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Abstract

We prove that, given a mean-field location-scale variational family, black-box vari-
ational inference (BBVI) with the reparametrization gradient converges at a rate
that is nearly independent of any explicit dimension dependence. Specifically, for
a d-dimensional strongly log-concave and log-smooth target, the number of iter-
ations for BBVI with a sub-Gaussian family to obtain a solution ϵ-close to the
global optimum has an explicit dimension dependence no larger than O(log d).
This is a significant improvement over the O(d) dependence of full-rank location-
scale families. For heavy-tailed families, we prove a weaker O(d2/k) dependence,
where k is the number of finite moments of the family. Additionally, if the Hessian
of the target log-density is constant, the complexity is free of any explicit dimen-
sion dependence. We also prove that our bound on the gradient variance, which is
key to our result, cannot be improved using only spectral bounds on the Hessian
of the target log-density.

1 Introduction

Variational inference (VI; Blei et al., 2017; Hinton and van Camp, 1993; Jordan et al., 1999; Peterson
and Hartman, 1989) is an effective method for approximating intractable high-dimensional distribu-
tions and models with tall datasets. Among various VI algorithms, black-box VI (BBVI; Kucukelbir
et al., 2017; Ranganath et al., 2014; Titsias and Lázaro-Gredilla, 2014; Wingate and Weber, 2013),
which minimizes the exclusive KL divergence (Kullback and Leibler, 1951) via stochastic gradient
descent (SGD; Bottou et al., 2018; Robbins and Monro, 1951) in the space of parameters, is widely
used due to its flexibility to apply to a wide range of variational families with only minor modifica-
tions (Bingham et al., 2019; Carpenter et al., 2017; Fjelde et al., 2025; Ge et al., 2018; Patil et al.,
2010). Specifically, location-scale variational families—in which a base distribution is mutated by
an affine transformation—remain a popular choice, encompassing those with diagonal scale matri-
ces (the “mean-field” approximation; Hinton and van Camp, 1993; Peterson and Hartman, 1989), as
well as scale matrices with low rank (Ong et al., 2018; Rezende et al., 2014; Tomczak et al., 2020)
and full-rank (Kucukelbir et al., 2017; Titsias and Lázaro-Gredilla, 2014) factors.

The choice of the variational family is generally known to affect the convergence speed of BBVI,
where families that are more “expressive,” those that contain more complex distributions, result in
slower convergence. For example, in location-scale families, it has been empirically observed that
mean-field families often provide faster convergence to an accurate posterior approximation than
full-rank families (Agrawal et al., 2020; Giordano et al., 2018, 2024; Ko et al., 2024; Zhang et al.,
2022). This is because full-rank families often require running SGD with a smaller step size and
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for longer; even given a large computation budget, BBVI on a full-rank family may not converge
adequately (Ko et al., 2024). Therefore, choosing the expressiveness of the family corresponds to
trading statistical accuracy for computational efficiency (Bhatia et al., 2022). In order to control this
trade-off for our benefit, a clear theoretical understanding of the relationship between convergence
speed and expressiveness is needed.

Formally, consider the setting of approximating a µ-strongly log-concave and L-log-smooth target,
where κ ≜ L/µ is the condition number. For BBVI with the reparametrization gradient (Kingma
and Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014) on a full-rank location-
scale family, an ϵ-close solution to the global optimum in squared distance in parameter space can
be obtained after at least O(dκ2ϵ−1) iterations (Domke, 2019; Kim et al., 2023a). For mean-field
location-scale families, on the other hand, the iteration complexity improves to O(

√
d κ2ϵ−1) (Kim

et al., 2023a). While this is clearly better than the O(d) explicit dimension dependence of full-rank
families, it has been conjectured that a better dependence is more likely (Kim et al., 2023a).

In this work, we positively resolve this conjecture by obtaining stronger convergence guarantees for
BBVI on mean-field location-scale families (Section 3). In particular, under the conditions stated
above, we prove that BBVI with a mean-field location-scale family with sub-Gaussian tails can
obtain an ϵ-accurate solution in squared distance after O((log d)κ2ϵ−1) iterations. Heavier-tailed
families achieve a weaker O(d2/kκ2ϵ−1) iteration complexity guarantee, where k is the number
of finite moments of the variational family. For the Student-t variational family with a high-enough
degrees of freedom ν, this corresponds to a O(d2/(ν−2)) explicit dimension dependence. In addition,
if the Hessian of the target log-density is constant, any mean-field location-scale family attains a
O(κ2ϵ−1) iteration complexity without any explicit dependence on d.

The key element of the proof is a careful probabilistic analysis of the variance of the reparametriza-
tion gradient (Section 4): In general, the reparametrization gradient of the scale parameters contains
heavy-tailed components that grow not-so-slowly in d. However, for mean-field families, only a
single random coordinate turns out to be heavy-tailed. Through a probabilistic decomposition, the
influence of this heavy-tailed component can be averaged out over all d coordinates. Then the
lighter-tailed components of the gradient dominate as d increases, resulting in a benign dimension
dependence (Lemma 4.1). We also provide a lower bound (Proposition 4.2) showing that our analy-
sis cannot be improved when using only spectral bounds on the Hessian of the target log-density.

2 Preliminaries

Notation We denote random variables in sans serif (e.g., u, U). Sd≻0 ⊂ Rd×d denotes the set
of d × d positive definite (PD) matrices, Dd ⊂ Rd×d denotes the set of diagonal matrices, and
Dd

≻0 ⊂ Dd ∩ Sd×d
≻0 is its positive definite subset. 〈·, ·〉 and ‖·‖2 denote the Euclidean inner product

and norm. For a matrix A ∈ Rd×d, ‖A‖F =
√
tr(A⊤A) is the Frobenius norm, ‖A‖2 = σmax(A)

is the ℓ2 operator norm, where σmax(·) and σmin(·) are the largest and smallest singular values.

2.1 Problem Setup

Our problem of interest is an optimization problem over some space Λ ⊆ Rp of the form of

minimize
λ∈Λ

{
F (λ) ≜ f(λ) + h (λ)

}
, where f(λ) ≜ Ez∼qλℓ (z) , (1)

ℓ : Rd → R is a measurable function we refer to as the “target function”, h : Λ → R is a potentially
non-smooth convex regularizer, and the expectation Ez∼qλℓ(z) is assumed to be intractable.

BBVI is a special case of Eq. (1) where ℓ = − log π is the negative (unnormalized) log-density
of some distribution π with respect to the Lebesgue measure and h(λ) = −H[qλ] is the negative
differential entropy of qλ. Then F is the exclusive Kullback-Leibler divergence DKL (Kullback and
Leibler, 1951) up to an additive constant (Jordan et al., 1999), where Eq. (1) reduces to

minimize
λ∈Λ

{
DKL(qλ, π) ∝ −Ez∼qλ log π(z)−H (qλ)

}
, (2)

We assume π is supported on Rd, which, unless discrete-valued variables are involved, is often valid
after appropriate support transformations (Kim et al., 2023a, §2.2). Such a setup for BBVI has been
proposed by Kucukelbir et al. (2017), and now encompasses most practical use of BBVI with the
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reparametrization gradient as implemented in Stan (Carpenter et al., 2017), PyMC (Patil et al., 2010),
Pyro (Bingham et al., 2019), and Turing (Fjelde et al., 2025; Ge et al., 2018).

For the purpose of a quantitative theoretical analysis, we will consider the following properties:
Definition (Smoothness). For some ϕ : Rd → R, we say ϕ is L-(Lipschitz )smooth if there exists
some L ∈ (0,+∞) such that, for all z, z′ ∈ Rd,

‖∇ϕ(z)−∇ϕ(z′)‖2 ≤ L‖z − z′‖2 .

Definition (Strong Convexity). For some ϕ : Rd → R, we say ϕ is µ-strongly convex if there exists
some constant µ ∈ (0, L] such that, for all z, z′ ∈ Rd,

〈∇ϕ(z), z − z′〉 ≥ ϕ(z)− ϕ(z′) +
µ

2
‖z − z′‖22 .

In the context of BBVI, assuming that ℓ = − log π is both µ-strongly convex and L-smooth is
equivalent to assuming π is µ-strongly log-concave and L-log-Lipschitz smooth, respectively, which
is common in the analysis of MCMC (Chewi, 2024) and VI (Arnese and Lacker, 2024; Diao et al.,
2023; Domke et al., 2023; Kim et al., 2023a; Lambert et al., 2022; Lavenant and Zanella, 2024).

2.2 Variational Family
We consider the location-scale family (Casella and Berger, 2001, §3.5):
Definition 2.1 (Location-Scale Variational Family). A family of distributions Q is referred to as
a location-scale variational family if there exists some univariate distribution φ dominated by the
Lebesgue measure such that each member of Q indexed by λ = (m,C) ∈ Rd ×C, where C ⊂ Rd×d

and qλ ∈ Q, satisfies
z ∼ qλ ⇔ z d

= Tλ (u) ,
where

Tλ (u) ≜ Cu +m, u ≜ (u1, . . . , ud), ui
i.i.d.∼ φ ,

and d
= is equivalence in distribution. Then Tλ is referred to as the “reparametrization function,”

while m and C are referred to as the location and scale parameters, respectively.

In addition, we impose mild regularity assumptions on the moments of the base distribution:
Assumption 2.2. φ satisfies the following: (i) It is standardized such that Eui = 0 and Eu2

i = 1,
(ii) symmetric such that Eu3

i = 0, and (iii) its kurtosis is finite such that Eu4
i = r4 < ∞.

The location-scale family with Assumption 2.2 encompasses many variational families used in prac-
tice, such as Gaussians, Student-t with a high-enough degrees of freedom ν, Laplace, and so on, and
enables the use of the reparametrization gradient.

While the choice of φ gives control over the tail behavior of the family, the choice of the structure
of the scale matrix C gives control over how much correlation between coordinates of ℓ the varia-
tional approximation can represent. This ability to represent correlations is often referred to as the
“expressiveness” of a variational family, where the most expressive choice is the following:
Definition 2.3 (Full-Rank Location-Scale Family). We say Q is a full-rank location-scale family if
it satisfies Definition 2.1 and, for any C ∈ C, C is invertible and the squared Cs, CC⊤, span the
whole space of dense Rd×d positive definite matrices as {CC⊤ | C ∈ C} = Sd

≻0.

Typically, full-rank location-scale families are formed by setting C to be the set of invertible trian-
gular matrices (the “Cholesky factor parametrization”; Kucukelbir et al., 2017; Titsias and Lázaro-
Gredilla, 2014) or the set of symmetric square roots (Domke, 2020; Domke et al., 2023). Adding
further restrictions on C forms various subsets of the broader location-scale family. In this work, we
focus on the case where C ∈ C is restricted to be diagonal such that C ⊂ Dd, which is known as the
mean-field approximation (Hinton and van Camp, 1993; Peterson and Hartman, 1989):
Definition 2.4 (Mean-Field Location-Scale Family). We say Q is a mean-field location-scale family
if it satisfies Definition 2.1 and all C ∈ C are diagonal such that C ⊂ Dd .

2.3 Algorithm Setup
Recall that BBVI is essentially SGD in the space of parameters of the variational distribution. There-
fore, we have to define the space of parameters. For this, we use the “linear” parametrization:

Λ =
{
λ = (m,C) | m ∈ Rd, C ∈ Dd

≻0

}
⊂ Rp . (3)
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Under this parametrization, the desirable properties of ℓ easily transfer to f . For instance, if ℓ
is µ-strongly convex and L-smooth, f is also µ-strongly convex and L-smooth (Domke, 2020).
This contrasts with “non-linear parametrizations” commonly used in practice, such as making the
diagonal positive by Cii = exp(λCii

). Such practice rules out transfer of strong convexity and
smoothness (Kim et al., 2023a) unless constraints such as Cii ≥ δ for some δ > 0 are enforced (Hotti
et al., 2024). (Though they can sometimes be beneficial by reducing gradient variance; Hotti et al.,
2024; Kim et al., 2023b.) The flip side of using the linear parametrization is that we must now
enforce the constraint C � 0. Furthermore, h then becomes non-smooth with respect to C:

h(λ) = −H(qλ) = − log|detC| − dH(φ) = −
∑d

i=1 log|Cii| − dH(φ) . (4)

This corresponds to log-barrier functions (Parikh and Boyd, 2014, §6.7.5), which are non-smooth.
Thus, the optimization algorithm must somehow deal with these difficulties (Domke, 2020).

In this work, we will rely on the proximal variant of stochastic gradient descent (SGD; Bottou, 1999;
Bottou et al., 2018; Nemirovski et al., 2009; Robbins and Monro, 1951; Shalev-Shwartz et al., 2011),
often referred to as stochastic proximal gradient descent (SPGD; Nemirovski et al., 2009). Proximal
methods are a family of methods that rely on proximal operators (Parikh and Boyd, 2014), which
are well defined as long as the following hold:
Assumption 2.5. h : Λ → R ∪ {+∞} is convex, bounded below, and lower semi-continuous.
The non-smoothness of h and the domain constraint are handled by the proximal operator

proxγh(λ) ≜ argmin
λ′∈Λ

{
h(λ′) + (1/γ)‖λ− λ′‖22

}
,

while the intractability of f is handled through stochastic estimates of ∇f (Definition 2.6). For a
step size schedule (γt)t≥0, ∇̂f , an unbiased estimator of ∇f(λt) = E∇̂f(λt; u), and a sequence of
i.i.d. noise (ut)t≥0, for each t ≥ 0, SPGD iterates

λt+1 = proxγth

(
λt − γt∇̂f(λ; ut)

)
.

In the case of BBVI with a mean-field location-scale family, the proximal operator of Eq. (4) is
identical to that of log-barrier functions (Parikh and Boyd, 2014, §6.7.5):

proxγh(λ = (m,C)) = (m,C ′), where C ′
ii = (1/2)

(
Cii +

√
C2

ii + 4γ
)
.

Instead of using SPGD, one can also use projected SGD, where C is projected to a subset where F

is smooth (Domke, 2020) and use the “closed-form entropy” gradient ∇̂F ≜ ∇̂f +∇h (Kucukelbir
et al., 2017; Titsias and Lázaro-Gredilla, 2014). However, the resulting theoretical guarantees are
indistinguishable (Domke et al., 2023), and the need for setting a closed domain of C is inconvenient.
Therefore, we only consider SPGD. But our results can easily be applied to projected SGD.

For ∇̂f , we will use the classic reparametrization gradient (Ho and Cao, 1983; Rubinstein, 1992):
Definition 2.6 (Reparametrization Gradient). For a differentiable function ℓ : Rd → R,

∇̂f(λ; u) ≜ ∇λℓ (Tλ (u)) =
∂Tλ(u)
∂λ

∇ℓ (Tλ (u)) , where u ∼ φ ,

is an unbiased estimator of ∇f such that ∇λEz∼qλℓ(z) = ∇f(λ).

The reparametrization gradient, also known as the push-in gradient or pathwise gradient, was in-
troduced to VI by Kingma and Welling (2014); Rezende et al. (2014); Titsias and Lázaro-Gredilla
(2014). (See also the reviews by Glasserman 1991; Mohamed et al. 2020; Pflug 1996.) It is empir-
ically observed to outperform alternatives (Kucukelbir et al., 2017; Mohamed et al., 2020) such as
the score gradient (Glynn, 1990; Williams, 1992) and de facto standard whenever ℓ is differentiable.
(Though theoretical evidence of this superiority is limited to the quadratic setting; Xu et al., 2019.)

2.4 General Analysis of Stochastic Proximal Gradient Descent
Analyzing the convergence of BBVI corresponds to analyzing the convergence of SPGD (or more
broadly, of SGD) for the class of problems that corresponds to BBVI. For this, we will first discuss
sufficient conditions for the convergence of SPGD and the resulting consequences.
Assumption 2.7 (Lipschitz Gradients in Expectation). There exists some constant L ∈ [0,∞) such
that, for all λ, λ′ ∈ Λ,

E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 ≤ L2‖λ− λ′‖22 .
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Assumption 2.8 (Bounded Variance). There exists some constant σ ∈ [0,∞) such that, for all
λ∗ ∈ argminλ∈Λ F (λ),

E‖∇̂f(λ∗; u)‖22 ≤ σ2 .

Both assumptions were initially used by Bach and Moulines (2011, Assumptions H2 and H4) to
analyze the convergence of SGD. Here, Assumption 2.7 serves as an analog of L-smoothness, and
thus determines the largest stepsize we can use. The strategy of combining Assumptions 2.7 and 2.8
is referred to as “variance transfer” (Garrigos and Gower, 2023, §4.3.3). Previously, for analyzing
BBVI, a slightly different assumption called quadratically-bounded variance (QV)—which assumes
the existence of α, β ∈ [0,+∞) such that, for all λ ∈ Λ, E‖∇̂f(λ; u)‖22 ≤ α‖λ−λ∗‖22 +β holds—
has been commonly used (Domke, 2019; Domke et al., 2023; Kim et al., 2024b). While similar, our
assumptions result in a constant-factor improvement in the resulting bounds.

For the analysis, we will use a two-stage step size schedule (Gower et al., 2019, Theorem 3.2):

γt =

{
γ0 if t ≤ t∗
1
µ

2t+1
(t+1)2

if t ≥ t∗ + 1
, where 0 < γ0 ≤ µ

2L2
(5)

This operates by first maintaining a fixed step size γ0 until some switching time t∗ ∈ {0, . . . , T},
and then switches to the 1/t schedule of Lacoste-Julien et al. (2012).

Under Assumptions 2.7 and 2.8, we can now provide a complexity guarantee for solving Eq. (1)
via SPGD. Since BBVI consists of a subset of Eq. (1), establishing Assumptions 2.7 and 2.8 and
invoking the following result will constitute our complexity guarantee for BBVI.

Proposition 2.9. Suppose f is µ-strongly convex, h satisfies Assumption 2.5, and ∇̂f satisfies As-
sumptions 2.7 and 2.8. Then, for the global optimum λ∗ = argminλ∈Λ F (λ) and ∆ ≜ ‖λ0 − λ∗‖2,
there exists some t∗ and γ0 such that SPGD with the step size schedule in Eq. (5) guarantees

T ≥ O

{
σ2

µ2

1

ϵ
+

σL
µ2

log

(
L2

σ2
∆2

)
1√
ϵ
+

L2

µ2
log

(
∆2 1

ϵ

)
+ 1

}
⇒ E‖λT − λ∗‖22 ≤ ϵ .

Proof. See the full proof in Appendix B.1.1, p. 26.

This result is a slight improvement over past analysis of SPGD with Eq. (5) (Domke et al., 2023,
Theorem 7). In particular, the dependence on the initialization ∆ has been improved to be loga-
rithmic instead of polynomial. Furthermore, it encompasses the case where we have “interpolation”
(σ2 = 0; Kim et al., 2024b; Schmidt and Roux, 2013; Vaswani et al., 2019) automatically resulting
in a O(log 1/ϵ) complexity. The key difference in the analysis is that we choose a different switching
time t∗ in a way adaptive to σ2 and ∆, ensuring that the dependence on both is optimized.

For a non-strongly convex f , using the strategy of Domke et al. (2023, Theorem 8 and 11) should
yield a corresponding O

(
1/ϵ2

)
complexity guarantee under the same set of assumptions. However,

this requires fixing the horizon T in advance, and it is currently unknown how to obtain an anytime
O(1/

√
T ) convergence bound for SGD under Assumptions 2.7 and 2.8 or QV. If one moves away

from the canonical SGD update by incorporating Halpern iterations (Halpern, 1967), it is possible
to obtain any-time convergence under a QV-like assumption (Alacaoglu et al., 2025).

3 Main Results

3.1 General Result

For our results, we impose an additional assumption that is a generalization of L-smoothness under
twice differentiability of ℓ.

Assumption 3.1. ℓ is twice differentiable and, for all z ∈ Rd, there exist some matrix H ∈ Rd×d

and constant δ ∈ [0,∞) satisfying

‖H‖2 < ∞ and ‖∇2ℓ(z)−H‖2 ≤ δ .

Notably, if ℓ is twice differentiable, µ-strongly convex, L-smooth, it already satisfies Assumption 3.1
with H = L+µ

2 Id and δ = L−µ
2 . If ℓ is only L-smooth, it satisfies it with H = 0d×d and δ = L. The

key advantage of this assumption, however, is that it characterizes Hessians that are not necessarily
well-conditioned, but almost constant. This crucially affects the dimension dependence.
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Given our assumptions on the target function ℓ, variational family Q, and our choice of gradient esti-
mator, we can guarantee that SPGD applied to a problem structure corresponding to BBVI (Eq. (1))
achieves a given level of accuracy ϵ after O(g(d,H, δ, µ, φ)ϵ−1) number of iterations:

Theorem 3.2. Suppose the following hold:
1. ℓ is µ-strongly convex and satisfies Assumption 3.1 and µ ≤ σmin(H) ≤ σmax(H) ≤ L.
2. h satisfies Assumption 2.5.
3. Q is a mean-field location-scale family, where Assumption 2.2 holds.

4. ∇̂f is the reparametrization gradient.
Denote the global optimum λ∗ = (m∗, C∗) = argminλ∈Λ F (λ), the irreducible gradient noise as
σ2
∗ ≜ ‖m∗− z̄‖22+ ‖C∗‖2F, and the stationary point of ℓ as z̄ ≜ argminz∈Rd ℓ(z). Then there exists

some t∗ and γ0 such that SPGD with the step size schedule in Eq. (5) guarantees

T ≥ O
{
g(d,H, δ, µ, φ)

(
σ2
∗ϵ

−1 + σ∗ log
(
‖λ0 − λ∗‖22

)
ϵ−1/2

)}
⇒ E‖λT − λ∗‖22 ≤ ϵ ,

where
g(d,H, δ, µ, φ) ≜ 2 (1 + r4)

(
‖H‖22/µ2

)
+ 4
(
δ2/µ2

)(
(1/2) + r4 + E max

j=1,...,d
u2
j

)
.

Proof. The full proof can be found in Appendix B.2.1, p. 32.

Due to the identity ‖λ − λ′‖22 = Eu∼φ⊗d‖Tλ(u) − Tλ′(u)‖22 (Lemma A.3), which is the squared
cost of a coupling between qλT

and qλ∗ , our guarantee also translates to a guarantee in Wasserstein-
2 distance: E‖λT − λ∗‖22 ≤ ϵ ⇒ EW2(qλT

, qλ∗)
2 ≤ ϵ. In the general case where δ > 0,

the dimension dependence enters through Emaxj=1,...,d u2
j , which depends on the order-statistics

of the base distribution φ. In case ℓ is a quadratic, corresponding to π being a Gaussian target
distribution in the BBVI context, there exists some H such that ∇2ℓ(z) = H for all z ∈ Rd. Thus,
Assumption 3.1 holds with δ = 0, implying a dimension-independent convergence rate. We will
present additional special cases with more explicit choices of φ in the next section.

In case we do not want to assume Assumption 3.1 and only assume that ℓ is µ-strongly convex and L-
smooth instead, we can replace them with the generic choices of H = L+µ

2 Id and δ = L−µ
2 , which

hold for all ℓs that are µ-strongly convex, L-smooth, and twice differentiable. This then makes the
role of the condition number κ ≜ L/µ more explicit.

Corollary 3.3. Suppose ℓ is is twice differentiable, µ-strongly convex, and L-smooth. Then, denot-
ing the condition number as κ ≜ L/µ, Theorem 3.2 holds with

g
(
d, L+µ

2 Id,
L−µ
2 , µ, φ

)
= (1/2)(1 + r4)(κ+ 1)

2
+ (κ− 1)

2
(
(1/2) + r4 + E max

j=1,...,d
u2
j

)
.

This makes the O(κ2) condition number dependence explicit, but the downside is that we lose di-
mension independence in the case of ill-conditioned quadratic ℓs. This fact suggests that dimension
dependence is more fundamentally related to how close the Hessian is to a constant rather than how
well-conditioned it is.

3.2 Special Cases with Benign Dimension Dependence
We now present some special cases of Theorem 3.2, which has yet to exhibit an explicit dependence
on dimensionality. As mentioned in the previous section, dimension dependence depends on the
order statistics of φ, which is related to the tail behavior of φ.

Variational Families with Sub-Gaussian Tails. The most commonly used variational family in
practice is the Gaussian variational family. More broadly, for sub-Gaussian variational families, u2

i
is sub-exponential and therefore admits a moment generating function (MGF) (Wainwright, 2019,
Theorem 2.6), which leads to a O(log d) explicit dimension dependence.

Proposition 3.4. Suppose there exists some t > 0 such that the MGF of u2
i satisfies Mu2

i
(t) < ∞.

Then
E max

i=1,...,d
u2
i ≤ (1/t)

(
logMu2

i
(t) + log d

)
.

For example, if φ is a standard Gaussian, then

g(d,H, δ, µ, φ) ≤ 8
(
‖H‖22/µ2

)
+
(
δ2/µ2

)
(22 + 16 log d) .

Proof. The full proof can be found in Appendix B.2.2, p. 33.
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Variational Families with Finite Higher Moments. For families with tails heavier than sub-
Gaussian, however, u2

i may not have an MGF. While we then lose the O(log d) dependence, we may
still obtain a polynomial dependence that can be better than O(

√
d ) obtained in previous works (Kim

et al., 2023b). In particular, the result that will follow states that the highest order of the available
moments determines the order of dimension dependence. For Student-t families, this implies that
using a high-enough degree of freedom ν can make the dimension dependence benign.

Proposition 3.5. Suppose, for k ≥ 2, the kth moment of u2
i is finite as r2k = Eu2k

i < ∞. Then
E max

i=1,...,d
u2
i ≤

√
2 d1/k r

1/k
2k .

For example, if φ is a Student-t with ν > 4 degrees of freedom and unit variance, then
g(d,H, δ, µ, φ) ≤ 8(‖H‖22/µ2) + (δ2/µ2)

(
16 +

√
2 ν3d

2
ν−2

)
.

Proof. See the full proof in Appendix B.2.3, p. 35.

4 Analysis of Gradient Variance

4.1 Overview

The key technical contribution of this work is analyzing the gradient variance and thus establishing
the constants L (Assumption 2.7) and σ2 (Assumption 2.8), which boils down to analyzing

E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 = E
∥∥∥∥∂Tλ(u)∂λ

∇ℓ(Tλ(u))−
∂Tλ′(u)
∂λ′ ∇ℓ(Tλ′(u))

∥∥∥∥2
2

= E
∥∥∥∥∂Tλ(u)∂λ

(∇ℓ(Tλ(u))−∇ℓ(Tλ′(u)))
∥∥∥∥2
2

,

where the equality follows from the fact that the Jacobian ∂Tλ(u)/∂λ does not depend on λ. For
mean-field location-scale variational families, the squared Jacobian follows as(

∂Tλ (u)
∂λ

)⊤
∂Tλ (u)

∂λ
= Id + U2 ,

where U ≜ diag(u1, . . . , ud) (Kim et al., 2023b). This implies that

E‖∇̂f (λ; u)− ∇̂f(λ′; u)‖22
= E‖∇ℓ (Tλ (u))−∇ℓ (Tλ′ (u))‖22︸ ︷︷ ︸

≜Vloc

+E‖U(∇ℓ (Tλ (u))−∇ℓ (Tλ′ (u)))‖22︸ ︷︷ ︸
≜Vscale

. (6)

Our goal is to bound each term by ‖λ− λ′‖22.

In order to solve the expectations, we need to simplify the ∇ℓ terms. For instance, for the gradient
of the location Vloc, assuming that ℓ is L-smooth allows for a quadratic approximation. That is,

Vloc = E‖∇ℓ (Tλ (u))−∇ℓ (Tλ′ (u))‖22 ≤ L2E‖Tλ (u)− Tλ′ (u)‖22 = L2‖λ− λ′‖22 ,

where the last equality is by Lemma A.3.

Now, it is tempting to use the same quadratic approximation strategy for the gradient of the scale
Vscale. Indeed, this strategy was used by Domke (2019) to bound the gradient variance of full-rank
location-scale variational families and by Ko et al. (2024) for structured location-scale variational
families. Unfortunately, this strategy does not immediately apply to mean-field families due to the
matrix U. We somehow have to decouple ∇ℓ(Tλ(u)) − ∇ℓ(Tλ′(u)) and U, but in a way that does
not lose the correlation between the two; the correlation leads to cancellations critical to obtaining a
tight bound. Kim et al. (2023b) used the inequality

Vscale ≤ E‖U2‖F‖∇ℓ(Tλ(u))−∇ℓ(Tλ′(u))‖22 , (7)

which resulted in a dimension dependence of O(r4
√
d ) after solving the expectation. The key

question is whether this dimension dependence can be improved. Due to the ordering of norms
‖·‖2 ≤ ‖·‖F, it is natural to consider the tighter inequality

Vscale ≤ E‖U‖22‖∇ℓ(Tλ(u))−∇ℓ(Tλ′(u))‖22 .

(This step corresponds to Eq. (8) in the proof sketch of the upcoming result.) The main challenge,
however, is solving the resulting expectation in a way that is also tight with respect to d. We will see
that this requires a careful probabilistic analysis.
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4.2 Upper Bound on Gradient Variance
We now formally state our upper bound on the gradient variance. In the context of proving Theo-
rem 3.2, the following lemma implies both Assumption 2.7 and Assumption 2.2. (See the proof of
Theorem 3.2.) We provide a corresponding unimprovability result in Section 4.3.

Lemma 4.1. Suppose Assumptions 2.2 and 3.1 hold, Q is a mean-field location-family, and ∇̂f is
the reparametrization gradient. Then, for any λ, λ′ ∈ Rd × Dd.

E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 ≤
{
2(1 + r4)‖H‖22 + 4δ2

(
1/2 + r4 + E max

j=1,...,d
u2
j

)}
‖λ− λ′‖22 .

Proof Sketch. For the proof sketch, we will assume that ℓ is L-smooth instead of taking Assump-
tion 3.1. This will vastly simplify the analysis and let us focus on the key elements.

Recall Vscale in Eq. (6). Applying the operator norm and the L-smoothness of ℓ yields
Vscale ≤ E‖U‖22‖∇ℓ(Tλ(u))−∇ℓ(Tλ′(u))‖22 ≤ L2E‖U‖22‖Tλ(u)− Tλ′(u)‖22 . (8)

It remains to solve the expectation over u1, . . . , ud. Denote

λ = (m,C), λ′ = (m′, C ′), m̄ ≜ m−m′, and C̄ ≜ C − C ′ ,

recall that Tλ(u) = Cu+m (Definition 2.1), and notice that, since U is a diagonal matrix, ‖U‖22 =
maxi=1,...,d u2

j . Then we can rewrite Eq. (8) as

Vscale ≤ L2E
(

max
i=1,...,d

u2
j

)∑d
i=1(Ciiui +mi − C ′

iiui −m′
i)

2

= L2E
(

max
i=1,...,d

u2
j

)∑d
i=1

(
C̄iiui + m̄i

)2
≤ L2E

(
max

i=1,...,d
u2
j

)∑d
i=1

(
2C̄2

iiu
2
i + 2m̄2

i

)
. (Young’s inequality)

The problematic term is

E
(

max
j=1,...,d

u2
j

)∑d
i=1C̄

2
iiu

2
i = Eu2

i∗

∑d
i=1C̄

2
iiu

2
i = E

[
C̄2

i∗ i∗u4
i∗ +

∑d
j ̸=i∗C̄

2
jju

2
i∗u2

j

]
,

where i∗ = argmaxi=1,...,d u2
i is the coordinate of maximum magnitude. Here, u4

i∗ =

maxi=1,...,d u4
i is a heavy-tailed quantity that generally grows fast in d, unlike u2

i∗ . (e.g., for a
Gaussian ui, u2

i∗ has an MGF but u4
i∗ does not.) Therefore, a benign dimension dependence might

appear futile. Notice, however, that the problematic term only affects a single dimension: the maxi-
mal axis indicated by i∗. A probabilistic analysis reveals that as d increases, the effect of u4

i∗ becomes
averaged out and the effect of the remaining term involving u2

i dominates. More formally,

Eu2
i∗

∑d
i=1C̄

2
iiu

2
i =

∑d
i=1C̄

2
ii E
[
u4

i∗1{i∗ = i}+ u2
i∗u2

i 1{i∗ 6= i}
]
,

where
E
[
u4

i∗1{i∗ = i}
]

= E
[
u4

i∗

]
E[1{i∗ = i}] = E

[
u4

i∗

]
P[i∗ = i] = E

[
u4

i∗

]
(1/d) .

Since the maximum of d random variable is always smaller than their sum, the probability of the
maximally random event, P[i∗ = i] = 1/d, kills off the dimensional growth of u4

i∗ . In fact, using the
crude bound Eu4

i∗ ≤ E
∑d

i=1 u4
i = dr4, where the last equality is due to Assumption 2.2, is enough

to make this term independent of d. The remaining dimension dependence comes from u2
i∗ :

E
[
u2

i∗u2
i 1{i∗ 6= i}

]
= E

[
max
j ̸=i

u2
j u2

i 1{i∗ 6= i}
]

≤ E
[

max
j=1,...,d−1

u2
j

]
E
[
u2
i

]
= E max

j=1,...,d−1
u2
j ,

where the last equality follows from Assumption 2.2. Therefore, we finally obtain

Vscale ≤ 2L2
d∑

i=1

[(
E max

j=1,...,d−1
u2
j + r4

)
C̄2

ii + E max
j=1,...,d

u2
j m̄

2
i

]
≤ 2L2

(
E max

j=1,...,d
u2
j + r4

)(
‖m̄‖22 + ‖C̄‖2F

)
= 2L2

(
E max

j=1,...,d
u2
j + r4

)
‖λ− λ′‖22 .

The full proof performs an analogous analysis under the more general Assumption 3.1.
See the full proof in Appendix B.3.1, p. 37.
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4.3 Unimprovability
We also demonstrate a lower bound, which implies that Lemma 4.1 cannot be improved by the
spectral bounds of ∇2ℓ. From Eq. (6) and the fundamental theorem of calculus,

E‖∇̂f(λ; u)‖22 ≥ E‖U(∇ℓ (z)−∇ℓ (z̄))‖22 = E
∥∥U
∫ 1

0
∇2ℓ(zw)(z − z̄)dw

∥∥2
2
, (9)

where z̄ ∈ {z | ∇ℓ(z) = 0} is a stationary point of ℓ, z ≜ Tλ(u), and zw ≜ wz + (1− w)z̄. There
exists a matrix-valued function with bounded singular values that lower-bounds this quantity:

Proposition 4.2. Suppose Assumption 2.2 holds and Q is a mean-field location-scale family. Then,
for any t > 0, d > 0, µ,L ∈ (0,+∞) satisfying µ ≤ L, there exists a matrix-valued function
H(z) : Rd → Sd≻0 satisfying µId � H � LId almost surely and a set of parameters λ = (m,C) ∈
Rd × Dd

≻0 such that

E
∥∥U
∫ 1

0
H(zw)(z − z̄)dw

∥∥2
2
≥
{

(L−µ)2

4 − L2

2

E max
i=1,...,d

u4
i

d

}
c(t, φ)

{
E max
i=1,...,d−1

u2
i − t

}
‖C‖2F .

where c(t, φ) > 0 is a constant only dependent on t and φ.

Proof. The full proof can be found in Appendix B.3.4, p. 43.

For Gaussians, Emaxi u4
i is upper bounded as O(

√
d ) (Gumbel, 1954, Eq. 1.6), which means the

negative term vanishes at a O(1/
√
d ) rate. Furthermore, Emaxi u2

i ≥ (Emaxi ui)
2
= Ω(log d)

by the well-known lower bound on the expected maximum of i.i.d. Gaussians (Wainwright, 2019,
Exercise 2.11.(b)). Combining these facts with Proposition 4.2 yield a Ω

(
L2 log d

)
bound on Eq. (9).

Remark 4.3. It is not obvious that the rows of our worst-case example Hworst form conservative
vector fields. This means that Proposition 4.2 does not assert the existence of a function ℓ that
satisfies ∇2ℓ = Hworst. However, it does suggest that one cannot improve Lemma 4.1 by relying
only on spectral bounds on the Hessian.

5 Discussion
5.1 Related Works
Early results analyzing VI had to rely on assumptions that either: (i) do not hold on Gaussian
targets, (ii) are difficult to verify, or (iii) require bounds on the domain (Alquier and Ridgway, 2020;
Buchholz et al., 2018; Fan et al., 2015; Fujisawa and Sato, 2021; Khan et al., 2016; Liu and Owen,
2021; Nguyen et al., 2025; Regier et al., 2017). coordinate-ascent VI (CAVI), in particular, was
studied on specific models (Ghorbani et al., 2019; Zhang and Zhou, 2020) only. Under general and
verifiable assumptions, Xu and Campbell (2022) obtained asymptotic convergence guarantees, while
partial results, such as bounds on the gradient variance (Domke, 2019; Fan et al., 2015; Kim et al.,
2023b), or regularity of the ELBO (Challis and Barber, 2013; Domke, 2020; Titsias and Lázaro-
Gredilla, 2014), were known.

It was only recently that non-asymptotic quantitative convergence under realizable and verifiable as-
sumptions was established. For BBVI specifically, Hoffman and Ma (2020) first proved convergence
on Gaussian targets (quadratic ℓ), while Domke et al. (2023); Kim et al. (2023a, 2024b) proved the
first results on strongly convex and smooth functions with location-scale families. Surendran et al.
(2025) extended these results to non-convex smooth functions and more complex variational fam-
ily parametrizations, and Cheng et al. (2024) analyzed a variant of semi-implicit VI. The results
of Domke et al.; Hoffman and Ma; Kim et al., who focused on full-rank families, suggest a O(d)
dimension dependence in the iteration complexity. On the other hand, Kim et al. (2023a) reported a
O(

√
d ) dimension dependence for mean-field location-scale families, while conjecturing O(log d)

dependence, based on the partial result of Kim et al. (2023b). For targets with a diagonal Hessian
structure, Ko et al. (2024, Corollary 1) show that mean-field families are dimension-independent.

Apart from BBVI, Wasserstein VI algorithms—which minimize the KL divergence on the Wasser-
stein geometry—provide non-asymptotic convergence guarantees. In particular, the algorithms by
Diao et al. (2023); Lambert et al. (2022) optimize over the full-rank Gaussian family, while that
of Jiang et al. (2025) optimizes over all mean-field families with bounded second moments. To
guarantee EW2(qλT

, qλ∗)
2 ≤ ϵ on strongly log-concave and log-smooth targets, they all report an

iteration complexity of O(dϵ−1 log ϵ−1). Meanwhile, under the same conditions, Arnese and Lacker
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(2024); Lavenant and Zanella (2024) analyzed (block) CAVI, and reported an iteration complexity
of O(d log ϵ−1). Bhattacharya et al. (2025) provides a concurrent result on CAVI, but relies on an
assumption that departs from log-concavity and smoothness. Finally, Bhatia et al. (2022) analyzes
a specialized algorithm optimizing over only the scale of Gaussians, which has a gradient query
complexity of O(dkϵ−3), where k is the user-chosen number of rank-1 factors in the scale matrix.

5.2 Conclusion
In this work, we proved that BBVI with mean-field location-scale families is able to converge with an
iteration complexity with only a O(log d) dimension dependence, as long as the tails of the family
are sub-Gaussian. For high-dimensional targets, this suggests a substantial speed advantage over
BBVI with full-rank families. In practice, the mean-field approximation can be combined with other
design elements such as control variates (Boustati et al., 2020; Geffner and Domke, 2018, 2020;
Miller et al., 2017; Roeder et al., 2017; Wang et al., 2024) and data-point subsampling (Kucukelbir
et al., 2017; Titsias and Lázaro-Gredilla, 2014). Our analysis strategy should easily be combined
with existing analyses (Kim et al., 2024a,b) for such design elements.

For a target distribution π with a condition number of κ and a target accuracy level ϵ, we now know
how to improve the dependence on d and ϵ in the iteration complexity: Using less-expressive families
such as mean-field (Theorem 3.2) or structured (Ko et al., 2024) families improves the dependence
on d, while applying control variates to gradient estimators (Kim et al., 2024b) improves the depen-
dence on ϵ. However, it is currently unclear whether the dependence on κ is tight or improvable. If it
is tight, it would be worth investigating whether this can be provably improved through algorithmic
modifications, for example, via stochastic second-order optimization methods (Byrd et al., 2016;
Fan et al., 2015; Liu and Owen, 2021; Meng et al., 2020; Regier et al., 2017).

Another future direction would be to develop methods that are able to adaptively adjust the compu-
tational cost between O(log d) and O(d) by trading statistical accuracy akin to the method of Bhatia
et al. (2022). Existing BBVI schemes with “low-rank(-plus-diagonal)” families (Ong et al., 2018;
Rezende et al., 2014; Tomczak et al., 2020) result in a non-smooth, non-Lipschitz, and non-convex
landscape. This not only rules out typical theoretical convergence guarantees but also exhibits unsta-
ble and slow convergence in practice (Modi et al., 2025). Furthermore, understanding the statistical
side of this trade-off will be an important direction. As of now, our understanding is restricted to
either mean-field or full-rank families (Katsevich and Rigollet, 2024; Margossian and Saul, 2023,
2025; Wang and Blei, 2019a,b; Yang et al., 2020; Zhang and Gao, 2020) with little in between
except for the work of Bhatia et al. (2022).
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to have some path to reproducing or verifying the results.
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material?
Answer: [NA]
Justification: The paper does not contain any experiments.
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• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
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material.
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Answer: [NA]
Justification: The paper does not contain any experiments.
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• The answer NA means that the paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not contain any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines: The content of the paper is a theoretical study of an inference algorithm and
does not involve real data.

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The content of the paper is a theoretical study of an inference algorithm and
does not have direct societal consequences.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

20

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve real data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not involve real data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not involve real data.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: Part of the supporting results were obtained after some minor interaction
with LLMs. However, all of the proofs were written and proofread by humans. Therefore,
LLMs did not play an important, original role nor did they contribute any non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Auxiliary Lemmas

Lemma A.1. Suppose Assumption 2.2 holds. Then r4 = Eu4
i ≥ 1.

Proof. By Jensen’s inequality Eu4
i ≥

(
Eu2

i

)2
. Lastly, Eu4

i ≥ (Eu2
i )

2
= 1 by Assumption 2.2.

Lemma A.2. Suppose Assumption 2.2 holds and denote U = diag(u1, . . . , ud). Then we have the
following identities: (i) Euu⊤ = Id, (ii) EU2 = Id.

Proof. From Assumption 2.2, we know that Eu2
i = 1. Then (i) follows from

[Euu⊤]ij = Euiuj =

{
Eu2

i if i = j

EuiEuj if i 6= j
=

{
1 if i = j

0 if i 6= j
.

For (ii), we only need to focus on the diagonal since the off-diagonal is already zero.

[EU2]ii = [Ediag(u1, . . . , ud)
2
]ii = Eu2

i = 1 .

Lemma A.3. Suppose Assumption 2.2 holds, Tλ is the reparametrization function for a location-
scale family, and the linear parametrization is used. Then

E‖Tλ(u)− Tλ′(u)‖22 = ‖λ− λ′‖22 .

Proof. Denoting λ = (m,C) and λ′ = (m′, C ′),

E‖Tλ(u)− Tλ′(u)‖22
= E‖(Cu +m)− (C ′u −m′)‖22
= E‖(C − C ′)u + (m−m′)‖22
= E‖(C − C ′)u‖22 + 2〈(C − C ′)Eu, m−m′〉+ E‖m−m′‖22
= E‖(C − C ′)u‖22 + E‖m−m′‖22 . (Assumption 2.2) (10)

Lastly,

E‖(C − C ′)u‖22 = Eu⊤(C − C ′)
⊤
(C − C ′)u

= E tr u⊤(C − C ′)
⊤
(C − C ′)u

= tr (C − C ′)
⊤
(C − C ′)Euu⊤ (cyclic property of trace)

= tr (C − C ′)
⊤
(C − C ′)I (Lemma A.2)

= tr (C − C ′)
⊤
(C − C ′)

= ‖C − C ′‖2F .

Combining this with Eq. (10) yields the result.

Lemma A.4. Suppose f is µ-strongly convex and Assumption 2.7 holds. Then f is L-Lipschitz
smooth, while the constants satisfy the ordering

µ ≤ L ≤ L .

Proof. For all λ, λ′ ∈ Λ, the unbiasedness of ∇̂f and Jensen’s inequality states that

‖∇f(λ)−∇f(λ′)‖22 = ‖E∇̂f(λ; u)− E∇̂f(λ′; u)‖22 ≤ E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 .

Then the µ-strong convexity of f and Assumption 2.7 yields the inequality

µ2‖λ− λ′‖22 ≤ ‖∇f(λ)−∇f(λ′)‖22 ≤ E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 ≤ L2‖λ− λ′‖22 ,

from which the statement follows immediately.
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B Proofs

B.1 Proofs of Results in Section 2

B.1.1 Proof of Proposition 2.9

Under the stated assumptions, we first establish a convergence bound which bounds E‖λT − λ∗‖22
after T iterations under a given step size schedule. We will invert this convergence bound into a
complexity guarantee by identifying the conditions on T , t∗, and γ0 that guarantee E‖λT −λ∗‖22 ≤ ϵ
for a given ϵ > 0.
Lemma B.1. Suppose f is µ-strongly convex, h satisfies Assumption 2.5, and ∇f satisfies As-
sumptions 2.7 and 2.8. Then, for the global optimum λ∗ = argminλ∈Λ F (λ), any t∗ satisfying
4L2/µ2 ≤ t∗ ≤ T , and the step size schedule in Eq. (5), the contraction coefficient ρ ≜ 1 − µγ0
satisfies ρ ∈ (0, 1) and the last iterate of SPGD after T iterations, λT , satisfies

E‖λT − λ∗‖22 ≤ ‖λ0 − λ∗‖22 ρt∗
(
t∗

2

T 2

)
+ 2γ0

σ2

µ

t∗
2

T 2
+

8σ2

µ2

T − t∗
T 2

.

Proof. The full proof is deferred to Appendix B.1.2, p. 29.

This is a slight generalization of a result (Domke et al., 2023, Theorem 7), where the switching
time t∗ was fixed to some t∗ ∝ L/µ. While the choice of t∗ ∝ L/µ results in the typical O(1/ϵ)
asymptotic complexity, it suffers from a suboptimal polynomial dependence on the initialization
error ∆ = ‖λ0 − λ∗‖2. Picking an alternative t∗, which is what we do in the proof, improves the
iteration complexity to O

(
1/ϵ+ 1/

√
ϵ log∆2 + log(∆2/ϵ)

)
.

Proposition 2.9. Suppose f is µ-strongly convex, h satisfies Assumption 2.5, and ∇̂f satisfies As-
sumptions 2.7 and 2.8. Then, for the global optimum λ∗ = argminλ∈Λ F (λ) and ∆ ≜ ‖λ0 − λ∗‖2,
there exists some t∗ and γ0 such that SPGD with the step size schedule in Eq. (5) guarantees

T ≥ O

{
σ2

µ2

1

ϵ
+

σL
µ2

log

(
L2

σ2
∆2

)
1√
ϵ
+

L2

µ2
log

(
∆2 1

ϵ

)
+ 1

}
⇒ E‖λT − λ∗‖22 ≤ ϵ .

Proof. Since f is strongly convex and h is convex, F is also strongly convex. This implies that, by
the property of strictly convex functions, F has a unique global optimum, which we denote as λ∗.

From Lemma B.1, we have

E‖λT − λ∗‖22 ≤ ‖λ0 − λ∗‖22 ρt∗
(
t∗

2

T 2

)
+ 2γ0

σ2

µ

t∗
2

T 2
+

8σ2

µ2

T − t∗
T 2

, (11)

where ρ = 1− γ0µ. We will optimize the upper bound over the parameters t∗, γ0, and T so that we
can ensure the ϵ-accuracy guarantee E‖λT − λ∗‖22 ≤ ϵ.

Consider the choice

t∗ = min

{⌈
1

log 1/ρ
log

(
µ

2γ0σ2
‖λ0 − λ∗‖22

)⌉
, T

}
and γ0 =

µ

2L2
. (12)

Using this, we will separately analyze the total error in Eq. (11) for the cases of t∗ = T and t∗ 6= T .

The case t∗ = T happens only if⌈
1

log 1/ρ
log

(
µ

2γ0σ2
‖λ0 − λ∗‖22

)⌉
≥ T

is true. Then an immediate implication is that

1

log 1/ρ
log

(
µ

2γ0σ2
‖λ0 − λ∗‖22

)
+ 1 ≥ T

⇔ log

(
µ

2γ0σ2
‖λ0 − λ∗‖22

)
≥ (log 1/ρ)(T − 1)

⇔ µ

2γ0σ2
‖λ0 − λ∗‖22 ≥ ρ−(T−1)
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⇔ ‖λ0 − λ∗‖22ρT−1 ≥ 2γ0
σ2

µ
. (13)

Considering this fact, Eq. (11) becomes

E‖λT − λ∗‖22 ≤ ‖λ0 − λ∗‖22 ρT + 2γ0
σ2

µ
(t∗ = T )

≤ ‖λ0 − λ∗‖22 ρT + ‖λ0 − λ∗‖22ρT−1 (Eq. (13))

≤ 2‖λ0 − λ∗‖22ρT−1 . (ρ < 1)

The number of required steps for achieving the ϵ-accuracy requirement follows from

2‖λ0 − λ∗‖22ρT−1 ≤ ϵ

⇔ 2‖λ0 − λ∗‖22
1

ϵ
≤ (1/ρ)

T−1

⇔ log

(
2‖λ0 − λ∗‖22

1

ϵ

)
≤ (T − 1) log (1/ρ)

⇔ 1

log 1/ρ
log

(
2‖λ0 − λ∗‖22

1

ϵ

)
≤ T − 1

⇐ 1

1− ρ
log

(
2‖λ0 − λ∗‖22

1

ϵ

)
≤ T − 1 (log(1/ρ) ≥ 1− ρ)

⇔ 2L2

µ2
log

(
2‖λ0 − λ∗‖22

1

ϵ

)
+ 1 ≤ T (1− ρ = γ0µ = µ2/(2L2)) (14)

For the case t∗ 6= T ,

t∗ =

⌈
1

log 1/ρ
log

(
µ

2γ0σ2
‖λ0 − λ∗‖22

)⌉
(15)

≥ 1

log 1/ρ
log

(
µ

2γ0σ2
‖λ0 − λ∗‖22

)
=

1

log ρ
log

(
2γ0σ

2

µ

1

‖λ0 − λ∗‖22

)
.

This implies

ρt∗ ≤ 2γ0σ
2

µ

1

‖λ0 − λ∗‖22
.

Substituting for this in Eq. (11),

E‖λT − λ∗‖22 ≤ 2γ0
σ2

µ

t∗
2

T 2
+ 2γ0

σ2

µ

t∗
2

T 2
+ 8

σ2

µ2

T − t∗
T 2

= 4γ0
σ2

µ

t∗
2

T 2
+ 8

σ2

µ2

T − t∗
T 2

≤ 4γ0
σ2

µ

t∗
2

T 2
+ 8

σ2

µ2

1

T

= a
1

T 2
+ b

1

T
,

which is a quadratic function of 1/T with the coefficients

a ≜ 4γ0
σ2

µ
t∗

2 and b ≜ 8
σ2

µ2
.

Achieving the ϵ-accuracy guarantee is equivalent to finding the largest x = 1/T satisfying the
inequalities x > 0 and

ax2 + bx ≤ ϵ .
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By the quadratic formula, this is equivalent to finding the largest x satisfying

0 ≤ x ≤ −b+
√
b2 + 4aϵ

2a
.

Therefore, picking any

T ≥ 2a

−b+
√
b2 + 4aϵ

is sufficient to obtain an ϵ-accurate solution. To make the bound more interpretable, after defining
α = 4aϵ and β = b, we can use the inequality (Symbol-1, 2022)

α

2
√
β2 + α

≤ −β +
√
β2 + α .

Then

2a

−b+
√
b2 + 4aϵ

≤ 2a
2
√
b2 + 4aϵ

4aϵ
=

√
b2 + 4aϵ

1

ϵ
≤ b

1

ϵ
+ 2

√
a

1√
ϵ

,

where we used the inequality
√
a+ b ≤

√
a +

√
b . Thus, we have

T ≥ b
1

ϵ
+ 2

√
a

1√
ϵ

⇒ E‖λT − λ∗‖22 ≤ ϵ .

Substituting t∗ and γ0 with the expressions in Eq. (12),

T ≥ 8
σ2

µ2

1

ϵ
+ 2

√
4γ0

σ2

µ
t∗

2 1√
ϵ

= 8
σ2

µ2

1

ϵ
+ 4

√
γ0

σ

µ1/2
t∗

1√
ϵ

⇐ T ≥ 8
σ2

µ2

1

ϵ
+ 4

√
γ0

σ

µ1/2

(
1

log 1/ρ
log

(
µ

2γ0σ2
‖λ0 − λ∗‖22

)
+ 1

)
1√
ϵ

(Eq. (15))

⇐ T ≥ 8
σ2

µ2

1

ϵ
+ 4

√
µ

2L2

σ

µ1/2

(
2L2

µ2
log

(
µ

2σ2

2L2

µ
‖λ0 − λ∗‖22

)
+ 1

)
1√
ϵ

(log 1/ρ ≥ 1− ρ = µ2/(2L2))

= 8
σ2

µ2

1

ϵ
+ 2

√
2
σ

L

(
2L2

µ2
log

(
L2

σ2
‖λ0 − λ∗‖22

)
+ 1

)
1√
ϵ

Now, Lemma A.4 asserts that L ≥ µ. This allows us to further simplify the term

2
√
2
σ

L

(
2L2

µ2
log

(
L2

σ2
‖λ0 − λ∗‖22

)
+ 1

)
≤ 2

√
2
σ

L

(
2L2

µ2
log

(
L2

σ2
‖λ0 − λ∗‖22

)
+

2L2

µ2
log 3

)
= 2

√
2
σ

L
2L2

µ2
log

(
3
L2

σ2
‖λ0 − λ∗‖22

)
= 4

√
2
σL
µ2

log

(
3
L2

σ2
‖λ0 − λ∗‖22

)
.

Considering this, the sufficient condition for E‖λT − λ∗‖22 ≤ ϵ is now

T ≥ 8σ2

µ2

1

ϵ
+ 4

√
2
σL
µ2

log

(
3
L2

σ2
‖λ0 − λ∗‖22

)
1√
ϵ

. (16)

Combining both cases, that is, Eqs. (14) and (16), we have

T ≥ max

(
8σ2

µ2

1

ϵ
+ 4

√
2
σL
µ2

log

(
3
L2

σ2
‖λ0 − λ∗‖22

)
1√
ϵ
,
2L2

µ2
log

(
2‖λ0 − λ∗‖22

1

ϵ

)
+ 1

)
.

This implies the stated result.
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B.1.2 Proof of Lemma B.1

The proof closely mirrors the strategy of Garrigos and Gower (2023, Theorem 12.9), which is a
combination of previous analyses of SPGD (Gorbunov et al., 2020; Khaled et al., 2023) with the
analysis of SGD strongly convex objectives with a decreasing step size schedule (Gower et al., 2019).
The main difference is that Garrigos and Gower utilize a different condition on the gradient variance
instead of Assumption 2.7. Specificially, they assume that, for all λ, λ′ ∈ Λ, there exists some
function of L(u) : supp(u) → [0,∞) such that, for each u ∈ supp(u), the function ∇̂f(λ;u) :
Λ → Rp is L(u)-smooth with respect to λ. This then enables the use of the “convex expected
smoothness” (Gorbunov et al., 2020; Khaled et al., 2023) condition, which postulates that, for all
λ ∈ Λ, there exists some L < ∞ such that

E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 ≤ L2Df (λ, λ
′) , (17)

where

Df (λ, λ
′) ≜ f(λ)− f(λ′)− 〈∇f(λ′), λ− λ′〉 (18)

is the Bregman divergence associated with f . Note that Assumption 2.7 and the µ-strong convexity
of f implies Eq. (17). Therefore, under our assumptions, one can invoke the results that assume
Eq. (17), which was the strategy by some previous analyses of BBVI (Kim et al., 2023a; Ko et al.,
2024). Here, we will take a more straightforward approach that uses Assumption 2.7 directly in the
convergence proof, but the results are identical to the indirect approach of establishing Eq. (17).
Lemma B.1. Suppose f is µ-strongly convex, h satisfies Assumption 2.5, and ∇f satisfies As-
sumptions 2.7 and 2.8. Then, for the global optimum λ∗ = argminλ∈Λ F (λ), any t∗ satisfying
4L2/µ2 ≤ t∗ ≤ T , and the step size schedule in Eq. (5), the contraction coefficient ρ ≜ 1 − µγ0
satisfies ρ ∈ (0, 1) and the last iterate of SPGD after T iterations, λT , satisfies

E‖λT − λ∗‖22 ≤ ‖λ0 − λ∗‖22 ρt∗
(
t∗

2

T 2

)
+ 2γ0

σ2

µ

t∗
2

T 2
+

8σ2

µ2

T − t∗
T 2

.

Proof. Since f is strongly convex and h is convex, F is also strongly convex. This implies that F
has a unique global optimum, which we denote as λ∗. Furthermore, under the stated assumptions
on h, the proximal operator proxγh(·) is non-expansive for any γ ∈ (0,∞) (Garrigos and Gower,
2023, Lemma 8.17) and any λ, λ′ ∈ Rp such that

‖proxγh(λ)− proxγh(λ
′)‖2 ≤ ‖λ− λ′‖2 (19)

and λ∗ is the fixed-point of the deterministic proximal gradient descent step (Garrigos and Gower,
2023, Lemma 8.18) such that

proxγh(λ∗ − γ∇f(λ∗)) = λ∗ . (20)

Using these facts,

‖λt+1 − λ∗‖22 ≤ ‖proxγth(λt − γt∇̂f(λt; u))− proxγth(λ∗ − γt∇f(λ∗))‖22 (Eq. (20))

≤ ‖λt − γt∇̂f(λt; u))− λ∗ + γt∇f(λ∗)‖22 . (Eq. (19))

Expanding the square,

‖λt+1 − λ∗‖22 ≤ ‖λt − λ∗‖22 − 2γt〈∇̂f(λt; u)−∇f(λ∗), λt − λ∗〉+ γ2
t ‖∇̂f(λt; u)−∇f(λ∗)‖22 .

Denoting the filtration of the σ-field of the iterates generated up to iteration t as Ft,

E
[
‖λt+1 − λ∗‖22 | Ft

]
≤ ‖λt − λ∗‖22 − 2γ2

t

〈
E
[
∇̂f(λt; u) | Ft

]
−∇f(λ∗), λt − λ∗

〉
+ γ2

t E
[
‖∇̂f(λt; u)−∇f(λ∗)‖22 | Ft

]
= ‖λt − λ∗‖22 − 2γt〈∇f(λt)−∇f(λ∗), λt − λ∗〉+ γ2

t E
[
‖∇̂f(λt; u)−∇f(λ∗)‖22 | Ft

]
, (21)

where the equality follows from the fact that ∇̂f is unbiased conditional on any λt ∈ Λ.

From the µ-strong convexity of f ,

− 2γt〈∇f(λt)−∇f(λ∗), λt − λ∗〉
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= −2γt〈∇f(λt), λt − λ∗〉+ 2γt〈∇f(λ∗), λt − λ∗〉
≤ −γtµ‖λt − λ∗‖22 − 2γt

{
f(λt)− f(λ∗)− 〈∇f(λ∗), λt − λ∗〉

}
(µ-strong convexity of f )

= −γtµ‖λt − λ∗‖22 − 2γtDf (λt, λ∗) (Eq. (18)) . (22)

The gradient variance at λt, on the other hand, can be compared against the gradient variance at λ∗
through the variance transfer strategy as

γ2
t E
[
‖∇̂f(λt; u)−∇f(λ∗; u)‖22 | Ft

]
= γ2

t E
[
‖∇̂f(λt; u)− ∇̂f(λ∗; u) + ∇̂f(λ∗; u)−∇f(λ∗; u)‖22 | Ft

]
≤ 2 γ2

t E
[
‖∇̂f(λt; u)− ∇̂f(λ∗; u)‖22 | Ft

]
+ 2γ2

t E
[
‖∇̂f(λ∗; u)−∇f(λ∗; u)‖22 | Ft

]
(Young’s inequality)

≤ 2γ2
tL2‖λt − λ∗‖22 + 2γ2

t σ
2 , (Assumptions 2.7 and 2.8)

= 4γ2
t

L2

µ

(
f(λt)− f(λ∗)− 〈∇f(λt), λt − λ∗〉

)
+ 2γ2

t σ
2 (µ-strong convexity of f )

= 4γ2
t

L2

µ
Df (λt, λ∗) + 2γ2

t σ
2 . (23)

Applying Eqs. (22) and (23) to Eq. (21),

E
[
‖λt+1 − λ∗‖22 | Ft

]
≤ ‖λt − λ∗‖22 − γt

(
µ‖λt − λ∗‖22 + 2Df (λt, λ∗)

)
+ 2γ2

t

(
2
L2

µ
Df (λt, λ∗) + σ2

)
= (1− γtµ)‖λt − λ∗‖22 + 2γt

(
2γt

L2

µ
− 1

)
Df (λt, λ∗) + 2γ2

t σ
2 .

Taking expectation over all randomness, we obtain our general partial contraction bound

E‖λt+1 − λ∗‖22 ≤ (1− γtµ)E‖λt − λ∗‖22 + 2γt

(
2γt

L2

µ
− 1

)
E[Df (λt, λ∗)] + 2γ2

t σ
2 . (24)

Due to the form of the step size schedule, SPGD operates in two different regimes: the first stage
with a fixed step size γt = γ0 (t ∈ {0, . . . , t∗}) and the second stage with a decreasing step size
γt+1 < γt (t ∈ {t∗ + 1, . . . , T}). In the first stage, γt = γ0 ≤ µ

2L2 . Then the Bregman divergence
term in Eq. (24) is negative such that

E‖λt+1 − λ∗‖22 ≤ (1− γtµ)E‖λt − λ∗‖22 + 2γ2
t σ

2 (25)

Unrolling the recursion yields

E‖λt∗ − λ∗‖22 ≤ (1− γ0µ)
t∗‖λ0 − λ∗‖22 + 2γ2

0σ
2
t∗−1∑
t=0

(1− γ0µ)
t

≤ (1− γ0µ)
t∗‖λ0 − λ∗‖22 + 2γ0

σ2

µ
(geometric series sum formula)

≤ ρt∗‖λ0 − λ∗‖22 + 2γ0
σ2

µ
. (26)

From Lemma A.4, we deduce that γ0µ = µ2/(2L2) ≤ 1/2, which implies ρ ∈ (0, 1).

We now turn to the second stage, where the step size starts decreasing. Notice that Eq. (5) satisfies

γt =
1

µ

2t+ 1

(t+ 1)
2 ≤ 1

µ

2t∗ + 1

(t∗ + 1)
2 ≤ 1

µ

2

t∗
≤ 1

µ

2µ2

4L2
≤ µ

2L2
.

Therefore, γt ≤ µ
2L2 for all t ≥ 0. Again, the Bregman term in Eq. (24) is negative such that

E‖λt+1 − λ∗‖22 ≤ (1− γtµ)E‖λt − λ∗‖22 + 2γ2
t σ

2 .
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Subtituting γt with the choice in Eq. (5), we obtain

E‖λt+1 − λ∗‖22 ≤

(
1− 2t+ 1

(t+ 1)
2

)
E‖λt − λ∗‖22 + 2

σ2

µ2

(2t+ 1)
2

(t+ 1)
4

=
t2

(t+ 1)
2E‖λt − λ∗‖22 + 2

σ2

µ2

(2t+ 1)
2

(t+ 1)
4 .

Multiplying (t+ 1)
2 to both sides,

(t+ 1)
2E‖λt+1 − λ∗‖22 ≤ t2E‖λt − λ∗‖22 + 2

σ2

µ2

(2t+ 1)
2

(t+ 1)
2 .

Let us choose the Lyapunov function Vt ≜ (t+ 1)
2E‖λt+1 − λ∗‖22 . Then the discrete derivative of

the Lyapunov,

Vt+1 − Vt ≤ 2
σ2

µ2

(2t+ 1)
2

(t+ 1)
2 ≤ 8

σ2

µ2
,

shows that the energy is increasing only by a constant. By integrating the Lyapunov over the time
interval t = t∗, . . . , T − 1,

VT − Vt∗ ≤ 8
σ2

µ2
(T − t∗)

⇔ VT ≤ Vt∗ + 8
σ2

µ2
(T − t∗)

⇔ T 2 E‖λT − λ∗‖22 ≤ t2∗E‖λt∗ − λ∗‖22 + 8
σ2

µ2
(T − t∗)

⇔ E‖λT − λ∗‖22 ≤ t∗
2

T 2
E‖λt∗ − λ∗‖22 + 8

σ2

µ2

T − t∗
T 2

.

Substuting ‖λt∗ − λ∗‖22 with the error in Eq. (26),

E‖λT − λ∗‖22 ≤
(
ρt∗‖λ0 − λ∗‖22 + 2γ0

σ2

µ

)
t∗

2

T 2
+ 8

σ2

µ2

T − t∗
T 2

= ‖λ0 − λ∗‖22 ρt∗
t∗

2

T 2
+ 2γ0

σ2

µ

t∗
2

T 2
+

8σ2

µ2

T − t∗
T 2

, (27)

which is our stated result.
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B.2 Proofs of Results in Section 3

B.2.1 Proof of Theorem 3.2

Theorem 3.2. Suppose the following hold:
1. ℓ is µ-strongly convex and satisfies Assumption 3.1 and µ ≤ σmin(H) ≤ σmax(H) ≤ L.
2. h satisfies Assumption 2.5.
3. Q is a mean-field location-scale family, where Assumption 2.2 holds.

4. ∇̂f is the reparametrization gradient.
Denote the global optimum λ∗ = (m∗, C∗) = argminλ∈Λ F (λ), the irreducible gradient noise as
σ2
∗ ≜ ‖m∗− z̄‖22+ ‖C∗‖2F, and the stationary point of ℓ as z̄ ≜ argminz∈Rd ℓ(z). Then there exists

some t∗ and γ0 such that SPGD with the step size schedule in Eq. (5) guarantees

T ≥ O
{
g(d,H, δ, µ, φ)

(
σ2
∗ϵ

−1 + σ∗ log
(
‖λ0 − λ∗‖22

)
ϵ−1/2

)}
⇒ E‖λT − λ∗‖22 ≤ ϵ ,

where
g(d,H, δ, µ, φ) ≜ 2 (1 + r4)

(
‖H‖22/µ2

)
+ 4
(
δ2/µ2

)(
(1/2) + r4 + E max

j=1,...,d
u2
j

)
.

Proof. The proof consists of establishing the sufficient conditions of Proposition 2.9 as follows:

(i) ℓ is µ-strongly convex ⇒ f is µ-strongly convex.

(ii) Assumption 3.1 ⇒ Assumptions 2.7 and 2.8.

Under the linear parametrization, (i) was established by Domke (2020, Thm. 9). It remains to
establish (ii). Therefore, the proof focuses on analyzing the variance of the gradient estimator ∇̂f .

Since Assumption 3.1 holds, Lemma 4.1 states that, for all λ, λ′ ∈ Rd × Dd, the inequality

E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 ≤
{
2(1 + r4)‖H‖22 + 4δ2

(
1/2 + r4 + E max

j=1,...,d
u2
j

)}
‖λ− λ′‖22

holds. Since Λ ⊂ Rd ×Dd under the linear parametrization, this implies we satisfy Assumption 2.7
with

L2 = 2(1 + r4)‖H‖22 + 4δ2
(
1/2 + r4 + E max

j=1,...,d
u2
j

)
. (28)

Furthermore, For the specific choice of λ∗ = (m∗, C∗) = argminλ∈Λ F (λ) and λ̄ = (z̄, 0d×d)
(which is not part of Λ), we have the equality

E‖∇̂f(λ∗; u)− ∇̂f
(
λ̄; u

)
‖22 = E‖∇̂f(λ∗; u)− ∇̂f(z̄; u)‖22 = E‖∇̂f(λ∗; u)‖22 .

This means Lemma 4.1 also implies Assumption 2.8 with the constant

σ2 = L2‖λ∗ − λ̄‖22 = L2
(
‖m∗ − z̄‖+ ‖C∗‖2F

)
= L2σ2

∗ . (29)

We are now able to invoke Proposition 2.9. Substituting L and σ2 in Eq. (27) with the expressions
above, we obtain the condition

T ≥ max

(
8σ2

∗L2

µ2

1

ϵ
+ 4

√
2
σ∗L2

µ2
log

(
3

σ2
∗
‖λ0 − λ∗‖22

)
1√
ϵ
,
2L2

µ2
log

(
2‖λ0 − λ∗‖22

1

ϵ

)
+ 1

)
.

Using the fact L ≥ µ from Lemma A.4, we finally have

T ≥ L2

µ2
max

(
8σ2

∗
1

ϵ
+ 4

√
2 σ∗ log

(
3

σ2
∗
‖λ0 − λ∗‖22

)
1√
ϵ
, 2 log

(
2‖λ0 − λ∗‖22

1

ϵ

)
+ 1

)
.

Finally, substituting for Eq. (28) yields our stated result.
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B.2.2 Proof of Proposition 3.4

The result follows from a well-known bound on the expected maximum of sub-exponential random
variables. We state the proof for completeness.
Lemma B.2. Let x1, . . . , xd be i.i.d. random variables. Suppose there exists some t > 0 such that
their moment-generating function (MGF) satisfies Mxi (t) < ∞. Then

E max
i=1,...,d

xi ≤ 1

t
(logMxi (t) + log d) .

Proof.

E
[
t max
i=1,...,d

xi

]
= log exp

(
E
[
t max
i=1,...,d

xi

])
≤ logE exp

(
t max
i=1,...,d

xi

)
(Jensen’s inequality)

= logE max
i=1,...,d

exp (txi)

≤ logE
d∑

i=1

exp (txi)

= log

d∑
i=1

Mxi(t) (Definition of MGFs)

= log(dMxi(t)) . (x1, . . . , xd are i.i.d.)

Dividing both sides by t yields the statement.

Applying Lemma B.2 to u2
i yields the result.

Proposition 3.4. Suppose there exists some t > 0 such that the MGF of u2
i satisfies Mu2

i
(t) < ∞.

Then
E max

i=1,...,d
u2
i ≤ (1/t)

(
logMu2

i
(t) + log d

)
.

For example, if φ is a standard Gaussian, then

g(d,H, δ, µ, φ) ≤ 8
(
‖H‖22/µ2

)
+
(
δ2/µ2

)
(22 + 16 log d) .

Proof. The first part of the statement is a re-statement of Lemma B.2.

For the special case of ui ∼ N (0, 1), we know that u2
i ∼ χ2

1 (Johnson et al., 1995, Eq. 29.1), which
is the χ2 distribution with 1 degree of freedom. The MGF of χ2

1 is given as

Mu2
i
(t) = (1− 2t)

−1/2 (Johnson et al., 1995, Eq. 29.6)

for t ∈ (0, 1/2). Then we can invoke Lemma B.2, which suggests

E max
i=1,...,d

u2
i ≤ min

t∈(0,1/2)

1

t

(
−1

2
log (1− 2t) + log d

)
.

Any fixed choice of t ∈ (0, 1/2) is a valid upper bound. Picking t = 1
2

(
1− 1

e

)
≥ 1

4 yields

E max
i=1,...,d

u2
i ≤ 4

(
1

2
+ log d

)
. (30)

Furthermore, the kurtosis of the standard Gaussian is r4 = 3 (Johnson et al., 1994, Eq. 13.11).
Plugging r4 and Eq. (30) into g in Theorem 3.2 yields the statement.
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B.2.3 Proof of Proposition 3.5

The result follows from the following moment-based bound on the expected maximum of random
variables, which is a non-asymptotic refinement of the proof by Rana (2017).
Lemma B.3. Let x1, . . . , xd be i.i.d. non-negative random variables where, for k ≥ 2, their kth
moment is finite. That is, Exk

i = rk < ∞. Then
E max

i=1,...,d
xi ≤ d1/k(k/(k − 1))

(k−1)/k
r
1/k
k .

Proof. For any ϵ > 0, we have

E max
i=1,...,d

xi =
∫ ϵd1/k

0

P
[

max
i=1,...,d

xi ≥ t

]
dt+

∫ ∞

ϵd1/k

P
[

max
i=1,...,d

xi ≥ t

]
dt

≤
∫ ϵd1/k

0

dt+

∫ ∞

ϵd1/k

dP [xi ≥ t] dt (i.i.d. and P[·] ≤ 1)

= d1/k
(
ϵ+

1

kϵk−1

∫ ∞

ϵd1/k

k
(
ϵd1/k

)k−1

P [xi ≥ t] dt

)
≤ d1/k

(
ϵ+

1

kϵk−1

∫ ∞

ϵd1/k

ktk−1 P [xi ≥ t] dt

)
(ϵd1/k ≤ t)

≤ d1/k
(
ϵ+

1

kϵk−1

∫ ∞

0

ktk−1 P [xi ≥ t] dt

)
(Decreased lower limit of integral) .

Now, from the definition of moments, we know that∫ ∞

0

ktk−1 P [xi ≥ t] dt =

∫ ∞

0

∫ ∞

−∞
ktk−1 1xi>t dP[xi] dt

=

∫ ∞

−∞

∫ ∞

0

ktk−1 1xi>t dt dP[xi] (Fubini’s Theorem)

=

∫ ∞

−∞

∫ xi

0

ktk−1 dt dP[xi]

=

∫ ∞

−∞
xk
i dP[xi]

= rk .

Therefore,

E max
i=1,...,d

xi ≤ d1/k
(
ϵ+

1

kϵk−1
rk

)
.

The bound is minimized when setting

ϵ =

(
k − 1

k
rk

)1/k

.

Then

E max
i=1,...,d

xi ≤ d1/k

((
k − 1

k
rk

)1/k

+
1

k
mk

(
k − 1

k
rk

)−(k−1)/k
)

= d1/k

((
k − 1

k
rk

)1/k

+
1

k − 1

(
k − 1

k
rk

)1/k
)

= d1/k
(
1 +

1

k − 1

)(
k − 1

k
rk

)1/k

= d1/k
(

k

k − 1

)(k−1)/k

r
1/k
k .

34



If the kth moment of u2
i is finite, this then immediately implies a polynomial O(d1/k) bound on g.

Proposition 3.5. Suppose, for k ≥ 2, the kth moment of u2
i is finite as r2k = Eu2k

i < ∞. Then
E max

i=1,...,d
u2
i ≤

√
2 d1/k r

1/k
2k .

For example, if φ is a Student-t with ν > 4 degrees of freedom and unit variance, then
g(d,H, δ, µ, φ) ≤ 8(‖H‖22/µ2) + (δ2/µ2)

(
16 +

√
2 ν3d

2
ν−2

)
.

Proof. The first part of the statement directly follows from Lemma B.3, where we simplified
(k/k−1)

(k−1)/k. In particular, for k ≥ 2, (k/k−1)
(k−1)/k is monotonically decreasing. Since an

order k ≥ 2 moment exists by the assumption on the degrees of freedom, (k/k−1)
(k−1)/k ≤

√
2 .

Let’s turn to the second part of the statement. We will denote a Student-t distribution with ν-degrees
of freedom as tν . Since tν does not have unit variance (Johnson et al., 1995, Eq. 28.7a), we have to
set the sampling process from φ to be

ui ∼ φ ⇔ ui
d
=

ν − 2

ν
vi , where vi

i.i.d.∼ tν .

Now, it is known that v2
i

d
= wi ∼ FDist(1, ν2) (Johnson et al., 1995, §28.7), where FDist(ν1, ν2)

is Fisher’s F -distribution with (ν1, ν2) degrees of freedom. The kth raw moment of FDist(ν1, ν2),
denoted as mk ≜ Ewk

i , exists up to 2k < ν2 = ν and is given as

mk =

(
ν2
ν1

)k
Γ(ν1/2 + k)

Γ(ν1/2)

Γ(ν2/2 + k)

Γ(ν2/2)
. (Johnson et al., 1995, Eq. 27.43)

This means that we can invoke Lemma B.3 as

E max
i=1,...,d

u2
i =

(
ν − 2

ν

)2

E max
i=1,...,d

wi ≤
√
2

(
ν − 2

ν

)2

d1/km
1/k
k ,

with any k < ν/2.

For m1/k
k , we can use the fact that the gamma function satisfies the recursion Γ(z + 1) = zΓ(z),

which implies Γ(a/2 + k) = Γ(a/2)
∏k−1

i=0 (a/2 + i) for any a > 0. Therefore,(
Γ(a/2 + k)

Γ(a/2)

)1/k

=

(
k−1∏
i=0

(a
2
+ i
))1/k

≤ 1

k

k−1∑
i=0

(a
2
+ i
)

(AM-GM inequality)

=
a

2
+

1

k

k(k − 1)

2
(geometric series sum formula)

=
a+ k − 1

2
.

Applying this bound to a = ν2 = ν and a = ν1 = 1 respectively,

m
1/k
k =

(
νk

Γ(1/2 + k)

Γ(1/2)

Γ(ν/2 + k)

Γ(ν/2)

)1/k

≤ ν
k

2

ν + k − 1

2

< ν
ν

4

3ν

4
(k < ν/2)

<
ν3

4
.

Also, choosing k = dν/2− 1e, we have d1/k ≤ d2/(ν−2). This yields

E max
i=1,...,d

u2
i <

√
2

(
ν − 2

ν

)2

d
2

ν−2
ν3

4
<

1

2
√
2
ν3d

2
ν−2 . (31)
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Lastly, the kurtosis of ui = (ν − 2)/ν vi follows as (Johnson et al., 1995, Eq. 28.5)

r4 =

(
ν − 2

ν

)4

Ew2
i =

(
ν − 2

ν

)4
3ν2

(ν − 2)(ν − 4)
= 3

(ν − 2)
3

ν2(ν − 4)
≤ 3 .

Plugging the bound in Eq. (31) and the value of r4 into g in Theorem 3.2 yields the statement.
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B.3 Proofs of Results in Section 4

B.3.1 Proof of Lemma 4.1

Under the assumption that ∇2ℓ � LId and twice differentiability, it is well known that ∇2ℓ �
LId ⇒ ℓ is L-smooth. We will prove a supporting result analogous to this under Assumption 3.1,
which will allow us to bound the relative growth of ∇ℓ.
Lemma B.4. Suppose ℓ : Rd → R satisfies Assumption 3.1. Then, for any W ∈ Rd×d satisfying
‖W‖2 < ∞,

‖W (∇ℓ(z)−∇ℓ(z′))‖2 ≤ ‖WH(z − z′)‖2 + δ‖W‖2‖z − z′‖2 .

Proof. The full proof is deferred to Appendix B.3.2, p. 39.

Using this, we can now simplify the ∇ℓ terms in Eq. (6). Applying Lemma B.4 to Vloc with W = Id
and Young’s inequality,

Vloc ≤ E(‖H(Tλ (u)− Tλ′ (u))‖2 + δ ‖Tλ (u)− Tλ′ (u)‖2)2 (Lemma B.4)

≤ 2E‖H(Tλ (u)− Tλ′ (u))‖22 + 2δ2 E‖Tλ (u)− Tλ′ (u)‖22 (Young’s inequality)

≤ 2 ‖H‖22E‖Tλ (u)− Tλ′ (u)‖22 + 2δ2 E‖Tλ (u)− Tλ′ (u)‖22 (Operator norm)

= 2
(
‖H‖22 + δ2

)
E‖Tλ (u)− Tλ′ (u)‖22

= 2
(
‖H‖22 + δ2

)
‖λ− λ′‖22 . (Lemma A.3) (32)

Similarly, applying Lemma B.4 to Vscale with W = U and Young’s inequality,

Vscale ≤ E(‖UH(Tλ (u)− Tλ′ (u))‖2 + δ‖U‖2 E‖Tλ (u)− Tλ′ (u)‖2)2 (Lemma B.4)

≤ 2E‖UH(Tλ(u)− Tλ′(u))‖22︸ ︷︷ ︸
Vconst

+2δ2 E‖U‖22‖Tλ(u)− Tλ′(u)‖22︸ ︷︷ ︸
Vnon-const

(Young’s inequality) .

(33)

Vconst corresponds to the constant component of the Hessian ∇2ℓ, whereas Vnon-const corresponds to
the non-constant residual. Denote the location and scale parameters of λ and λ′ as

λ = (m,C) and λ′ = (m′, C ′) .

For Vconst, we can use the following lemma:
Lemma B.5. Suppose Tλ is the reparameterization operator of a mean-field location-family and
Assumption 2.2 holds. Then, for any matrix H ∈ Rd×d and any λ, λ′ ∈ Rd × Dd,

‖UH(Tλ(u)− Tλ′(u))‖22 ≤ r4‖H‖22‖λ− λ′‖22 .

See the full proof in Appendix B.3.3, p. 40.

The remaining part of the proof closely resembles the proof sketch of Lemma 4.1. For convenience,
we first restate Lemma 4.1 and then proceed to the full proof.

Lemma 4.1. Suppose Assumptions 2.2 and 3.1 hold, Q is a mean-field location-family, and ∇̂f is
the reparametrization gradient. Then, for any λ, λ′ ∈ Rd × Dd.

E‖∇̂f(λ; u)− ∇̂f(λ′; u)‖22 ≤
{
2(1 + r4)‖H‖22 + 4δ2

(
1/2 + r4 + E max

j=1,...,d
u2
j

)}
‖λ− λ′‖22 .

Proof. Recall Eq. (33). The proof consists of bounding the two terms Vconst and Vnon-const. First, for
Vconst, under Assumption 3.1,

Vconst ≤ r4 ‖H‖22 ‖λ− λ′‖22 . (Lemma B.5) (34)

It remains to bound Vnon-const, which is our main challenge.

Denote m̄ ≜ m−m′ and C̄ ≜ C − C ′ such that

Tλ(u)− Tλ′(u) = (Cu +m)− (C ′u +m′)

= (C − C ′)u + (m−m′)
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= C̄u + m̄ .

Then
Vnon-const = E‖U‖22‖Tλ(u)− Tλ′(u)‖22

= E‖U‖22‖C̄u + m̄‖22
≤ E‖U‖22

(
2‖C̄u‖22 + 2‖m̄‖22

)
(Young’s inequality)

= E
(

max
j=1,...,d

u2
j

) d∑
i=1

(
2C̄2

iiu
2
i + 2m̄2

i

)
= 2E

d∑
i=1

(
max

j=1,...,d
u2
j

)
C̄2

iiu
2
i + 2E

(
max

j=1,...,d
u2
j

) d∑
i=1

m̄2
i .

We will focus on the first term. Denoting i∗ = argmaxi=1,...,d u2
i , the coordinate of maximum

magnitude, we can decompose the expectation by the contribution of the event i∗ = i and i∗ 6= i.
That is,

Eu2
i∗

∑d
i=1C̄

2
iiu

2
i =

∑d
i=1C̄ii E

[
u4

i∗1{i∗ = i}︸ ︷︷ ︸
Vmax

+ u2
i∗u2

i 1{i∗ 6= i}︸ ︷︷ ︸
Vnon-max

]
.

The expectation of the event i∗ = i follows as
Vmax = E

[
u4

i∗1{i∗ = i}
]

= E
[
u4

i∗

]
E[1{i∗ = i}] (ui∗ ⊥⊥ i∗)

= E
[
u4

i∗

]
P[i∗ = i]

= E
[
u4

i∗

] 1
d

≤ E

[
d∑

i=1

u4
i

]
1

d
( max
j=1,...,d

u4
j ≤

∑d
j=1u4

j )

= (dr4)
1

d
(Assumption 2.2)

= r4 . (35)
On the other hand, for the event i∗ 6= i,

Vnon-max = E
[
u2

i∗u2
i 1{i∗ 6= i}

]
= E

[
max
j ̸=i

u2
j u2

i 1{i∗ 6= i}
]

= E
[
max
j ̸=i

u2
j u2

i

]
(1 ≤ 1)

≤ E
[
max
j ̸=i

u2
j

]
E
[
u2
i

]
(uj ⊥⊥ ui for all i 6= j)

= E
[

max
j=1,...,d−1

u2
j

]
E
[
u2
i

]
(u1, . . . , ud are i.i.d.)

= E max
j=1,...,d−1

u2
j . (Assumption 2.2)

Therefore, we finally obtain

Vnon-const ≤ 2

d∑
i=1

[(
E max

j=1,...,d−1
u2
j + r4

)
C̄2

ii + E max
j=1,...,d

u2
j m̄

2
i

]
≤ 2
(
E max

j=1,...,d
u2
j + r4

)(
‖m̄‖22 + ‖C̄‖2F

)
( max
j=1,...,d−1

u2
j ≤ max

j=1,...,d
u2
j )

= 2
(
E max

j=1,...,d
u2
j + r4

)
‖λ− λ′‖22 . (36)

Combining Eqs. (6), (32) to (34) and (36) yields the statement.
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B.3.2 Proof of Lemma B.4

Lemma B.4. Suppose ℓ : Rd → R satisfies Assumption 3.1. Then, for any W ∈ Rd×d satisfying
‖W‖2 < ∞,

‖W (∇ℓ(z)−∇ℓ(z′))‖2 ≤ ‖WH(z − z′)‖2 + δ‖W‖2‖z − z′‖2 .

Proof. From twice differentiability of ℓ (Assumption 3.1) and the fundamental theorem of calculus,
we know that

‖W (∇ℓ(z)−∇ℓ(z′))‖2 =

∥∥∥∥W ∫ 1

0

∇2ℓ(tz + (1− t)z′)(z − z′) dt

∥∥∥∥
2

.

Denoting zt ≜ tz + (1− t)z′ for clarity,

‖W (∇ℓ(z)−∇ℓ(z′))‖2

=

∥∥∥∥∫ 1

0

W∇2ℓ(zt)(z − z′) dt

∥∥∥∥
2

≤
∫ 1

0

‖W∇2ℓ(zt)(z − z′)‖2 dt (Jensen’s inequality)

=

∫ 1

0

∥∥W (∇2ℓ(zt)−H +H
)
(z − z′)

∥∥
2
dt

≤
∫ 1

0

{
‖WH(z − z′)‖2 + ‖W‖2

∥∥∇2ℓ(zt)−H
∥∥
2
‖z − z′‖2

}
dt (Triangle inequality)

≤
∫ 1

0

{‖WH(z − z′)‖2 + δ‖W‖2‖z − z′‖2} dt (Assumption 3.1)

= ‖WH(z − z′)‖2 + δ‖W‖2‖z − z′‖2 .
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B.3.3 Proof of Lemma B.5

Lemma B.5. Suppose Tλ is the reparameterization operator of a mean-field location-family and
Assumption 2.2 holds. Then, for any matrix H ∈ Rd×d and any λ, λ′ ∈ Rd × Dd,

‖UH(Tλ(u)− Tλ′(u))‖22 ≤ r4‖H‖22‖λ− λ′‖22 .

Proof. For clarity, let us denote C̄ ≜ C − C ′ and m̄ ≜ m−m′ such that

Tλ(u)− Tλ′(u) = (Cu +m)− (C ′u +m′)

= (C − C ′)u + (m−m′)

= C̄u + m̄ .

Then

‖UH(Tλ(u)− Tλ′(u))‖22 = ‖UH
(
C̄u + m̄

)
‖22

= E‖UHC̄u‖22︸ ︷︷ ︸
Vscale

+2 〈UHm̄,HC̄u〉︸ ︷︷ ︸
Vcross

+E‖UHm̄‖22︸ ︷︷ ︸
Vloc

.

Vloc and Vcross are straightforward. Under Assumption 2.2, it immediately follows that

Vloc = E‖UHm̄‖22
= m̄⊤H⊤EU2Hm̄

= m̄⊤H⊤Hm̄ (Lemma A.2)

= ‖Hz̄‖22 .

On the other hand,

Vcross = E〈UHm̄, UHC̄u〉
= m̄⊤H⊤(EU2HC̄u

)
.

The expectation follows as

[
EU2HC̄u

]
i
= Eu2

i

d∑
j=1

HijC̄jjuj

= HiiC̄iiEu3
i +

∑
j ̸=i

HijC̄jjEu2
i Euj

= 0 . (Assumption 2.2)

Thus, the cross term Vcross vanishes.

Vscale requires careful elementwise inspection in order to apply Assumption 2.2. That is,

Vscale = E‖UHC̄u‖22

= E
d∑

i=1

u2
i


d∑

j=1

HijC̄jjuj


2

= E
d∑

i=1

u2
i

HiiC̄iiui +
∑
j ̸=i

HijC̄jjuj


2

= E
d∑

i=1

u2
i

H2
iiC̄

2
iiu

2
i + 2HiiC̄iiui

∑
j ̸=i

HijC̄jjuj

+

∑
j ̸=i

HijC̄jjuj

2
 (expand quadratic)

=

d∑
i=1

H2
iiC̄

2
iiEu4

i + 2HiiC̄iiEu3
i E

∑
j ̸=i

HijC̄jjuj

+ Eu2
i E

∑
j ̸=i

HijC̄jjuj

2
 (distribute u2

i )
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=

d∑
i=1

r4H
2
iiC̄

2
ii + E

∑
j ̸=i

HijC̄jjuj

2
 (Assumption 2.2)

=

d∑
i=1

r4H
2
iiC̄

2
ii +

∑
j ̸=i

H2
ijC̄

2
jjEu2

j +
∑
k ̸=j

HijC̄jjEujHikC̄kkEuk

 (expand quadratic)

=

d∑
i=1

r4H
2
iiC̄

2
ii +

∑
j ̸=i

H2
ijC̄

2
jj

 (Assumption 2.2)

=

d∑
i=1

d∑
j=1

H2
ijC̄

2
jj + (r4 − 1)

d∑
i=1

H2
iiC̄

2
ii

= ‖HC̄‖2F + (r4 − 1)‖diag
(
HC̄

)
‖2F .

Combining everything,

‖H(Tλ(u)− z)‖2U2 = Vloc + 2Vcross + Vscale

= ‖Hm̄‖22 + ‖HC̄‖2F + (r4 − 1)‖diag
(
HC̄

)
‖2F (37)

From the property of the Frobenius norm, for any matrix A ∈ Rd×d, we can decompose

‖A‖2F =

d∑
i=1

d∑
j=1

A2
ij =

d∑
i=1

A2
ii +

d∑
i=1

∑
i ̸=j

A2
ij = ‖diag(A)‖2F + ‖off(A)‖2F ,

where off(A) is a function that zeroes-out the diagonal of A. Then from Eq. (37),

‖H(Tλ(u)− z)‖2U2 = ‖Hm̄‖22 + ‖off
(
HC̄

)
‖2F + ‖diag

(
HC̄

)
‖2F + (r4 − 1)‖diag

(
HC̄

)
‖2F

= ‖Hm̄‖22 + ‖off
(
HC̄

)
‖2F + r4‖diag

(
HC̄

)
‖2F

≤ r4‖Hm̄‖22 + r4‖off
(
HC̄

)
‖2F + r4‖diag

(
HC̄

)
‖2F (Lemma A.1)

= r4
(
‖Hm̄‖22 + ‖HC̄‖2F

)
≤ r4‖H‖22

(
‖m̄‖22 + ‖C̄‖2F

)
(operator norm)

= r4‖H‖22‖λ− λ′‖22 ,

which is the stated result.

41



B.3.4 Proof of Proposition 4.2

For any µ,L ∈ (0,∞) such that µ ≤ L, our goal is to obtain a matrix-valued function Hworst :
Rd → Sd≻0 satisfying

µId � Hworst � LId

that, under the choice H = Hworst, maximizes the quantity∥∥∥∥U
∫ 1

0

H(zw)(z − z̄)dw

∥∥∥∥2
2

, (38)

where z̄ ∈ {z | ∇ℓ(z) = 0} is any stationary point of ℓ, z ≜ Tλ(u), and zw ≜ wz + (1− w)z̄.
Given the norm constraint, the worst-case example that maximizes Eq. (38) will be the matrix-valued
function that approximately results in∥∥∥∥U

∫ 1

0

H(zw)(z − z̄)dw

∥∥∥∥2
2

� L2‖U‖22‖z − z̄‖22

for any realization of u on Rd. For this, we will establish the relations∥∥∥∥U
∫ 1

0

H(zw)(z − z̄)dw

∥∥∥∥2
2

= ‖UH(zw)(z − z̄)‖22 � L‖U‖22‖z − z̄‖22 . (39)

The first equality in Eq. (39) follows from identifying the conditions where H(zw) is independent
of the value of w. For the specific choice of

m = z̄ = 0d, C = diag(δ, . . . , δ), any δ > 0 ,

H(zw) is independent of w if it only depends on the quantities

i∗ = argmax
i=1,...,d

|zw
i | and ẑw ≜ zw

‖zw‖2
. (40)

That is, with some abuse of notation, H(zw) = H(ẑw, i∗).
Lemma B.6. Suppose m = z̄ = 0d, and for any δ > 0, C = diag(δ, . . . , δ). If H(zw) is a function
of only i∗ and ẑw, then H(zw) is constant with respect to w ∈ [0, 1].

Proof. It suffices to show that, under the stated conditions, the values of i∗ and ẑw are invariant to
w. For ẑw, this trivially follows from the assumption that z̄ = 0 as

ẑw =
zw

‖zw‖2
=

wz + (1− w)z̄

‖wz + (1− w)z̄‖2
=

wz
‖wz‖2

=
z

‖z‖2
.

For i∗, we use the fact that the diagonal matrix C is isotropic as

argmax
i=1,...,d

|zw
i | = argmax

i=1,...,d
wCii|ui| = argmax

i=1,...,d
wδ |ui| = argmax

i=1,...,d
|ui| .

From H(zw) = H(ẑw, i∗), the integral in Eq. (38) can be solved as∥∥∥∥U
∫ 1

0

H(zw)(z − z̄)dw

∥∥∥∥2
2

= ‖UH(zw)(z − z̄)‖22 .

It remains to construct H in a way that depends only on ẑw and i∗ such that

‖UH(zw)(z − z̄)‖22 � L‖U‖22‖z − z̄‖22 .

Recalling the spectral constraints, this is equivalent to, for all z ∈ Rd, H solving the equation

H(i∗)z = L ‖z‖2 ei∗ subject to µId ≤ H(zw) ≤ LId . (41)
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Notice the equivalence

H(zw)z = L ‖z‖2ei∗ ⇔ H(zw)
zw

‖zw‖2
= Lei∗ .

Thus, ẑw and i∗ contain all the information we need. The following matrix-valued function almost
solves Eq. (41):

Hworst(z) = αId +
β

2

(
ei∗ ẑ

⊤ + ẑ e⊤i∗
)
, where ẑ =

z

‖z‖2
. (42)

This function is reminiscent of a householder reflector (Trefethen and Bau, 1997, Eq. 10.4) with
some modifications to satisfy the eigenvalue constraint. That is, from the fact that both ei∗ and ẑ
have a unit norm, it is apparent that this matrix satisfies Assumption 3.1 with H = αId and δ = β.
Furthermore, by setting the constants as

α =
L+ µ

2
and β =

L− µ

2
, (43)

the triangle inequality asserts that the eigenvalue constraint µId ≤ Hworst ≤ LId is satisfied almost
surely.

Given the specific form of Hworst, we are now ready to formally prove Proposition 4.2. Let us first
restate the proposition for convenience and then proceed to the proof.

Proposition 4.2. Suppose Assumption 2.2 holds and Q is a mean-field location-scale family. Then,
for any t > 0, d > 0, µ,L ∈ (0,+∞) satisfying µ ≤ L, there exists a matrix-valued function
H(z) : Rd → Sd≻0 satisfying µId � H � LId almost surely and a set of parameters λ = (m,C) ∈
Rd × Dd

≻0 such that

E
∥∥U
∫ 1

0
H(zw)(z − z̄)dw

∥∥2
2
≥
{

(L−µ)2

4 − L2

2

E max
i=1,...,d

u4
i

d

}
c(t, φ)

{
E max
i=1,...,d−1

u2
i − t

}
‖C‖2F .

where c(t, φ) > 0 is a constant only dependent on t and φ.

Proof. Recall Hworst in Eq. (42). By inspection, we know that Hworst(zw) only depends on the
quantities i∗ and zw. Then Lemma B.6 states that w 7→ Hworst(zw) is a constant function. There-
fore,

E
∥∥∥∥U
∫ 1

0

Hworst(zw)(z − z̄)dw

∥∥∥∥2
2

= E
∥∥UHworst

(
z0
)
(z − z̄)

∥∥2
2

(Lemma B.6)

= E
∥∥∥∥U
(
αId +

β

2

(
ei∗ ẑ⊤ + ẑ e⊤i∗

))
z
∥∥∥∥2
2

. (Eq. (42)) (44)

This can be decomposed as

E
∥∥∥∥U
(
αId +

β

2

(
ei∗ ẑ⊤ + ẑ e⊤i∗

))
z
∥∥∥∥2
2

= E
∥∥∥∥αUz +

β

2
Uei∗

(
ẑ⊤z

)
+

β

2
Uẑ
(
e⊤i∗ z

)∥∥∥∥2
2

= E
∥∥∥∥αUz +

β

2
Uei∗‖z‖2 +

β

2
Uẑzi∗

∥∥∥∥2
2

= E
∥∥∥∥αUz +

(
β

2
‖z‖2

)
Uei∗ +

(
β

2
ẑi∗

)
Uz
∥∥∥∥2
2

= E
∥∥∥∥(β

2
‖z‖2

)
Uei∗ +

(
α+

β

2
ẑi∗

)
Uz
∥∥∥∥2
2

= E

[
β2

4
‖z‖22‖Uei∗‖22 +

(
α+

β

2
ẑi∗

)2

‖Uz‖22 + β

(
α+

β

2
ẑi∗

)
‖z‖2

(
e⊤i∗ U2z

)]
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= E

[
β2

4
u2

i∗‖z‖22

]
+ E

[(
α+

β

2
ẑi∗

)2

‖Uz‖22

]
︸ ︷︷ ︸

≜V1

+E
[
β

(
α+

β

2
ẑi∗

)
‖z‖2

(
e⊤i∗ U2z

)]
︸ ︷︷ ︸

≜V2

. (45)

Here, the first term β2/4u2
i∗‖z‖22 is the worst-case behavior we expect from solving Eq. (41). The

remaining terms V1 and V2 are the error caused by inexactly solving Eq. (41). It suffices to show
that β2/4u2

i∗‖z‖22 dominates lower bounds on V1 and V2 asymptotically in L and d.

V1 ≥ 0 trivially holds and can immediately be lower-bounded. V2, on the other hand, is not neces-
sarily non-negative. Therefore, we will use the bound V2 ≥ −|EV2|.

|EV2| ≤ β

(
α+

β

2

)
E‖z‖2 |e⊤i∗ U2z|

≤ β

(
α+

β

2

)
E‖z‖2 u2

i∗ |zi∗ |

≤ β

(
α+

β

2

)(
E‖z‖22u2

i∗

)1/2(Eu2
i∗z2

i∗︸ ︷︷ ︸
≜V3

)1/2
. (Cauchy-Schwarz) (46)

For V3, we can use an argument similar to Eq. (35) where we distribute the influence of the maximum
coordinate over the d coordinates.

V3 = Eu2
i∗z2

i∗ = E
d∑

i=1

u2
i∗z2

i 1{i∗ = i}

=

d∑
i=1

E
[
u2

i∗C
2
iiu

2
i 1{i∗ = i}

]
=

d∑
i=1

C2
iiE
[
u4

i∗

]
E[1{i∗ = i}] (ui∗ ⊥⊥ i∗)

=

d∑
i=1

C2
iiE
[
u4

i∗

]
P[i∗ = i]

=
1

d
E
[
u4

i∗

]
‖C‖2F

=
1

d

(
Eu4

i∗

)
E‖z‖22 . (47)

The last equality follows by applying Lemma A.2 to the identity E‖z‖22 = Eu⊤C⊤Cu. By applying
Eq. (47) into Eq. (46), we can now notice that V2 decreases by a factor of Eu4

i∗/d.

EV2 ≥ −β

(
α+

β

2

)E
[
u4

i∗

]
d

√
Eu2

i∗‖z‖22
√

E‖z‖22

≥ −β

(
α+

β

2

)E
[
u4

i∗

]
d

E
[
u2

i∗‖z‖22
]
. (Assumption 2.2)

It is clear that V2 vanishes as d → ∞.

Applying the lower bound on V2 into Eqs. (44) and (45), we have

E
∥∥∥∥U
∫ 1

0

Hworst(zw)(z − z̄)dw

∥∥∥∥2
2

≥ β2

4
E
[
u2

i∗‖z‖22
]
− β

(
α+

β

2

)E
[
u4

i∗

]
d

E
[
u2

i∗‖z‖22
]

=

{
β2

4
−
(
αβ +

β2

2

)E
[
u4

i∗

]
d

}
Eu2

i∗‖z‖22
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=

{
(L− µ)

2

16
−

(
L2 − µ2

4
+

(L− µ)
2

8

)
E
[
u4

i∗

]
d

}
Eu2

i∗‖z‖22 (Eq. (43))

≥

{
(L− µ)

2

16
−
(
L2 − µ2

4
+

L2 + µ2

4

)E
[
u4

i∗

]
d

}
Eu2

i∗‖z‖22 (Young’s inequality)

=

 (L− µ)
2

16
− L2

2

E max
i=1,...,d

u4
i

d

Eu2
i∗‖Cu‖22 . (48)

It remains to solve the expectation.

Let us decompose the events where the ith coordinate attains the maximum (i∗ = i) or not (i∗ 6= i)
as done in Lemma 4.1.

Eu2
i∗‖Cu‖22 = E

[
d∑

i=1

Ciiu2
i u2

i∗

]

=

d∑
i=1

C2
ii

{
E
[
u2
i u2

i∗1i∗=i

]
+ E

[
u2
i u2

i∗1i∗ ̸=i

]}
≥

d∑
i=1

C2
iiE
[
u2
i u2

i∗1i∗ ̸=i

]
.

We are left with the expectation over the event i∗ 6= i. For the upper bound in Lemma 4.1, the
expectation was solved by noticing that u2

i and u2
i∗ can be made independent after upper bounding

the indicator. For a lower bound, however, breaking up the expectation for u2
i and u2

i∗ is more
involved.

E
[
u2
i u2

i∗ 1i∗=i

]
= E

[
u2
i max

j ̸=i
u2
j 1i∗=i

]
= E

[
u2
i max

j ̸=i
u2
j 1

{
u2
i < max

j ̸=i
u2
j

}]
. (49)

By introducing a free variable t > 0, we can break up the indicator

1

{
u2
i < max

j ̸=i
u2
j

}
≥ 1

{
u2
i < max

j ̸=i
u2
j , t < max

j ̸=i
u2
j

}
≥ 1

{
u2
i < t, max

j ̸=i
u2
j > t

}
= 1

{
u2
i < t,

}
1
{
max
j ̸=i

u2
j > t

}
. (50)

This then allows the expectation to break up between terms depending on u2
i and maxj≠i uj , which

is the independence that we were after. That is, applying Eq. (50) to Eq. (49),

E
[
u2
i u2

i∗ 1i∗=i

]
≥ E

[
u2
i max

j ̸=i
u2
j 1
{

u2
i < t,

}
1
{
max
j ̸=i

u2
j > t

}]
= E

[
u2
i 1
{

u2
i < t

}]
E
[

max
j=1,...,d−1

u2
j 1
{

max
j=1,...,d−1

u2
j > t

}]
= E

[
u2
i 1
{

u2
i < t

}](
E
[

max
j=1,...,d−1

u2
j

]
− E

[
max

j=1,...,d−1
u2
j 1
{

max
j=1,...,d−1

u2
j ≤ t

}])
≥
(∫ t

0

P
[
u2
i > s

]
ds

)(
E
[

max
j=1,...,d−1

u2
j

]
− t

)
.

Notice that the function (t, φ) 7→
∫ t

0
P
[
u2
i > s

]
ds is strictly positive as long as t > 0 and only

dependent on t and the base distribution φ.
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We now obtain our final result by combining the results into Eq. (48). With explicit constants,

E
∥∥∥∥∫ 1

0

Hworst(zw)(z − z̄)dw

∥∥∥∥2
U2

≥

 (L− µ)
2

4
− L2

2

E max
i=1,...,d

u4
i

d


×
(∫ t

0

P
[
u2
i > s

]
ds

)(
E
[

max
i=1,...,d−1

u2
i

]
− t

)
‖C‖2F .

Substituting c(t, φ) ≜
∫ t

0
P
[
u2
i > s

]
ds into this yields the stated result.
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