order
σ and the training order are sampled from a uniform distribution over Ω.

The pseudo-code of our full algorithm, which includes these permutation noises for training, is given
in Appendix H (Algorithm 1). Note that considering varying causal graphs is also possible in this
framework, by simply using masks σ(x)<k that hide values of non parent variables of xk in x, in
addition to every dimension whose rank in σ is greater or equal than k. We experiment with this
structural dropout as a complement or replacement for causal masks for the different versions of
the multivariate EDA in Appendices M.1 and M.2. For complementary analysis, we also describe
in Appendix I a version called Learned-σ-RL-EDA which uses a Plackett-Luce (PL) distribution
(Plackett, 1975) ξPL

w parametrized by the vector w ∈ Rn for both generation and training, trained
by gradient descent with the reparametrization trick proposed by (Grover et al., 2019).

4 EXPERIMENTS

We examine the following NP-hard problems in this work (seen as black-box CO): the Quadratic un-
constrained binary optimization problem (QUBO) (Kochenberger et al., 2014), the pseudo-boolean
NK landscape problem (Kauffman & Weinberger, 1989) and its extension with ternary variables
called NK3. For each of these problems pb, we generated instances of size n ∈ {64, 128, 256}, and
for each size, we considered different types K of instances. We generate 10 instances for each tuple
(pb, n,K). For each problem instance, we allow a maximum budget of 10,000 objective function
evaluations, and we solve it with 10 different restarts. Details regarding the instances and experi-
mental protocol are provided in Appendix J.

4.1 COMPARISON OF THE DIFFERENT VERSIONS OF REINFORCEMENT LEARNING
MULTIVARIATE EDA

In this section, we first aim to compare the five different versions of multivariate-RL-EDA presented
in Section 3.3: (δ, δ′)-RL-EDA, (δ, σ′)-RL-EDA, (σ, δ′)-RL-EDA, (σ, σ′)-RL-EDA and Learned-
σ-RL-EDA. The complete hyperparameter configuration of the various versions of the multivariate-
RL-EDA, which serves as a baseline for all experiments, is provided in Appendix K. It includes
both EDA-specific and GRPO-related parameters, along with implementation and execution details
relevant to reproducibility. Here we perform this comparison only for the distribution of instances
of the pseudo-boolean NK maximization problem with N = 256 and K = 4 (moderate roughness).
The results displayed here are representative of what we can obtain on the other distributions of
instances.

Figure 1a shows the evolution curve of average scores over 100 independent runs for the four dif-
ferent versions (solide lines). The ranges of color around the solid lines correspond to plus or minus

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

one standard deviation from the mean calculated over the 100 runs. Solid lines in Figure 1b corre-
sponds to the evolution of the mean Hamming distance of the individuals of the population from the
best solution found during the trajectory. The color range represents the standard deviation of the
Hamming distance calculated within the population at each generation, with one standard deviation
below and one standard deviation above the average distance. The evolutions of the Mean Hamming
distance and standard deviation are averaged over the 100 independent runs.

(a) Evolution of the scores (b) Evolution of the distances

Figure 1: X-axis: number of calls to the objective function. Y-axis: Evolution of average scores
(a) and average distances (b) obtained by the different variants of multivariate RL EDA for 100
independent runs on instances of the NK problem with N = 256 and K = 4.

The different multivariate versions of our EDA exhibit very different behavioral dynamics, even
though they are characterized by the same hyperparameters, with the exception of changing sampling
distributions of orders, which shows their importance during the sampling and update phases for
such a multivariate RL algorithm.

The version (σ, σ′)-RL-EDA that uses both uniform distributions of orders for sampling and training
converges towards the best scores (green curve). Once the maximum is reached, we see in Figure 1b
that the algorithm has converged because the average distance from the best solution encountered
on the trajectory is close to 0. The comparison of this green curve with the blue curve of the (δ, σ′)-
RL-EDA version highlights the contribution of sampling new orders during the EDA generation
phase, because it allows to maintain a better diversity of the individuals of the population at each
generation and thus allows a better exploration of the search space. It works like an ensembling
method where actually different models are used at each generation to produce new solutions. But
the main impact is explained when comparing the green curve with the yellow curve of the (σ, δ′)-
RL-EDA version. It highlights the contribution of sampling new orders during the EDA training
phase, which underscores the importance of the specific structural dropout at the input of each
network induced by this random sampling of orders. Finally, the purple curves correspond to the
version using a learned Placket-Luce distribution of order with a vector w of distribution weights
initialized with only ones. The purple curves also show a good evolution of the scores, but the model
did not converge with the allocated budget, and the scores are worse than those obtained with the
(σ, σ′)-RL-EDA version (green curve). This experiment confirms that attempting to extract explicit
structures in such an online search process is counterproductive when using neural estimators (at
least without additional knowledge about the instance properties), since learning them is at least
as difficult as learning neural weights from random orderings, taking advantage of the networks’
plasticity to adapt to any ordering. Instead, random resampling of new orderings for both generation
and training plays a key role in discovering high-quality solutions, as it promotes exploration and
enables a more effective identification of interactions between variables.

4.2 EXPERIMENTAL VALIDATION ON DISCRETE BLACK-BOX BENCHMARKS

We evaluate the performance of our best version (σ, σ′)-RL-EDA dentified in the last section against
a comprehensive set of 504 algorithms, essentially composed of those available in the Nevergrad
library (Rapin & Teytaud, 2018).

In version 1.0.12 of the Nevergrad library, a total of 542 algorithms were available. We evaluated
all of them on the discrete black-box problem QUBO, NK and NK3, with a time budget of one
hour per instance. Among these, 500 algorithms successfully produced solutions within the given
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time limit for pseudo-Boolean problems and 496 for the categorical NK3 problem. This panel in-
cludes classic metaheuristic algorithms for black-box optimization (evolutionary and memetic) as
well as combinations of solving techniques driven by machine learning (e.g. Adaptive Portfolios).
A complete description is provided in Appendix N. In addition to the algorithms already available
in Nevergrad, we include three well-known EDAs: PBIL (Baluja, 1994), MIMIC (De Bonet
et al., 1996), and BOA (Pelikan, 2002). For these algorithms, we rely on the publicly available im-
plementation at https://github.com/e5120/EDAs, using the default hyperparameter set-
tings. Since PBIL is designed specifically for pseudo-Boolean optimization, it was not evaluated
on NK3 instances involving variables with three categorical values. We also incorporate one of the
most widely used local search methods for pseudo-Boolean optimization, the one-flip Tabu Search
(hereafter referred to as Tabu), which has been employed in many effective metaheuristics in recent
years, notably for QUBO or NK pseudo-boolean problems (Glover et al., 2010; Goudet et al., 2024;
Samorani et al., 2019; Shi et al., 2017; Wang et al., 2012) (see details in Appendix N).

A detailed presentation of the experimental results can be found in Appendix L. In addition, compre-
hensive results detailing the performance of all algorithms across the various instance distributions
are available in the supplementary material. As shown in Table 3 (see appendix L), the proposed
algorithm (σ, σ′)-RL-EDA achieves competitive results, though not the best ones, on the small-
est instances (n = 64). However, it frequently obtains the best performance on larger instances
(n = 128 and n = 256) across the various problems considered in this work. This suggests that
the proposed algorithm scales well with instance size. Notably, (σ, σ′)-RL-EDA performs well on
pseudo-Boolean problems QUBO and NK, across a wide range of fitness landscape types—from
smooth landscapes (e.g., NK with K = 1) to more rugged ones (K = 8)—without requiring any
change to its hyperparameters, which is rather surprising. As an example, Figure 2 display plots
showing the evolution of the best scores (averaged over 100 runs) as a function of the number of
objective function evaluations for QUBO instances of size N = 128 and type K = 5 and NK
instances of size N = 256 and type K = 4. On this plot (σ, σ′)-RL-EDA (green curve) is com-
pared against the 10 best-performing other competing algorithms. Furthermore, the adaptation of
(σ, σ′)-RL-EDA to ternary variables (NK3 instances), also yields promising results using the same
hyperparameter configuration, although performance drops are observed for K = 8, compared to
lower values of K. A more detailed analysis of these under-performances is provided in Appendix
M.6 (see Figure 13b). Appendix M provides ablation studies and variant analyses to identify the key
components that contribute to the effectiveness of (σ, σ′)-RL-EDA, including a comparison with
input dropout techniques.

(a) QUBO instances with N = 128 and K = 5. (b) NK instances with N = 256 and K = 4.

Figure 2: X-axis: number of calls to the objective function. Y-axis: Evolution of average scores.

5 CONCLUSION

In this work we introduce a novel discrete black-box optimization framework that leverages neural
generators of candidate solutions. The model is trained using an original order-invariant reinforce-
ment learning procedure, enhancing sample efficiency. The robustness of our method is supported
by extensive empirical evaluation across a diverse set of synthetic black-box optimization prob-
lems of varying sizes. As future work, we aim to extend this approach to a multi-modal setting,
for instance by employing mixtures of distributions, potentially represented through models with
attraction–repulsion dynamics.
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6 REPRODUCIBILITY STATEMENT

We provide the source code of our algorithm including instructions on how to launch it in a readme
file in the supplementary material.
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Appendix
A RELATED METHODS FOR SOLVING BLACK-BOX COMBINATORIAL

PROBLEMS

In this appendix, we provide a brief overview of the two principal paradigms that have been de-
veloped in the literature for addressing black-box optimization problems: (i) Bayesian optimization
(BO) and surrogate-based modeling, and (ii) evolutionary algorithms (EA). We then focus more
specifically on Estimation of Distribution Algorithms (EDAs), a subclass of evolutionary algorithms
that iteratively use and update a generative model of promising solutions throughout the search pro-
cess.

Bayesian Optimization: The core idea is to treat the unknown objective f as a random function and
place a prior over it, typically using a Gaussian Process (GP). As new evaluations are performed,
this prior is updated to form a posterior distribution. The acquisition function—e.g., Expected Im-
provement (EI), Upper Confidence Bound (UCB), or Probability of Improvement (PI)—guides the
search by quantifying the utility of evaluating new candidate solutions (Jones et al., 1998; Srinivas
et al., 2012). BO is particularly effective for global optimization under tight evaluation budgets,
making it well-suited for expensive black-box problems (Forrester & Keane, 2009; Frazier, 2018;
Shahriari et al., 2015). Limitations : BO often struggle to scale effectively in high-dimensional
discrete domains, particularly when GPs are used as surrogates, due to their computational com-
plexity and modeling assumptions, even if recent advances have extended Bayesian optimization to
discrete and structured domains through various adaptations: tree-structured models (Bergstra et al.,
2011), relaxations of discrete variables into continuous spaces (Kandasamy et al., 2018), and surro-
gate models more adapted to categorical or ordinal data with the use of Random Forests (Bergstra
et al., 2011) instead of GP. Moreover, these methods are generally based on strong assumptions
about the nature of the noise that may appear in the evaluation of the objective function, such as
homoscedastic Gaussian noise, which may not hold in real-world settings, thereby compromising
the robustness and reliability of the surrogate model (Wang et al., 2023). Another limitation stems
from the inherently sequential nature of classical Bayesian optimization, where only one candidate
point is evaluated at each iteration. This design can lead to inefficiencies in scenarios where parallel
computational resources are available. Although various batch and parallel extensions have been
proposed, such as parallel GP-UCB (Contal et al., 2013; González et al., 2016), these approaches
often introduce additional computational overhead and require centralized coordination, which can
hinder scalability and responsiveness in practical applications.

Evolutionary Algorithms : Metaheuristic approaches (local search, population-based algorithms...)
are widely used to solve CO problems, and EAs offer several appealing characteristics. Because they
avoid the overhead of building and updating surrogate models, the computational cost per iteration
is typically low. EAs also demonstrate robustness to noise, as selection is often based on the ranking
of individuals rather than absolute fitness values, making them resilient to stochastic perturbations
and invariant under monotonic transformations of the objective. Theoretical convergence results are
available for certain classes of EAs, supported by advances in runtime analysis and black-box com-
plexity theory (Auger & Doerr, 2011; Doerr et al., 2019). Limitations : EAs may require more func-
tion evaluations to identify high-quality solutions compared to model-based approaches for complex
problems, which can limit their sample efficiency. Some research, however, has shown that hybrid
approaches—combining EAs with surrogate modeling or adaptive sampling strategies—can signif-
icantly enhance their effectiveness in scenarios with expensive evaluations (Emmerich et al., 2006;
Jin, 2011).

Estimation of distribution Algorithms : Like EAs, EDAs rely on population-based search, but
they inherit from BO the notion of modeling structure in the search space, although their modeling
goal differs. Instead of modeling the entire objective function, EDAs aim to model only the distri-
bution of promising regions in the fitness landscape, thus avoiding the complexity of full surrogate
modeling. This makes EDAs more computationally scalable in high-dimensional or discrete spaces,
where standard Gaussian Process-based BO may struggle due to assumptions of smoothness, sta-
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tionarity, or computational costs of inference (Frazier, 2018; Shan & Wang, 2010). The learning
process in EDAs may be as simple as estimating independent univariate marginals, as in the Uni-
variate Marginal Distribution Algorithm (UMDA) (Mühlenbein & Paass, 1996), or as sophisticated
as constructing full probabilistic graphical models, such as in the Bayesian Optimization Algo-
rithm (BOA) (Pelikan, 2002). EDAs still benefit from recent developments (Uribe et al., 2022) that
open new possible application domains, for instance, to achieve machine learning tasks (Larrañaga
& Bielza, 2024). One of the principal advantages of the modeling strategy of EDAs is its ability to
capture variable interactions, an essential feature in epistatic or non-separable problems, where stan-
dard EAs often fail. Several EDAs utilize graph structure (DAG) extraction at each generation of the
process. The MIMIC algorithm (De Bonet et al., 1996) proposes constructing a first-order Markov
chain on the variables, classifying them greedily using pairwise mutual information to capture their
strongest statistical dependencies. The Bayesian Optimization Algorithm (BOA) (Pelikan, 2002)
introduces a more expressive probabilistic model using Bayesian networks, allowing it to represent
complex, higher-order interactions between variables. The Factorized Distribution Algorithm (FDA)
(Lozano, 2006; Mühlenbein & Paass, 1996) exploits prior knowledge about the structure of the prob-
lem by explicitly incorporating domain-specific decompositions through a predefined factorization
of the joint distribution. However, while these approaches can perform well on certain problems,
they are fundamentally limited by the exponential growth of computational cost as problem size
and dependency complexity increase. In particular, BOA-based methods not only face prohibitive
model-construction costs in high-dimensional settings (Hauschild & Pelikan, 2011), but the com-
plexity of learning accurate dependency structures can also hinder effective exploration of the search
space. Limitations : EDAs exhibit some limitations in terms of premature convergence. Since most
EDAs update their probabilistic model solely from the current population, they tend to focus the
search around a single promising region, potentially losing diversity and missing other basins of
attraction (Hauschild & Pelikan, 2011). To address these limitations, several diversity-preserving or
niching-based EDAs have been proposed. For example, the Multi-CMA-ES algorithm introduces
multiple co-evolving models that repel each other in the search space to maintain diversity and ex-
plore multiple optima (Karunarathne et al., 2024). Similar ideas are found in multi-population EDAs
or speciation-based approaches (Yang et al., 2016).

A natural limitation is the choice of the distribution model. In the continuous case (i.e. X ⊆ Rn), a
common choice is the multivariate Gaussian distribution, which encodes dependencies via its covari-
ance matrix (e.g. CMA-ES (Hansen & Ostermeier, 2001)). In the discrete setting considered here,
there is however no direct analogue of the Gaussian. Rather, one instead typically uses probabilis-
tic graphical models, such as Bayesian networks (Echegoyen et al., 2008) or undirected graphical
models / Markov networks (e.g. as in DEUM (Shakya, 2006)), which model joint dependencies via
conditional probability tables or undirected cliques and permit sampling of new candidate vectors.
Research on multivariate discrete EDAs has seen a notable decline in recent years because there
does not exist the equivalent of the multivariate Gaussian distribution for the discrete space. How-
ever, Benhamou et al. (2018) attempts to adapt the CMA-ES algorithm to the discrete case, using a
multivariate Bernoulli distribution.

B DERIVATION OF THE PPO UPDATE (2)

While the derivation of (2) is rather straightforward following the proofs in (Schulman et al., 2015a),
we detail here its adaptation to our notations and to our undiscounted setting, considering only final
rewards, for completeness.

Let us first introduce some classical quantities in reinforcement learning:

• V π(s) is the state value function, which returns the expected cumulative return following
policy π from state s. In our setting, this can be defined for any given order σ and any given
state s = (xσ<k

, k − 1, σ), as:

V π(s) = V π,σ(xσ<k
) = E

πθ(xσ≥k
|xσ<k

,σ)
[f(x)]

• Qπ(s, a) is the state-action value function, which returns the expected cumulative return
from state s, assuming first action in s is a and then subsequent actions are sampled from π.
In our setting, this can be defined for any given order σ and any given state s = (xσ<k

, k−
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1, σ), and any action a = xσk
that specifies the value for Xσk

, as:

Qπ(s, a) = Qπ,σ(xσ<k
, xσk

) = E
πθ(xσ>k

|xσ≤k
,σ)

[f(x)]

• Aπ(s, a) is the advantage function, defined as:

Aπ(s, a) = Aπ,σ(xσ<k
, xσk

) = Qπ,σ(xσ<k
, xσk

)− V π,σ(xσ<k
)

We are interested in maximizing Jσ(θ) = Eπθ(x|σ)[f(x)], while reusing samples from a previous
policy to improve sample efficiency and stability.

We start by observing that, given any two policies πθ and πθ′ , we have:

argmax
θ

Jσ(θ) = argmax
θ

Jσ(θ)− Jσ(θ′),

since θ does not appear in Jσ(θ′).

Looking at Jσ(θ)− Jσ(θ′), we get:

Jσ(θ)− Jσ(θ′) = Eπθ(x|σ)[f(x)]− Eπθ′ (x|σ)[f(x)] (9)

= Eπθ(x|σ)[f(x)]− V πθ′ ,σ(∅) (10)
= Eπθ(x|σ) [f(x)− V πθ′ ,σ(∅)] (11)

= Eπθ(x|σ)
[
V πθ′ ,σ(xσ≤n

)− V πθ′ ,σ(∅)
]

(12)

= Eπθ(x|σ)

[
n∑

k=1

(
V πθ′ ,σ(xσ<k+1

)− V πθ′ ,σ(xσ<k
)
)]

(13)

= Eπθ(x|σ)

[
n∑

k=1

(
Qπθ′ ,σ(xσ<k

, xσk
)− V πθ′ ,σ(xσ<k

)
)]

(14)

= Eπθ(x|σ)

[
n∑

k=1

Aπθ′ ,σ(xσ<k
, xσk

)

]
(15)

= Eπθ(x|σ)

n∑
k=1

Eπθ(xσk
|xσ<k

,σ)

[
Aπθ′ ,σ(xσ<k

, xσk
)
]

(16)

= Eπθ(x|σ)

n∑
k=1

Eπθ′ (xσk
|xσ<k

,σ)

πθ(xσk
|xσ<k

, σ)

πθ′(xσk
|xσ<k

, σ)

[
Aπθ′ ,σ(xσ<k

, xσk
)
]
(17)

where ∅ is the empty sequence (which can also be denoted as the starting point of any sequence
xσ<1

). This derivation leverages the fact that in our case, for any sequence x and any policy π,
f(x) = V π,σ(xσ≤n

) as the sequence is already completed after n steps (we are in a terminal state,
as n is the dimension of our combinatorial space X ). Also, (13) exploits that every term of the sum
telescop except the two extrema that appear in (12), (14) leverages that, following definitions above,
for any x and any 0 < k ≤ n, we have: Qπθ′ ,σ(xσ<k

, xσk
) = V πθ′ ,σ(xσ<k+1

).

Next, if πθ(x|σ) is sufficiently close to π′
θ(x|σ), the idea of TRPO/PPO based approaches is to rather

use samples of states from the old policy πθt(x|σ), rather than the current one. This is done in our
case by replacing Eπθ(x|σ) by Eπθt (x|σ) in (17). We obtain:

Jσ(θ)− Jσ(θt) ≈ Lσ
θt(θ) (18)

with

Lσ
θt(θ) ≜ Eπθt (x|σ)

n∑
k=1

Eπθt (xσk
|xσ<k

,σ)

πθ(xσk
|xσ<k

, σ)

πθt(xσk
|xσ<k

, σ)

[
Aπθt ,σ(xσ<k

, xσk
)
]

(19)

= Eπθt (x|σ)

n∑
k=1

πθ(xσk
|xσ<k

, σ)

πθt(xσk
|xσ<k

, σ)

[
Aπθt ,σ(xσ<k

, xσk
)
]

(20)

Next, we consider∇θL
σ
θt(θ) as a proxy for ∇θ(J

σ(θ)− Jσ(θt)) = ∇θJ
σ(θ), which results in (2).
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C DERIVATION OF THE PPO UPDATE WITH VARYING
GENERATION/TRAINING ORDERS

In this section, we check that PPO updates, that we derivated in previous section for the case of an
arbitrary fixed generation (and training) order, can be adapted for the case of varying permutations.

For the case where the training order is always the same as the generation one (i.e., ξ(.|σ) is a Dirac
centered on σ), the derivation of the PPO update is trivial to obtained from (20), as it suffices to take
the expectation of Lσ

θt(θ) depending on distribution ξ(.). The update can be derived by taking the
gradient of Lθt(θ) = Eσ∼ξ(σ)L

σ
θt(θ).

Next, we consider the more tricky case, where generation and training orders can be different. For
this purpose, looking at Jσ(θ)− Jσ′

(θ′), we get:

Jσ(θ)− Jσ′
(θ′)=Eπθ(x|σ)[f(x)]− Eπθ′ (x|σ′)[f(x)] (21)

=Eπθ(x|σ)[f(x)]− V πθ′ ,σ
′
(∅) (22)

=Eπθ(x|σ)

[
f(x)− V πθ′ ,σ

′
(∅)
]

(23)

=Eπθ(x|σ)

[
V πθ′ ,σ

′
(σ′(x)≤dimσ′ (n))− V πθ′ ,σ

′
(σ′(x)<dimσ′ (1))

]
(24)

=Eπθ(x|σ)

[
n∑

k=1

(
V πθ′ ,σ

′
(σ′(x)<k+1)− V πθ′ ,σ

′
(σ′(x)<k)

)]
(25)

=Eπθ(x|σ)

[
n∑

k=1

(
Qπθ′ ,σ

′
(σ′(x)<k, xk)− V πθ′ ,σ

′
(σ′(x)<k)

)]
(26)

=Eπθ(x|σ)

[
n∑

k=1

Aπθ′ ,σ
′
(σ′(x)<k, xk)

]
(27)

=Eπθ(x|σ)

n∑
k=1

Eπθ(xk|σ(x)<k,σ)

[
Aπθ′ ,σ

′
(σ′(x)<k, xk)

]
(28)

= E
πθ(x|σ)

n∑
k=1

E
πθ′ (xk|σ′(x)<k,σ′)

[
πθ(xk|σ(x)<k, σ)

πθ′(xk|σ′(x)<k, σ′)
Aπθ′ ,σ

′
(σ′(x)<k, xk)

]
(29)

where we switched to the notation introduced in section 3.3, that is more convenient for dealing with
different orders σ and σ′. In particular, this makes that the inner sum from k = 1 to n enumerates
index from the original problem in X , rather than the generation order from a given permutation.
This has an impact on the ordering of advantages functions in (28), but the quantities still telescop,
and each advantage is line with the trained transition in (29). We note that importance sampling
ratios do not exploit same knowledge, as masks do not apply on same dimensions in the numerator
and denominator, but the behavior distribution is still non zero everywhere the training distribution
allocates probability mass, which is the main requirement for importance sampling techniques.

Then, given a previous behavior policy πθt that sampled solutions with generation order σ′, we can
train policy πθ, with training order σ, by considering the following approximator:

Lσ,σ′

θt (θ) ≜ Eπθt (x|σ′)

n∑
k=1

Eπθt (xk|σ′(x)<k,σ′)
πθ(xk|σ(x)<k, σ)

πθt(xk|σ′(x)<k, σ′)

[
Aπθt ,σ

′
(σ′(x)<k, xk)

]
= Eπθt (x|σ′)

n∑
k=1

πθ(xk|σ(x)<k, σ)

πθt(xk|σ′(x)<k, σ′)

[
Aπθt ,σ

′
(σ′(x)<k, xk)

]
(30)

For any ((πθt , σ′), (πθ, σ)), we have that: Jσ(θ) − Jσ′
(θt) ≈ Lσ,σ′

θt (θ) whenever πt
θ(.|σ′) remains

close to πθ(.|σ).

Finally, we can take Eσ∼ξ(σ),σ′∼ξ(σ′|σ)L
σ′,σ
θt (θ) as the maximization objective, with KL regulariza-

tion constraints that are considered in (8).
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D ON THE CONVERGENCE IN THE INFINITE DATA AND INFINITE CAPACITY
REGIME

In our approach, we consider at each step of our process the maximization of the quantity (see
section 3.3):

L̂t
λ(θ) =

1

λ

∑
(xi,σi)∈Γt

λ

Eσ′∼ξ(σ′|σi)

n∑
k=1

[
πθ(x

i
k|σ′(xi)<k)

πθt(xi
k|σi(xi)<k)

ÂΓt
λ

(
x(i)
)

−βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)]
. (31)

where Γt
λ = {x(1), . . . , x(λ)} is a set of i.i.d. samples from πθt , and where ÂΓt

λ

(
x(i)
)

is a ranking
function of xi in the set Γt

λ in decreasing order of fitness.

For simplicity of notation, we rewrite this quantity as:

L̂t
λ(θ) =

1

λ

λ∑
i=1

wθt,θ

(
x(i), σ(i)

)
AΓt

λ

(
x(i)
)
+ klθt,θ

(
x(i), σ(i)

)
,

where:

• wθt,θ

(
x(i), σ(i)

)
= Eσ′∼ξ(σ′|σi)

∑n
k=1

[
πθ(x

i
k|σ

′(xi)<k)

πθt (x
i
k|σi(xi)<k)

]
• klθt,θ

(
x(i), σ(i)

)
= −βEσ′∼ξ(σ′|σi)

∑n
k=1

[
DKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)]
We first show the following lemma, that states that L̂t

λ(θ) is an unbiased estimator of:

Lt
λ(θ) = EσEx∼πθt(.|σ)

[
wθt,θ

(
x, σ

)
EΓt

λ\{x}
[
AΓt

λ
(x)
]
+ klθt,θ

(
x, σ

)]
, (32)

where EΓt
λ\{x}

[
AΓt

λ
(x)
]

denotes the expectation of the ranking of x in a set containing λ− 1 other
samples from the mixture Eσπθt(.|σ):

Lemma 1. E
[
L̂t
λ(θ)

]
= EσEx∼πθt(.|σ)

[
wθt,θ

(
x, σ

)
EΓt

λ\{x}
[
AΓt

λ
(x)
]
+ klθt,θ

(
x, σ

)]
Proof. By the linearity of expectation, we have:

E
[
L̂t
λ(θ)

]
=

1

λ

λ∑
i=1

E
[
wθt,θ

(
x(i), σ(i)

)
AΓt

λ

(
x(i)
)
+ klθt,θ

(
x(i), σ(i)

)]
.

Then, as all x(i) are i.i.d., each component of the sum owns the same expectation. Thus, by ex-
changeability, we can say that (arbitrarily taking the first sample (x(1), σ(1)) from Γt

λ as the refer-
ence, without loss of generality):

E
[
L̂t
λ(θ)

]
= E

[
wθt,θ

(
x(1), σ(1)

)
AΓt

λ

(
x(1)

)
+ klθt,θ

(
x(1), σ(1)

)]
.

Using the law of total expectation, we obtain:

E
[
wθt,θ

(
x(1), σ(1)

)
AΓt

λ

(
x(1)

)
+ klθt,θ

(
x(1), σ(1)

)]
=

Eσ(1)Ex(1)∼πθt (.|σ(1))

[
wθt,θ

(
x(1), σ(1)

)
E
[
AΓt

λ

(
x(1)

)
| x(1)

]
+ klθt,θ

(
x(1), σ(1)

)]
.

Fixing x(1) = x corresponds to considering x as one element of the set Γt
λ, and completing it with

λ− 1 additional independent draws. Therefore, we have:

E
[
AΓt

λ
(x(1)) | x(1) = x

]
= EΓt

λ\{x}
[
AΓt

λ
(x)
]
.

Thus, we finally get:

E
[
L̂t
λ(θ)

]
= EσEx∼πθt(.|σ)

[
wθt,θ

(
x, σ

)
EΓt

λ\{x}
[
AΓt

λ
(x)
]
+ klθt,θ

(
x, σ

)]
,

which concludes the proof and indicates that L̂t
λ(θ) is an unbiased estimator of Lt

λ(θ).
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Thus, while at each epoch t our algorithm seeks to maximize the stochastic estimator L̂λ(θ), in
expectation it actually aims to optimize the theoretical objective Lt

λ(θ).

Following this, we observe that our surrogate scale-invariant objective AΓt
λ
(x) (that we use in (8), in

place of the original fitness sore from (7)), can be considered in expectation as a stationary classical
reward function at each epoch t, depending only on constant parameters θt.

We thus obtain a classical learning problem at each epoch t, where we maximize

πθ(xk | σ′(x)<k)
πθt(x | σ)

πθt(xk | σ(x)<k)
EΓt

λ\{x}

[
AΓt

λ
(x)
]
,

for any uniformly sampled tuple (x ∈ X , σ ∈ Ω, σ′ ∈ Ω, k ∈ [[1, n]]), under the soft constraint
imposed by the KL regularizer. In other words, at each epoch the conditional probability of values
for dimension k ∈ [[1, n]] of solutions likely under πθt(x | σ) is increased (resp. decreased) if they
have a positive (resp. negative) expected signed rank among λ samples from Eσπθt(. | σ). This
means that decisions leading to high (resp. low) fitness are reinforced (resp. penalized) at each
epoch. As t→∞, the distribution Γt

λ converges asymptotically towards a degenerate set containing
a single solution. If λ is infinite, this limiting solution coincides with the global optimum of the
problem (i.e., the element x⋆ ∈ X such that f(x⋆) = maxx∈X f(x)).

E GENERATION/TRAINING PERMUTATIONS AS INFORMATION-PRESERVING
INPUT DROPOUT

In section D, we have shown that the quantity we consider in each maximization step is an unbiased
estimator of Lt

λ(θ), as defined in (32):

Lt
λ(θ) = EσEx∼πθt(.|σ)

[
Eσ′∼ξ(σ′|σ)

n∑
k=1

[
πθ(xk|σ′(x)<k)

πθt(xk|σ(x)<k)
EΓt

λ\{x}
[
AΓt

λ
(x)
]

−βDKL (πθt(·|σ(x)<k) ∥πθ(·|σ′(x)<k))] , (33)

This formulation allows us to distinguish between the two effects of the randomness introduced in
the order of generation:

• Population Diversity: During first epochs, the neural generators are not prepared for or-
der invariance. Different generation orders σ thus induce different generation distribu-
tions π(.|σ). Uniformly sampling a new σ from Ω for each generation thus implies an
higher diversity in the populations. In that cases, any estimation of the reward metric
EΓt

λ\{x}
[
AΓt

λ
(x)
]

is thus likely to own a greater variance than when using a fixed gen-
eration order (especially for low λ), as the variance of a mixture of distributions (i.e.,
Eσ πθt(., σ)) is always greater or equal than the lowest variance of its components. This
allows to better explore in the first steps of the process by introducing more stochasticity
in the RL returns. Moreover, this furnishes more diverse samples to the training process,
avoiding early collapse on a particular subarea of the search space;

• Structural Regularization: Beyond population diversity, the second effect is a form of
structural regularization. This arises from presenting, for the same candidate solution x,
different contexts at each generation step (i.e., for each neural network gθk in our setting).
Even when the training order matches the generation order (i.e., when ξ(σ′|σ) is a Dirac
centered at σ), the process encourages the learning of order-invariant generators. In this
case, the IS ratios are all equal to 1 at the start of each PPO epoch (with the KL divergence
equal to 0). Nevertheless, since each individual processes dimensions in a different order,
the generators are encouraged to structure their weights so as to handle arbitrary subsets of
variables of any size, ultimately leading to a residual summation structure (see discussion
on that point below). However, simply maintaining the same order for training as the one
used for generating the training sample is usually not sufficient to efficiently prepare the
generator for order-invariance, since a constant order is applied to each training sample
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across all iterations of the epoch. The use of a different order for each sample at each iter-
ation of the same epoch (i.e., ξ(·|σ) is a uniform distribution in our experiments) provides
two benefits. First, it rewards the network for making the same decision under varying con-
texts, thus facilitating the identification of inter-variable dependencies. Second, it steers the
network toward producing, for the same decision, distributions similar to the one used for
sampling despite changes in context, through the KL regularizer (which is nonzero even at
the first iteration in this setting). All of this benefits sample efficiency, while also promoting
generation order invariance and stability through inter-order generalization.

About Residual Structuration In order to further understand the effect of training order permuta-
tions on the structuring of a neural network, consider a simple problem of distribution approximation
via maximum likelihood estimation (MLE): argmaxθ Ep[log pθ(x)]. Let x be a binary sequence of
size n, and let pθ(x) be parametrized differently (with parameter θi) for each dimension of x, as in
the setting of this paper. We specifically focus on the network corresponding to the last dimension
of x, i.e., pθn .

When optimizing the joint distribution in the original order of the sequence (from dimension 1
to n), pθn is always conditioned on all preceding variables, as it predicts the last variable based
on the inputs x1 to xn−1. Given λ samples from p to optimize it via MLE, the gradient updates
of pθn are computed as an average over λ gradients of the fully informed conditional probability
pθi(xn | x<n), while some input variables may consist only of noise with respect to the variable
being decoded. The optimization process must cope with all these inputs in order to eventually
identify true dependencies, despite the presence of potentially significant noise in the input.

Now, let us consider training order permutations σ, which effectively mask every variable xi whose
rank in σ is greater than the rank of xn (i.e., we set to zero each variable xi such that rankσ(i) >
rankσ(n) in the input of pθi ). The MLE is now given for the variable xn as:

L = EpEσ[log pθn(xn|σ(x)<n)],

which, if the distribution of σ is uniform, is equivalent to considering:

L = Ep

 (n− 1)!

n!
log pθn(xn|∅) +

(n− 2)!

n!

∑
i∈[[1,n−1]]

log pθn(xn|{xi})

+
(n− 3)!

n!

∑
i∈[[1,n−1]]

∑
j∈[[1,n−1]],j ̸=i

log pθn(xn|{xi, xj}) + . . .+
1

n!
log pθn(xn|{xi}n−1

i=1 )

 .

From this expansion, it is clear that the fully conditioned components receive much smaller weights
compared to the partially conditioned ones, which acts on their relative learning speed. As a re-
sult, the network naturally develops a form of residual structuring, where outputs are composed by
aggregating contributions from different subsets of inputs. During this optimization, the network
first learns to encode the marginal probability pθn(xn | ∅) for xn, then incrementally incorporates
potential interactions with single variables through pθn(xn | {xi}), then with pairs of variables, and
so on.

This hierarchical learning process enables the network to more efficiently identify the parent vari-
ables that are relevant to the joint distribution, while simultaneously recognizing variables that are
unrelated and contribute only noise to pθn(xn | σ(x)<n). As a result, the network becomes both
more robust and sample-efficient, effectively filtering out irrelevant inputs while capturing the es-
sential dependencies.

Order Permutations vs Input Dropout We note that an alternative to permutations is input
dropout, whose principle is to randomly mask any feature from the input during training. Simi-
larly to permutation orders, input dropout can be defined as masks that set certain input variables
to 0 (or to a null vector in the categorical setting). Here, we consider a mask m ∈ Ωm as a binary
n× n matrix that removes the entry in dimension j for the decision of dimension i if mi,j = 1. We
denote by m(x)k the result of applying the dropout mask m to x, using the k-th row of the matrix.
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As with permutations, we consider a distribution ξm(.) for dropout at generation time, and a dis-
tribution ξm(· | m) for dropout at training time. Given this, our objective in (33) can be naturally
extended as:

Lt
λ(θ) = Eσ,mEx∼πθt(.|σ,m)

[
E σ′∼ξ(σ′|σi)
m′∼ξm(m′|m)

n∑
k=1

[
πθ(xk|σ′(m′(x)k)<k)

πθt(xk|σ(m(x)k)<k)
EΓt

λ\{x}
[
AΓt

λ
(x)
]

−βDKL (πθt(·|σ(m(x)k)<k) ∥πθ(·|σ′(m(x)k)<k))] , (34)

As with permutations, we can consider different distributions for the dropout mask. In this work, we
mainly focus on independent Bernoulli distributions for each entry of the mask matrix, controlled
by a hyperparameter p. We note in (34) that the dropout mask is applied prior to the causal mask
arising from the variable ordering, which allows the combination of both techniques. For the training
distribution πθ, this causal mask can be deactivated by simply implementing σ′ as a table that assigns
a negative rank to each dimension.

For any configuration, we can compute the probability Pmask(i, j) that a given dimension j from
the input is masked when decoding variable i. Depending on the setting, we have:

• With the input dropout m only ( using Bernouilli parameter p): Pmp

mask(i, j) = p

• With the causal ordering mask σ only: Pσ
mask(i, j) = 1−P (rankσ(j) < rankσ(i)) = 1−∑n

r=1 P (rankσ(i) = r)P (rankσ(j) < rankσ(i)|rankσ(i) = r) = 1 − 1
n

∑n
r=1

r−1
n−1 =

1− 1
n(n−1)

∑n−1
r=0 r = 1− n(n−1)/2

n(n−1) = 0.5

• With the input dropout m and causal ordering mask combined: P
mp,σ
mask(i, j) =

P
mp

mask(i, j) + (1− P
mp

mask(i, j))× Pσ
mask(i, j) = p+ (1− p)0.5 = 0.5 + 0.5p

Thus, it is possible to set a dropout probability p such that the masking probability of an input for
decoding any given dimension is similar to the one induced by random permutations of variable
order. However, this equivalence only holds for the marginal distribution over single inputs. To
go further, let us consider the distribution P#available(k), for k ∈ [[0, n]], where k denotes the exact
number of non-masked inputs available for decoding a given variable i. Depending on the setting,
this distribution can differ significantly between permutations and dropout:

• With the input dropout m only: P
mp

#available(k) =

Pmp(number of non masked dimensions before n) =
(
n−1
k

)
pn−k−1 (1− p)k

• With the causal ordering mask σ only: Pσ
#available(k) = P (rankσ(i) = k + 1)

• With the input dropout m and causal ordering mask combined: P
mp,σ
#available(k) =∑n

r=k+1 P (rankσ(i) = r)Pmp(number of non masked dimensions before r) =
1
n

∑n
i=k+1

(
i−1
k

)
pi−k−1 (1 − p)k = 1

n

∑n−k−1
i=0

(
i+k
k

)
pi (1 − p)k = 1

n
1−Ip(n−k, k+1)

1−p ,

with Ip(a, b) = B(p; a,b)
B(a,b) the Regularized incomplete Beta function, B(p; a, b) the

Incomplete Beta function and B(a, b) the Beta function.

To better illustrate the differences between these settings, Figure 3 shows the distribution of avail-
able (non-masked) input variables during neural inference. The x-axis represents k, the number of
available inputs, and the y-axis shows the corresponding probability. In both settings - input dropout
only (left) and input dropout combined with order permutations under a causal mask (right) - the
dropout probability p has a strong impact. Without a causal mask, the distribution is binomial, with
mode at k = ⌊(n− 1)(1− p)⌋. Each variable is independently available with probability 1− p, but
this results in a small chance of observing either very small or very large contexts, which is difficult
to control efficiently. Ideally, one would prefer a more evenly spread distribution, providing each
variable in diverse contexts. In contrast, when combining input dropout with order permutations
under a causal mask (right panel), the distribution becomes more evenly spread across k. This in-
creases the variety of available contexts for each variable during inference, making it easier to learn
robust dependencies. Unlike the purely binomial case, each variable can appear in both small and
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large contexts (for small p values), which improves controllability and ensures that the model sees
diverse conditioning patterns. Notably, the case p = 0 yields the most uniform distribution of group
sizes, enabling more effective structural regularization as discussed above.

(a) Input Dropout Only (b) Input Dropout and Causal Permutations Combined

Figure 3: Probability of having exactly k available (non-masked) input variables during neural infer-
ence of the generation probabilities of values for any dimension. Left: input dropout without order
permutations. Right: input dropout combined with order permutations.

The effect of input dropout, either alongside or instead of our generation/training order permutations,
is evaluated in Section M.1.

Finally, note that using dropout alone cannot be applied for the generation of individuals, since
a sampling order must be defined. One option is a predetermined fixed order, combined with a
constant causal mask and dropout. This yields a distribution similar to the binomial case above,
with k taken among the i − 1 positions for the i-th variable. However, this approach does not
fully exploit structural regularization or population diversity, which would likely require position-
dependent parameters. Using varying orders combined with dropout is a potential alternative, but it
does not guarantee stable convergence, as input dropout induces information loss during inference.
At generation time, this can be detrimental, causing catastrophic forgetting and instability even at
the optimum.

In contrast, using permutations of the generation orders without additional dropout is information-
preserving. For any sampled generation order σ, the joint distribution πθt(· | σ) can fully exploit all
dependencies among variables. Moreover, when the generators become fully order-invariant (which
is further encouraged by training order permutations through KL regularization across different or-
derings), we have πθt(· | σ) = πθt(· | σ′) for any pair of generation orders (σ, σ′) ∈ Ω2, ensuring
complete consistency across all orderings.

F ON THE CHOICE OF THE PPO-KL ALGORITHM AS OUR BACKBONE FOR
ORDER-INVARIANT RL

As we shown in section E, using random permutations for generation and training in our method
can be viewed as a structured dropout of the input features of individuals, which enables various
benefits. However, the choice of the KL version of PPO for this purpose is yet to be discussed. This
is the focus of this section.

In particular, we can analyze our choices in comparison to findings from (Hausknecht & Wagener,
2022), which also discussed the role of dropout in reinforcement learning and showed that naïvely
combining the standard REINFORCE updates with dropout leads to severe instability. Specifically,
when the dropout masks differ between trajectory generation and policy updates, the procedure is no
longer on-policy, and learning quickly collapses. They investigate PPO in this context, but only the
clipped variant. Interestingly, one can observe that the PPO ratio deviates from one even at the first
update step (we are no longer on-policy when sampling and training with different masks on layer’s
inputs). In the clipped version of PPO, this results in most gradients being clipped and therefore
prevents meaningful updates. This behavior undermines the intent of clipping—designed to correct
occasional overshooting—since here the mechanism blocks learning altogether from the start. To
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address these issues, the authors propose two strategies for making REINFORCE consistent under
dropout: (1) marginalizing over dropout masks, and (2) enforcing identical dropout masks during
generation and training (akin to our approach of sampling a permutation during generation and ap-
plying the same permutation during training, with σ′ drawn from a Dirac distribution). The first
strategy is theoretically appealing but practically prohibitive, as even with Monte Carlo approxima-
tions using dozens or hundreds of samples, the variance of the estimator overwhelms the learning
signal. The second strategy, by contrast, is shown to be more effective and stable.

In our work, we revisit this question from a different angle. While Hausknecht et al. argue that con-
sistency requires using the same dropout mask between rollout and update, we posit that sampling
different conditioning patterns at update time can in fact be beneficial. By exposing the policy to
multiple conditioning variations from the same rollout, the training process gains additional signal,
thereby improving sample efficiency. To make this feasible, we rely on PPO rather than plain REIN-
FORCE. PPO naturally tolerates updates from slightly different policies, which aligns well with our
setting where updates need not be fully on-policy. Moreover, we adopt the KL-regularized version
of PPO, which avoids the blocking issues observed with the clipped variant: instead of discarding
gradients when ratios diverge, the KL penalty smoothly regularizes the policy towards the sampling
distribution. This design choice is key to enabling effective training under random permutations.

Importantly, Hausknecht et al. developed their Dropout-Marginalized Gradient in the context of
REINFORCE, which forces them to approximate, via Monte Carlo sampling, the exact dropout
distribution used during rollout. This requires likelihood normalization over many sampled masks,
and thus demands a prohibitively large number of samples to achieve a low-variance estimator. By
contrast, in our KL-PPO framework we only need to compute expectations of gradients under the
current mask distribution, without approximating the rollout distribution itself. This allows us to
train efficiently with as little as a single mask sample per example and iteration, a much lighter
procedure in practice.

G CONNECTION WITH NATURAL GRADIENT AND
INFORMATION-GEOMETRIC OPTIMIZATION ALGORITHM

The Information-Geometric Optimization (IGO) algorithm (Ollivier et al., 2017) is a natural gradient
method that seeks to maximize a quantile-based rewriting of the objective function f .

Let us define W f
θt a monotone rewriting of f at generation t that gives for each individual xi sampled

by the probabilistic model πθt for i = 1, . . . , λ

Wθt(xi) = U

(
rk(xi,Γt)

λ− 1

)
, (35)

where U is a non-increasing utility function and rk(xi,Γt) is the rank of the individual i in the
population Γt given its fitness f(xi).

For our probabilistic model πθ with θ ∈ Θ, and given a permuation σ ∈ Ω, the IGO flow that defines
the trajectory in space Θ to maximize the objective Ex∼πθ(x|σ)[W

f
θt(x)] is given by (see Definition

5 in (Ollivier et al., 2017))

θt+δt = θt + δtI
−1(θt)

λ∑
i=1

W f
θt(x

i)
∇lnπθ(x

i|σ)
∇θ

∣∣∣
θ=θt

, (36)

with xi for i = 1, . . . , λ generated by the model πθt at time-step t and I−1(θt) the inverse of the
Fisher matrix of πθt .

When δt is close to 0, and using Theorem 10 in (Ollivier et al., 2017), (36) can be rewritten as
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θt+δt = argmax
θ∈Θ

(
(1− δt

λ∑
i=1

W f
θt(x

i))

∫
lnπθ(x|σ)πθt(dx) + δt

λ∑
i=1

W f
θt(x

i) lnπθ(x
i|σ)

)
.

(37)

When using this framework with our probabilistic model πθ(x|σ) =
∏n

k=1 πθ(xσk
|xσ<k, σ) it gives

θt+δt = argmax
θ∈Θ

[(1− δt

λ∑
i=1

W f
θt(x

i))

∫ n∑
k=1

lnπθ(xσk
|xσ<k, σ)πθt(dx)

+ δt

λ∑
i=1

n∑
k=1

W f
θt(x

i) lnπθ(x
i
σk
|xi

σ<k, σ)] (38)

As the maximization is on θ we can substract the term (1 −
δt
∑λ

i=1 W
f
θt(xi))

∫ ∑n
j=1 lnπθt(xσk

|xσ<k, σ)πθt(dx) that does not depend on θ. Therefore, we
have

θt+δt = argmax
θ

[δt

λ∑
i=1

n∑
k=1

W f
θt(x

i) lnπθ(x
i
σk
|xi

σ<k, σ)

+ (δt

λ∑
i=1

W f
θt(x

i)− 1)

n∑
k=1

∫
ln

πθt(xσk
|xσ<k, σ)

πθ(xσk
|xσ<k, σ)

πθt(dx)]. (39)

Now using the λ samples to approximate the integral on domain Xσ<k, and using the fact that all
conditional Markov kernels are independent we have for k = 1, . . . , n∫

ln
πθt(xσk

|xσ<k, σ)

πθ(xσk
|xσ<k, σ)

πθt(dx) ≈ 1

λ

λ∑
i=1

∫
ln

πθt(xσk
|xi

σ<k, σ)

πθ(xσk
|xi

σ<k, σ)
πθt(dxσk

). (40)

Thus, we have for k = 1, . . . , n

∫
ln

πθt(xσk
|xσ<k, σ)

πθ(xσk
|xσ<k, σ)

πθt(dx) ≈ 1

λ

λ∑
i=1

DKL

(
πθt(·|xi

σ<k, σ) ∥πθ(·|xi
σ<k, σ)

)
(41)

Using (40) and defining β = 1
λδt −

∑λ
i=1 W f

θt
(xi)

λ , the maximization objective of (39) for the update
of the model at each generation becomes

L′(θ) =
1

λ

λ∑
i=1

n∑
k=1

[
lnπθ(x

i
σk
|xi

σ<k, σ)W
f
θt(x

i)− βDKL

(
πθt(·|xi

σ<k, σ) ∥πθ(·|xi
σ<k, σ)

)]
.

(42)

The update phase of the algorithm can then be interpreted as the maximization of a weighted log-
likelihood over the individuals in the current generation, regularized by a KL divergence term. This
regularization penalizes excessive reductions in the entropy of the sampling distribution, thereby
maintaining a degree of diversity in the population. By controlling the rate of convergence, this
mechanism prevents premature collapse of the distribution onto a single high-performing individual,
which could otherwise lead to early stagnation in a local optimum.

It corresponds to the surrogate objective of our GRPO-based framework given by 4 when replacing

each term lnπθ(x
i
σk
|xi

σ<k, σ) by the ratio importance sampling
πθ(x

i
σk

|xi
σ<k

,σ)

πθt (x
i
σk

|xi
σ<k

,σ) . We empirically
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observed that maximizing the ratio of importance sampling instead of the log probability gives better
results in our context, therefore in the following we stay with the formulation of the objective given
by (4) instead of (42).

H ALGORITHM PSEUDO-CODE

In this appendix, we detail the pseudo-code of the multivariate RL EDA with Algorithm 1,
which includes the four multivariate RL EDA variants presented in Section 3.3: (δ, δ′)-RL-EDA,
(δ, σ′)-RL-EDA, (σ, δ′)-RL-EDA and (σ, σ′)-RL-EDA.

Until the termination criterion is met, this EDA perform the following steps at each generation t:

1. Draw a population Γt = {(xi, σi)}λi=1 from the joint distribution πθt(x|σ)ξ(σ).
2. Order the individuals according to their fitness, and compute advantage Âi,t for each indi-

vidual.
3. Update the probabilistic model by maximizing during E epochs the objective

L̂λ(θ) =
1

λ

∑
(xi,σi)∈Γt

Eσ′∼ξ(σ′|σi)

n∑
k=1

[
πθ(x

i
k|σ′(xi)<k)

πθt(xi
k|σi(xi)<k)

Âi,t

− βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)
]. (43)

In practice, at each epoch in order to reduce computation time, the expectancy
Eσ′∼ξ(σ′|σi)[.] is replaced by an evaluation based on a single sample.

I MULTIVARIATE EDA WITH WITH LEARNED ORDER

In this appendix, we derive a version of the multivariate EDA learned with PPO, called
Learned-σ-RL-EDAwhere we model the distribution of order with the Plackett-Luce (PL) distri-
bution (Plackett, 1975) parametrized by the vector of scores w = (w1, . . . , wn) (this distribution is
denoted ξPL

w (σ) hereafter) and we use the reparametrization trick proposed by (Grover et al., 2019)
to learn w by gradient descent.

I.1 PLACKETT-LUCE DISTRIBUTION

For each σ ∈ Ω, and given w ∈ Rn the PL distribution probability mass is given by

ξPL
w (σ) =

wσ(1)

Z

wσ(2)

Z − wσ(1)
· · ·

wσ(n)

Z −
∑n−1

k=1 wσ(k)

, (45)

with Z =
∑n

i=1 wi a normalization constant.

Let sort : Rn → Ω be the operator mapping a n real-valued vector to a permutation σ corresponding
to a descending ordering the values of this vector. Let W denote the matrix of absolute pairwise
differences of the elements of w such that Wij = |wi − wj |. As shown by (Grover et al., 2019), the
permutation matrix Psort(w) corresponding to sort(w) is given by:

Psort(w)[i, j] =

{
1 if j = argmax[(n+ 1− 2i)w −W1]

0 otherwise,
(46)

where 1 denotes the column vector of all ones.

In practice to sample from ξw(σ), (Grover et al., 2019) propose a method for sampling from PL
distributions with parameters w by sampling for k = 1, . . . , n a noise ϵk ∼ Gumbel(0, 1) with zero
mean and unit scale, then by computing w̃ is the vector of perturbed log-scores with entries such
that w̃i = lnwi + ϵi, and latsly by applying the sort operator to the perturbed log-scores w̃i. The
resulting order gives a permutation σ sampled from ξPL

w (σ). Indeed (Grover et al., 2019) show that
P(w̃σ(1 ≥ · · · ≥ w̃σ(n) = ξw(σ) (see Proposition 5).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 1 (σ, σ′)-RL-EDA with parameters λ ∈ N∗, β ∈ R+, utility function U , number of
epochs E and functional mechanism g.

1: Input: an instance (X , f), with X = {−1, 1}n, f : X → R and a number of iterations T .
2: Randomly initialized the parameters θ0 = (θ01, . . . , θ

0
n).

3: x∗ ← ∅ and f(x∗)← −∞.
4: for t = 0, 1, 2, . . . , T − 1 do
5: for i = 1, 2, . . . , λ do
6: xi ← (0, . . . , 0).
7: Draw a permutation σi ∼ ξ(σ).
8: Generate solution xi in the order of generation σi:
9: for k = 1, 2, . . . , n do

10: xi
σi(k) ∼ Bernoulli(sigmoid(gθσi(k)

(xσi<k))

11: end for
12: end for
13: for i = 1, 2, . . . , λ do
14: Compute f(xi).
15: if f(xi) > f(x∗) then
16: x∗ ← xi

17: end if
18: end for
19: for i = 1, 2, . . . , λ do
20: Compute Âi,t = U

(
rk(xi)
λ−1

)
.

21: end for
22: θ ← θt

23: for e = 1, 2, . . . , E do
24: for i = 1, 2, . . . , λ do
25: σ′(i) ∼ ξ(σ′|σ).
26: end for
27: Compute

L̂λ(θ) ≈
1

λ

∑
(xi,σi)∈Γt

n∑
k=1

[
πθ(x

i
k|σ′(i)(xi)<k)

πθt(xi
k|σi(xi)<k)

Âi,t

− βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(i)(xi)<k)

)
]. (44)

28: Compute ∇θL(θ) and update θ with gradient ascent.
29: end for
30: θt+1 ← θ
31: end for
32: Output: the best solution found x∗
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For a vector w̃ of perturbated log-score, the sampled permutation matrices is Psort(w̃) corresponding
to permutation σ̃, such that

[
Psort(w̃)

]
ij

= 1 if i = σ̃(j) and 0 otherwise. This permutation matrix

allows to compute the adjacency matrix M̃ = P⊤
sort(w̃)BPsort(w̃) of the sampling directed acyclic

graph (DAG), with B be the strictly upper triangular binary matrix of size n× n, whose entries are
defined as bi,j = 1 if j > i, and bi,j = 0 otherwise. Each column vector mk at position k of M̃
corresponds to the binary causal mask used at step k to mask the entries of g (see Section 3.1).

I.2 PLACKETT-LUCE REPARAMETRIZATION TRICK

Computing the permutation matrix Psort(w̃) from w is a non differentiable operation due to the
use of the argmax function. Therefore, (Grover et al., 2019) propose to replace Psort(w̃) by the
continuous relaxation P̂sort(w̃) using the softmax function instead of the argmax function when
gradient computation are required. The i-th row of P̂sort(w) is given by

P̂sort(w) = softmax[(n+ 1− 2i)w −W1/τ ], (47)

with τ > 0 a temperature parameter (set at the value of 1 in the following).

I.3 LEARNED-σ-EDA ALGORITHM

During the sampling phase of Learned-σ-RL-EDA, to generate each individual of the population,
an order σi is first sampled from ξPL

w (σ), then xi is sampled from πθt(.|σi).

During the update phase of the EDA we maximize following the GRPO objective with respect to
(θ, w):

L̂λ(θ, w) =
1

λ

∑
(xi,σi)∈Γt

Eσ′∼ξPL
w (σ)

n∑
k=1

[
πθ(x

i
k|σ′(xi)<k)

πθt(xi
k|σi(xi)<k)

Âi,t

− βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)
]. (48)

This maximization is done by first order gradient descent using ∇θL(θ, w) and ∇wL(θ, w) (com-
puted with the reparametrization trick).

J SYNTHETIC DATA SET GENERATION AND EXPERIMENTAL PROTOCOL

We examine the following NP-hard problems in this work. For each of these problems, we generated
instances of size n ∈ {64, 128, 256}, and for each size, we considered different types of instances.

The Quadratic unconstrained binary optimization problem (QUBO) aims to find a pseudo-
Boolean vector x = (x1, . . . , xn) of size n that maximizes the function f : {−1, 1}n → R given
by f(x) = x⊤Qx, where Q is a symmetric real matrix of size n× n. We generate QUBO instances
using the PUBOi generator (Tari et al., 2022), which enables the creation of QUBO problems with
controlled structural properties. The parameters of the PUBOi generator are set to produce six
different types K of instances by tuning both the density of the QUBO matrix Q and the relative
importance of binary variables, thereby influencing the degree of non-uniformity in Q. We gener-
ate QUBO instances using the PUBOi generator (Tari et al., 2022), which enables the creation of
QUBO problems with controlled structural properties.

Formally, the fitness function of each instance of this QUBO problem is defined as f(x) =∑m
i=1 fi(xi1 , xi2 , xi3 , xi4), where each sub-function fi is a quadratic function randomly selected

from the set {φ1, . . . , φ4}. Each φk is designed to have 2k symmetric local optima. In PUBOi, bi-
nary variables are divided into two importance classes: important and non-important variables. For
each sub-function fi, the four variables xij are selected according to an importance degree param-
eter d, where the probability of selecting an important variable is proportional to d. An additional
importance co-appearance parameter α controls the correlation in the selection of important vari-
ables: higher α values increase the likelihood that two important variables co-occur within the same
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sub-function fi. The number of sub-functions is given by m = r × n(n−1)
2 , where r is a density

coefficient controlling the proportion of non-zero entries in Q. For example, with r = 0.05 and
r = 0.2, the density of Q is approximately 16% and 43%, respectively, for uniform instances.

We consider three interaction configurations:

• Uniform random instances when (d, α) = (1, 1), corresponding to no specific important
variables, i.e., a fully random QUBO structure.

• Instances with (d, α) = (10, 1), where important variables are 10 times more likely to be
selected than non-important variables, but selections are independent.

• Instances with (d, α) = (10, 1.09): the selection of important variables is not independent,
and the selection of important variables is concentrated.

Further details on the PUBOi generator can be found in (Tari et al., 2022). By combining parameters
r, degree d of importance of variables and parameter α of co-appearance, we obtain six different
types of instance described in Table 1.

Table 1: Parameters of PUBOi instances.

Type instance K r d α
0 0.05 1 1
1 0.05 10 1
2 0.05 10 1.09
3 0.2 1 1
4 0.2 10 1
5 0.2 10 1.09

The NKD model is a natural extension of the NK model of Kauffman (Kauffman & Weinberger,
1989) to cases where variables can take more than two categorical values. This is a frame-
work for describing fitness lanscapes whose problem size and ruggedness are both parameteriz-
able. The NKD function is defined as fNKD : {0, 1, . . . , D − 1}n → [0, 1[ and takes the same
form as NK functions: fNKD(x) = 1

n

∑n
i=1 γi(xi, xli1 , . . . , xliK ), except that each subfunction

γi : {0, 1, . . . , D − 1}K+1 → [0, 1[ is defined over categorical variables with D possible values
instead of binary ones. We construct instances with D = 2, which corresponds to the original
pseudo-boolean NK problem, but we also construct instances of a categorical problem called NK3
with D = 3. For each variant NK or NK3 of the problem four different types of distribution of
instances with K ∈ {1, 2, 4, 8} are built. When K = 1, the interaction graph is very sparse and the
landscape is smooth; when K = 8, the landscape becomes significantly more rugged.

Unless otherwise specified, we treat these problems as black-box problems, meaning that both the
objective function and the interaction graph between variables are assumed to be unknown. For each
pair (n,K) and for each problem, we generated 10 different instances. For the sake of reproducibil-
ity, all these instances are available in the supplementary material. For each problem instance, we
allow a maximum budget of 10,000 objective function evaluations. The best solution found since
the beginning of the search is recorded every 100 evaluations. For each distribution of instances,
defined with the vector of features (pb, n,K) (with pb the problem name, n the instance size and K
the type of instance), and for each algorithm, we compute the average performance over 10 distinct
instances, each solved with 10 independent restarts using different random seeds. This procedure
results in 100 independent runs per algorithm and per instance distribution, from which the evolution
of the average score is reported. It is worth noting that, within a given distribution, the best scores
obtained across the 10 instances are of comparable magnitude, which justifies averaging them to
produce a single representative performance measure.

K MULTIVARIATE EDA HYPERPARAMETER CONFIGURATION

In this appendix, we detail the hyperparameter configuration of the multivariate RL EDA presented
in Section 3.3, which is used as a baseline for all experiments.

The population size is set by default to λ = 10 accross all benchmark instances. Although fine-
tuning this parameter may lead to better performance for specific distributions of problem instances,
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and may also depend on the instance dimension n, we opt for simplicity and maintain a constant
value throughout this work. A sensitivity analysis of this key parameter is presented in Subsection
M.4.

By default, each functional mechanism gθi for i = 1, . . . , n is implemented as a feedforward neural
network with a single hidden layer of 20 neurons, using the hyperbolic tangent activation function.
This choice is particularly advantageous, as it allows the network to approximate both nonlinear and
linear relationships when needed. Employing one-hidden-layer neural networks for each variable
strikes a practical balance between model expressiveness and computational efficiency, especially
given the instance sizes considered in this study. Nevertheless, as discussed in Appendix M.6, we
explore alternative configurations—such as linear models and deeper neural networks—which may
offer improved performance on more complex tasks, albeit at the cost of increased computational
time.

The utility function U used in the advantage calculation of (5) is defined as a linear decreasing func-
tion on the interval [0, 1], specifically U(x) = 1−2x. Under this definition, the best individual xi

best

in the current population, with rk(xi
best) = 0, receives a reward R(xi

best) = 1, whereas the worst
individual xi

worst, with rk(xi
best) = λ − 1, receives R(xi

worst) = −1. If λ is odd, the individual
with median fitness obtains a reward of zero. With this choice of U , maximizing (8) assigns the
greatest weight to increasing the likelihood of generating the best individual in the population, while
simultaneously decreasing the likelihood of generating the worst individual. As a result, the policy
is updated so that, in the next generation t + 1, it tends to produce individuals that are closer to the
best members of generation t, and farther from the worst ones. It is worth noting that a fine-tuned
utility function may yield superior performance for specific distributions of problem instances. Prior
research has investigated the impact of selecting appropriate utility values or importance weights.
For example, in the context of the CMA-ES algorithm, (Andersson et al., 2015) showed that adapting
these parameters to the distribution of instances can lead to significant performance improvements.
Specifically, for smooth landscapes with a single local optimum, a utility function that assigns dis-
proportionately high values to the very best individuals can be advantageous. Conversely, for highly
deceptive landscapes, it may be beneficial to assign the highest weights to the worst-performing
individuals in the population.

Regarding the coefficient for the KL regularization term, we consistently set β = 1. A sensitiv-
ity analysis of this parameter is presented in Subsection M.5. At each generation, the algorithm is
trained for E = 50 epochs using the Adam optimizer (Kingma & Ba, 2014) with an initial learning
rate 0.001. In practice, to avoid numerical issue in the multivariate RL EDAs, particularly divi-
sion by zero when evaluating the KL divergence term or the importance sampling ratio, we apply
clipping to the probability values of each conditional distribution πθ(·|σ′(xi)<k). Specifically, all
probabilities are clipped to lie within the interval [ϵ, 1− ϵ], with ϵ = 0.001. Table 2 summarizes all
hyperparameters used in the multivariate RL EDA.

Table 2: Hyperparameters settings for σ-PPO-EDA

Parameter Description Value
EDA parameters

λ Size of the population 10
L Number of hidden layers in g 1
nl Number of neurons in hidden layer 20
ϵ Probability threshold coefficient 0.001

PPO parameters
U Utility function U(x) = 1− 2x
β KL penalty parameter 1
E Number of training epoch 50
lr Learning rate of Adam optimizer 0.001

The multivariate RL EDA algorithm is implemented in Python 3.7 with Pytorch 2.5 library for
tensor calculation with Cuda 12.4. The source code is available in the supplementary material. It is
specifically designed to run on GPU devices.

When using the hyperparameters described in Table 2, the time required to process a single QUBO
instance of size n = 128, with a budget of 10,000 calls to the objective function—corresponding to
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1,000 generations of the algorithm when λ = 10—is approximately 9 minutes on a single Intel(R)
Xeon(R) Silver 4208 CPU at 2.10GHz, and 5 minutes on an Nvidia V100 GPU device (including
the 10,000 objective function evaluations). The code is also adapted to process batches of multiple
instances of the same size in parallel, which greatly benefits from GPU parallelization. In particular,
it can process 100 QUBO instances of size n = 128, each with a budget of 10,000 objective function
calls, in 20 minutes on a single V100 GPU device.

These times are provided for indicative purposes only, as the main criterion used to assess the per-
formance of a black-box algorithm is typically the best score obtained within a limited number of
calls to the objective function—a criterion that is precisely retained in our experimental analyses
and benchmark comparisons.

L GLOBAL EXPERIMENTAL RESULTS

Table 3 presents a selection of these results, comparing (σ, σ′)-RL-EDA to the three other EDAs
of the same category: PBIL, MIMIC and BOA. The final columns report the performance of the
best algorithm among all remaining competitors, including the Nevergrad algorithms and the
Tabu algorithm. For each algorithm, we report the average score obtained after 10,000 calls to the
objective function, averaged over 100 independant runs. Based on this average score, the algorithms
are ranked, and their position among all competitors is indicated.

To facilitate comparison between our proposed algorithm, (σ, σ′)-RL-EDA, and the best-
performing competing methods, we conducted statistical significance tests. In Table 3, a star next to
the results of (σ, σ′)-RL-EDA indicates that its average performance over 100 runs is statistically
significantly better than that of the best other competing algorithm. Conversely, a star next to a com-
peting algorithm denotes that it significantly outperforms (σ, σ′)-RL-EDA on average. Statistical
significance is assessed using a two-sample t-test with a p-value threshold of 0.001.

We observe in Table 3 that (σ, σ′)-RL-EDA consistently outperforms the other EDAs. Interestingly,
among the three competing EDAs, the univariate PBIL algorithm achieves the best results. This
confirms empirical findings previously reported by (Doerr & Dufay, 2022), which suggest that uni-
variate EDAs can sometimes match or even surpass the performance of more complex multivariate
EDAs. On possible explanation is that the number of parameters to be learned in multivariate mod-
els such as MIMIC and BOA increases rapidly with instance size, potentially slowing convergence
compared to the simpler PBIL. Among other competitors, it is worth highlighting the performance
of the Tabu algorithm. Despite its simplicity and limited integration in mainstream black-box opti-
mization libraries, it often achieves strong results, particularly on smaller instances.

In addition to the global results table, we also provide plots showing the evolution of the best scores
(averaged over 100 runs) as a function of the number of objective function evaluations. In each
plot, the curve for (σ, σ′)-RL-EDA is always displayed in green and placed first in the legend,
for consistency. It is compared against the 10 best-performing competing algorithms, listed in the
legend from best to worst.

Here, we present these curves only for the different instance types of size n = 128 from the pseudo-
Boolean QUBO problem (Figure 4) and the categorical NK3 problem (Figure 5).2 Note that for the
QUBO instance distribution with n = 128 and K = 3 (Figure 4d), the 10 other best algorithms,
which are variants of the meta-algorithm NGOpt, exhibit overlapping performance curves. This is
because they all selected the same low-level algorithm, DiscreteLenglerOnePlusOne, based
on the characteristics of the instance.

When comparing the evolution curves of (σ, σ′)-RL-EDA across these two problems, we observe
markedly different behaviors. For QUBO problems (Figure 4), (σ, σ′)-RL-EDA quickly reaches
a good solution and then stagnates for the remainder of the budget. The best scores are typically
achieved after approximately 3,000 to 4,000 evaluations, suggesting that the full budget of 10,000
does not benefit (σ, σ′)-RL-EDA, but rather favors competing algorithms.

In contrast, for NK3 instances (Figure 5), (σ, σ′)-RL-EDA requires significantly more time to
converge. The algorithm exhibits an “S”-shaped curve, indicating a delayed learning phase be-
fore generating high-quality solutions. This behavior becomes more pronounced as the interac-

2All plots for all instance distributions are available in the supplementary material.
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Instances Methods

Pb n t
(σ, σ′)-RL-EDA PBIL MIMIC BOA Best method (others)
Rank Score Rank Score Rank Score Rank Score Name Rank Score

QUBO 64 0 34/505 200.8 62/505 199.8 250/505 188.2 268/505 184.6 Tabu 1/505 208.4*
QUBO 64 1 82/505 148.8 91/505 147.8 134/505 146.0 140/505 145.4 CMApara 1/505 154.3*
QUBO 64 2 115/505 138.1 88/505 139.1 119/505 137.6 154/505 137.4 DiscreteDE 1/505 143.4*
QUBO 64 3 80/505 411.2 90/505 410.4 265/505 379.4 267/505 377.5 Tabu 1/505 438.1*
QUBO 64 4 114/505 326.1 80/505 329.7 265/505 311.7 276/505 309.7 CMApara 1/505 344.2*
QUBO 64 5 77/505 309.4 66/505 310.0 242/505 298.3 261/505 295.9 CMApara 1/505 319.3*
QUBO 128 0 1/505 593.7* 66/505 570.8 257/505 504.4 225/505 517.2 Tabu 2/505 588.7
QUBO 128 1 2/505 449.2 21/505 438.3 242/505 408.4 227/505 413.0 CMApara 1/505 453.8*
QUBO 128 2 1/505 437.1 19/505 427.5 238/505 398.9 223/505 403.7 CMAL3 2/505 435.4
QUBO 128 3 1/505 1227.2* 79/505 1177.8 258/505 1034.7 254/505 1046.1 Wiz 2/505 1207.2
QUBO 128 4 2/505 955.4 17/505 934.5 266/505 842.8 254/505 857.3 CMApara 1/505 964.9*
QUBO 128 5 1/505 933.3* 54/505 907.6 264/505 817.2 250/505 830.9 CMAL3 2/505 928.6
QUBO 256 0 1/505 1697.7* 46/505 1570.4 199/505 1317.4 99/505 1422.4 NLOPT_LN_PRAXIS 2/505 1607.1
QUBO 256 1 1/505 1367.7* 3/505 1290.5 197/505 1105.2 92/505 1197.0 BigLognormalDiscreteOnePlusOne 2/505 1301.4
QUBO 256 2 1/505 1304.1* 12/505 1230.9 187/505 1073.0 92/505 1154.4 SVMMetaModelLogNormal 2/505 1233.8
QUBO 256 3 1/505 3436.8* 53/505 3208.6 196/505 2650.7 148/505 2854.3 RLSOnePlusOne 2/505 3316.5
QUBO 256 4 1/505 2769.0* 35/505 2597.5 208/505 2219.0 134/505 2391.5 DiscreteLengler2OnePlusOne 2/505 2617.1
QUBO 256 5 1/505 2730.1* 41/505 2557.0 185/505 2206.6 141/505 2349.2 SVM1MetaModelLogNormal 2/505 2605.1

NK 64 1 29/505 0.7103 52/505 0.7096 127/505 0.7050 237/505 0.7008 CMApara 1/505 0.7119
NK 64 2 24/505 0.742 58/505 0.7391 147/505 0.7317 205/505 0.7273 CMApara 1/505 0.7459
NK 64 4 13/505 0.7523 41/505 0.7463 147/505 0.7330 180/505 0.7311 Tabu 1/505 0.7657*
NK 64 8 19/505 0.7379 35/505 0.7330 263/505 0.7088 309/505 0.6932 Tabu 1/505 0.7602*
NK 128 1 1/505 0.7100 4/505 0.7061 159/505 0.6958 207/505 0.6941 CMApara 2/505 0.7074
NK 128 2 1/505 0.7375* 2/505 0.7305 141/505 0.7138 139/505 0.7139 CMApara 3/505 0.7304
NK 128 4 1/505 0.7603* 2/505 0.7464 203/505 0.7190 125/505 0.7252 Tabu 3/505 0.7462
NK 128 8 2/505 0.7369 3/505 0.7266 356/505 0.6372 388/505 0.6071 Tabu 1/505 0.7429*
NK 256 1 1/505 0.7071* 2/505 0.7014 111/505 0.6810 87/505 0.6869 CMApara 3/505 0.6989
NK 256 2 1/505 0.7364* 2/505 0.7248 98/505 0.7004 60/505 0.7100 MetaModelFmin2 3/505 0.7218
NK 256 4 1/505 0.7534* 2/505 0.7336 104/505 0.7006 189/505 0.6895 MetaModelFmin2 3/505 0.7295
NK 256 8 1/505 0.7232* 2/505 0.7171 385/505 0.5798 390/505 0.5730 LognormalDiscreteOnePlusOne 3/505 0.7166

NK3 64 1 1/500 0.7818* - - 71/500 0.7659 116/500 0.7635 DiscreteDE 2/500 0.7772
NK3 64 2 1/500 0.8095 - - 8/500 0.7857 74/500 0.7779 Tabu 1/500 0.7995
NK3 64 4 2/500 0.8004 - - 138/500 0.7622 154/500 0.7570 Tabu 1/500 0.8062
NK3 64 8 63/500 0.7473 - - 360/500 0.6407 358/500 0.6420 Tabu 1/500 0.7855
NK3 128 1 1/500 0.7876 - - 62/500 0.7599 103/500 0.7537 DiscreteLengler3OnePlusOne 1/500 0.7800
NK3 128 2 1/500 0.7986* - - 58/500 0.7635 111/500 0.7527 BigLognormalDiscreteOnePlusOne 2/500 0.7820
NK3 128 4 1/500 0.7847* - - 124/500 0.7374 130/500 0.7311 Neural1MetaModelLogNormal 2/500 0.7740
NK3 128 8 63/500 0.7373 - - 377/500 0.5986 345/500 0.6008 Tabu 1/500 0.7608*
NK3 256 1 1/500 0.7763* - - 55/500 0.7360 62/500 0.7247 NGOpt 1/500 0.7542
NK3 256 2 1/500 0.7801* - - 53/500 0.7391 69/500 0.7236 RF1MetaModelLogNormal 2/500 0.7600
NK3 256 4 1/500 0.7615* - - 147/500 0.6784 69/500 0.7091 SVM1MetaModelLogNormal 2/500 0.7522
NK3 256 8 43/500 0.7213 - - 362/500 0.5704 402/500 0.5692 RLSOnePlusOne 1/500 0.7362*

Table 3: Global rankings and average scores obtained by (σ, σ′)-RL-EDA and the other EDAs
(PBIL, MIMIC, and BOA) are reported. The last columns present the ranking and average score of
the best-performing method among the 501 additional algorithms considered (496 for NK3 prob-
lems). Rankings are computed over all 505 algorithms (500 for NK3 problems) by comparing the
best score achieved after 10,000 objective function evaluations, averaged across 100 independent
runs. Bold values highlight the best results among all competing methods. A star associated the
results obtain by (σ, σ′)-RL-EDA indicates that it is significantly better in average (over 100 runs)
than the best other competitor. A star associated with a result obtain by an other algorithm indicates
that it is significantly better in average (over 100 runs) than (σ, σ′)-RL-EDA. A difference on the
average scores is said statistically significant according to a t-test with p-value 0.001.

tion graph increases (i.e., with higher K values), likely due to the increased difficulty in mod-
eling variable interactions in NK3 compared to QUBO. Notably, for the most complex instances
(K = 8), (σ, σ′)-RL-EDA fails to converge within the allocated budget, explaining its poor
performance reported in Table 3 for this distribution. Meta-algorithms from the Nevergrad
library that incorporate neural networks (NeuralMetaModelLogNormal) or random forests
(NRFMetaModelLogNormal) achieve good results more rapidly. On the other hand, when
(σ, σ′)-RL-EDA has sufficient time to converge—as in landscapes with K = 2 or k = 4—it
achieves significantly better average scores than its competitors by the end of the search.

M ABLATION STUDIES AND SENSITIVITY ANALYSES

In this appendix, we first present two ablation studies aimed at evaluating the impact of the order-
invariant reinforcement learning framework used in (σ, σ′)-RL-EDA (see Section 3.3), which could
be partially or totally replaced by naive structural dropout during sampling and/or training.

We also investigate the influence of incorporating a known variable interaction graph on the perfor-
mance of (σ, σ′)-RL-EDA.

Furthermore, we conduct a sensitivity analysis of key parameters within the multivariate RL EDA
framework, specifically examining the effects of the population size (λ), the KL divergence penal-
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(a) QUBO instances with n = 128 and K = 0. (b) QUBO instances with n = 128 and K = 1.

(c) QUBO instances with n = 128 and K = 2. (d) QUBO instances with n = 128 and K = 3.

(e) QUBO instances with n = 128 and K = 4. (f) QUBO instances with n = 128 and K = 5.

Figure 4: Evolution of the average scores w.r.t. the number of calls to the objective function obtained
by (σ, σ′)-RL-EDA and the best 10 other competitors for the different type of QUBO instances with
n = 128.

ization coefficient (β), and various configurations of the g mechanisms employed in the multivariate
generative model.

M.1 IMPACT FOR USING ADDITIONAL STRUCTURAL DROPOUT FOR GENERATION AND
TRAINING

In this appendix, we aim to test variants of the multivariate RL EDA presented in Section 3.3
((δ, δ′)-RL-EDA, (δ, σ′)-RL-EDA, (σ, δ′)-RL-EDA, (σ, σ′)-RL-EDA), but with additional struc-
tural dropout for sampling and training (following the objective (34) combining input dropout and
order permutations described in section E).

During the generation phase (respectively the training phase) of the EDA, we add a probability
pG ∈ {0.0, 0.25, 0.5, 0.75} (respectively pT ∈ {0.0, 0.25, 0.5, 0.75}) that a parent of a variable in
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(a) NK3 instances with n = 128 and K = 1. (b) NK3 instances with n = 128 and K = 2.

(c) NK3 instances with n = 128 and K = 4 and (d) NK3 instances with n = 128 and K = 8.

Figure 5: Evolution of the average scores w.r.t. the number of calls to the objective function obtained
by (σ, σ′)-RL-EDA and the best 10 other competitors for the different type of NK3 instances with
n = 128.

the causal mask is set at the value of zero. Therefore, we test 16 different configurations of structural
dropout for each multivariate RL variant.

First, we see in Figure 7a that adding structural dropout during the sampling phase and the training
phase can be very beneficial in particular for the variant (δ, δ′)-RL-EDA with fix order for both
generation and sampling. It helps the model have more diversity during the generation phase of the
EDA and to better detect the dependencies between variables during the update phase.

By contrast, adding these structural dropouts for the variant (σ, σ′)-RL-EDA in Figure 7d does not
improve the results in comparison with the reference version with pG = 0.0 and pT = 0.0 (green
solid line), because this version already benefits from structural dropout for sampling and training
induced by its double random order sampling process.

Overall, we observe that the reference version (σ, σ′)-RL-EDA without structural dropout performs
better with a score of 0.753 in average than all variants across the different combinations of dropout
levels used for sampling and training (the best other variant obtains an average score of 0.747). The
difference of score is statistically significative according to a t-test with p-value 0.001. It should be
noted that it is difficult to obtain an average score higher than 0.006 when the score is already very
good for this type of instance. This suggests that the dropout distribution induced by double-order
sampling is more advantageous than fine-tuning specific structural dropout values for the generation
and update phases of the EDA.

We confirms this results on the large QUBO instances with N = 256 and K = 5 (see Figure 7. On
this distribution of instances our reference variant (σ, σ′)-RL-EDA with pG = 0.0 and pT = 0.0
(green solid line in SubFigure 6d) obtains a score of 2730 in average, while the best other variant
(σ, δ)-RL-EDA with dropout ratios pG = 0.5 and pT = 0.5 obtain a score of 2709 in average. The
difference of score is statistically significative according to a t-test with p-value 0.1.
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(a) Variant (δ, δ′)-RL-EDA (b) Variant (δ, σ′)-RL-EDA

(c) Variant (σ, δ′)-RL-EDA (d) Variant (σ, σ′)-RL-EDA

Figure 6: Evolution of the average scores w.r.t. the number of calls to the objective function, obtained
by the four different versions of the multivariate RL EDA with additional structural dropout for
sampling and training for the instances of the NK landscape problem with N = 256 and K = 4.

M.2 IMPACT FOR USING STRUCTURAL DROPOUT INSTEAD OF CAUSAL MASK DURING
TRAINING

In this appendix, we seek to verify whether the causal used during the EDA training phase can
be completely replaced by a structural dropout with a probability pT ∈ {0.0, 0.25, 0.5, 0.75} for
variants with fixed or random orders during generation. These variants without causal mask dur-
ing training are called (δ, p)-RL-EDA and (σ, p)-RL-EDA. We also retain the different structural
dropout ratios for generation pG ∈ {0.0, 0.25, 0.5, 0.75} which is complementary to the mandatory
causal mask for generation.

We observe in Figure 8a that the variant (δ, p)-RL-EDA can obtained at best the same results than
the variant (δ, σ)-RL-EDA using fix causal mask during training (see Figure 7a). Symmetrically,
the variant (σ, p)-RL-EDA obtain also at best the same results than the variant (σ, δ′)-RL-EDA
(see Figure 7c). However these variants obtain less good results than the reference version
(σ, σ′)-RL-EDA (green solid line in Figure 7d), which confirm the utility of the specific double
uniform distribution of random orders used during the sampling and training phase of the EDA, in-
stead of fine tuned structural dropouts in this context. We confirms this results on the large QUBO
instances with N = 256 and K = 5 (see Figure 9), when comparing the results obtain on these
plots with those obtain by the reference version (σ, σ′)-RL-EDA on the same distribution of in-
stances (green solid line in Figure 6d).

M.3 IMPACT OF USING A KNOWN INTERACTION GRAPH BETWEEN VARIABLES

In scenarios where the interaction graph (IG) between variables is assumed to be known—i.e., a
gray-box setting (Santana, 2017) —the causal masks used in (σ, σ′)-RL-EDA can be adapted to
respect these structural constraints.
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(a) Variant (δ, δ′)-RL-EDA (b) Variant (δ, σ′)-RL-EDA

(c) Variant (σ, δ′)-RL-EDA (d) Variant (σ, σ′)-RL-EDA

Figure 7: Evolution of the average scores w.r.t. the number of calls to the objective function, obtained
by the four different versions of the multivariate RL EDA with additional structural dropout for
sampling and training for the instances of the QUBO problem with N = 256 and K = 5.

(a) Variant (δ, p)-RL-EDA (b) Variant (σ, p)-RL-EDA

Figure 8: Evolution of the average scores w.r.t. the number of calls to the objective function for the
variants (δ, p)-RL-EDA and (σ, p)-RL-EDA for the instances of the NK landscape problem with
N = 256 and K = 4.

Let A denote the symmetric binary adjacency matrix of the interaction graph, where ai,j = 1
indicates that variables Xi and Xj interact in the the evaluation of the objective function f . For
example, in the QUBO problem, the objective function is defined as f(x) = x⊤Qx, where Q is
a symmetric real matrix of size n × n and coefficients qij . In this case, the adjacency matrix A is
constructed such that aij = 1 if qij ̸= 0, and 0 otherwise.

Each causal mask σ(x)<k (see Section 3.3) is then adapted to hide values of non adjacent variables
in the interaction graph (corresponding to zero coefficients in the adjacency matrix A), in addition
to every dimension whose rank in σ is greater or equal than k.
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(a) Variant (δ, p)-RL-EDA (b) Variant (σ, p)-RL-EDA

Figure 9: Evolution of the average scores w.r.t. the number of calls to the objective function for the
variants (δ, p)-RL-EDA and (σ, p)-RL-EDA for the instances of the QUBO problem with N = 256
and K = 5.

Figure 10 shows the evolution of average scores across 100 independent runs of (σ, σ′)-RL-EDA,
comparing the case with an unknown IG (green curve) to the case with a known IG (blue curve).
When comparing the green and blue curves, we observe that providing the interaction graph be-
tween variables helps guide the algorithm more effectively at the beginning of the search. Indeed,
(σ, σ′)-RL-EDA with a known IG reaches high-quality solutions more rapidly. However, it is note-
worthy that the green curve eventually surpasses the blue one, suggesting that constraining the learn-
ing process to the predefined interaction graph may become limiting. Toward the end of the search,
generating optimal solutions may benefit from discovering new relationships between variables that
are not encoded in the known interaction graph used to compute the objective function. This phe-
nomenon can be attributed to the fact that the learned model of (σ, σ′)-RL-EDA is not designed to
model the full objective function, but rather to approximate the distribution of high-quality solutions
within a specific region of the search space.

(a) QUBO instances with n = 128 and K = 5. (b) NK instances with n = 256 and K = 4.

Figure 10: Evolution of the average scores w.r.t. the number of calls to the objective function,
obtained by (σ, σ′)-RL-EDA with and without known interaction graph.

M.4 SENSITIVITY TO THE POPULATION SIZE

Figure 11 shows the score evolution curves for (σ, σ′)-RL-EDA with varying population size.

Our analysis reveals that, for the considered instance distributions, a smaller population size tends
to promote faster convergence in terms of the number of objective function evaluations. However,
this accelerated convergence often comes at the expense of reduced exploration, which can lead
the algorithm to suboptimal local solutions. Increasing the population size to λ = 20 or λ = 50
improves the average performance previously reported for NK instances with N = 128 and K = 4
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(a) QUBO instances with n = 128 and t = 5. (b) NK instances with n = 128 and K = 4.

Figure 11: Sensitivity to the population size in (σ, σ′)-RL-EDA.

(Figure 11b). In contrast, as shown in Figure 11a, the population size appears to have a negligible
impact on performance for QUBO instances.

M.5 SENSITIVITY TO THE KL PENALTY COEFFICIENT

Figure 12 shows the score evolution curves of (σ, σ′)-RL-EDA for different values of the KL penalty
coefficient β. By default, this coefficient is set to 1 in (σ, σ′)-RL-EDA (green curve). It controls the
amplitude of the KL regularization term included in the objective function during the update phase
of (σ, σ′)-RL-EDA (see Equation 8).

(a) QUBO instances with n = 128 and t = 5. (b) NK instances with n = 256 and K = 4.

Figure 12: Sensitivity to the KL penalty coefficient β in (σ, σ′)-RL-EDA.

We observe that low values of β lead to faster convergence in terms of objective function evaluations.
However, this often results in premature convergence to suboptimal solutions due to insufficient
exploration. Conversely, higher values of β help maintain the initial high entropy of the solution
distribution for a longer period, thereby promoting broader exploration. Nevertheless, excessively
high values—such as β = 100—can hinder the algorithm’s ability to converge toward high-quality
solution. These results highlight the critical role of β in balancing exploration and exploitation.
For the instance distributions considered and given the evaluation budget, setting β within the range
[1, 5] appears to offer a satisfactory trade-off.

M.6 SENSITIVITY TO THE LOGISTIC REGRESSION MODELS USED IN THE MARKOV KERNELS

Figure 13 shows the score evolution of (σ, σ′)-RL-EDA for different logistic regression models g
used in the generative process of each variable conditioned on the others (see Section 3.1).

The blue curve corresponds to the univariate model, where each variable is generated independently
of the others. This model converges the fastest, due to its limited number of parameters. The red
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curve represents the use of linear logistic regression models. Interestingly, the performance obtained
with linear models is even lower than that of the univariate model. This result suggests that it may be
preferable to omit interaction modeling entirely rather than attempt to capture complex dependencies
using an overly simplistic linear model.

We also evaluate several variants using neural networks of varying depth—specifically with 1, 2,
and 4 hidden layers—for each variable. All configurations perform similarly on NK instances with
K = 4 (Figure 13a), where variable interactions are relatively simple. However, for the more
complex categorical NK3 problem with K = 8 (Figure 13b), deeper architectures (e.g., the four-
hidden-layer model, shown by the orange curve) outperform simpler ones such as the single hidden
layer (green curve). This suggests that increased model capacity is beneficial for capturing more
complex dependencies. Nevertheless, this improvement comes with increased computational and
memory requirements.

(a) QUBO instances with n = 128 and K = 5. (b) NK3 instances with n = 128 and K = 8.

Figure 13: Sensitivity to the logistic regression models used in each conditional generative network
of (σ, σ′)-RL-EDA. NN corresponds to neural network. L is the number of hidden layer in each
neural network and nl is the number of neurons in each hidden layer.

N NEVERGRAD COMPETING ALGORITHMS

It is important to note that some algorithms in the library are primarily designed for continuous
optimization—such as various variants of Particle Swarm Optimization (PSO) and CMA-ES— and
are not expected to perform competitively on discrete problems. Nevertheless, Nevergrad (Rapin
& Teytaud, 2018) also includes a wide range of algorithms specifically tailored for large-scale dis-
crete black-box optimization. The algorithms of the Nevergrad library can be grouped into the
following categories:

• Memetic and Genetic Algorithms, such as cGA and discretememetic.

• Discrete (1+1) Evolutionary Algorithms, including variants with adaptive mutation rates
like DiscreteLengler2OnePlusOne and FastGADiscreteOnePlusOne.

• Differential Evolution algorithms, e.g., DiscreteDE, LhsHSDE.

• Chaining Algorithms, which are meta-algorithms applying several baseline algorithms in
sequence, such as ChainDEwithLHS30, Carola1, . . . , Carola15.

• Portfolio Algorithms, including NGOpt, NgIoh, and Wiz, which select low-level algo-
rithms based on problem dimension and budget.

• Adaptive Portfolio Algorithms, which test several algorithms during early search phases
before selecting one for later stages, e.g., PolyLN.

• Learning Meta-Models, which approximate the optimum using supervised mod-
els (e.g., random forests, neural networks, SVMs) trained on the best so-
lutions generated by low-level algorithms. Example include RF1MetaModel,
Neural1MetaModelOnePlusOne, and SVM1MetaModelD.
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Additional Tabu Search Algorithm : Given a solution x, Tabu explores its neighborhood by
changing the value of a discrete variable xj , thereby generating a neighbor x′ differing from x in
exactly one component. At each iteration, the best eligible neighbor with respect to the objective
function f is selected. A move is considered eligible if it is not forbidden by the tabu list, unless it
improves upon the best solution found so far. After the value of a variable xj is changed, it becomes
tabu for the next T iterations. In many effective QUBO implementations, T is defined as αn + R,
where R ∈ {1, . . . , 10} is a random integer and α is a hyperparameter typically set to 0.1. We retain
this configuration in our experiments.

Here we provide the complete list of all competing algorithm of the 1.0.12 Nevergrad library used
in the experiments (sorted by name). Detailed documentation and source code of these algorithms
are available at https://facebookresearch.github.io/nevergrad.

AdaptiveDiscreteOnePlusOne, AlmostRotationInvariantDE, AlmostRotationInvariantDEAndBigPop, AnisoEMNA, AnisoEMNATBPSA,

AnisotropicAdaptiveDiscreteOnePlusOne, ASCMADEthird, AvgHammersleySearch, AvgHammersleySearchPlusMiddlePoint, AvgMetaRe-

centeringNoHull, AvgRandomSearch, BAR, BAR2, BAR3, BAR4, BFGS, BFGSCMA, BFGSCMAPlus, BigLognormalDiscreteOne-

PlusOne, BPRotationInvariantDE, Carola1, Carola2, Carola3, Carola4, Carola5, Carola6, Carola7, Carola8, Carola9, Carola10,

Carola11, Carola13, Carola14, Carola15, CauchyLHSSearch, CauchyOnePlusOne, CauchyRandomSearch, CauchyScrHammersley-

Search, cGA, ChainCMAPowell, ChainCMASQP, ChainCMAwithLHS, ChainCMAwithLHS30, ChainCMAwithLHSdim, ChainCMAw-

ithLHSsqrt, ChainCMAwithMetaRecentering, ChainCMAwithMetaRecentering30, ChainCMAwithMetaRecenteringdim, ChainCMAw-

ithMetaRecenteringsqrt, ChainCMAwithR, ChainCMAwithR30, ChainCMAwithRdim, ChainCMAwithRsqrt, ChainDE, ChainDEwith-

LHS, ChainDEwithLHS30, ChainDEwithLHSdim, ChainDEwithLHSsqrt, ChainDEwithMetaRecentering, ChainDEwithMetaRecentering30,

ChainDEwithMetaRecenteringdim, ChainDEwithMetaRecenteringsqrt, ChainDEwithMetaTuneRecentering, ChainDEwithMetaTuneRecen-

tering30, ChainDEwithMetaTuneRecenteringdim, ChainDEwithMetaTuneRecenteringsqrt, ChainDEwithR, ChainDEwithR30, ChainDE-

withRdim, ChainDEwithRsqrt, ChainDiagonalCMAPowell, ChainDSPowell, ChainMetaModelDSSQP, ChainMetaModelPowell, Chain-

MetaModelSQP, ChainNaiveTBPSACMAPowell, ChainNaiveTBPSAPowell, ChainPSOwithLHS, ChainPSOwithLHS30, ChainPSOwith-

LHSdim, ChainPSOwithLHSsqrt, ChainPSOwithMetaRecentering, ChainPSOwithMetaRecentering30, ChainPSOwithMetaRecenteringdim,

ChainPSOwithMetaRecenteringsqrt, ChainPSOwithR, ChainPSOwithR30, ChainPSOwithRdim, ChainPSOwithRsqrt, ChoiceBase, CLen-

gler, CM, CMA, CMAbounded, CmaFmin2, CMAL, CMAL2, CMAL3, CMALL, CMALn, CMALS, CMALYS, CMandAS2, CMandAS3,

CMApara, CMARS, CMASL, CMASL2, CMASL3, CMAsmall, CMAstd, CMAtuning, Cobyla, CSEC, CSEC10, CSEC11, DE, Diago-

nalCMA, DiscreteBSOOnePlusOne, DiscreteDE, DiscreteDoerrOnePlusOne, DiscreteLengler2OnePlusOne, DiscreteLengler3OnePlusOne,

DiscreteLenglerFourthOnePlusOne, DiscreteLenglerHalfOnePlusOne, DiscreteLenglerOnePlusOne, DiscreteLenglerOnePlusOneT, discrete-

memetic, DiscreteNoisy13Splits, DiscreteOnePlusOne, DiscreteOnePlusOneT, DoubleFastGADiscreteOnePlusOne, DoubleFastGAOpti-

misticNoisyDiscreteOnePlusOne, DS2, DS3p, DS4, DS5, DS6, DS8, DS9, DS14, DSbase, DSproba, DSsubspace, ECMA, EDA, ED-

CMA, ES, F2SQPCMA, F3SQPCMA, FastGADiscreteOnePlusOne, FastGANoisyDiscreteOnePlusOne, FastGAOptimisticNoisyDiscreteOne-

PlusOne, FCarola6, FCMA, FCMAp13, FCMAs03, file, ForceMultiCobyla, FSQPCMA, GeneticDE, HaltonSearch, HaltonSearchPlus-

MiddlePoint, HammersleySearch, HammersleySearchPlusMiddlePoint, HSDE, HugeLognormalDiscreteOnePlusOne, HullAvgMetaRecenter-

ing, HullAvgMetaTuneRecentering, HullCenterHullAvgCauchyLHSSearch, HullCenterHullAvgCauchyScrHammersleySearch, HullCenter-

HullAvgLargeHammersleySearch, HullCenterHullAvgLHSSearch, HullCenterHullAvgRandomSearch, HullCenterHullAvgScrHaltonSearch,

HullCenterHullAvgScrHaltonSearchPlusMiddlePoint, HullCenterHullAvgScrHammersleySearch, HullCenterHullAvgScrHammersleySearch-

PlusMiddlePoint, IsoEMNA, IsoEMNATBPSA, LargeCMA, LargeDiagCMA, LargeHaltonSearch, LBFGSB, LhsDE, LhsHSDE, LHSSearch,

LocalBFGS, LogBFGSCMA, LogBFGSCMAPlus, LogMultiBFGS, LogMultiBFGSPlus, LognormalDiscreteOnePlusOne, LogSQPCMA,

LogSQPCMAPlus, LPCMA, LPSDE, LQODE, LQOTPDE, LSCMA, LSDE, ManyLN, MaxRecombiningDiscreteLenglerOnePlusOne,

MemeticDE, MetaCauchyRecentering, MetaCMA, MetaModel, MetaModelDE, MetaModelDiagonalCMA, MetaModelDSproba, MetaMod-

elFmin2, MetaModelLogNormal, MetaModelOnePlusOne, MetaModelPSO, MetaModelQODE, MetaModelTwoPointsDE, MetaNGOpt10,

MetaRecentering, MetaTuneRecentering, MicroCMA, MicroSPSA, MicroSQP, MilliCMA, MiniDE, MiniLhsDE, MiniQrDE, MinRecom-

biningDiscreteLenglerOnePlusOne, MixDeterministicRL, MixES, MultiBFGS, MultiBFGSPlus, MultiCMA, MultiCobyla, MultiCobylaPlus,

MultiDiscrete, MultiDS, MultiLN, MultiScaleCMA, MultiSQP, MultiSQPPlus, MutDE, NaiveAnisoEMNA, NaiveAnisoEMNATBPSA,

NaiveIsoEMNA, NaiveIsoEMNATBPSA, NaiveTBPSA, NelderMead, Neural1MetaModel, Neural1MetaModelD, Neural1MetaModelE,

Neural1MetaModelLogNormal, NeuralMetaModel, NeuralMetaModelDE, NeuralMetaModelLogNormal, NeuralMetaModelTwoPointsDE,

NgDS, NgDS11, NgDS2, NgDS3, NGDSRW, NgIoh, NgIoh2, NgIoh3, NgIoh4, NgIoh5, NgIoh6, NgIoh7, NgIoh8, NgIoh9, NgIoh10,

NgIoh11, NgIoh12, NgIoh12b, NgIoh13, NgIoh13b, NgIoh14, NgIoh14b, NgIoh15, NgIoh15b, NgIoh16, NgIoh17, NgIoh18, NgIoh19,

NgIoh20, NgIoh21, NgIohLn, NgIohMLn, NgIohRS, NgIohRW2, NgIohTuned, NgLglr, NgLn, NGO, NGOpt, NGOpt10, NGOpt15,

NGOpt16, NGOpt36, NGOpt39, NGOpt4, NGOpt8, NGOptBase, NGOptDSBase, NGOptF, NGOptF2, NGOptF3, NGOptF5, NGOp-

tRW, NGOptSingle16, NGOptSingle25, NGOptSingle9, NgRS, NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT, NLOPT_GN_DIRECT_L,

NLOPT_GN_ESCH, NLOPT_GN_ISRES, NLOPT_LN_NELDERMEAD, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX, Noisy13Splits,

NoisyBandit, NoisyDE, NoisyDiscreteOnePlusOne, NoisyOnePlusOne, NoisyRL1, NoisyRL2, NoisyRL3, NonNSGAIIES, OldCMA, OL-

NDiscreteOnePlusOne, OnePlusLambda, OnePlusOne, OnePointDE, OnePtRecombiningDiscreteLenglerOnePlusOne, OpoDE, OpoTinyDE,

OptimisticDiscreteOnePlusOne, OptimisticNoisyOnePlusOne, ORandomSearch, OScrHammersleySearch, ParametrizationDE, ParaPortfo-

lio, pCarola6, PCarola6, PolyCMA, PolyLN, Portfolio, PortfolioDiscreteOnePlusOne, PortfolioDiscreteOnePlusOneT, PortfolioNoisyDiscre-
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teOnePlusOne, PortfolioOptimisticNoisyDiscreteOnePlusOne, Powell, PSO, QNDE, QODE, QOPSO, QORandomSearch, QORealSpacePSO,

QOScrHammersleySearch, QOTPDE, QrDE, Quad1MetaModel, Quad1MetaModelD, Quad1MetaModelE, RandomScaleRandomSearch,

RandomScaleRandomSearchPlusMiddlePoint, RandomSearch, RandomSearchPlusMiddlePoint, RandRecombiningDiscreteLenglerOnePlu-

sOne, RandRecombiningDiscreteLognormalOnePlusOne, RBFGS, RealSpacePSO, RecES, RecMixES, RecMutDE, RecombiningDiscrete-

LenglerOnePlusOne, RecombiningDiscreteLognormalOnePlusOne, RecombiningGA, RecombiningOptimisticNoisyDiscreteOnePlusOne,

RecombiningPortfolioDiscreteOnePlusOne, RecombiningPortfolioOptimisticNoisyDiscreteOnePlusOne, RescaledCMA, RescaleScrHammer-

sleySearch, RF1MetaModel, RF1MetaModelD, RF1MetaModelE, RF1MetaModelLogNormal, RFMetaModel, RFMetaModelDE, RFMeta-

ModelLogNormal, RFMetaModelOnePlusOne, RFMetaModelPSO, RFMetaModelTwoPointsDE, RLSOnePlusOne, RotatedRecombiningGA,

RotatedTwoPointsDE, RotationInvariantDE, RPowell, RSQP, SADiscreteLenglerOnePlusOneExp09, SADiscreteLenglerOnePlusOneExp099,

SADiscreteLenglerOnePlusOneExp09Auto, SADiscreteLenglerOnePlusOneLin1, SADiscreteLenglerOnePlusOneLin100, SADiscreteLen-

glerOnePlusOneLinAuto, SADiscreteOnePlusOneExp09, SADiscreteOnePlusOneExp099, SADiscreteOnePlusOneLin100, ScrHaltonSearch,

ScrHaltonSearchPlusMiddlePoint, ScrHammersleySearch, ScrHammersleySearchPlusMiddlePoint, SDiagonalCMA, Shiwa, SmallLog-

normalDiscreteOnePlusOne, SmoothAdaptiveDiscreteOnePlusOne, SmoothDiscreteLenglerOnePlusOne, SmoothDiscreteLognormalOne-

PlusOne, SmoothDiscreteOnePlusOne, SmoothElitistRandRecombiningDiscreteLenglerOnePlusOne, SmoothElitistRandRecombiningDis-

creteLognormalOnePlusOne, SmoothElitistRecombiningDiscreteLenglerOnePlusOne, SmootherDiscreteLenglerOnePlusOne, SmoothLog-

normalDiscreteOnePlusOne, SmoothPortfolioDiscreteOnePlusOne, SmoothRecombiningDiscreteLenglerOnePlusOne, SmoothRecombin-

ingPortfolioDiscreteOnePlusOne, SODE, SOPSO, SparseDiscreteOnePlusOne, SparseDoubleFastGADiscreteOnePlusOne, SparseOrNot,

SpecialRL, SplitCMA, SplitDE, SplitPSO, SplitQODE, SplitSQOPSO, SplitTwoPointsDE, SPQODE, SPSA, SQOPSO, SQOPSOD-

CMA, SQOPSODCMA20, SQORealSpacePSO, SQP, SQPCMA, SQPCMAPlus, SqrtBFGSCMA, SqrtBFGSCMAPlus, SqrtMulti-

BFGS, SqrtMultiBFGSPlus, SqrtSQPCMA, SqrtSQPCMAPlus, StupidRandom, SuperSmoothDiscreteLenglerOnePlusOne, SuperSmoothEli-

tistRecombiningDiscreteLenglerOnePlusOne, SuperSmoothRecombiningDiscreteLenglerOnePlusOne, SuperSmoothRecombiningDiscreteL-

ognormalOnePlusOne, SuperSmoothTinyLognormalDiscreteOnePlusOne, SVM1MetaModel, SVM1MetaModelD, SVM1MetaModelE,

SVM1MetaModelLogNormal, SVMMetaModel, SVMMetaModelDE, SVMMetaModelLogNormal, SVMMetaModelPSO, SVMMetaMod-

elTwoPointsDE, TBPSA, TEAvgCauchyLHSSearch, TEAvgCauchyScrHammersleySearch, TEAvgLHSSearch, TEAvgRandomSearch,

TEAvgScrHammersleySearch, TEAvgScrHammersleySearchPlusMiddlePoint, TinyCMA, TinyLhsDE, TinyLognormalDiscreteOnePlusOne,

TinyQODE, TinySPSA, TinySQP, TripleCMA, TripleDiagonalCMA, TripleOnePlusOne, TwoPointsDE, TwoPtRecombiningDiscreteLen-

glerOnePlusOne, UltraSmoothDiscreteLenglerOnePlusOne, UltraSmoothElitistRecombiningDiscreteLenglerOnePlusOne, UltraSmoothEli-

tistRecombiningDiscreteLognormalOnePlusOne, UltraSmoothRecombiningDiscreteLenglerOnePlusOne, VastDE, VastLengler, VLPCMA,

VoronoiDE, Wiz, XLognormalDiscreteOnePlusOne, XSmallLognormalDiscreteOnePlusOne, YoSmoothDiscreteLenglerOnePlusOne, Zero.

O LLM USAGE DECLARATION

During the preparation of this manuscript, we used Large Language Models to assist with text clarity,
grammar, and formulation, particularly in polishing the abstract and certain explanatory sentences.
The scientific content, experimental design, results, and interpretations were entirely conceived and
written by the authors. LLMs were not used to generate original ideas, proofs, or analyses; its
contribution was limited to language refinement.
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