
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BLACK-BOX COMBINATORIAL OPTIMIZATION WITH
ORDER-INVARIANT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce an order-invariant reinforcement learning framework for black-
box combinatorial optimization. Classical estimation-of-distribution algorithms
(EDAs) often rely on learning explicit variable dependency graphs, which can be
costly and fail to capture complex interactions efficiently. In contrast, we parame-
terize a multivariate autoregressive generative model trained without a fixed vari-
able ordering. By sampling random generation orders during training - a form of
information-preserving dropout - the model is encouraged to be invariant to vari-
able order, promoting search-space diversity and shaping the model to focus on the
most relevant variable dependencies, improving sample efficiency. We adapt Gen-
eralized Reinforcement Policy Optimization (GRPO) to this setting, providing sta-
ble policy-gradient updates from scale-invariant advantages. Across a wide range
of benchmark algorithms and problem instances of varying sizes, our method fre-
quently achieves the best performance and consistently avoids catastrophic fail-
ures.

1 INTRODUCTION

Black-box optimization (Audet & Kokkolaras, 2016; Brochu et al., 2010) consists of maximizing
a function f : X → R over the discrete space X without any structural or analytical knowledge
of f . The function f is typically costly to evaluate (e.g., computationally expensive simulation,
querying a physical experiment, or executing a complex algorithm). The interactions among the
variables of f are not available, making black-box optimization particularly challenging, especially
in high-dimensional and structured discrete domains (Doerr et al., 2019; Larranaga, 2002).

A wide range of methods and concepts have been explored to solve Black-box optimization prob-
lems. Among them, Bayesian optimization (BO) is a model-based optimization framework that con-
structs a probabilistic surrogate model over the objective function and uses an acquisition function
to determine where to sample next in the search space. It is particularly effective for global op-
timization under tight evaluation budgets, making it well-suited for expensive black-box problems
(Forrester & Keane, 2009; Frazier, 2018; Shahriari et al., 2015). Evolutionary Algorithms (EAs) are
also recognized as powerful methods for solving discrete black-box optimization problems. These
metaheuristics operate by iteratively evolving a population of candidate solutions through variation
operators (mutation, crossover) and selection mechanisms. Unlike Bayesian optimization, EAs do
not build explicit models of the objective function, making them more flexible and easier to imple-
ment (Back, 1996; Eiben & Smith, 2015).

As a specific subclass of EAs, Estimation-of-Distribution Algorithms (EDAs) are stochastic black-
box optimization methods that guide the search for optima by explicitly learning and sampling from
a probabilistic model P of promising candidate solutions by means of a distribution that captures
patterns among high-performing solutions (Larranaga, 2002; Mühlenbein & Paass, 1996). EDAs
can be conceptually positioned between the two main paradigms of black-box optimization, EAs
and BO. Some widely used and effective EDAs such as the Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) (Hansen & Ostermeier, 2001; Hansen, 2016)—designed for continuous
landscapes—and Population-Based Incremental Learning (PBIL) (Baluja, 1994)—for discrete land-
scapes—can also be interpreted within the Information-Geometric Optimization (IGO) framework
(Ollivier et al., 2017). This connection provides a formal interpretation of EDAs as performing
natural gradient descent in the space of probability distributions, thus explaining their ability to fine-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tune solutions and converge reliably in continuous or discrete spaces. While continuous EDAs—
particularly CMA-ES—have attracted significant attention, a less explored body of research focuses
on EDAs for discrete and combinatorial spaces. Early work in this area has demonstrated the ef-
fectiveness of multivariate discrete EDAs in applications such as scheduling, routing, and constraint
satisfaction problems (Lozano, 2006). Algorithms such as Mutual Information Maximizing Input
Clustering (MIMIC) (De Bonet et al., 1996) and Bayesian Optimization Algorithm (BOA) (Pelikan,
2005) model dependencies between variables using directed acyclic graphs, enabling them to learn
the structure of the search space and capture conditional dependencies among decision variables.

In this paper, we revisit discrete multivariate EDAs by using a multivariate distribution parameter-
ized by neural networks to model the distribution of each variable conditionally on the others. The
resulting highly flexible model is capable of capturing complex interactions between variables while
controlling the total number of parameters in the joint generative distribution, which scales polyno-
mially with instance size. A neural network is associated with each variable and trained in parallel
using modern reinforcement learning techniques—based on policy gradients such as Generalized
Reinforcement Policy Optimization (GRPO) (Shao et al., 2024)—which have proven highly success-
ful in rapidly converging on effective policies, especially when discrete action choices must be made
in complex environments. The solution generation process is modeled as a sequential assignment
of variable values. Inspired by recent work (Pannatier et al., 2024)—which proposes permutation-
invariant autoregressive generation to mitigate exposure bias and increase robustness—and in con-
trast to classical EDAs such as MIMIC and BOA, which rely on an explicitly learned generation
order, we adopt a more agnostic stance. Rather than assuming or learning a sparse directed acyclic
graph, which may not reflect the true underlying structure of complex combinatorial problems, we
advocate for a multivariate undirected generative model that is invariant to the order of variable
generation. While previous works (Kim et al., 2022; Kwon et al., 2020) use RL-based construction
methods for optimization problems where symmetries occur in the solution or problem spaces (typ-
ically permutations), we focus on the order-invariance of the generation process. Furthermore, we
show that learning the model with random orders corresponds to a form of structural dropout (Pal
et al., 2020) inspired by recent advances in permutation-invariant modeling and conditional masking
in generative neural networks (Uria et al., 2016), where random subsets of the context are provided
during training. This technique enables each variable to depend on varying combinations of oth-
ers, allowing the model to flexibly learn interactions without committing to a fixed generation path.
We experimentally show that the resulting model is more robust to structural uncertainty and better
suited to complex, high-dimensional combinatorial search spaces. In our approach, the critical NP-
hard combinatorial optimization problem at the core of graph learning used in Bayesian multivariate
EDAs (like BOA) is replaced by a single continuous optimization problem.

The remainder of this paper is organized as follows. Section 2 introduces the discrete black-box
optimization problem, reviews related work and discuss the motivations for this work. Section 3
presents the derivation of our proposed RL-EDA approach, which builds on a GRPO RL backbone
and is designed to tackle this class of problems. Section 4 reports empirical results comparing our
algorithm with state-of-the-art methods. Various versions of the approach are also compared to
analyze the benefits of each of its components. Section 5 discusses the contribution and presents
some perspectives for future work.

2 PRELIMINARIES: PROBLEM SETTING, RELATED WORK AND MOTIVATIONS

In this section, we first formally introduce the discrete black-box optimization problem. We then
review existing work on multivariate EDAs proposed to tackle such problems. Finally, we discuss
the opportunities offered by neural generators in this context, particularly regarding their flexibility
in capturing implicit inter-variable dependencies. We also highlight the potential benefits of lever-
aging random variable orderings for both generation and training under stringent sample-efficiency
constraints within the EDA training regime.

2.1 DISCRETE BLACK-BOX OPTIMIZATION

Let X = X1×· · ·×Xn be the discrete search space of size n, where each Xj is a finite set (binary or
categorical), and let f : X → R be an objective function accessible only as a black box, i.e., without

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

any structural information (such as convexity or smoothness). A combinatorial optimization (CO)
problem is then defined by the pair (X , f). Without loss of generality, the task is to maximize f :
maxx∈X f(x). In the following, x = (x1, . . . , xn) ∈ X denotes a candidate solution (not necessar-
ily the best) of the CO problem. Xi denotes the variable associated to Xi, whose value in Xi is xi.
Various existing solving techniques for black-box CO include Bayesian optimization methods and
metaheuristics (local-search-based and population-based approaches), which have been improved
by machine learning techniques (Talbi, 2021). More related work on combinatorial optimization is
given in Appendix A.

2.2 MULTIVARIATE ESTIMATION OF DISTRIBUTION ALGORITHMS

Multivariate EDAs are evolutionary algorithms that solve a CO problem by iteratively building and
updating a probabilistic model over the search space X . An EDA with parameters (µ, λ) ∈ N2 with
0 < µ < λ performs the following steps at each iteration t:

1. Draw a population of λ candidate solutions x1, . . . , xλ from the model Pt and compute
fitness values f i = f(xi), for i = 1, . . . , λ.

2. Select the µ best individuals St = {xri : i ∈ [1..µ]}, where (r1, . . . , rλ) is a permutation
of [1..λ] such that fr1 ≥ · · · ≥ frλ , and use St to estimate the updated probabilistic model
Pt+1.

Following this framework, EDAs mainly differ in how they model the generative distribution Pt

used to sample new candidate solutions at each generation t. Some approaches, such as PBIL
(Baluja, 1994) or UMDA (Mühlenbein & Paass, 1996), approximate Pt as a product of indepen-
dent univariate distributions: Pt(x) =

∏n
i=1 P

i
t (Xi = xi), where P i

t denotes the i-th marginal
distribution. While such approaches have proved effective on problems with little or no interaction
among variables, they suffer from important limitations: they can at best focus on a single mode
of the distribution, fail to capture complex inter-variable relationships (including combinatorial or
logical dependencies), and are prone to premature convergence or loss of diversity in multimodal
landscapes.

To overcome these limitations, classical multivariate EDAs need to employ more expressive proba-
bilistic models that explicitly capture dependencies between variables from best candidates in St

at each generation t. In the case of Bayesian networks, dependencies are represented by a di-
rected acyclic graph (DAG) G = (V, E), whose set of vertices V contains all the variables Xj

for j = 1, . . . , n and whose directed edges E represent causality relationships. Hence, at any itera-
tion t of the EDA process, the joint density Pt(x) can be factorized as the product of the densities
of each variable conditionally on its parents as Pt(x) =

∏n
j=1 Pt(Xj = xj |XPa(j;Gt) = xPa(j;Gt))

(Markov factorization) with Gt = (V, Et) the considered DAG at iteration, XPa(j;Gt) = {Xi ∈ V :
(Xi, Xj) ∈ Et} the set of the parents of the variable Xj in Gt and xPa(j;Gt) their corresponding
values.

Given a DAG Gt, such a factorization allows to significantly reduce the number of required parame-
ters to approximate Pt. It also permits sampling the variables sequentially according to a topological
ordering consistent with the causal dependencies encoded by the graph. However, optimal DAGs
are usually unknown at the beginning of the process, and need to be learned efficiently from se-
lected candidates St at each generation, together with the parameters of each factor of the Markov
factorization (more details on EDAs with DAGs can be found in Appendix A).

2.3 THE CASE ON NEURAL ESTIMATORS

Traditionally, EDAs based on Bayesian networks estimate each component of the Markov factor-
ization by contingency tables reporting counts of all joint realizations of the dependent variables
together with the combinations of its parents’ values. In this setting, restricting the dependencies
of each outcome to a small subset of causal variables is crucial to avoid the exponential growth of
complexity with the problem dimension. This limitation has motivated a long line of research on
structural learning heuristics, pruning strategies, and regularization techniques designed to control
the combinatorial explosion (Echegoyen et al., 2008).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Neural estimators fundamentally alter this picture. In classical EDAs, learning an explicit depen-
dency graph was unavoidable: the sampling model could only be specified once the graph structure
had been identified. Neural approaches dispense with this requirement. By parameterizing the joint
distribution directly—often through autoregressive factorizations with arbitrary variable orderings
(Germain et al., 2015; Uria et al., 2016), or via invertible transformations in flow-based models
(Papamakarios et al., 2021)—they sidestep the need to commit to a learned structure at all. How-
ever, despite their success in density estimation and generative modeling, such neural approaches
have scarcely been explored in the context of multivariate EDAs. To the best of our knowledge, no
prior work has applied autoregressive to EDA, nor investigated their interaction with the iterative
optimization dynamics. This gap motivates our study.

In practice, fitting a flexible neural density estimator is frequently simpler and more robust than
inferring the “correct” graph, especially under the limited and evolving sample regimes typical of
EDAs. Following an autoregressive model, we can consider any given factorization using any order
of variables. That is, given an arbitrary order σ of the dimensions of the problem, we can write
P (X = x) =

∏n
i=1 P (xσi |xσ<i), where xσi stands as the value of the i-th dimension of x in

the permutation σ and xσ<i corresponds to the sequence of values of x with rank lower than i in
permutation σ (with xσ<1 standing as an empty sequence). Given N samples of P , this can be
estimated by a neural network Pθ, with parameters θ obtained via maximum likelihood estimation
(MLE): argmaxθ∈Θ

1
N

∑N
j=1

∏n
i=1 Pθ(x

j
σi
|xj

σ<i), where x1 . . . xN are sampled from the target
distribution P . We note that this is true for any given permutation σ. In particular, assuming infinite
amounts of data and infinite capacity of the used neural networks, at convergence of the MLE, we
get that: ∀σ, σ′ : Pθ(X|σ) = Pθ′(X|σ′), where θ and θ′ are optimal parameters (according to
MLE) for permutation σ and σ′ respectively. NADE (Uria et al., 2016) exploits this idea by defining
ensembles of models, each associated with a different variable ordering, which enables sampling
from a more diverse set of outcomes. Yet, to the best of our knowledge, such permutation-based
ensembles have never been explored in multivariate EDAs, despite population diversity being a key
ingredient for black-box optimization and effective exploration. Beyond sampling, we argue that
training a single model across multiple orderings provides an additional benefit: it acts as a form
of noise reduction when learning from limited data, as is typically the case in online EDAs. In
Appendix E, we show that this mechanism can be interpreted as an information-preserving analogue
of dropout, allowing the model to efficiently identify the dominant dependencies between variables
while mitigating overfitting to transient fluctuations.

3 MULTIVARIATE EDA WITH ORDER-INVARIANT REINFORCEMENT
LEARNING

Our proposed algorithm for discrete black-box problems is a multivariate EDA (see Section 2.2)
whose probabilistic model is encoded with a set of neural networks. The construction of a solution
of the CO problem is seen as an episodic Markov Decision Process (MDP) with a reinforcement
learning algorithm adapted for our setting.

3.1 DEEP REINFORCEMENT LEARNING FOR EDAS: SETTING AND ARCHITECTURES

The EDA framework presented above can be easily casted as a reinforcement learning problem,
defined on an MDPM = (S,A, P,R) where S is a set of states, A a set of actions, P (s′|s, a) is
the transition probability function, R : S → R is the reward function, that assigns a scalar reward
depending on reached states in S. In the setting of multivariate EDAs, S corresponds to incomplete
solutions from X (i.e. S ≡ {(∅, 0, σ) : σ ∈ Ω} ∪ {((xσ1 . . . xσk

), k, σ) : x ∈ X , σ ∈ Ω, k ∈
[[1, n]]}), with Ω the set of all possible generation orders of a sequence of indices 1 . . . n, and ∅ an
empty sequence that defines starting states s0. For a given state sk = (xσ≤k

, k, σ), the set of possible
actions Ak ⊆ A is the domain of the k + 1-th variable of the permutation σ (i.e., Ak ≡ Xσk+1

).
Thus, transitions are deterministic: for any triplet (s, a, s′), with s = (xσ≤k

, k, σ) and a ∈ Xσk+1
,

P (s′|s, a) is 1 iff s′ = (x′
σ≤k+1

, k + 1, σ) with x′
σ≤k

= xσ≤k
and x′

σk+1
= a. Finally, rewards are

non-zeros for states from S that correspond to complete solutions of the problem only (i.e., those
states that contain full instantiation of X).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In that setting, our goal is to optimize a parameterized stochastic generative policy πθ(ak ∈
Xσk+1

|sk = (xσ≤k
, k, σ)), that defines the probability of taking action ak in state sk. For the

binary setting where the discrete search space is X = {−1, 1}n, we model this generative policy
as a neural logistic regressor as πθ(ak = 1|sk = (xσ≤k

, k, σ)) = sigmoid(gθdimσ(k)
(xσ≤k

)), with
gθi a neural network with parameter θi ∈ Rm and dimσ(k) the bijective function that returns the
index of the dimension at rank k in permutation σ. An example of generation of solutions with this
generative policy is displayed in Figure 1 on the left. For categorical domains Xi, we encode each
of their d categories as a one hot vector where Xi,j = 1 iff the represented category is j ∈ [[1, d]],
−1 otherwise. For these outputs, we consider a softmax over the logits produced by g to produce
the corresponding categorical distribution.

Figure 1: Left. Example of generation at time t of a population Γt
λ with λ = 2 individuals for a

maximization problem with N = 3. The order of generation of the first individual is indicated with
blue arrows. When building it with the MDP and given order σ1

G = (3, 1, 2), we start with x1
σ1
G<1

=

(0, 0, 0) given as input to the neural network gθ3 that generates x3 = 1, then x1
σ1
G<2

= (0, 0, 1) is

given as input to gθ1 that generates x1 = −1, and lastly x1
σ1
G<3

= (−1, 0, 1) is given as input to gθ2
that generates the value x2 of the last variable and we get the complete solution (−1,−1, 1). When
all the individuals of the population are sampled, we pass to the evaluation phase where advantages
are computed such that AΓt

λ
(xi

best) = +1 and AΓt
λ
(xi

worse) = −1 (see Eq. (5)). Right. Training
phase during E epochs with the λ = 2 solutions sampled at this generation. At each epoch, new
σG orders are sampled for each individual. Conditional probabilities of actions are then computed
according to the corresponding causal masks. It allows to compute L̂λ(θ) (Eq. (8) and to update
θ = (θ1, θ2, θ3) by gradient ascent.

Rather than dealing with neural models specifically dedicated for sequences, such as recurrent net-
works or Transformers (which are better suited for non structured inputs), we propose to define g
as a classical MLP, parameterized with a different set of parameters for each individual output of
the problem. For any order of generation σ and any step k, we want to feed g with a fixed-size
vector as input. For a given step k of a permutation σ, this is done by modeling the input xσ<k

as a vector of size n, where each dimension xi = 0 (resp. xi is a zero vector for the categorical
domains) iff rankσ(i) = dim−1

σ (i) ≥ k. During training, this comes down to applying a causal
mask to candidate solutions, that masks future of k in permutation σ. Note that, while θ ∈ Rn×m in
our architecture, our work can easily be extended by sharing parameters of hidden layers for scaling
to very large problems without facing prohibitive training costs, as described in Appendix Q.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 DEEP REINFORCEMENT LEARNING FOR EDAS: TRAINING

Given the setting stated above, the optimization seeks to maximize the expected global reward over
trajectories τ = (s0, a0, . . . , sn−1, an−1, sn): J(θ) = Eτ∼πθ

[R(τ)], where R(τ) in our setting
corresponds the fitness f(x) computed for the full candidate x ∈ X contained in the last state of
τ (i.e., R((s0, a0, . . . , sn)) = f(x), iff sn = (x, n, σ)). For a given σ, this is thus equivalent to
maximizing Jσ(θ) = Ex∼πθ(x|σ)[f(x)], where πθ(x|σ) stands for the probability of sampling x as
a sequence x = (xσ1

, . . . , xσn
) using our generative architecture.1 Following the policy gradient

theorem (Sutton et al., 2000), we get that parameters θ can be obtained using gradient updates
defined as

∇θJ
σ(θ) = Ex∼πθ(x|σ)[f(x)

n∑
k=1

∇θ log πθ(xσk
|xσ<k

, σ)]. (1)

This formulation allows us to sample candidate solutions of the problem from the current distribu-
tion πθ(x|σ) (which corresponds to Pt(x) in the EDA framework described in Section 2.2), and then
estimate an update of the generative distribution by computing a weighted average of gradients of
log πθ(x|σ), with weights depending on the respective fitness of sampled x (which is the analogue
of step 2 from the EDA framework in Section 2.2). However, from updates defined in (1), each
sample x can be used for a unique gradient step only, which can reveal as very sample inefficient.
Moreover, updates of the policy are strongly dependent on its parametrization, which can lead to
hazardous moves that induce catastrophic forgetting when using such neural generators. To improve
sample efficiency and stabilize training, the Proximal Policy Optimization (PPO) algorithm (Schul-
man et al., 2017), following TRPO (Schulman et al., 2015a), optimizes a surrogate objective function
that penalizes deviations from a reference policy πθold , used for sampling, that will be denoted πθt

at generation t of our EDA. In our setting, the policy gradient update in (1) can be rewritten using
importance sampling as an expectation under πθt . Approximating the state distribution dπθ by dπθt ,
we obtain (see appendix B for details)

∇θJ
σ(θ) ≈ Eπθt (x|σ)

n∑
k=1

∇θπθ(xσk
|xσ<k

, σ)

πθt(xσk
|xσ<k

, σ)
Aπθt (xσ<k

, xσk
), (2)

where Aπθt (xσ<k
, xσk

) denotes the expected advantage of setting Xσk
= xσk

given xσ<k
, while

completing the trajectory with the reference policy. This formulation allows multiple gradient steps
for updating the policy (i.e., for obtaining Pt+1), given samples obtained using the policy (repre-
senting Pt) from the previous iteration t of our EDA RL framework. However, the approximation in
(2) (the choice of the KL version of PPO is discussed in section F), which should be understood at
the level of expected gradients, introduces an acceptable bias only when πθ and πθt are close (e.g.,
in KL divergence). Thus, following the KL version of PPO, we consider the maximization of the
regularized objective:

Lσ(θ) = E
πθt (x|σ)

n∑
k=1

[
πθ(xσk

|xσ<k
, σ)

πθt(xσk
|xσ<k

, σ)
Aπθt (xσ<k

, xσk
)− βDKL

(
πθt(·|xσ<k

, σ) ∥πθ(·|xσ<k
, σ)
)]

(3)
where DKL(π||π′) stands for the Kullback-Leibler (KL) divergence of π from π′, and β > 0 is an
adaptive penalty coefficient that controls the strength of the KL regularization. While PPO classi-
cally uses critic neural networks to estimate advantages (e.g., using GAE (Schulman et al., 2015b)),
we rather take inspiration from the GRPO approach (Shao et al., 2024), specifically dedicated for
RL problems with global rewards from finite trajectories without discount, which avoids the need
for a critic, by estimating scale-invariant advantages using a normalization of rewards obtained on a
population of samples for a same problem.2 Scale-invariance is particularly desirable in black-box
optimization settings, as it enhances robustness to the scaling of objective values (Baluja, 1994; Do-
err & Dufay, 2022; Goudet et al., 2025). Given a set of λ candidate solutions Γt

λ = {xi}λi=1, each

1In the following of this section we consider a fixed arbitrary order σ for every state of the MDP. Using
random variations of σ is the subject of the next section.

2We compare a baseline that uses a critic to estimate advantages with our GRPO approach in Appendix P.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

sampled from πθt(x|σ), we thus consider at each iteration t of the process the maximization of

L̂σ
λ(θ) =

1

λ

∑
xi∈Γt

λ

n∑
k=1

[
πθ(x

i
σk
|xi

σ<k
, σ)

πθt(xi
σk
|xi

σ<k
, σ)

ÂΓt
λ
(xi)− βDKL

(
πθt(·|xi

σ<k
, σ) ∥πθ(·|xi

σ<k
, σ)
)]

,

(4)
where AΓt

λ
(x) is the relative performance of candidate x compared to other solutions from Γt

λ. In
this paper, we consider advantages computed as

AΓt
λ
(x) = U

(
rk(x,Γt

λ, f)

λ− 1

)
, (5)

where U is a non-increasing utility function and rk(xi,Γt
λ, f) is the rank of the individual i in

the population Γt
λ given its fitness f(xi). Formally, rk(x,Γ, f) = |{x′ ∈ Γ : f(x′) > f(x)}|.

This advantage formulation, which makes the algorithm invariant under monotone transformation
of the fitness function f , is grounded in the Information-Geometric Optimization (IGO) framework
(Ollivier et al., 2017). We discuss the connexion of our approach with IGO in Appendix G.

3.3 ORDER INVARIANT REINFORCEMENT LEARNING FOR EDAS

In the previous section, we introduced a multivariate-RL-EDA, that uses a predetermined arbitrary
generation order σ. The aim of this section is to adapt this algorithm for dealing with variations
of this generation order, which we claim can strongly benefit for exploration and learning in our
black-box optimization setting.

Given a generation order distribution ξ(σ), we can consider the expectation L(θ) = Eσ∼ξ(σ)L
σ(θ)

in place of using Lσ(θ) with a fixed known order σ. Let for convenience of the following σ(x)<k

denote a masking (i.e., removing) of any dimension from x whose rank in permutation σ is greater or
equal than the one of dimension k (i.e., ∀i ∈ [[1, n]], Xi ∈ σ(X)<k ⇐⇒ rankσ(i) < rankσ(k)).
Using this, we can rewrite the objective (3), as

L(θ) = Eσ∼ξ(σ)Eπθt (x|σ)

n∑
k=1

[
πθ(xk|σ(x)<k)

πθt(xk|σ(x)<k)
Aπθt (σ(x)<k, xk)

−βDKL (πθt(·|σ(x)<k) ∥πθ(·|σ(x)<k))] . (6)

A notable difference in this writing compared to previous ones is that the inner sum from k = 1 to n
is taken in the original dimension ordering of the problem, rather than in the generation order. While
fully equivalent, this formulation allows us to introduce a second source of variation, specifically
dedicated for incentivizing order-invariance of the policy. Let ξ(σT |σG) be a conditional distribution
that samples a transformation σT ∈ Ω of a given initial permutation σG ∈ Ω. We propose to use this
transformed permutation σT to train the new policy πθ, given samples from the old policy using the
former permutation σG used for generation. We get (derivation detailed in section C)

L(θ) = E σG∼ξ(.),
σT∼ξ(.|σG)

Eπθt (x|σG)

n∑
k=1

[
πθ(xk|σT (x)<k)

πθt(xk|σG(x)<k)
Aπθt (σG(x)<k, xk)

−βDKL (πθt(·|σG(x)<k) ∥πθ(·|σT (x)<k))] . (7)

As in previous section, we finally consider a Monte-Carlo approximation of this quantity at each
iteration, using scale normalized global advantages, given a set of λ i.i.d. candidate solutions asso-
ciated with their own order of generation Γt

λ = {(xi, σi
G)}λi=1. For each component i in this set, an

order σi
G is first sampled from ξ, then xi is sampled from πθt(.|σG). We get:

L̂λ(θ) =
1

λ

∑
(xi,σi

G)∈Γt
λ

EσT∼ξ(.|σi
G)

n∑
k=1

[
πθ(x

i
k|σT (x

i)<k)

πθt(xi
k|σi

G(x
i)<k)

ÂΓt
λ
(x)

−βDKL

(
πθt(·|σi

G(x
i)<k) ∥πθ(·|σT (x

i)<k)
)]

. (8)

This formulation allows us to experiment various versions of our training process, which we name
as:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• (δ, δ′)-RL-EDA: uses a fixed arbitrary order for both generation and training (i.e., ξ and
ξ(.|σ) are both Diracs centered on the original order σ of the problem);

• (δ, σ′)-RL-EDA: uses a fixed arbitrary order for generation, but for training ξ(.|σG) is a
uniform distribution;

• (σ, δ′)-RL-EDA: uses an identical random order σG for both generation and training, with
ξ an uniform distribution over Ω and ξ(.|σG) is a Dirac centered on σG.

• (σ, σ′)-RL-EDA: uses two sources of noises in the training process. Both the generation
order σG and the training order σT are sampled from a uniform distribution over Ω.

The pseudo-code of our full algorithm, which includes these permutation noises for training, is given
in Appendix H (Algorithm 1), and an example of training with these permutation noises is displayed
in Figure 1 on the right.

Note that considering varying causal graphs is also possible in this framework, by simply using
masks σ(x)<k that hide values of non parent variables of xk in x, in addition to every dimen-
sion whose rank in σ is greater or equal than k. We experiment with this structural dropout as
a complement or replacement for causal masks for the different versions of the multivariate EDA
in Appendices M.1 and M.2. For complementary analysis, we also describe in Appendix I a ver-
sion called Learned-σ-RL-EDA which uses a Plackett-Luce (PL) distribution (Plackett, 1975) ξPL

w
parametrized by the vector w ∈ Rn for both generation and training, trained by gradient descent
with the reparametrization trick proposed by (Grover et al., 2019).

4 EXPERIMENTS

We first examine the following NP-hard problems in this work (seen as black-box CO): the Quadratic
unconstrained binary optimization problem (QUBO) (Kochenberger et al., 2014), the pseudo-
boolean NK landscape problem (Kauffman & Weinberger, 1989) and its extension with ternary vari-
ables called NK3. For each of these problems pb, we generated instances of size n ∈ {64, 128, 256},
and for each size, we considered different types K of instances. We generate 10 instances for each
tuple (pb, n,K). For each problem instance, we allow a maximum budget of 10,000 objective
function evaluations, and we solve it with 10 different restarts. Details regarding the instances and
experimental protocol are provided in Appendix J.

4.1 COMPARISON OF THE DIFFERENT VERSIONS OF REINFORCEMENT LEARNING
MULTIVARIATE EDA

In this section, we first aim to compare the five different versions of multivariate-RL-EDA presented
in Section 3.3: (δ, δ′)-RL-EDA, (δ, σ′)-RL-EDA, (σ, δ′)-RL-EDA, (σ, σ′)-RL-EDA and Learned-
σ-RL-EDA. The complete hyperparameter configuration of the various versions of the multivariate-
RL-EDA, which serves as a baseline for all experiments, is provided in Appendix K. It includes
both EDA-specific and GRPO-related parameters, along with implementation and execution details
relevant to reproducibility. Here we perform this comparison only for the distribution of instances
of the pseudo-boolean NK maximization problem with N = 256 and K = 4 (moderate roughness).
The results displayed here are representative of what we can obtain on the other distributions of
instances.

Figure 2a shows the evolution curve of average scores over 100 independent runs for the four dif-
ferent versions (solide lines). The ranges of color around the solid lines correspond to plus or minus
one standard deviation from the mean calculated over the 100 runs. Solid lines in Figure 2b corre-
sponds to the evolution of the mean Hamming distance of the individuals of the population from the
best solution found during the trajectory. The color range represents the standard deviation of the
Hamming distance calculated within the population at each generation, with one standard deviation
below and one standard deviation above the average distance. The evolutions of the Mean Hamming
distance and standard deviation are averaged over the 100 independent runs.

The different multivariate versions of our EDA exhibit very different behavioral dynamics, even
though they are characterized by the same hyperparameters, with the exception of changing sampling
distributions of orders, which shows their importance during the sampling and update phases for
such a multivariate RL algorithm.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Evolution of the scores (b) Evolution of the distances

Figure 2: X-axis: number of calls to the objective function. Y-axis: Evolution of average scores
(a) and average distances (b) obtained by the different variants of multivariate RL EDA for 100
independent runs on instances of the NK problem with N = 256 and K = 4.

The version (σ, σ′)-RL-EDA that uses both uniform distributions of orders for sampling and training
converges towards the best scores (green curve). Once the maximum is reached, we see in Figure 2b
that the algorithm has converged because the average distance from the best solution encountered
on the trajectory is close to 0. The comparison of this green curve with the blue curve of the (δ, σ′)-
RL-EDA version highlights the contribution of sampling new orders during the EDA generation
phase, because it allows to maintain a better diversity of the individuals of the population at each
generation and thus allows a better exploration of the search space. It works like an ensembling
method where actually different models are used at each generation to produce new solutions. But
the main impact is explained when comparing the green curve with the yellow curve of the (σ, δ′)-
RL-EDA version. It highlights the contribution of sampling new orders during the EDA training
phase, which underscores the importance of the specific structural dropout at the input of each
network induced by this random sampling of orders. Finally, the purple curves correspond to the
version using a learned Placket-Luce distribution of order with a vector w of distribution weights
initialized with only ones. The purple curves also show a good evolution of the scores, but the model
did not converge with the allocated budget, and the scores are worse than those obtained with the
(σ, σ′)-RL-EDA version (green curve). This experiment confirms that attempting to extract explicit
structures in such an online search process is counterproductive when using neural estimators (at
least without additional knowledge about the instance properties), since learning them is at least
as difficult as learning neural weights from random orderings, taking advantage of the networks’
plasticity to adapt to any ordering. Instead, random resampling of new orderings for both generation
and training plays a key role in discovering high-quality solutions, as it promotes exploration and
enables a more effective identification of interactions between variables.

4.2 EXPERIMENTAL VALIDATION ON DISCRETE BLACK-BOX BENCHMARKS

We evaluate the performance of our best version (σ, σ′)-RL-EDA dentified in the last section against
a comprehensive set of 504 algorithms, essentially composed of those available in the Nevergrad
library (Rapin & Teytaud, 2018).

In version 1.0.12 of the Nevergrad library, a total of 542 algorithms were available. We evaluated
all of them on the discrete black-box problem QUBO, NK and NK3, with a time budget of one
hour per instance. Among these, 500 algorithms successfully produced solutions within the given
time limit for pseudo-Boolean problems and 496 for the categorical NK3 problem. This panel in-
cludes classic metaheuristic algorithms for black-box optimization (evolutionary and memetic) as
well as combinations of solving techniques driven by machine learning (e.g. Adaptive Portfolios).
A complete description is provided in Appendix S. In addition to the algorithms already available in
Nevergrad, we include three well-known EDAs: PBIL (Baluja, 1994), MIMIC (De Bonet et al.,
1996), and BOA (Pelikan, 2002). For these algorithms, we rely on the publicly available imple-
mentation at https://github.com/e5120/EDAs, using the default hyperparameter settings.
We also incorporate one of the most widely used local search methods for pseudo-Boolean opti-
mization, the one-flip Tabu Search (hereafter referred to as Tabu), which has been employed in
many effective metaheuristics in recent years, notably for QUBO or NK pseudo-boolean problems

9

https://github.com/e5120/EDAs

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(Glover et al., 2010; Goudet et al., 2024; Samorani et al., 2019; Shi et al., 2017; Wang et al., 2012)
(see details in Appendix S).

A detailed presentation of the experimental results can be found in Appendix L. In addition, compre-
hensive results detailing the performance of all algorithms across the various instance distributions
are available in the supplementary material. As shown in Table 4 (see appendix L), the proposed
algorithm (σ, σ′)-RL-EDA frequently obtains the best performance on larger instances (n = 128
and n = 256) across the various problems considered in this work and competitive results on the
smallest instances (n = 64).

Notably, (σ, σ′)-RL-EDA performs well on pseudo-Boolean problems QUBO and NK, across a
wide range of fitness landscape types—from smooth landscapes (e.g., NK with K = 1) to more
rugged ones (K = 8)—without requiring any change to its hyperparameters, which is rather sur-
prising. As an example, Figure 3 display plots showing the evolution of the best scores (averaged
over 100 runs) as a function of the number of objective function evaluations for QUBO instances
of size N = 128 and type K = 5 and NK instances of size N = 256 and type K = 4. On this
plot (σ, σ′)-RL-EDA (green curve) is compared against the 10 best-performing other competing
algorithms in the set of 504 algorithms. We observe in this plot that our algorithm achieves the
best results after 10,000 calls to the objective function. But, it can take time to converge to the best
results compared to other algorithms and is therefore dominated when we examine the results after
only 1,000 evaluations. This is because (σ, σ′)-RL-EDA maintains diversity in the sampled popula-
tion, precisely to avoid getting stuck too quickly in a low-quality local optimum. A curriculum-based
adaptation of the algorithm to accelerate this convergence and cope with a low budget context is de-
scribed in Appendix O. Furthermore, the adaptation of (σ, σ′)-RL-EDA to ternary variables (NK3
instances), also yields very good results using the same hyperparameter configuration, although per-
formance drops are observed for K = 8, compared to lower values of K. A more detailed analysis of
these under-performances and a way to improve these results is provided in Appendix M.7 (see Fig-
ure 14b). Appendix M provides ablation studies and variant analyses to identify the key components
that contribute to the effectiveness of (σ, σ′)-RL-EDA, including a comparison with input dropout
techniques. In Appendix Q, we present the results obtained on large instances of size 1024. The
results show that for this instance size, we can obtain good results by adapting the algorithm with
parameter sharing between the generators of the n variables. We also compared our method with
the competitors on the real neural architecture search public dataset (NAS-Bench-101) (Ying et al.,
2019). Our method, with the same hyperparameter configuration as used for the other benchmarks,
achieves the best results for small budgets after 1,000 evaluations, but also for large budgets after
10,000 calls to the objective function. Detailed results for this dataset are described in Appendix N.

(a) QUBO instances with N = 128 and K = 5. (b) NK instances with N = 256 and K = 4.

Figure 3: X-axis: number of calls to the objective function. Y-axis: Evolution of average scores.

5 CONCLUSION

In this work we introduce a novel discrete black-box optimization framework that leverages neural
generators of candidate solutions. The model is trained using an original order-invariant reinforce-
ment learning procedure, enhancing sample efficiency. The robustness of our method is supported
by extensive empirical evaluation across a diverse set of black-box optimization problems of varying
sizes. As future work, we aim to extend this approach to a multi-modal setting, for instance by em-
ploying mixtures of distributions, potentially represented through models with attraction–repulsion
dynamics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We provide the source code of our algorithm including instructions on how to launch it in a readme
file in the supplementary material.

REFERENCES

Martin Andersson, Sunith Bandaru, Amos HC Ng, and Anna Syberfeldt. Parameter tuned cma-es
on the cec’15 expensive problems. In 2015 IEEE congress on evolutionary computation (CEC),
pp. 1950–1957. IEEE, 2015.

Charles Audet and Michael Kokkolaras. Blackbox and derivative-free optimization: theory, algo-
rithms and applications. Optimization and Engineering, 17(1):1–2, 2016.

Anne Auger and Benjamin Doerr. Theory of randomized search heuristics: Foundations and recent
developments. Theoretical Computer Science, 412(19):2521–2542, 2011.

Thomas Back. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms. Oxford university press, 1996.

Shumeet Baluja. Population-based incremental learning. a method for integrating genetic search
based function optimization and competitive learning. Technical report, 1994.

Eric Benhamou, Jamal Atif, and Rida Laraki. A discrete version of cma-es. arXiv preprint
arXiv:1812.11859, 2018.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Advances in Neural Information Processing Systems, pp. 2546–2554, 2011.

Eric Brochu, Vlad M Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel gaussian process
optimization with upper confidence bound and pure exploration. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 225–240. Springer, 2013.

Jeremy De Bonet, Charles Isbell, and Paul Viola. Mimic: Finding optima by estimating probability
densities. Advances in neural information processing systems, 9, 1996.

Benjamin Doerr and Marc Dufay. General univariate estimation-of-distribution algorithms. In In-
ternational Conference on Parallel Problem Solving from Nature, pp. 470–484. Springer, 2022.

Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M Shir, and Thomas Bäck. Bench-
marking discrete optimization heuristics with iohprofiler. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 1798–1806, 2019.

Carlos Echegoyen, Roberto Santana, Jose A Lozano, and Pedro Larrañaga. The impact of exact
probabilistic learning algorithms in edas based on bayesian networks. In Linkage in Evolutionary
Computation, pp. 109–139. Springer, 2008.

Agoston E Eiben and James E Smith. Introduction to evolutionary computing. Springer, 2015.

Michael Emmerich, Kyriakos Giannakoglou, and Boris Naujoks. Single- and multi-objective evo-
lutionary optimization assisted by gaussian random field metamodels. IEEE Transactions on
Evolutionary Computation, 10(4):421–439, 2006.

Alexander IJ Forrester and Andy J Keane. Recent advances in surrogate-based optimization.
Progress in aerospace sciences, 45(1-3):50–79, 2009.

Peter I Frazier. Bayesian optimization. In Recent advances in optimization and modeling of contem-
porary problems, pp. 255–278. Informs, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pp. 881–889. PMLR,
2015.

Fred Glover, Zhipeng Lü, and Jin-Kao Hao. Diversification-driven tabu search for unconstrained
binary quadratic problems. 4OR, 8(3):239–253, 2010.

Javier González, Zhenwen Dai, Philipp Hennig, and Neil D. Lawrence. Batch bayesian optimiza-
tion via local penalization. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 648–657, 2016.

Olivier Goudet, Adrien Goëffon, and Jin-Kao Hao. A large population island framework for the
unconstrained binary quadratic problem. Computers & Operations Research, 168:106684, 2024.

Olivier Goudet, Adrien Goëffon, Frédéric Saubion, and Sébastien Verel. Meta-learning of uni-
variate estimation-of-distribution algorithms for pseudo-boolean problems. In European Confer-
ence on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar), pp. 84–100.
Springer, 2025.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. arXiv preprint arXiv:1903.08850, 2019.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

Mark Hauschild and Martin Pelikan. An introduction and survey of estimation of distribution algo-
rithms. Swarm and evolutionary computation, 1(3):111–128, 2011.

Matthew Hausknecht and Nolan Wagener. Consistent dropout for policy gradient reinforcement
learning. arXiv preprint arXiv:2202.11818, 2022.

Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and future challenges.
Swarm and Evolutionary Computation, 1(2):61–70, 2011.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. In Journal of Global optimization, volume 13, pp. 455–492, 1998.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. In Advances in
Neural Information Processing Systems, volume 31, 2018.

Wathsala Karunarathne, Indu Bala, Dikshit Chauhan, Matthew Roughan, and Lewis Mitchell. Modi-
fied cma-es algorithm for multi-modal optimization: incorporating niching strategies and dynamic
adaptation mechanism. arXiv preprint arXiv:2407.00939, 2024.

Stuart A Kauffman and Edward D Weinberger. The nk model of rugged fitness landscapes and
its application to maturation of the immune response. Journal of theoretical biology, 141(2):
211–245, 1989.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetric-
ity for neural combinatorial optimization. In Sanmi Koyejo, S. Mohamed, A. Agar-
wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo Wang, and Yang
Wang. The unconstrained binary quadratic programming problem: a survey. Journal of combina-
torial optimization, 28(1):58–81, 2014.

12

http://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seung-
jai Min. POMO: policy optimization with multiple optima for reinforcement learning. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f231f2107df69eab0a3862d50018a9b2-Abstract.html.

Pedro Larranaga. A review on estimation of distribution algorithms: 3. Estimation of distribution
algorithms: a new tool for evolutionary computation, pp. 57–100, 2002.

Pedro Larrañaga and Concha Bielza. Estimation of distribution algorithms in machine learning: A
survey. IEEE Transactions on Evolutionary Computation, 28(5):1301–1321, 2024. doi: 10.1109/
TEVC.2023.3314105.

Jose A Lozano. Towards a new evolutionary computation: advances on estimation of distribution
algorithms, volume 192. Springer Science & Business Media, 2006.

Heinz Mühlenbein and Gerhard Paass. From recombination of genes to the estimation of distribu-
tions i. binary parameters. In International conference on parallel problem solving from nature,
pp. 178–187. Springer, 1996.

Yann Ollivier, Léonard Arnold, Anne Auger, and Nikolaus Hansen. Information-geometric opti-
mization algorithms: A unifying picture via invariance principles. Journal of Machine Learning
Research, 18(18):1–65, 2017.

Ambar Pal, Connor Lane, René Vidal, and Benjamin D Haeffele. On the regularization properties of
structured dropout. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7671–7679, 2020.

Arnaud Pannatier, Evann Courdier, and François Fleuret. σ-gpts: A new approach to autoregres-
sive models. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 143–159. Springer, 2024.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1–64, 2021.

Martin Pelikan. Bayesian optimization algorithm: From single level to hierarchy. University of
Illinois at Urbana-Champaign, 2002.

Martin Pelikan. Hierarchical bayesian optimization algorithm. In Hierarchical Bayesian Optimiza-
tion Algorithm: Toward a new Generation of Evolutionary Algorithms, pp. 105–129. Springer,
2005.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society Series C:
Applied Statistics, 24(2):193–202, 1975.

Jérémy Rapin and Olivier Teytaud. Nevergrad-a gradient-free optimization platform, 2018.

Michele Samorani, Yang Wang, Zhipeng Lv, and Fred Glover. Clustering-driven evolutionary al-
gorithms: an application of path relinking to the quadratic unconstrained binary optimization
problem. Journal of Heuristics, 25(4):629–642, 2019.

Roberto Santana. Gray-box optimization and factorized distribution algorithms: where two worlds
collide, 2017. URL https://arxiv.org/abs/1707.03093.

John Schulman, Sergey Levine, Philipp Moritz, Michael I Jordan, and Pieter Abbeel. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML), pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

13

https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://arxiv.org/abs/1707.03093

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In arXiv preprint arXiv:1707.06347, 2017. URL https://arxiv.
org/abs/1707.06347.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Siddhartha Shakya. Deum: A framework for an estimation of distribution algorithm based on
markov random fields. 2006.

Songqing Shan and G Gary Wang. Survey of modeling and optimization strategies to solve high-
dimensional design problems with computationally-expensive black-box functions. Structural
and multidisciplinary optimization, 41(2):219–241, 2010.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jialong Shi, Qingfu Zhang, Bilel Derbel, and Arnaud Liefooghe. A parallel tabu search for the
unconstrained binary quadratic programming problem. In 2017 IEEE Congress on Evolutionary
Computation (CEC), pp. 557–564. IEEE, 2017.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger. Information-theoretic
regret bounds for gaussian process optimization in the bandit setting. IEEE transactions on infor-
mation theory, 58(5):3250–3265, 2012.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural Infor-
mation Processing Systems, volume 12, pp. 1057–1063, 2000.

El-Ghazali Talbi. Machine learning into metaheuristics: A survey and taxonomy. ACM Comput.
Surv., 54(6), July 2021. ISSN 0360-0300. doi: 10.1145/3459664. URL https://doi.org/
10.1145/3459664.

Sara Tari, Sébastien Verel, and Mahmoud Omidvar. Puboi: A tunable benchmark with variable im-
portance. In Leslie Pérez Cáceres and Sébastien Verel (eds.), Evolutionary Computation in Com-
binatorial Optimization - 22nd European Conference, EvoCOP 2022, Held as Part of EvoStar
2022, Madrid, Spain, April 20-22, 2022, Proceedings, volume 13222 of Lecture Notes in Com-
puter Science, pp. 175–190. Springer, 2022.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. Journal of Machine Learning Research, 17(205):1–37,
2016.

Josu Ceberio Uribe, Benjamin Doerr, Carsten Witt, and Vicente P. Soloviev. Estimation-of-
distribution algorithms: Theory and applications (dagstuhl seminar 22182). Dagstuhl Reports,
12(5):17–36, 2022. URL https://doi.org/10.4230/DagRep.12.5.17.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization. ACM Computing Surveys, 55(13s):1–36, 2023.

Yang Wang, Zhipeng Lü, Fred Glover, and Jin-Kao Hao. Path relinking for unconstrained binary
quadratic programming. European Journal of Operational Research, 223(3):595–604, 2012.

Qiang Yang, Wei-Neng Chen, Yun Li, CL Philip Chen, Xiang-Min Xu, and Jun Zhang. Multimodal
estimation of distribution algorithms. IEEE transactions on cybernetics, 47(3):636–650, 2016.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International conference on ma-
chine learning, pp. 7105–7114. PMLR, 2019.

14

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3459664
https://doi.org/10.1145/3459664
https://doi.org/10.4230/DagRep.12.5.17

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
A RELATED METHODS FOR SOLVING BLACK-BOX COMBINATORIAL

PROBLEMS

In this appendix, we provide a brief overview of the two principal paradigms that have been de-
veloped in the literature for addressing black-box optimization problems: (i) Bayesian optimization
(BO) and surrogate-based modeling, and (ii) evolutionary algorithms (EA). We then focus more
specifically on Estimation of Distribution Algorithms (EDAs), a subclass of evolutionary algorithms
that iteratively use and update a generative model of promising solutions throughout the search pro-
cess.

Bayesian Optimization: The core idea is to treat the unknown objective f as a random function and
place a prior over it, typically using a Gaussian Process (GP). As new evaluations are performed,
this prior is updated to form a posterior distribution. The acquisition function—e.g., Expected Im-
provement (EI), Upper Confidence Bound (UCB), or Probability of Improvement (PI)—guides the
search by quantifying the utility of evaluating new candidate solutions (Jones et al., 1998; Srinivas
et al., 2012). BO is particularly effective for global optimization under tight evaluation budgets,
making it well-suited for expensive black-box problems (Forrester & Keane, 2009; Frazier, 2018;
Shahriari et al., 2015). Limitations : BO often struggle to scale effectively in high-dimensional
discrete domains, particularly when GPs are used as surrogates, due to their computational com-
plexity and modeling assumptions, even if recent advances have extended Bayesian optimization to
discrete and structured domains through various adaptations: tree-structured models (Bergstra et al.,
2011), relaxations of discrete variables into continuous spaces (Kandasamy et al., 2018), and surro-
gate models more adapted to categorical or ordinal data with the use of Random Forests (Bergstra
et al., 2011) instead of GP. Moreover, these methods are generally based on strong assumptions
about the nature of the noise that may appear in the evaluation of the objective function, such as
homoscedastic Gaussian noise, which may not hold in real-world settings, thereby compromising
the robustness and reliability of the surrogate model (Wang et al., 2023). Another limitation stems
from the inherently sequential nature of classical Bayesian optimization, where only one candidate
point is evaluated at each iteration. This design can lead to inefficiencies in scenarios where parallel
computational resources are available. Although various batch and parallel extensions have been
proposed, such as parallel GP-UCB (Contal et al., 2013; González et al., 2016), these approaches
often introduce additional computational overhead and require centralized coordination, which can
hinder scalability and responsiveness in practical applications.

Evolutionary Algorithms : Metaheuristic approaches (local search, population-based algorithms...)
are widely used to solve CO problems, and EAs offer several appealing characteristics. Because they
avoid the overhead of building and updating surrogate models, the computational cost per iteration
is typically low. EAs also demonstrate robustness to noise, as selection is often based on the ranking
of individuals rather than absolute fitness values, making them resilient to stochastic perturbations
and invariant under monotonic transformations of the objective. Theoretical convergence results are
available for certain classes of EAs, supported by advances in runtime analysis and black-box com-
plexity theory (Auger & Doerr, 2011; Doerr et al., 2019). Limitations : EAs may require more func-
tion evaluations to identify high-quality solutions compared to model-based approaches for complex
problems, which can limit their sample efficiency. Some research, however, has shown that hybrid
approaches—combining EAs with surrogate modeling or adaptive sampling strategies—can signif-
icantly enhance their effectiveness in scenarios with expensive evaluations (Emmerich et al., 2006;
Jin, 2011).

Estimation of distribution Algorithms : Like EAs, EDAs rely on population-based search, but
they inherit from BO the notion of modeling structure in the search space, although their modeling
goal differs. Instead of modeling the entire objective function, EDAs aim to model only the distri-
bution of promising regions in the fitness landscape, thus avoiding the complexity of full surrogate
modeling. This makes EDAs more computationally scalable in high-dimensional or discrete spaces,
where standard Gaussian Process-based BO may struggle due to assumptions of smoothness, sta-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

tionarity, or computational costs of inference (Frazier, 2018; Shan & Wang, 2010). The learning
process in EDAs may be as simple as estimating independent univariate marginals, as in the Uni-
variate Marginal Distribution Algorithm (UMDA) (Mühlenbein & Paass, 1996), or as sophisticated
as constructing full probabilistic graphical models, such as in the Bayesian Optimization Algo-
rithm (BOA) (Pelikan, 2002). EDAs still benefit from recent developments (Uribe et al., 2022) that
open new possible application domains, for instance, to achieve machine learning tasks (Larrañaga
& Bielza, 2024). One of the principal advantages of the modeling strategy of EDAs is its ability to
capture variable interactions, an essential feature in epistatic or non-separable problems, where stan-
dard EAs often fail. Several EDAs utilize graph structure (DAG) extraction at each generation of the
process. The MIMIC algorithm (De Bonet et al., 1996) proposes constructing a first-order Markov
chain on the variables, classifying them greedily using pairwise mutual information to capture their
strongest statistical dependencies. The Bayesian Optimization Algorithm (BOA) (Pelikan, 2002)
introduces a more expressive probabilistic model using Bayesian networks, allowing it to represent
complex, higher-order interactions between variables. The Factorized Distribution Algorithm (FDA)
(Lozano, 2006; Mühlenbein & Paass, 1996) exploits prior knowledge about the structure of the prob-
lem by explicitly incorporating domain-specific decompositions through a predefined factorization
of the joint distribution. However, while these approaches can perform well on certain problems,
they are fundamentally limited by the exponential growth of computational cost as problem size
and dependency complexity increase. In particular, BOA-based methods not only face prohibitive
model-construction costs in high-dimensional settings (Hauschild & Pelikan, 2011), but the com-
plexity of learning accurate dependency structures can also hinder effective exploration of the search
space. Limitations : EDAs exhibit some limitations in terms of premature convergence. Since most
EDAs update their probabilistic model solely from the current population, they tend to focus the
search around a single promising region, potentially losing diversity and missing other basins of
attraction (Hauschild & Pelikan, 2011). To address these limitations, several diversity-preserving or
niching-based EDAs have been proposed. For example, the Multi-CMA-ES algorithm introduces
multiple co-evolving models that repel each other in the search space to maintain diversity and ex-
plore multiple optima (Karunarathne et al., 2024). Similar ideas are found in multi-population EDAs
or speciation-based approaches (Yang et al., 2016).

A natural limitation is the choice of the distribution model. In the continuous case (i.e. X ⊆ Rn), a
common choice is the multivariate Gaussian distribution, which encodes dependencies via its covari-
ance matrix (e.g. CMA-ES (Hansen & Ostermeier, 2001)). In the discrete setting considered here,
there is however no direct analogue of the Gaussian. Rather, one instead typically uses probabilis-
tic graphical models, such as Bayesian networks (Echegoyen et al., 2008) or undirected graphical
models / Markov networks (e.g. as in DEUM (Shakya, 2006)), which model joint dependencies via
conditional probability tables or undirected cliques and permit sampling of new candidate vectors.
Research on multivariate discrete EDAs has seen a notable decline in recent years because there
does not exist the equivalent of the multivariate Gaussian distribution for the discrete space. How-
ever, Benhamou et al. (2018) attempts to adapt the CMA-ES algorithm to the discrete case, using a
multivariate Bernoulli distribution.

B DERIVATION OF THE PPO UPDATE (2)

While the derivation of (2) is rather straightforward following the proofs in (Schulman et al., 2015a),
we detail here its adaptation to our notations and to our undiscounted setting, considering only final
rewards, for completeness.

Let us first introduce some classical quantities in reinforcement learning:

• V π(s) is the state value function, which returns the expected cumulative return following
policy π from state s. In our setting, this can be defined for any given order σ and any given
state s = (xσ<k

, k − 1, σ), as:

V π(s) = V π,σ(xσ<k
) = E

πθ(xσ≥k
|xσ<k

,σ)
[f(x)]

• Qπ(s, a) is the state-action value function, which returns the expected cumulative return
from state s, assuming first action in s is a and then subsequent actions are sampled from π.
In our setting, this can be defined for any given order σ and any given state s = (xσ<k

, k−

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1, σ), and any action a = xσk
that specifies the value for Xσk

, as:

Qπ(s, a) = Qπ,σ(xσ<k
, xσk

) = E
πθ(xσ>k

|xσ≤k
,σ)

[f(x)]

• Aπ(s, a) is the advantage function, defined as:

Aπ(s, a) = Aπ,σ(xσ<k
, xσk

) = Qπ,σ(xσ<k
, xσk

)− V π,σ(xσ<k
)

We are interested in maximizing Jσ(θ) = Eπθ(x|σ)[f(x)], while reusing samples from a previous
policy to improve sample efficiency and stability.

We start by observing that, given any two policies πθ and πθ′ , we have:

argmax
θ

Jσ(θ) = argmax
θ

Jσ(θ)− Jσ(θ′),

since θ does not appear in Jσ(θ′).

Looking at Jσ(θ)− Jσ(θ′), we get:

Jσ(θ)− Jσ(θ′) = Eπθ(x|σ)[f(x)]− Eπθ′ (x|σ)[f(x)] (9)

= Eπθ(x|σ)[f(x)]− V πθ′ ,σ(∅) (10)
= Eπθ(x|σ) [f(x)− V πθ′ ,σ(∅)] (11)

= Eπθ(x|σ)
[
V πθ′ ,σ(xσ≤n

)− V πθ′ ,σ(∅)
]

(12)

= Eπθ(x|σ)

[
n∑

k=1

(
V πθ′ ,σ(xσ<k+1

)− V πθ′ ,σ(xσ<k
)
)]

(13)

= Eπθ(x|σ)

[
n∑

k=1

(
Qπθ′ ,σ(xσ<k

, xσk
)− V πθ′ ,σ(xσ<k

)
)]

(14)

= Eπθ(x|σ)

[
n∑

k=1

Aπθ′ ,σ(xσ<k
, xσk

)

]
(15)

= Eπθ(x|σ)

n∑
k=1

Eπθ(xσk
|xσ<k

,σ)

[
Aπθ′ ,σ(xσ<k

, xσk
)
]

(16)

= Eπθ(x|σ)

n∑
k=1

Eπθ′ (xσk
|xσ<k

,σ)

πθ(xσk
|xσ<k

, σ)

πθ′(xσk
|xσ<k

, σ)

[
Aπθ′ ,σ(xσ<k

, xσk
)
]
(17)

where ∅ is the empty sequence (which can also be denoted as the starting point of any sequence
xσ<1

). This derivation leverages the fact that in our case, for any sequence x and any policy π,
f(x) = V π,σ(xσ≤n

) as the sequence is already completed after n steps (we are in a terminal state,
as n is the dimension of our combinatorial space X). Also, (13) exploits that every term of the sum
telescop except the two extrema that appear in (12), (14) leverages that, following definitions above,
for any x and any 0 < k ≤ n, we have: Qπθ′ ,σ(xσ<k

, xσk
) = V πθ′ ,σ(xσ<k+1

).

Next, if πθ(x|σ) is sufficiently close to π′
θ(x|σ), the idea of TRPO/PPO based approaches is to rather

use samples of states from the old policy πθt(x|σ), rather than the current one. This is done in our
case by replacing Eπθ(x|σ) by Eπθt (x|σ) in (17). We obtain:

Jσ(θ)− Jσ(θt) ≈ Lσ
θt(θ) (18)

with

Lσ
θt(θ) ≜ Eπθt (x|σ)

n∑
k=1

Eπθt (xσk
|xσ<k

,σ)

πθ(xσk
|xσ<k

, σ)

πθt(xσk
|xσ<k

, σ)

[
Aπθt ,σ(xσ<k

, xσk
)
]

(19)

= Eπθt (x|σ)

n∑
k=1

πθ(xσk
|xσ<k

, σ)

πθt(xσk
|xσ<k

, σ)

[
Aπθt ,σ(xσ<k

, xσk
)
]

(20)

Next, we consider∇θL
σ
θt(θ) as a proxy for ∇θ(J

σ(θ)− Jσ(θt)) = ∇θJ
σ(θ), which results in (2).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C DERIVATION OF THE PPO UPDATE WITH VARYING
GENERATION/TRAINING ORDERS

In this section, we check that PPO updates, that we derivated in previous section for the case of an
arbitrary fixed generation (and training) order, can be adapted for the case of varying permutations.

For the case where the training order is always the same as the generation one (i.e., ξ(.|σ) is a Dirac
centered on σ), the derivation of the PPO update is trivial to obtained from (20), as it suffices to take
the expectation of Lσ

θt(θ) depending on distribution ξ(.). The update can be derived by taking the
gradient of Lθt(θ) = Eσ∼ξ(σ)L

σ
θt(θ).

Next, we consider the more tricky case, where generation and training orders can be different. For
this purpose, looking at Jσ(θ)− Jσ′

(θ′), we get:

Jσ(θ)− Jσ′
(θ′)=Eπθ(x|σ)[f(x)]− Eπθ′ (x|σ′)[f(x)] (21)

=Eπθ(x|σ)[f(x)]− V πθ′ ,σ
′
(∅) (22)

=Eπθ(x|σ)

[
f(x)− V πθ′ ,σ

′
(∅)
]

(23)

=Eπθ(x|σ)

[
V πθ′ ,σ

′
(σ′(x)≤dimσ′ (n))− V πθ′ ,σ

′
(σ′(x)<dimσ′ (1))

]
(24)

=Eπθ(x|σ)

[
n∑

k=1

(
V πθ′ ,σ

′
(σ′(x)<k+1)− V πθ′ ,σ

′
(σ′(x)<k)

)]
(25)

=Eπθ(x|σ)

[
n∑

k=1

(
Qπθ′ ,σ

′
(σ′(x)<k, xk)− V πθ′ ,σ

′
(σ′(x)<k)

)]
(26)

=Eπθ(x|σ)

[
n∑

k=1

Aπθ′ ,σ
′
(σ′(x)<k, xk)

]
(27)

=Eπθ(x|σ)

n∑
k=1

Eπθ(xk|σ(x)<k,σ)

[
Aπθ′ ,σ

′
(σ′(x)<k, xk)

]
(28)

= E
πθ(x|σ)

n∑
k=1

E
πθ′ (xk|σ′(x)<k,σ′)

[
πθ(xk|σ(x)<k, σ)

πθ′(xk|σ′(x)<k, σ′)
Aπθ′ ,σ

′
(σ′(x)<k, xk)

]
(29)

where we switched to the notation introduced in section 3.3, that is more convenient for dealing with
different orders σ and σ′. In particular, this makes that the inner sum from k = 1 to n enumerates
index from the original problem in X , rather than the generation order from a given permutation.
This has an impact on the ordering of advantages functions in (28), but the quantities still telescop,
and each advantage is line with the trained transition in (29). We note that importance sampling
ratios do not exploit same knowledge, as masks do not apply on same dimensions in the numerator
and denominator, but the behavior distribution is still non zero everywhere the training distribution
allocates probability mass, which is the main requirement for importance sampling techniques.

Then, given a previous behavior policy πθt that sampled solutions with generation order σ′, we can
train policy πθ, with training order σ, by considering the following approximator:

Lσ,σ′

θt (θ) ≜ Eπθt (x|σ′)

n∑
k=1

Eπθt (xk|σ′(x)<k,σ′)
πθ(xk|σ(x)<k, σ)

πθt(xk|σ′(x)<k, σ′)

[
Aπθt ,σ

′
(σ′(x)<k, xk)

]
= Eπθt (x|σ′)

n∑
k=1

πθ(xk|σ(x)<k, σ)

πθt(xk|σ′(x)<k, σ′)

[
Aπθt ,σ

′
(σ′(x)<k, xk)

]
(30)

For any ((πθt , σ′), (πθ, σ)), we have that: Jσ(θ) − Jσ′
(θt) ≈ Lσ,σ′

θt (θ) whenever πt
θ(.|σ′) remains

close to πθ(.|σ).

Finally, we can take Eσ∼ξ(σ),σ′∼ξ(σ′|σ)L
σ′,σ
θt (θ) as the maximization objective, with KL regulariza-

tion constraints that are considered in (8).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D ON THE CONVERGENCE IN THE INFINITE DATA AND INFINITE CAPACITY
REGIME

In our approach, we consider at each step of our process the maximization of the quantity (see
section 3.3):

L̂t
λ(θ) =

1

λ

∑
(xi,σi)∈Γt

λ

Eσ′∼ξ(σ′|σi)

n∑
k=1

[
πθ(x

i
k|σ′(xi)<k)

πθt(xi
k|σi(xi)<k)

ÂΓt
λ

(
x(i)
)

−βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)]
. (31)

where Γt
λ = {x(1), . . . , x(λ)} is a set of i.i.d. samples from πθt , and where ÂΓt

λ

(
x(i)
)

is a ranking
function of xi in the set Γt

λ in decreasing order of fitness.

For simplicity of notation, we rewrite this quantity as:

L̂t
λ(θ) =

1

λ

λ∑
i=1

wθt,θ

(
x(i), σ(i)

)
AΓt

λ

(
x(i)
)
+ klθt,θ

(
x(i), σ(i)

)
,

where:

• wθt,θ

(
x(i), σ(i)

)
= Eσ′∼ξ(σ′|σi)

∑n
k=1

[
πθ(x

i
k|σ

′(xi)<k)

πθt (x
i
k|σi(xi)<k)

]
• klθt,θ

(
x(i), σ(i)

)
= −βEσ′∼ξ(σ′|σi)

∑n
k=1

[
DKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)]
We first show the following lemma, that states that L̂t

λ(θ) is an unbiased estimator of:

Lt
λ(θ) = EσEx∼πθt(.|σ)

[
wθt,θ

(
x, σ

)
EΓt

λ\{x}
[
AΓt

λ
(x)
]
+ klθt,θ

(
x, σ

)]
, (32)

where EΓt
λ\{x}

[
AΓt

λ
(x)
]

denotes the expectation of the ranking of x in a set containing λ− 1 other
samples from the mixture Eσπθt(.|σ):

Lemma 1. E
[
L̂t
λ(θ)

]
= EσEx∼πθt(.|σ)

[
wθt,θ

(
x, σ

)
EΓt

λ\{x}
[
AΓt

λ
(x)
]
+ klθt,θ

(
x, σ

)]
Proof. By the linearity of expectation, we have:

E
[
L̂t
λ(θ)

]
=

1

λ

λ∑
i=1

E
[
wθt,θ

(
x(i), σ(i)

)
AΓt

λ

(
x(i)
)
+ klθt,θ

(
x(i), σ(i)

)]
.

Then, as all x(i) are i.i.d., each component of the sum owns the same expectation. Thus, by ex-
changeability, we can say that (arbitrarily taking the first sample (x(1), σ(1)) from Γt

λ as the refer-
ence, without loss of generality):

E
[
L̂t
λ(θ)

]
= E

[
wθt,θ

(
x(1), σ(1)

)
AΓt

λ

(
x(1)

)
+ klθt,θ

(
x(1), σ(1)

)]
.

Using the law of total expectation, we obtain:

E
[
wθt,θ

(
x(1), σ(1)

)
AΓt

λ

(
x(1)

)
+ klθt,θ

(
x(1), σ(1)

)]
=

Eσ(1)Ex(1)∼πθt (.|σ(1))

[
wθt,θ

(
x(1), σ(1)

)
E
[
AΓt

λ

(
x(1)

)
| x(1)

]
+ klθt,θ

(
x(1), σ(1)

)]
.

Fixing x(1) = x corresponds to considering x as one element of the set Γt
λ, and completing it with

λ− 1 additional independent draws. Therefore, we have:

E
[
AΓt

λ
(x(1)) | x(1) = x

]
= EΓt

λ\{x}
[
AΓt

λ
(x)
]
.

Thus, we finally get:

E
[
L̂t
λ(θ)

]
= EσEx∼πθt(.|σ)

[
wθt,θ

(
x, σ

)
EΓt

λ\{x}
[
AΓt

λ
(x)
]
+ klθt,θ

(
x, σ

)]
,

which concludes the proof and indicates that L̂t
λ(θ) is an unbiased estimator of Lt

λ(θ).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Thus, while at each epoch t our algorithm seeks to maximize the stochastic estimator L̂λ(θ), in
expectation it actually aims to optimize the theoretical objective Lt

λ(θ).

Following this, we observe that our surrogate scale-invariant objective AΓt
λ
(x) (that we use in (8), in

place of the original fitness sore from (7)), can be considered in expectation as a stationary classical
reward function at each epoch t, depending only on constant parameters θt.

We thus obtain a classical learning problem at each epoch t, where we maximize

πθ(xk | σ′(x)<k)
πθt(x | σ)

πθt(xk | σ(x)<k)
EΓt

λ\{x}

[
AΓt

λ
(x)
]
,

for any uniformly sampled tuple (x ∈ X , σ ∈ Ω, σ′ ∈ Ω, k ∈ [[1, n]]), under the soft constraint
imposed by the KL regularizer. In other words, at each epoch the conditional probability of values
for dimension k ∈ [[1, n]] of solutions likely under πθt(x | σ) is increased (resp. decreased) if they
have a positive (resp. negative) expected signed rank among λ samples from Eσπθt(. | σ). This
means that decisions leading to high (resp. low) fitness are reinforced (resp. penalized) at each
epoch. As t→∞, the distribution Γt

λ converges asymptotically towards a degenerate set containing
a single solution. If λ is infinite, this limiting solution coincides with the global optimum of the
problem (i.e., the element x⋆ ∈ X such that f(x⋆) = maxx∈X f(x)).

E GENERATION/TRAINING PERMUTATIONS AS INFORMATION-PRESERVING
INPUT DROPOUT

In section D, we have shown that the quantity we consider in each maximization step is an unbiased
estimator of Lt

λ(θ), as defined in (32):

Lt
λ(θ) = EσEx∼πθt(.|σ)

[
Eσ′∼ξ(σ′|σ)

n∑
k=1

[
πθ(xk|σ′(x)<k)

πθt(xk|σ(x)<k)
EΓt

λ\{x}
[
AΓt

λ
(x)
]

−βDKL (πθt(·|σ(x)<k) ∥πθ(·|σ′(x)<k))] , (33)

This formulation allows us to distinguish between the two effects of the randomness introduced in
the order of generation:

• Population Diversity: During first epochs, the neural generators are not prepared for or-
der invariance. Different generation orders σ thus induce different generation distribu-
tions π(.|σ). Uniformly sampling a new σ from Ω for each generation thus implies an
higher diversity in the populations. In that cases, any estimation of the reward metric
EΓt

λ\{x}
[
AΓt

λ
(x)
]

is thus likely to own a greater variance than when using a fixed gen-
eration order (especially for low λ), as the variance of a mixture of distributions (i.e.,
Eσ πθt(., σ)) is always greater or equal than the lowest variance of its components. This
allows to better explore in the first steps of the process by introducing more stochasticity
in the RL returns. Moreover, this furnishes more diverse samples to the training process,
avoiding early collapse on a particular subarea of the search space;

• Structural Regularization: Beyond population diversity, the second effect is a form of
structural regularization. This arises from presenting, for the same candidate solution x,
different contexts at each generation step (i.e., for each neural network gθk in our setting).
Even when the training order matches the generation order (i.e., when ξ(σ′|σ) is a Dirac
centered at σ), the process encourages the learning of order-invariant generators. In this
case, the IS ratios are all equal to 1 at the start of each PPO epoch (with the KL divergence
equal to 0). Nevertheless, since each individual processes dimensions in a different order,
the generators are encouraged to structure their weights so as to handle arbitrary subsets of
variables of any size, ultimately leading to a residual summation structure (see discussion
on that point below). However, simply maintaining the same order for training as the one
used for generating the training sample is usually not sufficient to efficiently prepare the
generator for order-invariance, since a constant order is applied to each training sample

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

across all iterations of the epoch. The use of a different order for each sample at each iter-
ation of the same epoch (i.e., ξ(·|σ) is a uniform distribution in our experiments) provides
two benefits. First, it rewards the network for making the same decision under varying con-
texts, thus facilitating the identification of inter-variable dependencies. Second, it steers the
network toward producing, for the same decision, distributions similar to the one used for
sampling despite changes in context, through the KL regularizer (which is nonzero even at
the first iteration in this setting). All of this benefits sample efficiency, while also promoting
generation order invariance and stability through inter-order generalization.

About Residual Structuration In order to further understand the effect of training order permuta-
tions on the structuring of a neural network, consider a simple problem of distribution approximation
via maximum likelihood estimation (MLE): argmaxθ Ep[log pθ(x)]. Let x be a binary sequence of
size n, and let pθ(x) be parametrized differently (with parameter θi) for each dimension of x, as in
the setting of this paper. We specifically focus on the network corresponding to the last dimension
of x, i.e., pθn .

When optimizing the joint distribution in the original order of the sequence (from dimension 1
to n), pθn is always conditioned on all preceding variables, as it predicts the last variable based
on the inputs x1 to xn−1. Given λ samples from p to optimize it via MLE, the gradient updates
of pθn are computed as an average over λ gradients of the fully informed conditional probability
pθn(xn | x<n), while some input variables may consist only of noise with respect to the variable
being decoded. The optimization process must cope with all these inputs in order to eventually
identify true dependencies, despite the presence of potentially significant noise in the input.

Now, let us consider training order permutations σ, which effectively mask every variable xi whose
rank in σ is greater than the rank of xn (i.e., we set to zero each variable xi such that rankσ(i) >
rankσ(n) in the input of pθi). The MLE is now given for the variable xn as:

L = EpEσ[log pθn(xn|σ(x)<n)],

which, if the distribution of σ is uniform, is equivalent to considering:

L = Ep

 (n− 1)!

n!
log pθn(xn|∅) +

(n− 2)!

n!

∑
i∈[[1,n−1]]

log pθn(xn|{xi})

+
2(n− 3)!

n!

∑
i∈[[1,n−1]]

∑
j∈[[1,n−1]],j ̸=i

log pθn(xn|{xi, xj}) + . . .+
(n− 1)!

n!
log pθ_n(xn|{xi}n−1

i=1)

 .

or more compactly:

L = Ep

n∑
k=1

wn
k

∑
Ik∈({1,...,n−1}

k−1)

log pθn(xn|{xi}i∈Ik)

 ,

with wn
k = (k−1)!(n−k)!

n! the weight of a component depending on the size of its condition (i.e.,
number of available dimensions for decoding xn), which in turn can be rewritten as:

L = Ep(xn)

n∑
k=1

∑
Ik∈({1,...,n−1}

k−1)

[
wn

kEp({xi}i∈Ik
|xn) log pθn(xn|{xi}i∈Ik)

]

From this expansion, we can note a decrease of weights associated with each component of the train-
ing problem until k = n/2: For any k < n/2, wn

k+1 < wn
k . This acts on the relative learning speed

of the corresponding components, simple dependencies are easier to extract. During optimization,
the network thus first learns to encode the marginal probability pθn(xn | ∅) for xn, then incremen-
tally incorporates potential interactions with single variables through pθn(xn | {xi}), then with pairs
of variables, and so on. As a result, the network naturally develops a form of residual structuring,
where outputs are composed by aggregating contributions from different subsets of inputs.

This hierarchical learning process enables the network to more efficiently identify the parent vari-
ables that are relevant to the joint distribution, while simultaneously recognizing variables that are

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

unrelated and contribute only noise to pθn(xn | σ(x)<n). As a result, the network becomes both
more robust and sample-efficient, effectively filtering out irrelevant inputs while capturing the es-
sential dependencies.

Order Permutations vs Input Dropout We note that an alternative to permutations is input
dropout, whose principle is to randomly mask any feature from the input during training. Simi-
larly to permutation orders, input dropout can be defined as masks that set certain input variables
to 0 (or to a null vector in the categorical setting). Here, we consider a mask m ∈ Ωm as a binary
n× n matrix that removes the entry in dimension j for the decision of dimension i if mi,j = 1. We
denote by m(x)k the result of applying the dropout mask m to x, using the k-th row of the matrix.

As with permutations, we consider a distribution ξm(.) for dropout at generation time, and a dis-
tribution ξm(· | m) for dropout at training time. Given this, our objective in (33) can be naturally
extended as:

Lt
λ(θ) = Eσ,mEx∼πθt(.|σ,m)

[
E σ′∼ξ(σ′|σi)
m′∼ξm(m′|m)

n∑
k=1

[
πθ(xk|σ′(m′(x)k)<k)

πθt(xk|σ(m(x)k)<k)
EΓt

λ\{x}
[
AΓt

λ
(x)
]

−βDKL (πθt(·|σ(m(x)k)<k) ∥πθ(·|σ′(m(x)k)<k))] , (34)

As with permutations, we can consider different distributions for the dropout mask. In this work, we
mainly focus on independent Bernoulli distributions for each entry of the mask matrix, controlled
by a hyperparameter p. We note in (34) that the dropout mask is applied prior to the causal mask
arising from the variable ordering, which allows the combination of both techniques. For the training
distribution πθ, this causal mask can be deactivated by simply implementing σ′ as a table that assigns
a negative rank to each dimension.

For any configuration, we can compute the probability Pmask(i, j) that a given dimension j from
the input is masked when decoding variable i. Depending on the setting, we have:

• With the input dropout m only (using Bernoulli parameter p): Pmp

mask(i, j) = p

• With the causal ordering mask σ only: Pσ
mask(i, j) = 1−P (rankσ(j) < rankσ(i)) = 1−∑n

r=1 P (rankσ(i) = r)P (rankσ(j) < rankσ(i)|rankσ(i) = r) = 1 − 1
n

∑n
r=1

r−1
n−1 =

1− 1
n(n−1)

∑n−1
r=0 r = 1− n(n−1)/2

n(n−1) = 0.5

• With the input dropout m and causal ordering mask combined: P
mp,σ
mask(i, j) =

P
mp

mask(i, j) + (1− P
mp

mask(i, j))× Pσ
mask(i, j) = p+ (1− p)0.5 = 0.5 + 0.5p

Thus, it is possible to set a dropout probability p such that the masking probability of an input for
decoding any given dimension is similar to the one induced by random permutations of variable
order. However, this equivalence only holds for the marginal distribution over single inputs. To
go further, let us consider the distribution P#available(k), for k ∈ [[0, n]], where k denotes the exact
number of non-masked inputs available for decoding a given variable i. Depending on the setting,
this distribution can differ significantly between permutations and dropout:

• With the input dropout m only: P
mp

#available(k) =

Pmp(number of non masked dimensions before n) =
(
n−1
k

)
pn−k−1 (1− p)k

• With the causal ordering mask σ only: Pσ
#available(k) = P (rankσ(i) = k + 1)

• With the input dropout m and causal ordering mask combined: P
mp,σ
#available(k) =∑n

r=k+1 P (rankσ(i) = r)Pmp(number of non masked dimensions before r) =
1
n

∑n
i=k+1

(
i−1
k

)
pi−k−1 (1 − p)k = 1

n

∑n−k−1
i=0

(
i+k
k

)
pi (1 − p)k = 1

n
1−Ip(n−k, k+1)

1−p ,

with Ip(a, b) = B(p; a,b)
B(a,b) the Regularized incomplete Beta function, B(p; a, b) the

Incomplete Beta function and B(a, b) the Beta function.

To better illustrate the differences between these settings, Figure 4 shows the distribution of avail-
able (non-masked) input variables during neural inference. The x-axis represents k, the number of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

available inputs, and the y-axis shows the corresponding probability. In both settings - input dropout
only (left) and input dropout combined with order permutations under a causal mask (right) - the
dropout probability p has a strong impact. Without a causal mask, the distribution is binomial, with
mode at k = ⌊(n− 1)(1− p)⌋. Each variable is independently available with probability 1− p, but
this results in a small chance of observing either very small or very large contexts, which is difficult
to control efficiently. Ideally, one would prefer a more evenly spread distribution, providing each
variable in diverse contexts. In contrast, when combining input dropout with order permutations
under a causal mask (right panel), the distribution becomes more evenly spread across k. This in-
creases the variety of available contexts for each variable during inference, making it easier to learn
robust dependencies. Unlike the purely binomial case, each variable can appear in both small and
large contexts (for small p values), which improves controllability and ensures that the model sees
diverse conditioning patterns. Notably, the case p = 0 yields the most uniform distribution of group
sizes, enabling more effective structural regularization as discussed above.

(a) Input Dropout Only (b) Input Dropout and Causal Permutations Combined

Figure 4: Probability of having exactly k available (non-masked) input variables during neural infer-
ence of the generation probabilities of values for any dimension. Left: input dropout without order
permutations. Right: input dropout combined with order permutations.

The effect of input dropout, either alongside or instead of our generation/training order permutations,
is evaluated in Section M.1.

Finally, note that using dropout alone cannot be applied for the generation of individuals, since
a sampling order must be defined. One option is a predetermined fixed order, combined with a
constant causal mask and dropout. This yields a distribution similar to the binomial case above,
with k taken among the i − 1 positions for the i-th variable. However, this approach does not
fully exploit structural regularization or population diversity, which would likely require position-
dependent parameters. Using varying orders combined with dropout is a potential alternative, but it
does not guarantee stable convergence, as input dropout induces information loss during inference.
At generation time, this can be detrimental, causing catastrophic forgetting and instability even at
the optimum.

In contrast, using permutations of the generation orders without additional dropout is information-
preserving. For any sampled generation order σ, the joint distribution πθt(· | σ) can fully exploit all
dependencies among variables. Moreover, when the generators become fully order-invariant (which
is further encouraged by training order permutations through KL regularization across different or-
derings), we have πθt(· | σ) = πθt(· | σ′) for any pair of generation orders (σ, σ′) ∈ Ω2, ensuring
complete consistency across all orderings.

F ON THE CHOICE OF THE PPO-KL ALGORITHM AS OUR BACKBONE FOR
ORDER-INVARIANT RL

As we shown in section E, using random permutations for generation and training in our method
can be viewed as a structured dropout of the input features of individuals, which enables various
benefits. However, the choice of the KL version of PPO for this purpose is yet to be discussed. This
is the focus of this section.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

In particular, we can analyze our choices in comparison to findings from (Hausknecht & Wagener,
2022), which also discussed the role of dropout in reinforcement learning and showed that naïvely
combining the standard REINFORCE updates with dropout leads to severe instability. Specifically,
when the dropout masks differ between trajectory generation and policy updates, the procedure is no
longer on-policy, and learning quickly collapses. They investigate PPO in this context, but only the
clipped variant. Interestingly, one can observe that the PPO ratio deviates from one even at the first
update step (we are no longer on-policy when sampling and training with different masks on layer’s
inputs). In the clipped version of PPO, this results in most gradients being clipped and therefore
prevents meaningful updates. This behavior undermines the intent of clipping—designed to correct
occasional overshooting—since here the mechanism blocks learning altogether from the start. To
address these issues, the authors propose two strategies for making REINFORCE consistent under
dropout: (1) marginalizing over dropout masks, and (2) enforcing identical dropout masks during
generation and training (akin to our approach of sampling a permutation during generation and ap-
plying the same permutation during training, with σ′ drawn from a Dirac distribution). The first
strategy is theoretically appealing but practically prohibitive, as even with Monte Carlo approxima-
tions using dozens or hundreds of samples, the variance of the estimator overwhelms the learning
signal. The second strategy, by contrast, is shown to be more effective and stable.

In our work, we revisit this question from a different angle. While Hausknecht et al. argue that con-
sistency requires using the same dropout mask between rollout and update, we posit that sampling
different conditioning patterns at update time can in fact be beneficial. By exposing the policy to
multiple conditioning variations from the same rollout, the training process gains additional signal,
thereby improving sample efficiency. To make this feasible, we rely on PPO rather than plain REIN-
FORCE. PPO naturally tolerates updates from slightly different policies, which aligns well with our
setting where updates need not be fully on-policy. Moreover, we adopt the KL-regularized version
of PPO, which avoids the blocking issues observed with the clipped variant: instead of discarding
gradients when ratios diverge, the KL penalty smoothly regularizes the policy towards the sampling
distribution. This design choice is key to enabling effective training under random permutations.

Importantly, Hausknecht et al. developed their Dropout-Marginalized Gradient in the context of
REINFORCE, which forces them to approximate, via Monte Carlo sampling, the exact dropout
distribution used during rollout. This requires likelihood normalization over many sampled masks,
and thus demands a prohibitively large number of samples to achieve a low-variance estimator. By
contrast, in our KL-PPO framework we only need to compute expectations of gradients under the
current mask distribution, without approximating the rollout distribution itself. This allows us to
train efficiently with as little as a single mask sample per example and iteration, a much lighter
procedure in practice.

G CONNECTION WITH NATURAL GRADIENT AND
INFORMATION-GEOMETRIC OPTIMIZATION ALGORITHM

The Information-Geometric Optimization (IGO) algorithm (Ollivier et al., 2017) is a natural gradient
method that seeks to maximize a quantile-based rewriting of the objective function f .

Let us define W f
θt a monotone rewriting of f at generation t that gives for each individual xi sampled

by the probabilistic model πθt for i = 1, . . . , λ

Wθt(xi) = U

(
rk(xi,Γt)

λ− 1

)
, (35)

where U is a non-increasing utility function and rk(xi,Γt) is the rank of the individual i in the
population Γt given its fitness f(xi).

For our probabilistic model πθ with θ ∈ Θ, and given a permuation σ ∈ Ω, the IGO flow that defines
the trajectory in space Θ to maximize the objective Ex∼πθ(x|σ)[W

f
θt(x)] is given by (see Definition

5 in (Ollivier et al., 2017))

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

θt+δt = θt + δtI
−1(θt)

λ∑
i=1

W f
θt(x

i)
∇lnπθ(x

i|σ)
∇θ

∣∣∣
θ=θt

, (36)

with xi for i = 1, . . . , λ generated by the model πθt at time-step t and I−1(θt) the inverse of the
Fisher matrix of πθt .

When δt is close to 0, and using Theorem 10 in (Ollivier et al., 2017), (36) can be rewritten as

θt+δt = argmax
θ∈Θ

(
(1− δt

λ∑
i=1

W f
θt(x

i))

∫
lnπθ(x|σ)πθt(dx) + δt

λ∑
i=1

W f
θt(x

i) lnπθ(x
i|σ)

)
.

(37)

When using this framework with our probabilistic model πθ(x|σ) =
∏n

k=1 πθ(xσk
|xσ<k, σ) it gives

θt+δt = argmax
θ∈Θ

[(1− δt

λ∑
i=1

W f
θt(x

i))

∫ n∑
k=1

lnπθ(xσk
|xσ<k, σ)πθt(dx)

+ δt

λ∑
i=1

n∑
k=1

W f
θt(x

i) lnπθ(x
i
σk
|xi

σ<k, σ)] (38)

As the maximization is on θ we can substract the term (1 −
δt
∑λ

i=1 W
f
θt(xi))

∫ ∑n
j=1 lnπθt(xσk

|xσ<k, σ)πθt(dx) that does not depend on θ. Therefore, we
have

θt+δt = argmax
θ

[δt

λ∑
i=1

n∑
k=1

W f
θt(x

i) lnπθ(x
i
σk
|xi

σ<k, σ)

+ (δt

λ∑
i=1

W f
θt(x

i)− 1)

n∑
k=1

∫
ln

πθt(xσk
|xσ<k, σ)

πθ(xσk
|xσ<k, σ)

πθt(dx)]. (39)

Now using the λ samples to approximate the integral on domain Xσ<k, and using the fact that all
conditional Markov kernels are independent we have for k = 1, . . . , n∫

ln
πθt(xσk

|xσ<k, σ)

πθ(xσk
|xσ<k, σ)

πθt(dx) ≈ 1

λ

λ∑
i=1

∫
ln

πθt(xσk
|xi

σ<k, σ)

πθ(xσk
|xi

σ<k, σ)
πθt(dxσk

). (40)

Thus, we have for k = 1, . . . , n

∫
ln

πθt(xσk
|xσ<k, σ)

πθ(xσk
|xσ<k, σ)

πθt(dx) ≈ 1

λ

λ∑
i=1

DKL

(
πθt(·|xi

σ<k, σ) ∥πθ(·|xi
σ<k, σ)

)
(41)

Using (40) and defining β = 1
λδt −

∑λ
i=1 W f

θt
(xi)

λ , the maximization objective of (39) for the update
of the model at each generation becomes

L′(θ) =
1

λ

λ∑
i=1

n∑
k=1

[
lnπθ(x

i
σk
|xi

σ<k, σ)W
f
θt(x

i)− βDKL

(
πθt(·|xi

σ<k, σ) ∥πθ(·|xi
σ<k, σ)

)]
.

(42)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The update phase of the algorithm can then be interpreted as the maximization of a weighted log-
likelihood over the individuals in the current generation, regularized by a KL divergence term. This
regularization penalizes excessive reductions in the entropy of the sampling distribution, thereby
maintaining a degree of diversity in the population. By controlling the rate of convergence, this
mechanism prevents premature collapse of the distribution onto a single high-performing individual,
which could otherwise lead to early stagnation in a local optimum.

It corresponds to the surrogate objective of our GRPO-based framework given by 4 when replacing

each term lnπθ(x
i
σk
|xi

σ<k, σ) by the ratio importance sampling
πθ(x

i
σk

|xi
σ<k

,σ)

πθt (x
i
σk

|xi
σ<k

,σ) . We empirically

observed that maximizing the ratio of importance sampling instead of the log probability gives better
results in our context, therefore in the following we stay with the formulation of the objective given
by (4) instead of (42).

H ALGORITHM PSEUDO-CODE

In this appendix, we detail the pseudo-code of the multivariate RL EDA with Algorithm 1,
which includes the four multivariate RL EDA variants presented in Section 3.3: (δ, δ′)-RL-EDA,
(δ, σ′)-RL-EDA, (σ, δ′)-RL-EDA and (σ, σ′)-RL-EDA.

Until the termination criterion is met, this EDA perform the following steps at each generation t:

1. Draw a population Γt = {(xi, σi)}λi=1 from the joint distribution πθt(x|σ)ξ(σ).
2. Order the individuals according to their fitness, and compute advantage Âi,t for each indi-

vidual.
3. Update the probabilistic model by maximizing during E epochs the objective

L̂λ(θ) =
1

λ

∑
(xi,σi)∈Γt

Eσ′∼ξ(σ′|σi)

n∑
k=1

[
πθ(x

i
k|σ′(xi)<k)

πθt(xi
k|σi(xi)<k)

Âi,t

− βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)
]. (43)

In practice, at each epoch in order to reduce computation time, the expectancy
Eσ′∼ξ(σ′|σi)[.] is replaced by an evaluation based on a single sample.

I MULTIVARIATE EDA WITH WITH LEARNED ORDER

In this appendix, we derive a version of the multivariate EDA learned with PPO, called
Learned-σ-RL-EDAwhere we model the distribution of order with the Plackett-Luce (PL) distri-
bution (Plackett, 1975) parametrized by the vector of scores w = (w1, . . . , wn) (this distribution is
denoted ξPL

w (σ) hereafter) and we use the reparametrization trick proposed by (Grover et al., 2019)
to learn w by gradient descent.

I.1 PLACKETT-LUCE DISTRIBUTION

For each σ ∈ Ω, and given w ∈ Rn the PL distribution probability mass is given by

ξPL
w (σ) =

wσ(1)

Z

wσ(2)

Z − wσ(1)
· · ·

wσ(n)

Z −
∑n−1

k=1 wσ(k)

, (45)

with Z =
∑n

i=1 wi a normalization constant.

Let sort : Rn → Ω be the operator mapping a n real-valued vector to a permutation σ corresponding
to a descending ordering the values of this vector. Let W denote the matrix of absolute pairwise
differences of the elements of w such that Wij = |wi − wj |. As shown by (Grover et al., 2019), the
permutation matrix Psort(w) corresponding to sort(w) is given by:

Psort(w)[i, j] =

{
1 if j = argmax[(n+ 1− 2i)w −W1]

0 otherwise,
(46)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 1 (σ, σ′)-RL-EDA with parameters λ ∈ N∗, β ∈ R+, utility function U , number of
epochs E and functional mechanism g.

1: Input: an instance (X , f), with X = {−1, 1}n, f : X → R and a number of iterations T .
2: Randomly initialized the parameters θ0 = (θ01, . . . , θ

0
n).

3: x∗ ← ∅ and f(x∗)← −∞.
4: for t = 0, 1, 2, . . . , T − 1 do
5: for i = 1, 2, . . . , λ do
6: xi ← (0, . . . , 0).
7: Draw a permutation σi ∼ ξ(σ).
8: Generate solution xi in the order of generation σi:
9: for k = 1, 2, . . . , n do

10: xi
σi(k) ∼ Bernoulli(sigmoid(gθσi(k)

(xσi<k))

11: end for
12: end for
13: for i = 1, 2, . . . , λ do
14: Compute f(xi).
15: if f(xi) > f(x∗) then
16: x∗ ← xi

17: end if
18: end for
19: for i = 1, 2, . . . , λ do
20: Compute Âi,t = U

(
rk(xi)
λ−1

)
.

21: end for
22: θ ← θt

23: for e = 1, 2, . . . , E do
24: for i = 1, 2, . . . , λ do
25: σ′(i) ∼ ξ(σ′|σ).
26: end for
27: Compute

L̂λ(θ) =
1

λ

∑
(xi,σi)∈Γt

n∑
k=1

[
πθ(x

i
k|σ′(i)(xi)<k)

πθt(xi
k|σi(xi)<k)

Âi,t

− βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(i)(xi)<k)

)
]. (44)

28: Compute ∇θL̂λ(θ) and update θ with gradient ascent.
29: end for
30: θt+1 ← θ
31: end for
32: Output: the best solution found x∗

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where 1 denotes the column vector of all ones.

In practice to sample from ξw(σ), (Grover et al., 2019) propose a method for sampling from PL
distributions with parameters w by sampling for k = 1, . . . , n a noise ϵk ∼ Gumbel(0, 1) with zero
mean and unit scale, then by computing w̃ is the vector of perturbed log-scores with entries such
that w̃i = lnwi + ϵi, and latsly by applying the sort operator to the perturbed log-scores w̃i. The
resulting order gives a permutation σ sampled from ξPL

w (σ). Indeed (Grover et al., 2019) show that
P(w̃σ(1 ≥ · · · ≥ w̃σ(n) = ξw(σ) (see Proposition 5).

For a vector w̃ of perturbated log-score, the sampled permutation matrices is Psort(w̃) corresponding
to permutation σ̃, such that

[
Psort(w̃)

]
ij

= 1 if i = σ̃(j) and 0 otherwise. This permutation matrix

allows to compute the adjacency matrix M̃ = P⊤
sort(w̃)BPsort(w̃) of the sampling directed acyclic

graph (DAG), with B be the strictly upper triangular binary matrix of size n× n, whose entries are
defined as bi,j = 1 if j > i, and bi,j = 0 otherwise. Each column vector mk at position k of M̃
corresponds to the binary causal mask used at step k to mask the entries of g (see Section 3.1).

I.2 PLACKETT-LUCE REPARAMETRIZATION TRICK

Computing the permutation matrix Psort(w̃) from w is a non differentiable operation due to the
use of the argmax function. Therefore, (Grover et al., 2019) propose to replace Psort(w̃) by the
continuous relaxation P̂sort(w̃) using the softmax function instead of the argmax function when
gradient computation are required. The i-th row of P̂sort(w) is given by

P̂sort(w) = softmax[(n+ 1− 2i)w −W1/τ], (47)

with τ > 0 a temperature parameter (set at the value of 1 in the following).

I.3 LEARNED-σ-EDA ALGORITHM

During the sampling phase of Learned-σ-RL-EDA, to generate each individual of the population,
an order σi is first sampled from ξPL

w (σ), then xi is sampled from πθt(.|σi).

During the update phase of the EDA we maximize following the GRPO objective with respect to
(θ, w):

L̂λ(θ, w) =
1

λ

∑
(xi,σi)∈Γt

Eσ′∼ξPL
w (σ)

n∑
k=1

[
πθ(x

i
k|σ′(xi)<k)

πθt(xi
k|σi(xi)<k)

Âi,t

− βDKL

(
πθt(·|σi(xi)<k) ∥πθ(·|σ′(xi)<k)

)
]. (48)

This maximization is done by first order gradient descent using ∇θL(θ, w) and ∇wL(θ, w) (com-
puted with the reparametrization trick).

J SYNTHETIC DATA SET GENERATION AND EXPERIMENTAL PROTOCOL

We examine the following NP-hard problems in this work. For each of these problems, we generated
instances of size n ∈ {64, 128, 256}, and for each size, we considered different types of instances.

The Quadratic unconstrained binary optimization problem (QUBO) aims to find a pseudo-
Boolean vector x = (x1, . . . , xn) of size n that maximizes the function f : {−1, 1}n → R given
by f(x) = x⊤Qx, where Q is a symmetric real matrix of size n× n. We generate QUBO instances
using the PUBOi generator (Tari et al., 2022), which enables the creation of QUBO problems with
controlled structural properties. The parameters of the PUBOi generator are set to produce six
different types K of instances by tuning both the density of the QUBO matrix Q and the relative
importance of binary variables, thereby influencing the degree of non-uniformity in Q. We gener-
ate QUBO instances using the PUBOi generator (Tari et al., 2022), which enables the creation of
QUBO problems with controlled structural properties.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Formally, the fitness function of each instance of this QUBO problem is defined as f(x) =∑m
i=1 fi(xi1 , xi2 , xi3 , xi4), where each sub-function fi is a quadratic function randomly selected

from the set {φ1, . . . , φ4}. Each φk is designed to have 2k symmetric local optima. In PUBOi, bi-
nary variables are divided into two importance classes: important and non-important variables. For
each sub-function fi, the four variables xij are selected according to an importance degree param-
eter d, where the probability of selecting an important variable is proportional to d. An additional
importance co-appearance parameter α controls the correlation in the selection of important vari-
ables: higher α values increase the likelihood that two important variables co-occur within the same
sub-function fi. The number of sub-functions is given by m = r × n(n−1)

2 , where r is a density
coefficient controlling the proportion of non-zero entries in Q. For example, with r = 0.05 and
r = 0.2, the density of Q is approximately 16% and 43%, respectively, for uniform instances.

We consider three interaction configurations:

• Uniform random instances when (d, α) = (1, 1), corresponding to no specific important
variables, i.e., a fully random QUBO structure.

• Instances with (d, α) = (10, 1), where important variables are 10 times more likely to be
selected than non-important variables, but selections are independent.

• Instances with (d, α) = (10, 1.09): the selection of important variables is not independent,
and the selection of important variables is concentrated.

Further details on the PUBOi generator can be found in (Tari et al., 2022). By combining parameters
r, degree d of importance of variables and parameter α of co-appearance, we obtain six different
types of instance described in Table 1.

Table 1: Parameters of PUBOi instances.

Type instance K r d α
0 0.05 1 1
1 0.05 10 1
2 0.05 10 1.09
3 0.2 1 1
4 0.2 10 1
5 0.2 10 1.09

The NKD model is a natural extension of the NK model of Kauffman (Kauffman & Weinberger,
1989) to cases where variables can take more than two categorical values. This is a frame-
work for describing fitness lanscapes whose problem size and ruggedness are both parameteriz-
able. The NKD function is defined as fNKD : {0, 1, . . . , D − 1}n → [0, 1[and takes the same
form as NK functions: fNKD(x) = 1

n

∑n
i=1 γi(xi, xli1 , . . . , xliK), except that each subfunction

γi : {0, 1, . . . , D − 1}K+1 → [0, 1[is defined over categorical variables with D possible values
instead of binary ones. We construct instances with D = 2, which corresponds to the original
pseudo-boolean NK problem, but we also construct instances of a categorical problem called NK3
with D = 3. For each variant NK or NK3 of the problem four different types of distribution of
instances with K ∈ {1, 2, 4, 8} are built. When K = 1, the interaction graph is very sparse and the
landscape is smooth; when K = 8, the landscape becomes significantly more rugged.

Unless otherwise specified, we treat these problems as black-box problems, meaning that both the
objective function and the interaction graph between variables are assumed to be unknown. For each
pair (n,K) and for each problem, we generated 10 different instances. For the sake of reproducibil-
ity, all these instances are available in the supplementary material. For each problem instance, we
allow a maximum budget of 10,000 objective function evaluations. The best solution found since
the beginning of the search is recorded every 100 evaluations. For each distribution of instances,
defined with the vector of features (pb, n,K) (with pb the problem name, n the instance size and K
the type of instance), and for each algorithm, we compute the average performance over 10 distinct
instances, each solved with 10 independent restarts using different random seeds. This procedure
results in 100 independent runs per algorithm and per instance distribution, from which the evolution
of the average score is reported. It is worth noting that, within a given distribution, the best scores
obtained across the 10 instances are of comparable magnitude, which justifies averaging them to
produce a single representative performance measure.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

K MULTIVARIATE EDA HYPERPARAMETER CONFIGURATION AND
COMPUTING TIME

In this appendix, we detail the hyperparameter configuration of the multivariate RL EDA presented
in Section 3.3, which is used as a baseline for all experiments, and give some details on the com-
plexity and computing time of the proposed approach.

K.1 HYPERPARAMETER CONFIGURATION

The population size is set by default to λ = 10 accross all benchmark instances. Although fine-
tuning this parameter may lead to better performance for specific distributions of problem instances,
and may also depend on the instance dimension n, we opt for simplicity and maintain a constant
value throughout this work. A sensitivity analysis of this key parameter is presented in Subsection
M.4.

By default, each functional mechanism gθi for i = 1, . . . , n is implemented as a feedforward neural
network with a single hidden layer of 20 neurons, using the hyperbolic tangent activation function.
This choice is particularly advantageous, as it allows the network to approximate both nonlinear and
linear relationships when needed. Employing one-hidden-layer neural networks for each variable
strikes a practical balance between model expressiveness and computational efficiency, especially
given the instance sizes considered in this study. Nevertheless, as discussed in Appendix M.7, we
explore alternative configurations—such as linear models and deeper neural networks—which may
offer improved performance on more complex tasks, albeit at the cost of increased computational
time.

The utility function U used in the advantage calculation of (5) is defined as a linear decreasing func-
tion on the interval [0, 1], specifically U(x) = 1−2x. Under this definition, the best individual xi

best

in the current population, with rk(xi
best) = 0, receives a reward AΓt

λ
(xi

best) = 1, whereas the worst
individual xi

worst, with rk(xi
best) = λ − 1, receives AΓt

λ
(xi

worse) = −1. If λ is odd, the individual
with median fitness obtains an advantage of zero. With this choice of U , maximizing (8) assigns the
greatest weight to increasing the likelihood of generating the best individual in the population, while
simultaneously decreasing the likelihood of generating the worst individual. As a result, the policy
is updated so that, in the next generation t + 1, it tends to produce individuals that are closer to the
best members of generation t, and farther from the worst ones. It is worth noting that a fine-tuned
utility function may yield superior performance for specific distributions of problem instances. Prior
research has investigated the impact of selecting appropriate utility values or importance weights.
For example, in the context of the CMA-ES algorithm, (Andersson et al., 2015) showed that adapting
these parameters to the distribution of instances can lead to significant performance improvements.
Specifically, for smooth landscapes with a single local optimum, a utility function that assigns dis-
proportionately high values to the very best individuals can be advantageous. Conversely, for highly
deceptive landscapes, it may be beneficial to assign the highest weights to the worst-performing
individuals in the population.

Regarding the coefficient for the KL regularization term, we consistently set β = 1. A sensitiv-
ity analysis of this parameter is presented in Subsection M.5. At each generation, the algorithm is
trained for E = 50 epochs using the Adam optimizer (Kingma & Ba, 2014) with an initial learning
rate 0.001. In practice, to avoid numerical issue in the multivariate RL EDAs, particularly divi-
sion by zero when evaluating the KL divergence term or the importance sampling ratio, we apply
clipping to the probability values of each conditional distribution πθ(·|σ′(xi)<k). Specifically, all
probabilities are clipped to lie within the interval [ϵ, 1− ϵ], with ϵ = 0.001. Table 2 summarizes all
hyperparameters used in the multivariate RL EDA.

K.2 TIME AND SPACE COMPLEXITY

The overall time complexity of the proposed RL-EDA algorithm can be decomposed into two main
components:

1. Solution Generation: For each iteration t of the EDA, a population of size λ is sampled.
Each solution has n variables generated sequentially by neural networks with one hidden

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameters settings for (σ, σ′)-RL-EDA

Parameter Description Value
EDA parameters

λ Size of the population 10
L Number of hidden layers in g 1
nl Number of neurons in hidden layer 20
ϵ Probability threshold coefficient 0.001

PPO parameters
U Utility function U(x) = 1− 2x
β KL penalty parameter 1
E Number of training epoch 50
lr Learning rate of Adam optimizer 0.001

layer of size h. The cost per forward pass for one variable is O(nh). For λ solutions with
n variables per solution O(λn2h).

2. Policy Update (Training) : For E epochs per generation, each epoch recomputes masked
inputs and performs gradient updates O(Eλn2h)

Hence the total complexity for T generations is O(T.E.λ.n2h). Note that a classical BOA (Pelikan,
2002) typically leads to O(n3).

Concerning space complexity, using the n small NNs in the standard version, we get an O(n2h)
space complexity, which decreases to O(nh) for the shared-parameter variant (see Appendix Q).

K.3 COMPUTING TIME

The multivariate RL EDA algorithm is implemented in Python 3.7 with Pytorch 2.5 library for
tensor calculation with Cuda 12.4. The source code is available in the supplementary material. It is
specifically designed to run on GPU devices.

When using the hyperparameters described in Table 2, the time required to process a single QUBO
instance of size n = 128, with a budget of 10,000 calls to the objective function—corresponding
to 1,000 generations of the algorithm when λ = 10—is approximately 11.5 minutes on a single
Intel(R) Xeon(R) Silver 4208 CPU at 2.10GHz, and 5 minutes on an Nvidia V100 GPU device
(including the 10,000 objective function evaluations). The code is also adapted to process batches
of multiple instances of the same size in parallel, which greatly benefits from GPU parallelization.
In particular, it can process 100 QUBO instances of size n = 128, each with a budget of 10,000
objective function calls, in 20 minutes on a single V100 GPU device.

We have also implemented a version of the algorithm with shared parameters in the architecture (see
Appendix Q) which scales better in term of CPU/GPU footprints.

Table 3 gives more detail on wall-clock times required to solve QUBO instances of different sizes
with a budget of 10,000 evaluations for the standard version (σ, σ′)-RL-EDA and the version with
shared parameters called (σ, σ′)-RL-EDA-share-params, in comparison with Tabu, BOA EDA
and strong Nevergrad baseline CMApara. Times are given in seconds and evaluated for CPU on
Xeon(R) Silver 4208 at 2.10GHz and for GPU on an Nvidia V100 GPU device. Note even a time
of 2940 seconds to solve a big instance of size n = 256 with a budget of 10,000 on a CPU with
(σ, σ′)-RL-EDA is acceptable if we see that it takes actually 0.29 second per solution generated,
and for a black box problem such as neural architecture search (see Appendix N), the time required
to evaluate a single solution is generally much more costly.

These times are provided for indicative purposes only, as the main criterion used to assess the per-
formance of a black-box algorithm is typically the best score obtained within a limited number of
calls to the objective function—a criterion that is precisely retained in our experimental analyses
and benchmark comparisons.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 3: CPU/GPU wall-clock times required to solve a QUBO instance with a budget of 10,000
calls to the objective function.

Size instance CPU time (s) GPU time (s)

Tabu
64 2 -

128 5 -
256 20 -

CMApara (Nevergrad)
64 61 -

128 78 -
256 141 -

Multivariate BOA EDA
64 460 -

128 2100 -
256 9310 -

(σ, σ′)-RL-EDA

64 450 210
128 690 300
256 2940 420
(σ, σ′)-RL-EDA-share-params

64 300 195
128 420 255
256 780 300

L GLOBAL EXPERIMENTAL RESULTS

Table 4 presents a selection of these results, comparing (σ, σ′)-RL-EDA to the three other EDAs
of the same category: PBIL, MIMIC and BOA. The final columns report the performance of the
best algorithm among all remaining competitors, including the Nevergrad algorithms and the
Tabu algorithm. For each algorithm, we report the average score obtained after 10,000 calls to the
objective function, averaged over 100 independant runs. Based on this average score, the algorithms
are ranked, and their position among all competitors is indicated.

To facilitate comparison between our proposed algorithm, (σ, σ′)-RL-EDA, and the best-
performing competing methods, we conducted statistical significance tests. In Table 4, a star next to
the results of (σ, σ′)-RL-EDA indicates that its average performance over 100 runs is statistically
significantly better than that of the best other competing algorithm. Conversely, a star next to a com-
peting algorithm denotes that it significantly outperforms (σ, σ′)-RL-EDA on average. Statistical
significance is assessed using a two-sample t-test with a p-value threshold of 0.001.

We observe in Table 4 that (σ, σ′)-RL-EDA consistently outperforms the other EDAs. Interestingly,
among the three competing EDAs, the univariate PBIL algorithm achieves the best results.3. This
confirms empirical findings previously reported by (Doerr & Dufay, 2022), which suggest that uni-
variate EDAs can sometimes match or even surpass the performance of more complex multivariate
EDAs. On possible explanation is that the number of parameters to be learned in multivariate mod-
els such as MIMIC and BOA increases rapidly with instance size, potentially slowing convergence
compared to the simpler PBIL. Among other competitors, it is worth highlighting the performance
of the Tabu algorithm. Despite its simplicity and limited integration in mainstream black-box opti-
mization libraries, it often achieves strong results, particularly on smaller instances.

In addition to the global results table, we also provide plots showing the evolution of the best scores
(averaged over 100 runs) as a function of the number of objective function evaluations. In each
plot, the curve for (σ, σ′)-RL-EDA is always displayed in green and placed first in the legend,
for consistency. It is compared against the 10 best-performing competing algorithms, listed in the
legend from best to worst.

3Since PBIL is designed specifically for pseudo-Boolean optimization, it was not evaluated on NK3 in-
stances involving variables with three categorical values

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Instances Methods

Pb n K
(σ, σ′)-RL-EDA PBIL MIMIC BOA Best method (others)
Rank Score Rank Score Rank Score Rank Score Name Rank Score

QUBO 64 0 34/505 200.8 62/505 199.8 250/505 188.2 268/505 184.6 Tabu 1/505 208.4*
QUBO 64 1 82/505 148.8 91/505 147.8 134/505 146.0 140/505 145.4 CMApara 1/505 154.3*
QUBO 64 2 115/505 138.1 88/505 139.1 119/505 137.6 154/505 137.4 DiscreteDE 1/505 143.4*
QUBO 64 3 80/505 411.2 90/505 410.4 265/505 379.4 267/505 377.5 Tabu 1/505 438.1*
QUBO 64 4 114/505 326.1 80/505 329.7 265/505 311.7 276/505 309.7 CMApara 1/505 344.2*
QUBO 64 5 77/505 309.4 66/505 310.0 242/505 298.3 261/505 295.9 CMApara 1/505 319.3*
QUBO 128 0 1/505 593.7* 66/505 570.8 257/505 504.4 225/505 517.2 Tabu 2/505 588.7
QUBO 128 1 2/505 449.2 21/505 438.3 242/505 408.4 227/505 413.0 CMApara 1/505 453.8*
QUBO 128 2 1/505 437.1 19/505 427.5 238/505 398.9 223/505 403.7 CMAL3 2/505 435.4
QUBO 128 3 1/505 1227.2* 79/505 1177.8 258/505 1034.7 254/505 1046.1 Wiz 2/505 1207.2
QUBO 128 4 2/505 955.4 17/505 934.5 266/505 842.8 254/505 857.3 CMApara 1/505 964.9*
QUBO 128 5 1/505 933.3* 54/505 907.6 264/505 817.2 250/505 830.9 CMAL3 2/505 928.6
QUBO 256 0 1/505 1697.7* 46/505 1570.4 199/505 1317.4 99/505 1422.4 NLOPT_LN_PRAXIS 2/505 1607.1
QUBO 256 1 1/505 1367.7* 3/505 1290.5 197/505 1105.2 92/505 1197.0 BigLognormalDiscreteOnePlusOne 2/505 1301.4
QUBO 256 2 1/505 1304.1* 12/505 1230.9 187/505 1073.0 92/505 1154.4 SVMMetaModelLogNormal 2/505 1233.8
QUBO 256 3 1/505 3436.8* 53/505 3208.6 196/505 2650.7 148/505 2854.3 RLSOnePlusOne 2/505 3316.5
QUBO 256 4 1/505 2769.0* 35/505 2597.5 208/505 2219.0 134/505 2391.5 DiscreteLengler2OnePlusOne 2/505 2617.1
QUBO 256 5 1/505 2730.1* 41/505 2557.0 185/505 2206.6 141/505 2349.2 SVM1MetaModelLogNormal 2/505 2605.1

NK 64 1 29/505 0.7103 52/505 0.7096 127/505 0.7050 237/505 0.7008 CMApara 1/505 0.7119
NK 64 2 24/505 0.742 58/505 0.7391 147/505 0.7317 205/505 0.7273 CMApara 1/505 0.7459
NK 64 4 13/505 0.7523 41/505 0.7463 147/505 0.7330 180/505 0.7311 Tabu 1/505 0.7657*
NK 64 8 19/505 0.7379 35/505 0.7330 263/505 0.7088 309/505 0.6932 Tabu 1/505 0.7602*
NK 128 1 1/505 0.7100 4/505 0.7061 159/505 0.6958 207/505 0.6941 CMApara 2/505 0.7074
NK 128 2 1/505 0.7375* 2/505 0.7305 141/505 0.7138 139/505 0.7139 CMApara 3/505 0.7304
NK 128 4 1/505 0.7603* 2/505 0.7464 203/505 0.7190 125/505 0.7252 Tabu 3/505 0.7462
NK 128 8 2/505 0.7369 3/505 0.7266 356/505 0.6372 388/505 0.6071 Tabu 1/505 0.7429*
NK 256 1 1/505 0.7071* 2/505 0.7014 111/505 0.6810 87/505 0.6869 CMApara 3/505 0.6989
NK 256 2 1/505 0.7364* 2/505 0.7248 98/505 0.7004 60/505 0.7100 MetaModelFmin2 3/505 0.7218
NK 256 4 1/505 0.7534* 2/505 0.7336 104/505 0.7006 189/505 0.6895 MetaModelFmin2 3/505 0.7295
NK 256 8 1/505 0.7232* 2/505 0.7171 385/505 0.5798 390/505 0.5730 LognormalDiscreteOnePlusOne 3/505 0.7166
NK3 64 1 1/500 0.7818* - - 71/500 0.7659 116/500 0.7635 DiscreteDE 2/500 0.7772
NK3 64 2 1/500 0.8095 - - 8/500 0.7857 74/500 0.7779 Tabu 1/500 0.7995
NK3 64 4 2/500 0.8004 - - 138/500 0.7622 154/500 0.7570 Tabu 1/500 0.8062
NK3 64 8 63/500 0.7473 - - 360/500 0.6407 358/500 0.6420 Tabu 1/500 0.7855
NK3 128 1 1/500 0.7876 - - 62/500 0.7599 103/500 0.7537 DiscreteLengler3OnePlusOne 1/500 0.7800
NK3 128 2 1/500 0.7986* - - 58/500 0.7635 111/500 0.7527 BigLognormalDiscreteOnePlusOne 2/500 0.7820
NK3 128 4 1/500 0.7847* - - 124/500 0.7374 130/500 0.7311 Neural1MetaModelLogNormal 2/500 0.7740
NK3 128 8 63/500 0.7373 - - 377/500 0.5986 345/500 0.6008 Tabu 1/500 0.7608*
NK3 256 1 1/500 0.7763* - - 55/500 0.7360 62/500 0.7247 NGOpt 1/500 0.7542
NK3 256 2 1/500 0.7801* - - 53/500 0.7391 69/500 0.7236 RF1MetaModelLogNormal 2/500 0.7600
NK3 256 4 1/500 0.7615* - - 147/500 0.6784 69/500 0.7091 SVM1MetaModelLogNormal 2/500 0.7522
NK3 256 8 43/500 0.7213 - - 362/500 0.5704 402/500 0.5692 RLSOnePlusOne 1/500 0.7362*

Table 4: Global rankings and average scores obtained by (σ, σ′)-RL-EDA and the other EDAs
(PBIL, MIMIC, and BOA) are reported. The last columns present the ranking and average score of
the best-performing method among the 501 additional algorithms considered (496 for NK3 prob-
lems). Rankings are computed over all 505 algorithms (500 for NK3 problems) by comparing the
best score achieved after 10,000 objective function evaluations, averaged across 100 independent
runs. Bold values highlight the best results among all competing methods. A star associated the
results obtain by (σ, σ′)-RL-EDA indicates that it is significantly better in average (over 100 runs)
than the best other competitor. A star associated with a result obtain by an other algorithm indicates
that it is significantly better in average (over 100 runs) than (σ, σ′)-RL-EDA. A difference on the
average scores is said statistically significant according to a t-test with p-value 0.001.

Here, we present these curves only for the different instance types of size n = 128 from the pseudo-
Boolean QUBO problem (Figure 5) and the categorical NK3 problem (Figure 6).4 Note that for the
QUBO instance distribution with n = 128 and K = 3 (Figure 5d), the 10 other best algorithms,
which are variants of the meta-algorithm NGOpt, exhibit overlapping performance curves. This is
because they all selected the same low-level algorithm, DiscreteLenglerOnePlusOne, based
on the characteristics of the instance.

When comparing the evolution curves of (σ, σ′)-RL-EDA across these two problems, we observe
markedly different behaviors. For QUBO problems (Figure 5), (σ, σ′)-RL-EDA quickly reaches
a good solution and then stagnates for the remainder of the budget. The best scores are typically
achieved after approximately 3,000 to 4,000 evaluations, suggesting that the full budget of 10,000
does not benefit (σ, σ′)-RL-EDA, but rather favors competing algorithms.

In contrast, for NK3 instances (Figure 6), (σ, σ′)-RL-EDA requires significantly more time to
converge. The algorithm exhibits an “S”-shaped curve, indicating a delayed learning phase be-
fore generating high-quality solutions. This behavior becomes more pronounced as the interac-
tion graph increases (i.e., with higher K values), likely due to the increased difficulty in mod-
eling variable interactions in NK3 compared to QUBO. Notably, for the most complex instances
(K = 8), (σ, σ′)-RL-EDA fails to converge within the allocated budget, explaining its poor

4All plots for all instance distributions are available in the supplementary material.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

performance reported in Table 4 for this distribution. Meta-algorithms from the Nevergrad
library that incorporate neural networks (NeuralMetaModelLogNormal) or random forests
(NRFMetaModelLogNormal) achieve good results more rapidly. On the other hand, when
(σ, σ′)-RL-EDA has sufficient time to converge—as in landscapes with K = 2 or k = 4—it
achieves significantly better average scores than its competitors by the end of the search.

(a) QUBO instances with n = 128 and K = 0. (b) QUBO instances with n = 128 and K = 1.

(c) QUBO instances with n = 128 and K = 2. (d) QUBO instances with n = 128 and K = 3.

(e) QUBO instances with n = 128 and K = 4. (f) QUBO instances with n = 128 and K = 5.

Figure 5: Evolution of the average scores w.r.t. the number of calls to the objective function obtained
by (σ, σ′)-RL-EDA and the best 10 other competitors for the different type of QUBO instances with
n = 128.

M ABLATION STUDIES AND SENSITIVITY ANALYSES

In this appendix, we first present two ablation studies aimed at evaluating the impact of the order-
invariant reinforcement learning framework used in (σ, σ′)-RL-EDA (see Section 3.3), which could
be partially or totally replaced by naive structural dropout during sampling and/or training.

We also investigate the influence of incorporating a known variable interaction graph on the perfor-
mance of (σ, σ′)-RL-EDA.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

(a) NK3 instances with n = 128 and K = 1. (b) NK3 instances with n = 128 and K = 2.

(c) NK3 instances with n = 128 and K = 4 and (d) NK3 instances with n = 128 and K = 8.

Figure 6: Evolution of the average scores w.r.t. the number of calls to the objective function obtained
by (σ, σ′)-RL-EDA and the best 10 other competitors for the different type of NK3 instances with
n = 128.

Furthermore, we conduct a sensitivity analysis of key parameters within the multivariate RL EDA
framework, specifically examining the effects of the population size (λ), the KL divergence penal-
ization coefficient (β), various configurations of the g mechanisms employed in the multivariate
generative model, and the number of training epochs E at each iteration t of the EDA.

M.1 IMPACT FOR USING ADDITIONAL STRUCTURAL DROPOUT FOR GENERATION AND
TRAINING

In this appendix, we aim to test variants of the multivariate RL EDA presented in Section 3.3
((δ, δ′)-RL-EDA, (δ, σ′)-RL-EDA, (σ, δ′)-RL-EDA, (σ, σ′)-RL-EDA), but with additional struc-
tural dropout for sampling and training (following the objective (34) combining input dropout and
order permutations described in section E).

During the generation phase (respectively the training phase) of the EDA, we add a probability
pG ∈ {0.0, 0.25, 0.5, 0.75} (respectively pT ∈ {0.0, 0.25, 0.5, 0.75}) that a parent of a variable in
the causal mask is set at the value of zero. Therefore, we test 16 different configurations of structural
dropout for each multivariate RL variant.

First, we see in Figure 8a that adding structural dropout during the sampling phase and the training
phase can be very beneficial in particular for the variant (δ, δ′)-RL-EDA with fix order for both
generation and sampling. It helps the model have more diversity during the generation phase of the
EDA and to better detect the dependencies between variables during the update phase.

By contrast, adding these structural dropouts for the variant (σ, σ′)-RL-EDA in Figure 8d does not
improve the results in comparison with the reference version with pG = 0.0 and pT = 0.0 (green
solid line), because this version already benefits from structural dropout for sampling and training
induced by its double random order sampling process.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Overall, we observe that the reference version (σ, σ′)-RL-EDA without structural dropout performs
better with a score of 0.753 in average than all variants across the different combinations of dropout
levels used for sampling and training (the best other variant obtains an average score of 0.747). The
difference of score is statistically significative according to a t-test with p-value 0.001. It should be
noted that it is difficult to obtain an average score higher than 0.006 when the score is already very
good for this type of instance. This suggests that the dropout distribution induced by double-order
sampling is more advantageous than fine-tuning specific structural dropout values for the generation
and update phases of the EDA.

We confirms this results on the large QUBO instances with N = 256 and K = 5 (see Figure 8. On
this distribution of instances our reference variant (σ, σ′)-RL-EDA with pG = 0.0 and pT = 0.0
(green solid line in SubFigure 7d) obtains a score of 2730 in average, while the best other variant
(σ, δ)-RL-EDA with dropout ratios pG = 0.5 and pT = 0.5 obtain a score of 2709 in average. The
difference of score is statistically significative according to a t-test with p-value 0.1.

(a) Variant (δ, δ′)-RL-EDA (b) Variant (δ, σ′)-RL-EDA

(c) Variant (σ, δ′)-RL-EDA (d) Variant (σ, σ′)-RL-EDA

Figure 7: Evolution of the average scores w.r.t. the number of calls to the objective function, obtained
by the four different versions of the multivariate RL EDA with additional structural dropout for
sampling and training for the instances of the NK landscape problem with N = 256 and K = 4.

M.2 IMPACT FOR USING STRUCTURAL DROPOUT INSTEAD OF CAUSAL MASK DURING
TRAINING

In this appendix, we seek to verify whether the causal used during the EDA training phase can
be completely replaced by a structural dropout with a probability pT ∈ {0.0, 0.25, 0.5, 0.75} for
variants with fixed or random orders during generation. These variants without causal mask dur-
ing training are called (δ, p)-RL-EDA and (σ, p)-RL-EDA. We also retain the different structural
dropout ratios for generation pG ∈ {0.0, 0.25, 0.5, 0.75} which is complementary to the mandatory
causal mask for generation.

We observe in Figure 9a that the variant (δ, p)-RL-EDA can obtained at best the same results than
the variant (δ, σ)-RL-EDA using fix causal mask during training (see Figure 8a). Symmetrically,
the variant (σ, p)-RL-EDA obtain also at best the same results than the variant (σ, δ′)-RL-EDA

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

(a) Variant (δ, δ′)-RL-EDA (b) Variant (δ, σ′)-RL-EDA

(c) Variant (σ, δ′)-RL-EDA (d) Variant (σ, σ′)-RL-EDA

Figure 8: Evolution of the average scores w.r.t. the number of calls to the objective function, obtained
by the four different versions of the multivariate RL EDA with additional structural dropout for
sampling and training for the instances of the QUBO problem with N = 256 and K = 5.

(see Figure 8c). However these variants obtain less good results than the reference version
(σ, σ′)-RL-EDA (green solid line in Figure 8d), which confirm the utility of the specific double
uniform distribution of random orders used during the sampling and training phase of the EDA, in-
stead of fine tuned structural dropouts in this context. We confirms this results on the large QUBO
instances with N = 256 and K = 5 (see Figure 10), when comparing the results obtain on these
plots with those obtain by the reference version (σ, σ′)-RL-EDA on the same distribution of in-
stances (green solid line in Figure 7d).

(a) Variant (δ, p)-RL-EDA (b) Variant (σ, p)-RL-EDA

Figure 9: Evolution of the average scores w.r.t. the number of calls to the objective function for the
variants (δ, p)-RL-EDA and (σ, p)-RL-EDA for the instances of the NK landscape problem with
N = 256 and K = 4.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

(a) Variant (δ, p)-RL-EDA (b) Variant (σ, p)-RL-EDA

Figure 10: Evolution of the average scores w.r.t. the number of calls to the objective function for the
variants (δ, p)-RL-EDA and (σ, p)-RL-EDA for the instances of the QUBO problem with N = 256
and K = 5.

M.3 IMPACT OF USING A KNOWN INTERACTION GRAPH BETWEEN VARIABLES

In scenarios where the interaction graph (IG) between variables is assumed to be known—i.e., a
gray-box setting (Santana, 2017) —the causal masks used in (σ, σ′)-RL-EDA can be adapted to
respect these structural constraints.

Let A denote the symmetric binary adjacency matrix of the interaction graph, where ai,j = 1
indicates that variables Xi and Xj interact in the the evaluation of the objective function f . For
example, in the QUBO problem, the objective function is defined as f(x) = x⊤Qx, where Q is
a symmetric real matrix of size n × n and coefficients qij . In this case, the adjacency matrix A is
constructed such that aij = 1 if qij ̸= 0, and 0 otherwise.

Each causal mask σ(x)<k (see Section 3.3) is then adapted to hide values of non adjacent variables
in the interaction graph (corresponding to zero coefficients in the adjacency matrix A), in addition
to every dimension whose rank in σ is greater or equal than k.

Figure 11 shows the evolution of average scores across 100 independent runs of (σ, σ′)-RL-EDA,
comparing the case with an unknown IG (green curve) to the case with a known IG (blue curve).
When comparing the green and blue curves, we observe that providing the interaction graph be-
tween variables helps guide the algorithm more effectively at the beginning of the search. Indeed,
(σ, σ′)-RL-EDA with a known IG reaches high-quality solutions more rapidly. However, it is note-
worthy that the green curve eventually surpasses the blue one, suggesting that constraining the learn-
ing process to the predefined interaction graph may become limiting. Toward the end of the search,
generating optimal solutions may benefit from discovering new relationships between variables that
are not encoded in the known interaction graph used to compute the objective function. This phe-
nomenon can be attributed to the fact that the learned model of (σ, σ′)-RL-EDA is not designed to
model the full objective function, but rather to approximate the distribution of high-quality solutions
within a specific region of the search space.

M.4 SENSITIVITY TO THE POPULATION SIZE

Figure 12 shows the score evolution curves for (σ, σ′)-RL-EDA with varying population size.

Our analysis reveals that, for the considered instance distributions, a smaller population size tends
to promote faster convergence in terms of the number of objective function evaluations. However,
this accelerated convergence often comes at the expense of reduced exploration, which can lead
the algorithm to suboptimal local solutions. Increasing the population size to λ = 20 or λ = 50
improves the average performance previously reported for NK instances with N = 128 and K = 4
(Figure 12b). In contrast, as shown in Figure 12a, the population size appears to have a negligible
impact on performance for QUBO instances.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

(a) QUBO instances with n = 128 and K = 5. (b) NK instances with n = 256 and K = 4.

Figure 11: Evolution of the average scores w.r.t. the number of calls to the objective function,
obtained by (σ, σ′)-RL-EDA with and without known interaction graph.

(a) QUBO instances with n = 128 and K = 5. (b) NK instances with n = 128 and K = 4.

Figure 12: Sensitivity to the population size in (σ, σ′)-RL-EDA.

M.5 SENSITIVITY TO THE KL PENALTY COEFFICIENT

Figure 13 shows the score evolution curves of (σ, σ′)-RL-EDA for different values of the KL penalty
coefficient β. By default, this coefficient is set to 1 in (σ, σ′)-RL-EDA (green curve). It controls the
amplitude of the KL regularization term included in the objective function during the update phase
of (σ, σ′)-RL-EDA (see Equation 8).

(a) QUBO instances with n = 128 and K = 5. (b) NK instances with n = 256 and K = 4.

Figure 13: Sensitivity to the KL penalty coefficient β in (σ, σ′)-RL-EDA.

We observe that low values of β lead to faster convergence in terms of objective function evaluations.
However, this often results in premature convergence to suboptimal solutions due to insufficient

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

exploration. Conversely, higher values of β help maintain the initial high entropy of the solution
distribution for a longer period, thereby promoting broader exploration. Nevertheless, excessively
high values—such as β = 100—can hinder the algorithm’s ability to converge toward high-quality
solution. These results highlight the critical role of β in balancing exploration and exploitation.
For the instance distributions considered and given the evaluation budget, setting β within the range
[1, 5] appears to offer a satisfactory trade-off.

M.6 SENSITIVITY TO THE LOGISTIC REGRESSION MODELS USED IN THE MARKOV KERNELS

Figure 14 shows the score evolution of (σ, σ′)-RL-EDA for different logistic regression models g
used in the generative process of each variable conditioned on the others (see Section 3.1).

The blue curve corresponds to the univariate model, where each variable is generated independently
of the others. This model converges the fastest, due to its limited number of parameters. The red
curve represents the use of linear logistic regression models. Interestingly, the performance obtained
with linear models is even lower than that of the univariate model. This result suggests that it may be
preferable to omit interaction modeling entirely rather than attempt to capture complex dependencies
using an overly simplistic linear model.

We also evaluate several variants using neural networks of varying depth—specifically with 1, 2,
and 4 hidden layers—for each variable. All configurations perform similarly on NK instances with
K = 4 (Figure 14a), where variable interactions are relatively simple. However, for the more
complex categorical NK3 problem with K = 8 (Figure 14b), deeper architectures (e.g., the four-
hidden-layer model, shown by the orange curve) outperform simpler ones such as the single hidden
layer (green curve). This suggests that increased model capacity is beneficial for capturing more
complex dependencies. Nevertheless, this improvement comes with increased computational and
memory requirements.

(a) QUBO instances with n = 128 and K = 5. (b) NK3 instances with n = 128 and K = 8.

Figure 14: Sensitivity to the logistic regression models used in each conditional generative network
of (σ, σ′)-RL-EDA. NN corresponds to neural network. L is the number of hidden layer in each
neural network and nl is the number of neurons in each hidden layer.

M.7 SENSITIVITY TO THE NUMBER OF TRAINING EPOCHS AT EACH GENERATION

Figure 15 shows the score evolution curves of (σ, σ′)-RL-EDA for different values of the number
of training epochs E (number of permutations) at each iteration t of the RL EDA. By default, this
coefficient is set to 50 in (σ, σ′)-RL-EDA (green curve).

In Figure 15, we observe that the higher the value of parameter E, the better the long-term results.
However, increasing E increases the algorithm’s resolution time, which is 5min, 6min, 8min, 11min,
20min, 35min to process 100 hundred instances of size n = 128 on a V100 GPU card when E is
equal to 1, 5, 10, 20, 50 and 100 respectively.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

(a) QUBO instances with n = 128 and K = 5. (b) NK instances with n = 128 and K = 4.

Figure 15: Sensitivity to the number E of training epochs at each generation
.

N RESULTS ON NAS-BENCH-101 REAL DATASET

The neural architecture search public dataset (Ying et al., 2019) (full NAS-Bench-101 available
at https://github.com/google-research/nasbench), is a table which maps neural
network architectures to their testing metrics. Each architecture is encoded by a set of 26 variables:
21 binary variables and 5 categorical variables, each of which can take one of three values. The
resulting search space is therefore X = {0, 1}21 × {0, 1, 2}5, with |X | ≈ 510 million. However,
as noted in Ying et al. (2019), a substantial fraction of these configurations correspond to invalid
models, which are assigned a testing accuracy of 0 in the dataset. The number of valid architectures,
those with an accuracy strictly greater than 0, amounts to 423,000. The goal of this benchmark is to
find architectures that have high testing accuracy.

On this benchmark we launch (σ, σ′)-RL-EDA with the same hyperparameters used for the syn-
thetic datasets, and compare it with the same competitors as described in the previous subsection,
with the same maximum budget of 10,000 calls to the objective function. Figure 16 displays the
evolution of the average best accuracy of (σ, σ′)-RL-EDA in comparison with the 10 best other
baselines, with respect to the number of calls to the objective function. The evolution curves are
averaged over 100 independent runs.

The (σ, σ′)-RL-EDA algorithm (green line) achieves the best performance both with a budget of
10,000 objective-function evaluations but also under a short budget of only 1,000 evaluations. How-
ever the spread with the second best and third methods is not significant at convergence according to
a t-test, with only 100 runs. The Tabu search algorithm reaches the second-best performance at the
end of the search but performs poorly during the initial phase. This behavior is explained by the large
proportion of invalid architectures in the search space: since Tabu Search is a local method, it may
struggle to escape extended plateaus of invalid solutions with zero accuracy, making it difficult to
reach a valid region of the space. In contrast, evolutionary approaches such as (σ, σ′)-RL-EDA, but
also MIMIC and the CMA variants, avoid this issue because they sample a diverse set of candidate
architectures from the beginning of the search.

O EARLY-BUDGET BEHAVIOR AND ADAPTATION OF THE ALGORITHM IN
THIS CONTEXT

Table 5 shows the results of the same experiments as those conducted in Section 4.2 with global
results reported in Appendix L, except that the scores are reported after only 1,000 calls to the
objective function (i.e., for a small budget) instead of 10,000. In this case, we see that our algorithm
(σ, σ′)-RL-EDA actually achieves very good results for small binary instances of size 64. However,
for more complex instances, larger in size or with more categories, even though it often obtains the
best scores after 10,000 steps, as shown in Figure 3 and in Table 4 in Appendix L, it takes longer to
converge than other methods, which explains the poor results reported in this Table 5. This is because
our EDAs maintain a high degree of diversity in the population at the start of the search, precisely
so as not getting stuck too quickly in a local optimum, as we can see in Figure 2. In this regard,
we can see that the other EDAs also behave in the same way, as the multivariate EDAs MIMIC and
BOA also see their scores deteriorate when the number of iterations is very low. A certain number

41

https://github.com/google-research/nasbench

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Figure 16: NAS-Bench-101 benchmark. X-axis: number of calls to the objective function. Y-axis:
Evolution of the average accuracy of the architectures.

of evaluations are also required for this type of multivariate model in order to properly learn the
complex interactions between variables.

Instances Methods

Pb n K
(σ, σ′)-RL-EDA PBIL MIMIC BOA Best method (others)
Rank Score Rank Score Rank Score Rank Score Name Rank Score

QUBO 64 0 1/505 195.9* 243/505 159.7 336/505 139.0 362/505 117.9 Carola4 2/505 187.4
QUBO 64 1 1/505 147.7* 127/505 137.3 225/505 129.6 343/505 113.8 LargeCMA 2/505 144.7
QUBO 64 2 1/505 136.6 123/505 131.3 191/505 127.5 345/505 114.5 LargeCMA 2/505 136.4
QUBO 64 3 1/505 394.8* 275/505 318.9 346/505 271.2 359/505 234.9 Carola4 2/505 378.6
QUBO 64 4 1/505 324.3* 174/505 287.3 306/505 261.1 352/505 230.7 FCarola6 2/505 314.2
QUBO 64 5 1/505 304.3* 197/505 266.7 282/505 252.0 353/505 226.4 NgLglr 2/505 292.5
QUBO 128 0 251/505 354.7 315/505 327.0 355/505 248.0 366/505 224.2 NLOPT_LN_PRAXIS 1/505 517.2*
QUBO 128 1 81/505 381.8 246/505 316.7 340/505 266.5 362/505 223.3 DiscreteLengler2OnePlusOne 1/505 406.1*
QUBO 128 2 80/505 367.0 246/505 319.7 340/505 269.6 361/505 229.7 NgIohLn 1/505 399.3*
QUBO 128 3 249/505 749.54 320/505 661.4 354/505 506.6 368/505 442.7 NLOPT_LN_PRAXIS 1/505 1034.5*
QUBO 128 4 98/505 775.9 257/505 645.1 361/505 448.5 254/505 857.3 DiscreteLengler2OnePlusOne 1/505 845.8*
QUBO 128 5 179/505 724.3 262/505 629.9 346/505 523.8 365/505 440.8 DiscreteLengler2OnePlusOne 1/505 830.8*
QUBO 256 0 359/505 491.5 326/505 623.8 364/505 460.1 369/505 418.6 Carola1 1/505 1365.2*
QUBO 256 1 328/505 599.0 278/505 648.7 358/505 485.2 367/505 439.0 NLOPT_LN_PRAXIS 1/505 1150.1*
QUBO 256 2 334/505 582.0 359/505 485.1 359/505 485.1 366/505 427. NgLglr 1/505 1083.0*
QUBO 256 3 359/505 992.6 327/505 1262.9 365/505 929.0 368/505 845.3 NLOPT_LN_PRAXIS 1/505 2666.7*
QUBO 256 4 334/505 1168.7 271/505 1324.6 358/505 978.8 367/505 856.0 NLOPT_LN_PRAXIS 1/505 2280.8*
QUBO 256 5 335/505 1169.0 284/505 1303.5 360/505 977.1 366/505 882.2 NgLglr 1/505 2208.7*

NK 64 1 1/505 0.7095* 123/505 0.6876 90/505 0.6953 108/505 0.6914 Neural1MetaModelD 2/505 0.7000
NK 64 2 1/505 0.7378* 162/505 0.6994 141/505 0.7029 200/505 0.6937 LargeDiagCMA 2/505 0.7225
NK 64 4 1/505 0.7341* 308/505 0.6695 334/505 0.6545 342/505 0.6456 CmaFmin2 2/505 0.7187
NK 64 8 335/505 0.6362 355/505 0.6287 359/505 0.6243 363/505 0.6190 DSsubspace 1/505 0.7166*
NK 128 1 134/505 0.6658 137/505 0.6616 137/505 0.6616 236/505 0.6447 RF1MetaModelD 1/505 0.6883*
NK 128 2 144/505 0.6609 220/505 0.6501 207/505 0.6530 315/505 0.6322 RF1MetaModelD 1/505 0.6988
NK 128 4 316/505 0.6277 318/505 0.6220 342/505 0.6105 355/505 0.6011 Quad1MetaModelD 1/505 0.7006*
NK 128 8 359/505 0.5863 353/505 0.5898 361/505 0.5839 360/505 0.5844 NLOPT_LN_NELDERMEAD 1/505 0.6978*
NK 256 1 264/505 0.5983 173/505 0.6094 124/505 0.6209 282/505 0.5966 NLOPT_LN_NELDERMEAD 1/505 0.6754*
NK 256 2 314/505 0.5923 240/505 0.6071 213/505 0.6103 319/505 0.5901 LargeDiagCMA 1/505 0.6809*
NK 256 4 352/505 0.5732 318/505 0.5859 351/505 0.5742 353/505 0.5696 NLOPT_LN_NELDERMEAD 1/505 0.6847*
NK 256 8 362/505 0.5598 352 0.5632 364/505 0.5595 401/505 0.5581 NLOPT_LN_NELDERMEAD 1/505 0.6760*
NK3 64 1 52/500 0.7228 - - 71/500 0.7140 45/500 0.7318 SmallLognormalDiscreteOnePlusOne 1/500 0.7419*
NK3 64 2 128/500 0.7012 - - 202/500 0.6804 153/500 0.6934 NgLglr 1/500 0.7477*
NK3 64 4 272/500 0.6385 - - 319/500 0.6252 318/500 0.6252 NgIohLn 1/500 0.7358*
NK3 64 8 311/500 0.6201 - - 335/500 0.6172 320/500 0.6182 RLSOnePlusOne 1/500 0.7185*
NK3 128 1 128/500 0.6543 - - 116/500 0.6689 101/500 0.6846 DiscreteLengler2OnePlusOne 1/500 0.7280*
NK3 128 2 159/500 0.6295 - - 208/500 0.6223 157/500 0.6332 DiscreteLengler2OnePlusOne 1/500 0.7285*
NK3 128 4 249/500 0.5946 - - 271/500 0.5874 268/500 0.5887 NGOptF5 1/500 0.7072*
NK3 128 8 286/500 0.5832 - - 328/500 0.5826 285/500 0.5833 Carola10 1/500 0.6918*
NK3 256 1 127/500 0.6143 - - 117/500 0.6200 110/500 0.6322 NGOptF5 1/500 0.7049*
NK3 256 2 212/500 0.5846 - - 209/500 0.5847 159/500 0.5915 NGOptF5 1/500 0.7052*
NK3 256 4 234/500 0.5679 - - 282/500 0.5621 274/500 0.5633 Carola1 1/500 0.6998*
NK3 256 8 314/500 0.5595 - - 360/500 0.5582 363/500 0.5581 Cobyla 1/500 0.6779*

Table 5: Global rankings and average scores obtained by (σ, σ′)-RL-EDA and the other EDAs
(PBIL, MIMIC, and BOA) are reported. The last columns present the ranking and average score of
the best-performing method among the 501 additional algorithms considered (496 for NK3 prob-
lems). Rankings are computed over all 505 algorithms (500 for NK3 problems) by comparing
the best score achieved with short budget after 1,000 objective function evaluations, averaged
across 100 independent runs. Bold values highlight the best results among all competing meth-
ods. A star associated with the results obtained by (σ, σ′)-RL-EDA indicates that it is significantly
better in average (over 100 runs) than the best other competitor. A star associated with a result ob-
tained by an other algorithm indicates that it is significantly better in average (over 100 runs) than
(σ, σ′)-RL-EDA. A difference on the average scores is said statistically significant according to a
t-test with p-value 0.001.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Curriculum Adaptation To overcome this problem, we propose adapting the algorithm with a
curriculum approach, so that the model is univariate at the start of the search in order to find a good-
quality solution more quickly at the beginning, then gradually switches to a multivariate mode. To
do this, we revisit the idea of structured dropout introduced in Appendix M.1. At the very beginning
of the search, the dropout probabilities p0G and p0T are set to the value of 1, which means that all
input variables of all networks are masked, and therefore the model is completely univariate. Then
we introduce a coefficient ρ < 1 that multiplies these probabilities at each iteration t of the EDA,
with the equations pt+1

G = ρ× pt+1
G and pt+1

T = ρ× pt+1
T , so as to decrease them during the search.

When the iteration index t tends towards infinity, ptG andptT both tend towards 0, which makes the
algorithm return to the standard multivariate model (σ, σ′)-RL-EDA. In the following figures, we
therefore propose a sensitivity analysis for this coefficient ρ for NK and QUBO instances of size
128. We also set λ = 5 and E = 100 instead λ = 10 and E = 50 in order to increase the fast
convergence of the algorithm.

(a) QUBO instances with n = 128 and K = 5.

(b) NK instances with n = 128 and K = 4.

Figure 17: Sensitivity to the parameter ρ in (σ, σ′)-RL-EDA.

In Figure 17, we observe that when ρ is close to 1, i.e., when the model is close to the univariate
model, the network converges very quickly at the beginning, but converges towards lower scores at
the end. Conversely, a lower value of ρ leads to lower scores at the beginning, but these scores end
up being higher at the end of the search, because the model learns without loss of information of the
context of the full joint distribution, generating higher-quality solutions.

Using a value of ρ = 0.993 seems to be a good compromise for obtaining high-quality solutions
quickly, as well as good results when the model converges.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

However, in order to create an effective version when the budget is limited, and knowing that some
of Nevergrad’s competitors’ algorithms are specially optimized for this purpose, we create a version
called Fast-(σ, σ′)-RL-EDA with ρ = 0.999 and launch it with a budget of 1,000 calls to the ob-
jective function. Table 6 shows the results obtained by this variant Fast-(σ, σ′)-RL-EDA in com-
parison with the other methods. We observe on this Table that the version Fast-(σ, σ′)-RL-EDA
frequently obtains the best results for instances of size n = 64 and n = 128 for all type of distri-
bution of instances, and results close to those obtain by the best competitors for instances of size
256.

Instances Methods

Pb n K
Fast-(σ, σ′)-RL-EDA PBIL MIMIC BOA Best method (others)

Rank Score Rank Score Rank Score Rank Score Name Rank Score
QUBO 64 0 1/505 189.5* 243/505 159.7 336/505 139.0 362/505 117.9 Carola4 2/505 187.4
QUBO 64 1 17/505 142.6 127/505 137.3 225/505 129.6 343/505 113.8 LargeCMA 1/505 144.7*
QUBO 64 2 21/505 134.3 123/505 131.3 191/505 127.5 345/505 114.5 LargeCMA 1/505 136.4*
QUBO 64 3 1/505 396.3* 275/505 318.9 346/505 271.2 359/505 234.9 Carola4 2/505 378.6
QUBO 64 4 1/505 316.5 174/505 287.3 306/505 261.1 352/505 230.7 FCarola6 2/505 314.2
QUBO 64 5 1/505 297.9* 197/505 266.7 282/505 252.0 353/505 226.4 NgLglr 2/505 292.5
QUBO 128 0 1/505 525.6* 315/505 327.0 355/505 248.0 366/505 224.2 NLOPT_LN_PRAXIS 2/505 517.2
QUBO 128 1 1/505 417.7* 246/505 316.7 340/505 266.5 362/505 223.3 Dis.Lengler2 1+1 2/505 406.1
QUBO 128 2 1/505 402.9* 246/505 319.7 340/505 269.6 361/505 229.7 NgIohLn 2/505 399.3
QUBO 128 3 1/505 1065.3* 320/505 661.4 354/505 506.6 368/505 442.7 NLOPT_LN_PRAXIS 2/505 1034.5
QUBO 128 4 1/505 881.6* 257/505 645.1 361/505 448.5 254/505 857.3 Dis.Lengler2 1+1 2/505 845.8
QUBO 128 5 1/505 847.9* 262/505 629.9 346/505 523.8 365/505 440.8 Dis.Lengler2 1+1 2/505 830.8
QUBO 256 0 49/505 1188.9 326/505 623.8 364/505 460.1 369/505 418.6 Carola1 1/505 1365.2*
QUBO 256 1 43/505 1089.5 278/505 648.7 358/505 485.2 367/505 439.0 NLOPT_LN_PRAXIS 1/505 1150.1*
QUBO 256 2 31/505 1033.6 359/505 485.1 359/505 485.1 366/505 427. NgLglr 1/505 1083.0*
QUBO 256 3 110/505 2400.6 327/505 1262.9 365/505 929.0 368/505 845.3 NLOPT_LN_PRAXIS 1/505 2666.7*
QUBO 256 4 42/505 2233.4 271/505 1324.6 358/505 978.8 367/505 856.0 NLOPT_LN_PRAXIS 1/505 2280.8*
QUBO 256 5 42/505 2105.2 284/505 1303.5 360/505 977.1 366/505 882.2 NgLglr 1/505 2208.7*

NK 64 1 1/505 0.7051* 123/505 0.6876 90/505 0.6953 108/505 0.6914 Neural1MetaModelD 2/505 0.7000
NK 64 2 1/505 0.7302* 162/505 0.6994 141/505 0.7029 200/505 0.6937 LargeDiagCMA 2/505 0.7225
NK 64 4 1/505 0.7320* 308/505 0.6695 334/505 0.6545 342/505 0.6456 CmaFmin2 2/505 0.7187
NK 64 8 4/505 0.7120 355/505 0.6287 359/505 0.6243 363/505 0.6190 DSsubspace 1/505 0.7166
NK 128 1 1/505 0.6976* 137/505 0.6616 137/505 0.6616 236/505 0.6447 RF1MetaModelD 2/505 0.6883
NK 128 2 1/505 0.7146* 220/505 0.6501 207/505 0.6530 315/505 0.6322 RF1MetaModelD 2/505 0.6988
NK 128 4 1/505 0.7124 318/505 0.6220 342/505 0.6105 355/505 0.6011 Quad1MetaModelD 2/505 0.7006
NK 128 8 138/505 0.6567 353/505 0.5898 361/505 0.5839 360/505 0.5844 NLOPT_LN_NELDERMEAD 1/505 0.6978*
NK 256 1 16/505 0.6694 173/505 0.6094 124/505 0.6209 282/505 0.5966 NLOPT_LN_NELDERMEAD 1/505 0.6754*
NK 256 2 40/505 0.6793 240/505 0.6071 213/505 0.6103 319/505 0.5901 LargeDiagCMA 1/505 0.6809*
NK 256 4 71/505 0.6565 318/505 0.5859 351/505 0.5742 353/505 0.5696 NLOPT_LN_NELDERMEAD 1/505 0.6847*
NK 256 8 164/505 0.6057 352 0.5632 364/505 0.5595 401/505 0.5581 NLOPT_LN_NELDERMEAD 1/505 0.6760*
NK3 64 1 1/500 0.7593* - - 71/500 0.7140 45/500 0.7318 SmallLognormalDiscreteOnePlusOne 2/500 0.7419
NK3 64 2 1/500 0.7702* - - 202/500 0.6804 153/500 0.6934 NgLglr 1/500 0.7477
NK3 64 4 1/500 0.7547* - - 319/500 0.6252 318/500 0.6252 NgIohLn 2/500 0.7358
NK3 64 8 2/500 0.7169 - - 335/500 0.6172 320/500 0.6182 RLSOnePlusOne 1/500 0.7185*
NK3 128 1 1/500 0.7482* - - 116/500 0.6689 101/500 0.6846 Dis.Lengler2 1+1 2/500 0.7280
NK3 128 2 1/500 0.7457* - - 208/500 0.6223 157/500 0.6332 Dis.Lengler2 1+1 2/500 0.7285
NK3 128 4 1/500 0.7277* - - 271/500 0.5874 268/500 0.5887 NGOptF5 2/500 0.7072
NK3 128 8 46/500 0.6746 - - 328/500 0.5826 285/500 0.5833 Carola10 1/500 0.6918*
NK3 256 1 28/500 0.6999 - - 117/500 0.6200 110/500 0.6322 NGOptF5 1/500 0.7049*
NK3 256 2 44/500 0.6925 - - 209/500 0.5847 159/500 0.5915 NGOptF5 1/500 0.7052*
NK3 256 4 101/500 0.6571 - - 282/500 0.5621 274/500 0.5633 Carola1 1/500 0.6998*
NK3 256 8 132/500 0.6045 - - 360/500 0.5582 363/500 0.5581 Cobyla 1/500 0.6779*

Table 6: Global rankings and average scores obtained by Fast-(σ, σ′)-RL-EDA and the other
EDAs (PBIL, MIMIC, and BOA) are reported. The last columns present the ranking and average
score of the best-performing method among the 501 additional algorithms considered (496 for NK3
problems). Rankings are computed over all 505 algorithms (500 for NK3 problems) by comparing
the best score achieved with short budget after 1,000 objective function evaluations, averaged
across 100 independent runs. Bold values highlight the best results among all competing meth-
ods. A star associated the results obtain by Fast-(σ, σ′)-RL-EDA indicates that it is significantly
better in average (over 100 runs) than the best other competitor. A star associated with a result ob-
tained by an other algorithm indicates that it is significantly better in average (over 100 runs) than
Fast-(σ, σ′)-RL-EDA. A difference on the average scores is said statistically significant accord-
ing to a t-test with p-value 0.001.

P COMPARISON WITH A VARIANT USING A CRITIC NEURAL NETWORK

In this appendix, we compare the (σ, σ′)-RL-EDA with an alternative version using a critic neural
network to compute advantages instead of GRPO advantages described in Section 3.2 and given by
(5).

This new variant called (σ, σ′)-RL-EDA-Critic uses exactly the same algorithm, expected that
advantages for individual i at time step k of the MDP are computed as

Âπθt (σi(xi)<k, x
i
k) = α(f(xi)− V̂ (σi(xi)<k, x

i
k)), (49)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

with f(xi) the final score of the complete solution xi and V̂ (σi(xi)<k, x
i
k) an estimation of

the value of the state (σi(xi)<k, x
i
k) given by a critic neural network composed of a set of

(gθc
1
, gθc

2
, . . . , gθc

n
) of n neural networks (one for each variable), with exactly the same architec-

ture as the set (gθ1 , gθ2 , . . . , gθn) of generative neural network used to build solutions, except that
the sigmoid activation function is replaced by an identity function in order to output a value in R. α
is a hyperparameter used to adjust the impact of the advantages on the learning process.

At each iteration t of the EDA, at the beginning of the update phase, the n neural networks of the
critic are trained in parallel during E epoch to minimize the mean square error between f(xi) and
V̂ (σi(xi)<k, x

i
k) at time step k and for each individual i.

For each dataset, we evaluated several values of the hyperparameter α from the set
10−4, 10−3, 10−2, 10−1, 1, 10, 100. The best performance was obtained with α = 10 for the NK
and NK3 datasets, and with α = 0.001 for the QUBO datasets. Table 7 reports the results ob-
tained by the variant incorporating a critic, denoted (σ, σ′)-RL-EDA-Critic, in comparison with
the standard version (σ, σ′)-RL-EDA. Overall, the standard version outperforms the critic-based
variant in most settings.

Furthermore, the critic-based approach exhibits two major drawbacks:

1. it requires nearly twice the computational time required to run the standard version, as the
critic must be trained at each generation;

2. it makes the algorithm sensitive to the scale of fitness values, thereby reducing its robust-
ness to the diverse distributions of instances encountered.

Q VARIANT SHARING PARAMETERS OF HIDDEN LAYERS FOR SCALING TO
LARGE PROBLEMS

In this appendix, we introduce a variant of the (σ, σ′)-RL-EDA algorithm using a single MLP gn(θ)
with 2 hidden layers of 100 neurons and n outputs, instead of the set (gθ1 , gθ2 , . . . , gθn) of n MLP,
each with a single hidden layer of 20 neurons (see Section 3.1). In gnθ , each of the n outputs produces
the probability of the value of each variable conditionally on the values of the other variables. This
variant, which employs a single MLP denoted gnθ , is called (σ, σ′)-RL-EDA-share-params.
All other hyperparameters are identical to those used in the standard version.

Table 8 reports the results obtained by (σ, σ′)-RL-EDA-share-params in comparison with
the standard version (σ, σ′)-RL-EDA. Overall, the standard version (σ, σ′)-RL-EDA is generally
slightly more effective than (σ, σ′)-RL-EDA-share-params on these small and medium sized
datasets. This suggests that employing one MLP per variable contributes to a more stable learning
process during the search for these sizes of instances.

Then, we generated a new larger dataset of 10 NK instances of size n = 1028 and K = 8, and
launched the two variants (σ, σ′)-RL-EDA and (σ, σ′)-RL-EDA-share-params on these large
instances.

First of all, we notice that the variant sharing parameters scales very well in term of com-
putational time required in comparison with the standard version. It required 1h30 to pro-
cess the 10 instances of size n = 1028 with a budget of 10,000 evaluations for the variant
(σ, σ′)-RL-EDA-share-params, while it required more than 10 hours for the standard version
(σ, σ′)-RL-EDA to perform the same task, which can be explained by the much lower number of
parameters to be learned for the version with shared parameters.

Figure 18 shows the evolution of the average results over 100 runs of the two variants
(σ, σ′)-RL-EDA and (σ, σ′)-RL-EDA-share-params on these 10 large instances with 10 inde-
pendent restarts on each instance, in comparison with the best other Nevegrad competitors as well
as the other EDAs and the Tabu search.

First, we observe that the Tabu method (dotted red line), which was very good for small instances,
does not scale at all. This is because the method makes fewer than 10 improvements with a budget
of 10,000, since at each step it must evaluate its entire neighborhood of size 1024 to choose which
action to perform.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Instances Methods
Pb n K (σ, σ′)-RL-EDA (σ, σ′)-RL-EDA-critic

QUBO 64 0 200.8* 195.3
QUBO 64 1 148.8* 146.7
QUBO 64 2 138.1* 134.7
QUBO 64 3 411.2* 407.7
QUBO 64 4 326.1 326.4
QUBO 64 5 309.4* 303.6
QUBO 128 0 593.7* 560.7
QUBO 128 1 449.2* 432.5
QUBO 128 2 437.1* 412.6
QUBO 128 3 1227.2* 943.2
QUBO 128 4 955.4* 781.9
QUBO 128 5 933.3* 768.4
QUBO 256 0 1697.7* 1119.0
QUBO 256 1 1367.7* 596.9
QUBO 256 2 1304.1* 944.8
QUBO 256 3 3436.8* 1645.9
QUBO 256 4 2769.0* 1500.4
QUBO 256 5 2730.1* 1491.6

NK 64 1 0.7103 0.7099
NK 64 2 0.7420 0.7413
NK 64 4 0.7523 0.7495
NK 64 8 0.7379 0.7420*
NK 128 1 0.7100 0.7086
NK 128 2 0.7375* 0.7355
NK 128 4 0.7603 0.7574
NK 128 8 0.7369 0.7408*
NK 256 1 0.7071 0.706
NK 256 2 0.7364* 0.7349
NK 256 4 0.7534 0.7527
NK 256 8 0.7232* 0.696

NK3 64 1 0.7818 0.7861*
NK3 64 2 0.8095 0.8114
NK3 64 4 0.8004 0.8016
NK3 64 8 0.7473 0.7416
NK3 128 1 0.7876 0.7957*
NK3 128 2 0.7986 0.8101*
NK3 128 4 0.7847 0.7988*
NK3 128 8 0.7373* 0.6031
NK3 256 1 0.7763 0.7811*
NK3 256 2 0.7801 0.7802
NK3 256 4 0.7615* 0.6342
NK3 256 8 0.7213* 0.5723

Table 7: Average scores obtained by (σ, σ′)-RL-EDA and its variant (σ, σ′)-RL-EDA-critic.
Bold values highlight the best results. A star associated with the results indicates that it is signif-
icantly better in average (over 100 runs). A difference on the average scores is said statistically
significant according to a t-test with p-value 0.001.

We then notice that our standard version (σ, σ′)-RL-EDA also performs very poorly. This is because
each generation of variables is produced by a small network with a hidden layer of size 20 that takes
the other 1023 variables as input. This becomes too small to properly model the complex interactions
between the variables.

However, we can see that the new variant sharing parameters called
(σ, σ′)-RL-EDA-share-params yields very good results (green dotted line), in compari-
son with the other best competitors.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Instances Methods
Pb n K (σ, σ′)-RL-EDA (σ, σ′)-RL-EDA-share-params

QUBO 64 0 200.8 198.7
QUBO 64 1 148.8* 145.9
QUBO 64 2 138.1 137.9
QUBO 64 3 411.2 415.4
QUBO 64 4 326.1* 323.6
QUBO 64 5 309.4 309.26
QUBO 128 0 593.7* 584.8
QUBO 128 1 449.2* 437.9
QUBO 128 2 437.1* 429.5
QUBO 128 3 1227.2* 1211.3
QUBO 128 4 955.4* 944.6
QUBO 128 5 933.3* 920.9
QUBO 256 0 1697.7* 1669.6
QUBO 256 1 1367.7* 1337.4
QUBO 256 2 1304.1* 1272.9
QUBO 256 3 3436.8* 3400.9
QUBO 256 4 2769.0* 2696.9
QUBO 256 5 2730.1* 2654.6

NK 64 1 0.7103 0.7103
NK 64 2 0.7420 0.7402
NK 64 4 0.7523 0.7521
NK 64 8 0.7379 0.7367
NK 128 1 0.7100 0.7094
NK 128 2 0.7375* 0.7360
NK 128 4 0.7603 0.7569
NK 128 8 0.7369 0.7331
NK 256 1 0.7071 0.7065
NK 256 2 0.7364* 0.7352
NK 256 4 0.7534* 0.7478
NK 256 8 0.7232 0.7243
NK3 64 1 0.7818 0.7835*
NK3 64 2 0.8095 0.8079
NK3 64 4 0.8004 0.7933
NK3 64 8 0.7473 0.7478
NK3 128 1 0.7876 0.7816
NK3 128 2 0.7986 0.7908
NK3 128 4 0.7847 0.7715
NK3 128 8 0.7373* 0.7271
NK3 256 1 0.7763* 0.7553
NK3 256 2 0.7801 0.7601
NK3 256 4 0.7615* 0.7434
NK3 256 8 0.7213* 0.7105

Table 8: Average scores obtained by (σ, σ′)-RL-EDA and its variant
(σ, σ′)-RL-EDA-share-params. Bold values highlight the best results. A star associ-
ated with the results indicates that it is significantly better in average (over 100 runs). A difference
on the average scores is said statistically significant according to a t-test with p-value 0.001.

R ABLATION STUDY: NON AUTO-REGRESSIVE GENERATION (USING GIBBS
SAMPLING)

In this appendix, we propose a baseline variant of the algorithm, where the sequential order of
generation is replaced by a Gibbs sampling. This is an other way to build an order-invariant RL
EDA.

In this case, in order to construct a complete solution x, we start with x0 = (x0
1, x

0
2, . . . , x

0
n) =

(0, 0, . . . , 0), then at iteration ℓ, given a sample x(ℓ) = (x
(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
n), to obtain the next

sample x(ℓ+1) = (x
(ℓ+1)
1 , x

(ℓ+1)
2 , . . . , x

(ℓ+1)
n), we sample each component x(ℓ+1)

j conditioned on

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Figure 18: NK instances with n = 1024 and K = 8.

all other variable values sampled so far, such that πθ(x
(ℓ+1)
j = 1|x(ℓ)

−j) = sigmoid(gθj (x
(ℓ)
−j)),

with x
(ℓ)
−j = (x

(ℓ)
1 , . . . , x

(ℓ)
j−1, 0, x

(ℓ)
j+1, . . . , x

(ℓ+1)
n) corresponding to the vector x

(ℓ)
j , but with a 0

in position j. When ℓ → ∞, this process allows to obtain a sampling of the joint multivariate
distribution. However in practice we restrict this sampling to G iterations.

In this variant without order, during training, the GRPO objective to maximize becomes

L̂λ(θ) =
1

λ

∑
(xi,σi)∈Γt

λ

n∑
k=1

[
πθ(x

i
k|xi

−k)

πθt(xi
k|xi

−k)
ÂΓt

λ
(x)− βDKL

(
πθt(·|xi

−k) ∥πθ(·|xi
−k)
)]

. (50)

Figure 19 displays the results obtain by this variant with Gibbs sampling for different number G of
iterations during sampling. The figure indicates that increasing the value of G leads to improved per-
formance. However, these gains rapidly plateau and remain below those achieved by the standard
variant (σ, σ′)-RL-EDA, which employs a sequential generation of variables based on randomly
sampled permutation masks during both training and inference, which allow to better uncover depen-
dency relationships between variables (see section E for discussions about what can bring samplings
of different causal masks at train time, in term of residual structuration of the networks).

Moreover, the Gibbs-sampling version incurs substantially higher computational costs during the
variable-generation phase, as it requires multiple re-samplings of each variable. In contrast, the
standard approach assigns a value to each variable only once, resulting in significantly lower com-
putational overhead.

S NEVERGRAD COMPETING ALGORITHMS

It is important to note that some algorithms in the library are primarily designed for continuous
optimization—such as various variants of Particle Swarm Optimization (PSO) and CMA-ES— and
are not expected to perform competitively on discrete problems. Nevertheless, Nevergrad (Rapin
& Teytaud, 2018) also includes a wide range of algorithms specifically tailored for large-scale dis-
crete black-box optimization. The algorithms of the Nevergrad library can be grouped into the
following categories:

• Memetic and Genetic Algorithms, such as cGA and discretememetic.
• Discrete (1+1) Evolutionary Algorithms, including variants with adaptive mutation rates

like DiscreteLengler2OnePlusOne and FastGADiscreteOnePlusOne.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

(a) QUBO instances with n = 128 and K = 5.

(b) NK instances with n = 128 and K = 4.

Figure 19: Evolution of the score of a variant with Gibbs sampling with different numbers of itera-
tions G for the sampling, in comparison with the standard version (σ, σ′)-RL-EDA

• Differential Evolution algorithms, e.g., DiscreteDE, LhsHSDE.

• Chaining Algorithms, which are meta-algorithms applying several baseline algorithms in
sequence, such as ChainDEwithLHS30, Carola1, . . . , Carola15.

• Portfolio Algorithms, including NGOpt, NgIoh, and Wiz, which select low-level algo-
rithms based on problem dimension and budget.

• Adaptive Portfolio Algorithms, which test several algorithms during early search phases
before selecting one for later stages, e.g., PolyLN.

• Learning Meta-Models, which approximate the optimum using supervised mod-
els (e.g., random forests, neural networks, SVMs) trained on the best so-
lutions generated by low-level algorithms. Example include RF1MetaModel,
Neural1MetaModelOnePlusOne, and SVM1MetaModelD.

Additional Tabu Search Algorithm : Given a solution x, Tabu explores its neighborhood by
changing the value of a discrete variable xj , thereby generating a neighbor x′ differing from x in
exactly one component. At each iteration, the best eligible neighbor with respect to the objective
function f is selected. A move is considered eligible if it is not forbidden by the tabu list, unless it
improves upon the best solution found so far. After the value of a variable xj is changed, it becomes
tabu for the next T iterations. In many effective QUBO implementations, T is defined as αn + R,
where R ∈ {1, . . . , 10} is a random integer and α is a hyperparameter typically set to 0.1. We retain
this configuration in our experiments.

Here we provide the complete list of all competing algorithm of the 1.0.12 Nevergrad library used
in the experiments (sorted by name). Detailed documentation and source code of these algorithms
are available at https://facebookresearch.github.io/nevergrad.

49

https://facebookresearch.github.io/nevergrad

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

AdaptiveDiscreteOnePlusOne, AlmostRotationInvariantDE, AlmostRotationInvariantDEAndBigPop, AnisoEMNA, AnisoEMNATBPSA,

AnisotropicAdaptiveDiscreteOnePlusOne, ASCMADEthird, AvgHammersleySearch, AvgHammersleySearchPlusMiddlePoint, AvgMetaRe-

centeringNoHull, AvgRandomSearch, BAR, BAR2, BAR3, BAR4, BFGS, BFGSCMA, BFGSCMAPlus, BigLognormalDiscreteOne-

PlusOne, BPRotationInvariantDE, Carola1, Carola2, Carola3, Carola4, Carola5, Carola6, Carola7, Carola8, Carola9, Carola10,

Carola11, Carola13, Carola14, Carola15, CauchyLHSSearch, CauchyOnePlusOne, CauchyRandomSearch, CauchyScrHammersley-

Search, cGA, ChainCMAPowell, ChainCMASQP, ChainCMAwithLHS, ChainCMAwithLHS30, ChainCMAwithLHSdim, ChainCMAw-

ithLHSsqrt, ChainCMAwithMetaRecentering, ChainCMAwithMetaRecentering30, ChainCMAwithMetaRecenteringdim, ChainCMAw-

ithMetaRecenteringsqrt, ChainCMAwithR, ChainCMAwithR30, ChainCMAwithRdim, ChainCMAwithRsqrt, ChainDE, ChainDEwith-

LHS, ChainDEwithLHS30, ChainDEwithLHSdim, ChainDEwithLHSsqrt, ChainDEwithMetaRecentering, ChainDEwithMetaRecentering30,

ChainDEwithMetaRecenteringdim, ChainDEwithMetaRecenteringsqrt, ChainDEwithMetaTuneRecentering, ChainDEwithMetaTuneRecen-

tering30, ChainDEwithMetaTuneRecenteringdim, ChainDEwithMetaTuneRecenteringsqrt, ChainDEwithR, ChainDEwithR30, ChainDE-

withRdim, ChainDEwithRsqrt, ChainDiagonalCMAPowell, ChainDSPowell, ChainMetaModelDSSQP, ChainMetaModelPowell, Chain-

MetaModelSQP, ChainNaiveTBPSACMAPowell, ChainNaiveTBPSAPowell, ChainPSOwithLHS, ChainPSOwithLHS30, ChainPSOwith-

LHSdim, ChainPSOwithLHSsqrt, ChainPSOwithMetaRecentering, ChainPSOwithMetaRecentering30, ChainPSOwithMetaRecenteringdim,

ChainPSOwithMetaRecenteringsqrt, ChainPSOwithR, ChainPSOwithR30, ChainPSOwithRdim, ChainPSOwithRsqrt, ChoiceBase, CLen-

gler, CM, CMA, CMAbounded, CmaFmin2, CMAL, CMAL2, CMAL3, CMALL, CMALn, CMALS, CMALYS, CMandAS2, CMandAS3,

CMApara, CMARS, CMASL, CMASL2, CMASL3, CMAsmall, CMAstd, CMAtuning, Cobyla, CSEC, CSEC10, CSEC11, DE, Diago-

nalCMA, DiscreteBSOOnePlusOne, DiscreteDE, DiscreteDoerrOnePlusOne, DiscreteLengler2OnePlusOne, DiscreteLengler3OnePlusOne,

DiscreteLenglerFourthOnePlusOne, DiscreteLenglerHalfOnePlusOne, DiscreteLenglerOnePlusOne, DiscreteLenglerOnePlusOneT, discrete-

memetic, DiscreteNoisy13Splits, DiscreteOnePlusOne, DiscreteOnePlusOneT, DoubleFastGADiscreteOnePlusOne, DoubleFastGAOpti-

misticNoisyDiscreteOnePlusOne, DS2, DS3p, DS4, DS5, DS6, DS8, DS9, DS14, DSbase, DSproba, DSsubspace, ECMA, EDA, ED-

CMA, ES, F2SQPCMA, F3SQPCMA, FastGADiscreteOnePlusOne, FastGANoisyDiscreteOnePlusOne, FastGAOptimisticNoisyDiscreteOne-

PlusOne, FCarola6, FCMA, FCMAp13, FCMAs03, file, ForceMultiCobyla, FSQPCMA, GeneticDE, HaltonSearch, HaltonSearchPlus-

MiddlePoint, HammersleySearch, HammersleySearchPlusMiddlePoint, HSDE, HugeLognormalDiscreteOnePlusOne, HullAvgMetaRecenter-

ing, HullAvgMetaTuneRecentering, HullCenterHullAvgCauchyLHSSearch, HullCenterHullAvgCauchyScrHammersleySearch, HullCenter-

HullAvgLargeHammersleySearch, HullCenterHullAvgLHSSearch, HullCenterHullAvgRandomSearch, HullCenterHullAvgScrHaltonSearch,

HullCenterHullAvgScrHaltonSearchPlusMiddlePoint, HullCenterHullAvgScrHammersleySearch, HullCenterHullAvgScrHammersleySearch-

PlusMiddlePoint, IsoEMNA, IsoEMNATBPSA, LargeCMA, LargeDiagCMA, LargeHaltonSearch, LBFGSB, LhsDE, LhsHSDE, LHSSearch,

LocalBFGS, LogBFGSCMA, LogBFGSCMAPlus, LogMultiBFGS, LogMultiBFGSPlus, LognormalDiscreteOnePlusOne, LogSQPCMA,

LogSQPCMAPlus, LPCMA, LPSDE, LQODE, LQOTPDE, LSCMA, LSDE, ManyLN, MaxRecombiningDiscreteLenglerOnePlusOne,

MemeticDE, MetaCauchyRecentering, MetaCMA, MetaModel, MetaModelDE, MetaModelDiagonalCMA, MetaModelDSproba, MetaMod-

elFmin2, MetaModelLogNormal, MetaModelOnePlusOne, MetaModelPSO, MetaModelQODE, MetaModelTwoPointsDE, MetaNGOpt10,

MetaRecentering, MetaTuneRecentering, MicroCMA, MicroSPSA, MicroSQP, MilliCMA, MiniDE, MiniLhsDE, MiniQrDE, MinRecom-

biningDiscreteLenglerOnePlusOne, MixDeterministicRL, MixES, MultiBFGS, MultiBFGSPlus, MultiCMA, MultiCobyla, MultiCobylaPlus,

MultiDiscrete, MultiDS, MultiLN, MultiScaleCMA, MultiSQP, MultiSQPPlus, MutDE, NaiveAnisoEMNA, NaiveAnisoEMNATBPSA,

NaiveIsoEMNA, NaiveIsoEMNATBPSA, NaiveTBPSA, NelderMead, Neural1MetaModel, Neural1MetaModelD, Neural1MetaModelE,

Neural1MetaModelLogNormal, NeuralMetaModel, NeuralMetaModelDE, NeuralMetaModelLogNormal, NeuralMetaModelTwoPointsDE,

NgDS, NgDS11, NgDS2, NgDS3, NGDSRW, NgIoh, NgIoh2, NgIoh3, NgIoh4, NgIoh5, NgIoh6, NgIoh7, NgIoh8, NgIoh9, NgIoh10,

NgIoh11, NgIoh12, NgIoh12b, NgIoh13, NgIoh13b, NgIoh14, NgIoh14b, NgIoh15, NgIoh15b, NgIoh16, NgIoh17, NgIoh18, NgIoh19,

NgIoh20, NgIoh21, NgIohLn, NgIohMLn, NgIohRS, NgIohRW2, NgIohTuned, NgLglr, NgLn, NGO, NGOpt, NGOpt10, NGOpt15,

NGOpt16, NGOpt36, NGOpt39, NGOpt4, NGOpt8, NGOptBase, NGOptDSBase, NGOptF, NGOptF2, NGOptF3, NGOptF5, NGOp-

tRW, NGOptSingle16, NGOptSingle25, NGOptSingle9, NgRS, NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT, NLOPT_GN_DIRECT_L,

NLOPT_GN_ESCH, NLOPT_GN_ISRES, NLOPT_LN_NELDERMEAD, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX, Noisy13Splits,

NoisyBandit, NoisyDE, NoisyDiscreteOnePlusOne, NoisyOnePlusOne, NoisyRL1, NoisyRL2, NoisyRL3, NonNSGAIIES, OldCMA, OL-

NDiscreteOnePlusOne, OnePlusLambda, OnePlusOne, OnePointDE, OnePtRecombiningDiscreteLenglerOnePlusOne, OpoDE, OpoTinyDE,

OptimisticDiscreteOnePlusOne, OptimisticNoisyOnePlusOne, ORandomSearch, OScrHammersleySearch, ParametrizationDE, ParaPortfo-

lio, pCarola6, PCarola6, PolyCMA, PolyLN, Portfolio, PortfolioDiscreteOnePlusOne, PortfolioDiscreteOnePlusOneT, PortfolioNoisyDiscre-

teOnePlusOne, PortfolioOptimisticNoisyDiscreteOnePlusOne, Powell, PSO, QNDE, QODE, QOPSO, QORandomSearch, QORealSpacePSO,

QOScrHammersleySearch, QOTPDE, QrDE, Quad1MetaModel, Quad1MetaModelD, Quad1MetaModelE, RandomScaleRandomSearch,

RandomScaleRandomSearchPlusMiddlePoint, RandomSearch, RandomSearchPlusMiddlePoint, RandRecombiningDiscreteLenglerOnePlu-

sOne, RandRecombiningDiscreteLognormalOnePlusOne, RBFGS, RealSpacePSO, RecES, RecMixES, RecMutDE, RecombiningDiscrete-

LenglerOnePlusOne, RecombiningDiscreteLognormalOnePlusOne, RecombiningGA, RecombiningOptimisticNoisyDiscreteOnePlusOne,

RecombiningPortfolioDiscreteOnePlusOne, RecombiningPortfolioOptimisticNoisyDiscreteOnePlusOne, RescaledCMA, RescaleScrHammer-

sleySearch, RF1MetaModel, RF1MetaModelD, RF1MetaModelE, RF1MetaModelLogNormal, RFMetaModel, RFMetaModelDE, RFMeta-

ModelLogNormal, RFMetaModelOnePlusOne, RFMetaModelPSO, RFMetaModelTwoPointsDE, RLSOnePlusOne, RotatedRecombiningGA,

RotatedTwoPointsDE, RotationInvariantDE, RPowell, RSQP, SADiscreteLenglerOnePlusOneExp09, SADiscreteLenglerOnePlusOneExp099,

SADiscreteLenglerOnePlusOneExp09Auto, SADiscreteLenglerOnePlusOneLin1, SADiscreteLenglerOnePlusOneLin100, SADiscreteLen-

glerOnePlusOneLinAuto, SADiscreteOnePlusOneExp09, SADiscreteOnePlusOneExp099, SADiscreteOnePlusOneLin100, ScrHaltonSearch,

ScrHaltonSearchPlusMiddlePoint, ScrHammersleySearch, ScrHammersleySearchPlusMiddlePoint, SDiagonalCMA, Shiwa, SmallLog-

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

normalDiscreteOnePlusOne, SmoothAdaptiveDiscreteOnePlusOne, SmoothDiscreteLenglerOnePlusOne, SmoothDiscreteLognormalOne-

PlusOne, SmoothDiscreteOnePlusOne, SmoothElitistRandRecombiningDiscreteLenglerOnePlusOne, SmoothElitistRandRecombiningDis-

creteLognormalOnePlusOne, SmoothElitistRecombiningDiscreteLenglerOnePlusOne, SmootherDiscreteLenglerOnePlusOne, SmoothLog-

normalDiscreteOnePlusOne, SmoothPortfolioDiscreteOnePlusOne, SmoothRecombiningDiscreteLenglerOnePlusOne, SmoothRecombin-

ingPortfolioDiscreteOnePlusOne, SODE, SOPSO, SparseDiscreteOnePlusOne, SparseDoubleFastGADiscreteOnePlusOne, SparseOrNot,

SpecialRL, SplitCMA, SplitDE, SplitPSO, SplitQODE, SplitSQOPSO, SplitTwoPointsDE, SPQODE, SPSA, SQOPSO, SQOPSOD-

CMA, SQOPSODCMA20, SQORealSpacePSO, SQP, SQPCMA, SQPCMAPlus, SqrtBFGSCMA, SqrtBFGSCMAPlus, SqrtMulti-

BFGS, SqrtMultiBFGSPlus, SqrtSQPCMA, SqrtSQPCMAPlus, StupidRandom, SuperSmoothDiscreteLenglerOnePlusOne, SuperSmoothEli-

tistRecombiningDiscreteLenglerOnePlusOne, SuperSmoothRecombiningDiscreteLenglerOnePlusOne, SuperSmoothRecombiningDiscreteL-

ognormalOnePlusOne, SuperSmoothTinyLognormalDiscreteOnePlusOne, SVM1MetaModel, SVM1MetaModelD, SVM1MetaModelE,

SVM1MetaModelLogNormal, SVMMetaModel, SVMMetaModelDE, SVMMetaModelLogNormal, SVMMetaModelPSO, SVMMetaMod-

elTwoPointsDE, TBPSA, TEAvgCauchyLHSSearch, TEAvgCauchyScrHammersleySearch, TEAvgLHSSearch, TEAvgRandomSearch,

TEAvgScrHammersleySearch, TEAvgScrHammersleySearchPlusMiddlePoint, TinyCMA, TinyLhsDE, TinyLognormalDiscreteOnePlusOne,

TinyQODE, TinySPSA, TinySQP, TripleCMA, TripleDiagonalCMA, TripleOnePlusOne, TwoPointsDE, TwoPtRecombiningDiscreteLen-

glerOnePlusOne, UltraSmoothDiscreteLenglerOnePlusOne, UltraSmoothElitistRecombiningDiscreteLenglerOnePlusOne, UltraSmoothEli-

tistRecombiningDiscreteLognormalOnePlusOne, UltraSmoothRecombiningDiscreteLenglerOnePlusOne, VastDE, VastLengler, VLPCMA,

VoronoiDE, Wiz, XLognormalDiscreteOnePlusOne, XSmallLognormalDiscreteOnePlusOne, YoSmoothDiscreteLenglerOnePlusOne, Zero.

T LLM USAGE DECLARATION

During the preparation of this manuscript, we used Large Language Models to assist with text clarity,
grammar, and formulation, particularly in polishing the abstract and certain explanatory sentences.
The scientific content, experimental design, results, and interpretations were entirely conceived and
written by the authors. LLMs were not used to generate original ideas, proofs, or analyses; its
contribution was limited to language refinement.

51

	Introduction
	Preliminaries: Problem setting, Related work and Motivations
	Discrete Black-box Optimization
	Multivariate Estimation of Distribution Algorithms
	The Case on Neural Estimators

	Multivariate EDA With Order-Invariant Reinforcement Learning
	Deep Reinforcement Learning for EDAs: Setting and Architectures
	Deep Reinforcement Learning for EDAs: Training
	Order invariant reinforcement learning for EDAs

	Experiments
	Comparison of the different versions of reinforcement learning multivariate EDA
	Experimental Validation on Discrete Black-Box Benchmarks

	Conclusion
	Reproducibility Statement
	Appendix
	 Appendix
	Related methods for solving black-box combinatorial problems
	Derivation of the PPO update (2)
	Derivation of the PPO update with varying generation/training orders
	On the Convergence in the Infinite Data and Infinite Capacity Regime
	Generation/Training Permutations as Information-Preserving Input Dropout
	On the Choice of the PPO-KL algorithm as our backbone for order-invariant RL
	Connection with Natural Gradient and Information-Geometric Optimization Algorithm
	Algorithm pseudo-code
	Multivariate EDA with with learned order
	Plackett-Luce distribution
	Plackett-Luce reparametrization trick
	Learned–EDA algorithm

	Synthetic Data Set Generation and experimental protocol
	Multivariate EDA Hyperparameter Configuration and computing time
	Hyperparameter Configuration
	Time and space Complexity
	Computing time

	Global Experimental Results
	Ablation studies and sensitivity analyses
	Impact for using additional structural dropout for generation and training
	Impact for using structural dropout instead of causal mask during training
	Impact of using a known interaction graph between variables
	Sensitivity to the population size
	Sensitivity to the KL penalty coefficient
	Sensitivity to the logistic regression models used in the Markov Kernels
	Sensitivity to the number of training epochs at each generation

	Results on NAS-Bench-101 real dataset
	Early-budget behavior and adaptation of the algorithm in this context
	Comparison with a variant using a critic neural network
	Variant sharing parameters of hidden layers for scaling to large problems
	Ablation study: Non auto-regressive Generation (using Gibbs sampling)
	Nevergrad competing algorithms
	LLM Usage Declaration

