
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REASONING TO EDIT: HYPOTHETICAL INSTRUCTION-
BASED IMAGE EDITING WITH VISUAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Instruction-based image editing (IIE) has advanced rapidly with the success of
diffusion models. However, existing efforts primarily focus on simple and ex-
plicit instructions to execute editing operations such as adding, deleting, moving,
or swapping objects. They struggle to handle more complex implicit hypotheti-
cal instructions that require deeper reasoning to infer plausible visual changes and
user intent. Additionally, current datasets provide limited support for training and
evaluating reasoning-aware editing capabilities. Architecturally, these methods
also lack mechanisms for fine-grained detail extraction that support such reason-
ing. To address these limitations, we propose Reason50K, a large-scale dataset
specifically curated for training and evaluating hypothetical instruction–reasoning
image editing, along with ReasonBrain, a novel framework designed to reason
over and execute implicit hypothetical instructions across diverse scenarios. Rea-
son50K includes over 50K samples spanning four key reasoning scenarios: Phys-
ical, Temporal, Causal, and Story reasoning. ReasonBrain leverages Multimodal
Large Language Models (MLLMs) for editing guidance generation and a diffusion
model for image synthesis, incorporating a Fine-grained Reasoning Cue Extrac-
tion (FRCE) module to capture detailed visual and textual semantics essential for
supporting instruction reasoning. To mitigate the semantic loss, we further intro-
duce a Cross-Modal Enhancer (CME) that enables rich interactions between the
fine-grained cues and MLLM-derived features. Extensive experiments demon-
strate that ReasonBrain consistently outperforms state-of-the-art baselines on rea-
soning scenarios while exhibiting strong zero-shot generalization to conventional
IIE tasks.

1 INTRODUCTION

The successful deployment of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) in
text-to-image (T2I) generation (Ramesh et al., 2022; Rombach et al., 2022b; Saharia et al., 2022;
He et al., 2024) has significantly accelerated the development of instruction-based image editing
(IIE) (Nguyen et al., 2024a). IIE focuses on performing precise and localized modifications on a
source image in response to human commands, thereby enhancing the controllability and accessibil-
ity of visual manipulation (Fu et al., 2024). Prior works typically utilize the CLIP-based text encoder
inherent in T2I diffusion models for instruction embedding (Brooks et al., 2023; Zhang et al., 2023;
Hui et al., 2024; Zhao et al., 2024; Geng et al., 2024; Zhang et al., 2024), which is insufficient for
comprehending complex instructions. To address this limitation, recent methods (Tian et al., 2025;
Huang et al., 2024; Nguyen et al., 2024b; Wang et al., 2024b; Li et al., 2024; Zhou et al., 2025; Sun
et al., 2025) have proposed substituting it with multimodal large language models (MLLMs) (Tou-
vron et al., 2023; Liu et al., 2024b), enabling richer cross-modal understanding and better alignment
with user intent. However, despite the significant progress achieved by these efforts, the following
limitations remain underexplored:

(L1) Overlooking hypothetical instructions. Existing IIE methods are primarily designed to han-
dle simple, explicit, and goal-directed instructions (e.g., “remove the dog”), which typically corre-
spond to straightforward editing operations such as adding, replacing, or deleting objects. However,
users often begin without a clear editing objective and instead express ambiguous intent through
hypothetical instructions (e.g., “What would happen if the ice cube was left in the sun?”). As
illustrated in Fig. 1, current methods struggle to interpret and act on such inputs. Successfully ad-
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“What would happen if an oil spill polluted the shore?”

Source Image InstructPix2Pix SmartEdit ReasonBrain(ours)

Source Image InstructPix2Pix SmartEdit ReasonBrain(ours)

“What would happen if this ice cube was left at room 
temperature?”

Source Image InstructPix2Pix SmartEdit ReasonBrain(ours)

“What happens as it's slowly sipped and savored, warming both 
body and soul on a chilly day?”

Source Image InstructPix2Pix SmartEdit ReasonBrain(ours)

“What happens when the lighthouse beam refracts into a magnificent 
rainbow, offering hope and reassurance amidst the tempestuous 

waters?”

(a) Physical Reasoning (b) Temporal Reasoning

(c) Causal Reasoning (d) Story Reasoning

Figure 1: Current efforts fail to handle hypothetical instructions, producing incorrect results, while
our method generates plausible, reasoning-aware edits.

dressing these cases requires models to go beyond surface-level edits and perform deeper reasoning
about real-world context, physical changes, and the causal or temporal implications of the instruc-
tion. Moreover, currently there is no dataset specifically designed for hypothetical instruction-based
editing that offers sufficient scale and scenario diversity (Huang et al., 2024; Yang et al., 2024; Jin
et al., 2024; Meng et al., 2024).

(L2) Insufficient reasoning ability. While integrating MLLMs (Touvron et al., 2023; Liu et al.,
2024b) can enhance instruction comprehension and improve alignment with user commands to some
extent, these models still lack dedicated mechanisms for deep reasoning over hypothetical instruc-
tions (see Fig. 1 results of SmartEdit). We attribute this limitation to the prevailing paradigm’s
reliance on coarse-grained features extracted directly from the input image and instruction, which
fail to capture the fine-grained semantic cues necessary for implicit reasoning or fully exploit the
MLLM’s embedded world knowledge (Wang et al., 2024a). For instance (Fig. 1(a)), reasoning over
such an instruction requires jointly interpreting both visual and textual cues. Visually, elements like
the cube’s sharp edges, surface gloss, and surrounding environment reveal its physical state and con-
text. Textually, features such as conditional phrasing, object references, and temporal expressions
together suggest a melting process.

To address these limitations, we propose a unified solution: a large-scale hypothetical instruction-
based dataset, Reason50K, and a tailored reasoning-aware framework, ReasonBrain. Rea-
son50K comprises diverse hypothetical instructions spanning four reasoning categories: physical,
temporal, causal, and story-based reasoning, totaling 51,039 samples. Each sample consists of a
source image, a hypothetical instruction, and a corresponding target image that reflects the intended
edit. ReasonBrain is a hybrid framework that jointly and interactively performs reasoning and edit-
ing, thereby overcoming the need for multi-round refinement of textual instructions (Fu et al., 2024).
This unified design mitigates reasoning uncertainty and reduces inference time. Specifically, Rea-
sonBrain consists of an MLLM and a diffusion model, augmented with two specialized modules for
visual guidance, reasoning, and semantic enrichment: the Fine-grained Reasoning Cue Extraction
(FRCE) module and the Cross-Modal Enhancer (CME). The FRCE module extracts detailed rea-
soning cues through two branches: the visual reasoning branch captures both local and global visual
semantics to model spatial relationships and object-level interactions, while the textual reasoning
branch identifies key object references and contextual intent from hypothetical instructions, enriched
with relevant visual context. These fine-grained features, combined with multi-scale image tokens
and textual embeddings, are input to the MLLM alongside learnable tokens to implicitly generate
reasoning-aware visual guidance. Finally, the CME enhances these signals via semantic comple-
mentarity across modalities, producing well-aligned, semantically rich guidance for diffusion-based
image editing. In sum, our contributions are as follows:

• We systematically extend traditional Instruction-Based Image Editing (IIE) to Hypotheti-
cal Instruction-Reasoning Image Editing (HI-IE). This task involves implicit, ambiguous,
and hypothetical editing instructions that demand deeper reasoning over contextual cues,
physical dynamics, and user intent.
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• We curate a new large-scale dataset, Reason50K, specifically designed to support the rea-
soning of hypothetical instruction in image editing. It contains 51,039 triplets of source
image, hypothetical instruction, and target image, covering four distinct reasoning cate-
gories: physical, temporal, causal, and story-based reasoning.

• We propose ReasonBrain, a novel image editing framework that combines a MLLM with
fine-grained reasoning cues extraction and a cross-modal enhancer. Together, these com-
ponents endow the model with implicit cross-modal reasoning capabilities, enabling it to
infer plausible, knowledge-grounded transformations and produce semantically coherent
guidance for diffusion-based image editing under complex hypothetical scenarios.

• We conduct extensive experiments on both Reason50K and widely used benchmark
datasets, demonstrating the effectiveness and generalization ability of ReasonBrain across
reasoning-intensive and standard understanding-based editing scenarios.

2 RELATED WORK

Instruction-based Image Editing (IIE). IIE (Brooks et al., 2023) aims to train generative models to
manipulate a given image based on user-provided instructions. A milestone in this field is Instruct-
Pix2Pix (IP2P) (Brooks et al., 2023), which is the first to incorporate natural language instructions
into image editing by fine-tuning a text-to-image (T2I) diffusion model on paired image-instruction
datasets. Subsequent works have built upon IP2P by introducing novel curated datasets to enhance
real-world editing performance and generate high-quality outputs (Zhang et al., 2023; Hui et al.,
2024; Zhao et al., 2024; Liu et al., 2024a; Yu et al., 2024). Others have focused on improving
instruction-output alignment by incorporating advanced techniques such as reward learning (Zhang
et al., 2024; Bai et al., 2024) and multi-task training (Sheynin et al., 2024). Recently, researchers
have integrated multimodal large language models (MLLMs) (Touvron et al., 2023; Liu et al., 2024b)
into existing image editing paradigms to enhance the model’s ability to understand complex instruc-
tions. We refer to these approaches as MLLM-enhanced methods (Fu et al., 2024; Huang et al., 2024;
Li et al., 2024; Wang et al., 2024b; Zhou et al., 2025; Tian et al., 2025). For instance, MGIE (Fu
et al., 2024) leverages MLLMs to generate expressive instructions and provide explicit guidance,
thereby enhancing editing performance. SmartEdit (Huang et al., 2024) further introduces a bidirec-
tional interaction module that facilitates mutual understanding between the MLLM output and the
input image. Despite recent advances, most existing efforts still rely on direct and explicit instruc-
tions (e.g., “Remove the ice”), limiting their ability to handle hypothetical instructions (e.g., “What
would happen if the ice cube melted?”) that require deeper reasoning. While MLLMs offer general
world knowledge, current frameworks lack mechanisms to extract and utilize fine-grained reasoning
details. Our ReasonBrain builds upon the MLLM-enhanced paradigm by introducing dedicated
reasoning-aware modules for generating precise visual guidance, with an emphasis on accurately
inferring the implicit intent and real-world context embedded in hypothetical instructions.

Reasoning-aware Datasets for Image Editing. Only a few works have explored reasoning-aware
datasets for image editing (Huang et al., 2024; Yang et al., 2024; Jin et al., 2024). ReasonEdit (Huang
et al., 2024) is designed primarily for evaluating the reasoning capabilities of image editing models
and contains only a small set of textual samples, making it insufficient for training. Moreover, it
focuses on object-level reasoning based on explicit instructions, while overlooking reasoning about
editing operations themselves. EditWorld (Yang et al., 2024) aims to inject physical dynamics sim-
ulation capabilities into models across both realistic and virtual scenarios, but does not emphasize
instruction-level reasoning. ReasonPix2Pix (Jin et al., 2024) introduces indirect instructions in a
descriptive, goal-oriented style but lacks the depth and diversity needed for more advanced hypo-
thetical reasoning. In contrast to these prior efforts, we curate Reason50K, a large-scale dataset
specifically tailored for hypothetical instruction reasoning, enabling models to understand and exe-
cute complex edits grounded in physical, temporal, causal, and narrative scenarios.

3 METHODOLOGY

The goal of our work is to perform image editing by reasoning from a user-provided hypotheti-
cal instruction–an implicit, often ambiguous prompt that requires the model to infer the intended
transformation through deeper reasoning about real-world context, physical dynamics, or potential
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outcomes (e.g., “What would happen if the sun were setting?”). We refer to this task as Hypo-
thetical Instruction-Reasoning Image Editing (HI-IE). To this end, we propose a unified solution
comprising a large-scale dataset, Reason50K, specifically curated to support the challenging task of
hypothetical HI-IE, and a reasoning-aware image editing framework, ReasonBrain.

3.1 REASON50K FOR REASONING INJECTING

To support our proposed HI-IE task, we construct a novel large-scale dataset Reason50K specifi-
cally curated to inject hypothetical instruction-reasoning ability into image editing models. Rea-
son50K contains 51,039 samples, each consisting of an input image, a corresponding hypothetical
instruction, and a target edited image. Unlike existing datasets that primarily feature explicit or goal-
oriented prompts (e.g., “Remove the animal in the mirror” or “Make it snowy”), our instructions are
implicit, open-ended, and reasoning-driven (e.g., “What would happen if the ice cube were left at
room temperature?” or “What would this bouquet look like if it were split into two separate rose
bouquets?”). This shift introduces a significantly higher level of abstraction and demands real-world
understanding. Reason50K is constructed using an inverse-style strategy, where the source image is
generated from the target. Specifically, we leverage GPT (Achiam et al., 2023) to produce hypothet-
ical instructions based on user-provided prompts, and employ a diffusion model to generate multiple
candidate source images. A hybrid scoring and evaluation scheme is then applied to select the most
appropriate image, forming the final image pairs. Moreover, Reason50K is organized around four
distinct reasoning scenarios: Physical Reasoning, Temporal Reasoning, Causal Reasoning, and
Story Reasoning, each illustrated with representative examples and instructions in Fig. 2.

Causal Reasoning (26%) Story Reasoning (15%)Physical Reasoning (31%)
“What would 
happen if the 
elephant and 
mouse stood on 
the lawn at the 
same time on 
opposite ends 
of a seesaw?”

Temporal Reasoning (28%)

“What would 
happen if it 
grew into a 
blooming 

flower in the 
soil?”

“What would 
happen if a 
playful puppy 
jumped onto it 
and scattered 
the clothes 
around?”

“What happens 
when he begins 
his fantastic 

forest 
exploration 
and reunites 
with his 

companions?”

Reasoning about visual changes caused 
by physical processes (e.g., melting, 

separating, collapsing, etc.).

Reasoning about visual transformations 
over time, such as gradual changes or 

lifecycle events (e.g., aging, 
blooming, decaying).

Reasoning about visual outcomes 
resulting from hypothetical causes or 
actions (e.g., "What if the balloon 

popped?").

Reasoning about abstract, narrative-
driven scenarios involving character 
actions or plot developments (e.g., 

"What happens when he opens the 
mysterious door?" ).

Figure 2: Reasoning scenarios in Reason50K. The percentages in parentheses indicate the proportion
of each category. The text below each sample shows an instruction of the corresponding reasoning
type.

PhyBench

Target image

Initial instruction:

“candles, 
red cake”

Now you are a language expert. You need to
polish the input text and rewrite each input
text into a question sentence full of unknown
and curious about the future:

“What would happen if the candles on the red 
cake are gradually burning out?”

GPT

Hypothetical instruction

Spacy

“The candles on 
the red cake are 
burning out.”

Diffusion 
module

IP 
Adapter

Combinational T2I 
Synthesis

Candidate Image 1

Candidate Image 2

Candidate Image n

……

Series of Candidate 
Images

Scoring 
& 

Evaluation

Source Image

Figure 3: Data generation process.

Dataset Generation The construction of our data consists of two parts. The first part (over 90%
of the entire dataset) is generated following the pipeline illustrated in Fig. 3, which adopts an in-
verse generation strategy–deriving the source image from the target. Specifically, we first adopt the
same procedure as PhyBench (Meng et al., 2024) to generate target images along with their initial
instructions. Each initial instruction is then rewritten into a hypothetical form using prompt-based
rewriting with GPT (Achiam et al., 2023). In parallel, we use SpaCy1 to perform named entity
recognition (NER) on the initial instruction to extract candidate objects for source image genera-
tion. These candidates are passed to a diffusion model equipped with an IP-Adapter to synthesize
multiple image variants. Each candidate image is subsequently evaluated by GPT, and the top-N
images are selected based on a combination of GPT scores and perceptual quality metrics (He et al.,
2023; Hore & Ziou, 2010; Zhang et al., 2018). Each selected image, along with the corresponding

1https://spacy.io/
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hypothetical instruction and target image, constitutes a sample in our dataset. The second part (less
than 10%) consists of story-type samples derived from EditWorld (Yang et al., 2024). We apply the
same instruction rewriting, scoring, and filtering process to refine and select high-quality samples
for inclusion.

Table 1: Comparison of different datasets. Note that since ReasonPix2Pix (Jin et al., 2024) is not
publicly available, we reference sample cases from their paper and exclude it from further experi-
mental comparison (see Fig. 6).

Datasets Reasoning
Instruction

Automatic
Generated

Open
Domain #Edits #Editing Types Source Example Instruction Target Example

ReasonPix2Pix (Jin et al., 2024) 40,212 – A colorful insect
has landed

EditWorld (Yang et al., 2024) 8,674 7 Shifted her gaze
to the left.

ReasonEdit (Huang et al., 2024) 219 – Please remove the
empty plate.

Reason50K (Ours) 51,039 4 What would happen if the cat
stood in front of a mirror?

Reason50K vs. Existing Datasets. Tab. 1 summarizes the key differences between our dataset
and existing ones. In comparison: 1) ReasonPix2Pix (Jin et al., 2024) enhances instruction reason-
ing by using LLMs to rewrite explicit editing commands into goal-oriented implicit instructions.
However, the dataset primarily consists of descriptive instructions and lacks more complex, abstract
hypothetical instructions that require deeper contextual and causal reasoning. In addition, it lacks
systematic categorization. 2) EditWorld (Yang et al., 2024) focuses on simulating world dynamics
across both real and virtual scenarios. Although it includes some hypothetical instructions, its pri-
mary objective is to inject physical and temporal simulation capabilities into image editing models,
rather than equipping them with implicit reasoning skills for understanding hypothetical instruc-
tions. Additionally, the overall scale of the EditWorld dataset is significantly smaller than ours. 3)
ReasonEdit (Huang et al., 2024) is a small-scale dataset designed primarily for evaluation. It focuses
on object-level reasoning from explicit instructions and lacks both diversity and editing operation
reasoning. Most importantly, it is not sufficient for model training. In contrast, our Reason50K is
the first to provide systematic, large-scale support for training and evaluating hypothetical instruc-
tion reasoning across diverse scenarios. Each instruction requires deep reasoning grounded in con-
textual understanding and world knowledge—spanning physical, causal, temporal, and story-based
scenarios—to guide image editing. This goes beyond surface-level transformations or explicit object
manipulation. By incorporating carefully crafted hypothetical instructions, the dataset significantly
promotes deeper semantic reasoning within image editing models.

It is noted that our dataset Reason50K is constructed from synthetic data, as it is difficult to obtain
image pairs from videos that support hypothetical editing with clear reasoning structures. In ad-
dition, there is currently no standardized benchmark or evaluation protocol for the frame-by-frame
assessment of reasoning-based edits. Nevertheless, the generation process of Reason50K is carefully
designed to ensure both semantic consistency and high visual quality, thereby enabling the synthetic
dataset to effectively support generalizable research.

3.2 REASONBRAIN

ReasonBrain comprises an MLLM for visual guidance, reasoning, and a diffusion model responsible
for conditional image generation. To support knowledge reasoning, we incorporate a Fine-Grained
Reasoning Cues Extraction (FRCE) module. In addition, we introduce a Cross-Modal Enhancer
(CME) to further enrich semantic representations through modality-specific refinement. The overall
framework of ReasonBrain is illustrated in Fig. 4.

Fine-grained Reasoning Cues Extraction. Existing efforts utilize EI(I) and ET (H) directly for
visual guidance generation, overlooking fine-grained cues critical for implicit reasoning, such as
local object attributes, subtle spatial relationships, and context-dependent semantics between image
regions and instructions, etc. To address this limitation, we introduce a Fine-Grained Reasoning
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input image

“What would happen if 
the elephant and mouse
stood on the lawn at the 
same time on opposite 
ends of a seesaw?”

Image 
encoder

Large Multi-modal Model

Patch 
adapter

Patch 
encoder

Region 
adapter

Region 
encoder

C

Lora

ID 
Controller

Image 
adapter

Decoder

Vision-oriented 
enhancer

Text-oriented 
enhancer

Text 
encoder

Random 
Noise

C

Q-
former

Diffusion 
module

Multi-scale 
features

patches

mask regions

“elephant, 
mouse, lawn,

seesaw”

… …… ……
Learnable Tokens

…

edited image

Frozen TrainableC Concatenation

+

+ Add

Fine-grained Reasoning Cues Extraction (FRCE)

Cross-Modal Enhancer (CME)

VRCB

TRCB

Figure 4: The overall framework of ReasonBrain. Given an input image I and a hypothetical in-
struction H , ReasonBrain first encodes them into multi-scale visual features and textual tokens using
the image encoder EI(·) and text encoder ET (·), respectively. These features are then passed into the
FRCE module to learn detailed reasoning cues. Subsequently, all learned features are fed into the
MLLM to generate visual guidance, which is further transformed via a QFormer to align with the
diffusion model’s latent space. Finally, the resulting visual guidance interacts with the previously
extracted fine-grained cues through a CME module to enhance semantic representation, which is
then used to condition the diffusion model for final image generation.

Cues Extraction (FRCE) module, which comprises two specialized branches designed to capture
fine-grained visual and textual reasoning cues, respectively.

(1) Visual Reasoning Cues Branch (VRCB). This branch aims to extract fine-grained visual cues
from both local and global perspectives. Specifically, the local perspective focuses on capturing
object parts, textures, and spatial patterns, which are essential for implicit reasoning tasks involving
fine object distinctions and subtle appearance changes. Inspired by the MAE framework (He et al.,
2022), we first divide the visual features EI(I) into patches using a patch adapter P(·), and then
apply a patch-level feature extractor EP(·) to obtain localized visual representations. This process
is formalized as: Rlocal = EP(P(EI(I))). In contrast, the global perspective captures inter-object
relationships and contextual information across the entire scene, which are beneficial for reasoning
tasks that require an understanding of object interactions, event causality, and broader scene dynam-
ics. We first employ an instance segmentation model (e.g., SAM (Kirillov et al., 2023; Ravi et al.,
2024)) to segment objects from the background in the image. Subsequently, a region-level feature
extractor ER(·) is trained to learn holistic semantic representations for each segmented instance.
The entire process is formalized as:

Rglobal = ER(SAM(EI(I))). (1)

After this dual-level operation, we concatenate Rlocal and Rglobal to form the final visual reasoning
features RV used for subsequent processing.

(2) Textual Reasoning Cues Branch (TRCB). This branch aims to extract the key object referenced in
H , serving as a bridge between linguistic intent and visual reasoning. Specifically, we first employ
GPT (Achiam et al., 2023) to extract the referenced object from the instruction and serialize it into
a structured object token O. We then introduce an ID Controller to enhance the model’s ability
to perform object-grounded reasoning by facilitating interaction between the object token and the
visual reasoning features RV . This module not only enriches the object token with visual context,
enabling the model to reason about the object beyond its textual description, but also aligns the
linguistic reference with its corresponding visual entity, helping to resolve ambiguities and prevent
semantic drift during generation. The architecture of the ID Controller is illustrated in Fig. 5(a) and
is implemented using a cross-attention layer (Lin et al., 2022) followed by a feed-forward network,
formally defined as:

RT = FF(Cross-Atten(RV , O)). (2)
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Subsequently, following prior works (Huang et al., 2024; Zhou et al., 2025), we concatenate r addi-
tional learnable tokens Q = {[IMG1], . . . , [IMGr]} with the extracted features and feed them into
the MLLM for guidance generation. This operation transforms the implicit reasoning process into a
token prediction task, where the MLLM learns to generate the embeddings of these r tokens, which
serve as visual editing guidance. The process is formalized as:

T = [IA(EI(I)), RV , RT , ET (H),Q], V = MLLM(T ; θ). (3)
Here, [·, ·] denotes concatenation, and IA(·) is a trainable image adapter that maps visual features
into the MLLM’s latent space. The output V ∈ Rr×d represents the hidden embeddings of the
r learnable tokens. In addition, we employ a QFormer (Li et al., 2023) to align the feature space
between the MLLM and the diffusion model, defined as V̂ = QFormer(V ).

Cross 
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Cross 
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…
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… …

…
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Cross 
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Cross 
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…
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(a) ID Controller
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…
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Figure 5: Network design of the (a) ID Controller
and (b) Cross-Modal Enhancer.

Cross-Modal Enhancer. To compensate for
the potential loss of visual and textual details
in V̂ , we introduce a Cross-Modal Enhancer
(CME). The CME consists of a visual-oriented
enhancer and a textual-oriented enhancer, both
implemented using the same bidirectional inter-
action mechanism. Specifically, each enhancer
comprises five hybrid cross-attention blocks,
followed by a linear projection layer and a nor-
malization layer (see Fig. 5(b)). These mod-
ules reuse intermediate features generated both
before and after the MLLM layer, enabling
fine-grained semantic enhancement within each
modality. Here, we illustrate the process using the visual-oriented enhancer. First, a set of learnable
tokens Q2 interacts with V̂ (as key and value) via a cross-attention block to produce F1. In parallel,
EI(I) (query) attends to RV in a second cross-attention block, yielding F2. Next, F1 (query) and
F2 (key and value) are fused via a third block, followed by a residual connection and normalization
to obtain V̄ . This refined representation then serves as key and value in a fourth block, interacting
with F2 (query). The output is further refined through a final cross-attention with RV , producing
the enhanced visual representation R̄V . Similarly, the textual-oriented enhancer is implemented by
replacing EI(I) and RV with ET (H) and RT , respectively. Finally, the CME module outputs four
enhanced features, which are passed to the diffusion model together with EI(I) and a noisy latent
z for final image generation. Due to space limitations, the training objectives of ReasonBrain are
provided in App. C.

4 EXPERIMENTS

4.1 QUANTITATIVE RESULTS

Performance Comparison on Reasoning Scenarios. The experimental results on Reason50K are
summarized in Tab. 2, covering four distinct types of reasoning scenarios. ReasonBrain consis-
tently outperforms all SOTA baselines across all metrics, demonstrating superior ability to infer
hypothetical instructions and produce logically accurate edits aligned with world knowledge. While
UltraEdit and PixWizard achieve competitive performance, their advantage mainly stems from ex-
posure to massive datasets with diverse instructions rather than true reasoning capabilities. Notably,
MLLM-enhanced methods such as MGIE and SmartEdit still underperform, indicating that simply
integrating MLLMs or fine-tuning on reasoning datasets is insufficient without mechanisms for ex-
tracting fine-grained reasoning cues. These results further suggest that scaling data alone cannot
bridge the reasoning gap without dedicated architectural modules and training objectives. Addition-
ally, we select three representative methods for evaluation on ReasonEdit and EditWorld. As shown
in Fig. 6, ReasonBrain, trained solely on our Reason50K, generalizes effectively to novel reasoning
scenarios and achieves the best overall performance across datasets.

Generalization Comparison on Understanding Scenarios. As shown in Tab. 3, Reason-
Brain achieves the best overall performance among all SOTA methods, demonstrating strong zero-
shot generalization to new datasets. This result also highlights that, although trained solely on

2The newly introduced symbols are used only in this section to illustrate the visual-oriented enhancer.
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Table 2: Results on the Reason50K dataset for ReasonBrain and selected baselines. ↓ indicates
that lower values are better, while ↑ indicates that higher values are better. The best results are
highlighted in bold, and the second-best results are underlined.

Method
Physical Reasoning Temporal Reasoning Causal Reasoning Story Reasoning Total

CLIP↑ MLLM↑ Ins-Align↑ CLIP↑ MLLM↑ Ins-Align↑ CLIP↑ MLLM↑ Ins-Align↑ CLIP↑ MLLM↑ Ins-Align↑ CLIP↑ MLLM↑ Ins-Align↑
InstructPix2Pix (Brooks et al., 2023) 0.083 0.825 0.211 0.207 0.846 0.678 0.153 0.785 0.191 0.196 0.628 0.225 0.160 0.771 0.326

MagicBrush (Zhang et al., 2023) 0.102 0.844 0.335 0.228 0.877 0.725 0.162 0.802 0.344 0.209 0.635 0.359 0.175 0.790 0.441
MGIE (Fu et al., 2024) 0.098 0.802 0.288 0.213 0.832 0.685 0.155 0.761 0.328 0.201 0.622 0.322 0.167 0.754 0.406

SmartEdit (Huang et al., 2024) 0.118 0.849 0.602 0.226 0.881 0.779 0.165 0.823 0.385 0.211 0.655 0.361 0.180 0.802 0.532
UltraEdit (Zhao et al., 2024) 0.156 0.861 0.584 0.231 0.922 0.826 0.193 0.869 0.482 0.209 0.669 0.458 0.197 0.830 0.588
PixWizard (Lin et al., 2024) 0.161 0.881 0.481 0.234 0.951 0.833 0.132 0.863 0.393 0.172 0.697 0.389 0.175 0.848 0.524

ReasonBrain (ours) 0.186 0.902 0.846 0.267 0.977 0.894 0.282 0.891 0.858 0.301 0.736 0.798 0.259 0.877 0.847
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Figure 6: Results on ReasonEdit, EditWorld, and Reason50K for ReasonBrain and selected SOTA
methods, highlighting performance under various reasoning datasets.

Table 3: Results on Emu Edit and MagicBrush test set for ReasonBrain and selected baselines.

Method
Emu Edit Test set MagicBrush Test Set

CLIPdir ↑ CLIPim ↑ CLIPout ↑ L1↓ DINO↑ CLIPdir ↑ CLIPim ↑ CLIPout ↑ L1↓ DINO↑
InstructPix2Pix (Brooks et al., 2023) 0.078 0.834 0.219 0.121 0.762 0.115 0.837 0.245 0.093 0.767

MagicBrush (Zhang et al., 2023) 0.090 0.838 0.222 0.100 0.776 0.123 0.883 0.261 0.058 0.871
MGIE (Fu et al., 2024) 0.083 0.746 0.231 0.163 0.594 0.116 0.745 0.251 0.162 0.577

SmartEdit (Huang et al., 2024) 0.092 0.858 0.274 0.119 0.771 0.119 0.895 0.262 0.094 0.820
Emu Edit (Sheynin et al., 2024) 0.109 0.859 0.231 0.094 0.819 0.135 0.897 0.261 0.052 0.879

UltraEdit (Zhao et al., 2024) 0.107 0.844 0.283 0.071 0.793 - 0.868 - 0.088 0.792
PixWizard (Lin et al., 2024) 0.104 0.845 0.248 0.069 0.798 0.124 0.884 0.265 0.063 0.876

ReasonBrain (ours) 0.126 0.923 0.302 0.051 0.898 0.139 0.928 0.281 0.049 0.893

hypothetical instructions, ReasonBrain retains a robust understanding of clear, goal-directed edit-
ing commands. Furthermore, the competitive performance of Emu Edit, UltraEdit, and PixWizard
suggests that scaling up with large and diverse datasets can further enhance model effectiveness on
conventional instruction-based image editing tasks.

4.2 QUALITATIVE RESULTS

As shown in Fig. 7, we visualize editing results of ReasonBrain and selected SOTA methods across
four different reasoning scenarios. Our method demonstrates superior capability in executing hy-
pothetical editing instructions by accurately reasoning about user intent, affected objects, and their
plausible state transitions, while also maintaining stability in non-edited regions (original scene/ob-
ject identity (ID)). For instance, in the first row (physical reasoning), our method successfully gener-
ates a physically plausible and contextually coherent scene–depicting the elephant and mouse stand-
ing on opposite ends of a seesaw, where the heavier elephant naturally tilts the seesaw downward.
Additionally, our ReasonBrain preserves the original lawn, seesaw structure, and object proportions.
This demonstrates that our model can not only reason about relative weight, spatial arrangement, and
the physical dynamics implied by the instruction, but also maintain a certain degree of identity con-
sistency. In contrast, InstructPix2Pix fails to capture the core intent, producing an irrelevant result.
Other methods may include the correct objects mentioned in the instruction–such as the elephant,
mouse, and seesaw–but fall short in modeling their physical interactions, resulting in unrealistic or
semantically inconsistent compositions. Notably, ChatGPT-4o produces an implausible outcome in
which the mouse outweighs the elephant, contradicting basic physical intuition. We attribute this
failure to hallucinations introduced by the language model (Huang et al., 2025).

Moreover, although ReasonBrain may introduce slight scene adjustments compared to the source
image, these changes are strictly bounded by the hypothetical instruction. They serve as logical
supplements to the core modification rather than arbitrary alterations, and non-target regions (e.g.,
walls, lawns) remain visually identical to the original. For example, in the third row (casual reason-
ing), ReasonBrain adjusts the camera distance and local contrast to make the bee–flower interaction
visible. This is a necessary scene–level refinement to truly convey the hypothetical event. If one
were to rigidly forbid any background adaptation, the generated bees would be barely visible or
visually unnatural. In contrast, baselines (e.g., InstructPix2Pix cannot model the environmental in-
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InstructPix2Pix ReasonBrain(ours)

“What would happen if the elephant and mouse stood on the lawn at the same time on opposite ends of a seesaw?”

“What would happen if the glass was left untouched for a while?”

“What happens when a sudden swarm of bees descends on the flowers?”

Source Image SmartEdit MagicBrush UltraEdit PixWizard Chatgpt-4o

Source Image InstructPix2Pix SmartEdit MagicBrush UltraEdit PixWizard Chatgpt-4o ReasonBrain(ours)

Source Image InstructPix2Pix SmartEdit MagicBrush UltraEdit PixWizard Chatgpt-4o ReasonBrain(ours)

Source Image InstructPix2Pix SmartEdit MagicBrush UltraEdit PixWizard Chatgpt-4o ReasonBrain(ours)

“What inner truths does it reveal?”

Figure 7: Qualitative comparison on Reason50K between ReasonBrain and selected SOTA meth-
ods. Compared to other SOTA methods, ReasonBrain demonstrates a strong ability to reason over
implicit hypothetical instructions and produce semantically plausible edits grounded in world knowl-
edge.

terplay between the bees and the flowers) preserve the overall scene appearance but fail to express
the required interaction, illustrating that high appearance consistency does not imply correct rea-
soning. ReasonBrain strikes a balance between identity preservation and instruction expressiveness.
Core ID elements (e.g., flower clusters, lawn layout, and non-target objects) remain intact, while
subtle background refinements (such as camera distance, mild lighting, or contrast adjustments) are
applied only when necessary to ensure the hypothetical change is visually coherent and semantically
meaningful.

A similar pattern appears in the last row (story reasoning), where the instruction requires uncovering
subtle, implicit transformations of the subject (e.g., hidden textures or symbolic details). Baselines
such as InstructPix2Pix produce irrelevant outputs lacking reasoning, while SmartEdit fails to high-
light implicit cues due to overly rigid background preservation. ReasonBrain, by contrast, achieves
a balanced result in which the core identity (subject shape, global layout, and non-target regions)
is retained, and only minimal, reasoning-driven background adjustments (e.g., localized light en-
hancement or slight contrast tuning) are applied to make the “inner truths” visually perceptible.
These refinements are not excessive but necessary. Without them, the instruction-induced changes
would remain imperceptible, undermining the purpose of implicit hypothetical editing.

4.3 ABLATION AND ANALYSIS

Table 4: Results of the ablation study on each component of ReasonBrain.
with Patch with Region with ID with Vision with Text

CLIP Score↑ MLLM Score↑ Ins-Align Score↑Branch Branch Controller Enchancer Enchancer

ReasonBrain

× × × × × 0.163 0.752 0.388
✓ × × × × 0.187 0.786 0.466
✓ ✓ × × × 0.206 0.802 0.529
✓ ✓ ✓ × × 0.239 0.833 0.758
✓ ✓ ✓ ✓ × 0.251 0.865 0.822
✓ ✓ ✓ × ✓ 0.248 0.845 0.785
✓ ✓ × ✓ ✓ 0.231 0.838 0.776
✓ × ✓ ✓ ✓ 0.246 0.847 0.788
× ✓ ✓ ✓ ✓ 0.240 0.842 0.781
✓ ✓ ✓ ✓ ✓ 0.259 0.877 0.847
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Effectiveness of ReasonBrain’s Components. To evaluate the contribution of each component
in ReasonBrain, we conduct ablation experiments by progressively integrating key modules. As
shown in Tab. 4 and Fig. 8, the fine-grained visual features help the model capture subtle visual
cues essential for reasoning. The ID Controller significantly improves performance by preserving
object identity during cross-modal alignment, which is critical for accurate instruction reasoning.
Additionally, the CME module enhances overall generation quality by reinforcing modality-specific
semantics and providing more detailed guidance. Furthermore, we also observe that removing any
individual component leads to a performance drop across all three metrics, indicating that each
module contributes meaningfully to the overall effectiveness of the proposed framework.

“what would happen if strong wind tearing the kite string?”

“What would happen if it accidentally slipped from the artist's hand and splattered on the canvas?”

“What would happen if the field were set on fire?”

“What happens if someone twirls the spaghetti around a fork to eat?”

Source Image Baseline
+ Patch 
Branch

+ Region 
Branch

+ ID 
Controller

+ Vision 
Enhancer

+ Text 
Enhancer

Source Image With Patch 
Branch Only

With Region 
Branch Only Combined

“What happens if someone twirls the spaghetti around a fork to eat?”

Source Image Baseline
+ Patch 
Branch

+ Region 
Branch

+ ID 
Controller

+ Vision 
Enhancer

+ Text 
Enhancer

“What happens when the snowman slowly melts?”

Figure 8: Qualitative comparison of ablation variants in ReasonBrain.

“what would happen if strong wind tearing the kite string?”

“What would happen if the field were set on fire?”

Source Image With Patch 
Branch Only

With Region 
Branch Only Combined

Figure 9: Qualitative comparison of patch and re-
gion branches in VRCB.

Impact of Each Visual Branch in VRCB. As
shown in Fig. 9, we visualize the individual and
combined contributions of the patch and region
branches in our VRCB. The patch branch cap-
tures local details such as texture variations and
appearance changes, which are useful for mod-
eling subtle transformations (e.g., wind effects
on kite fabric or shifting crop colors). In con-
trast, the region branch focuses on global se-
mantic structures and object-level understand-
ing, such as the overall layout of the kite or
the boundary of the burning field. When used
independently, each branch captures only par-
tial aspects of the intended edit. The patch
branch may introduce local distortions without
preserving object integrity, while the region branch may lack detailed variation. Their combina-
tion enables complementary integration of local precision and global semantics, resulting in more
coherent, semantically accurate, and visually plausible edits under hypothetical instructions.

5 CONCLUSION

We extend instruction-based image editing to a hypothetical instruction reasoning setting and pro-
pose a unified solution from both dataset and model perspectives. Specifically, we curate Rea-
son50K, a large-scale dataset of 51,039 samples specifically designed to support hypothetical in-
struction reasoning across four diverse categories: physical, temporal, causal, and story reasoning.
Simultaneously, we introduce ReasonBrain, a novel framework that enhances instruction reasoning
by combining a MLLM and a fine-grained feature extraction module. We further integrate a cross-
modal enhancer to enrich the semantics of the guidance used for diffusion-based editing. We con-
duct extensive experiments on both reasoning-intensive and conventional understanding scenarios,
demonstrating that ReasonBrain exhibits strong reasoning capabilities as well as robust generaliza-
tion performance. In addition, our Reason50K can facilitates broader advancements in reasoning-
aware image generation, providing an extensible resource for future research in this emerging direc-
tion.
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APPENDIX

A REPRODUCIBILITY STATEMENT

We have already elaborated on all the models or algorithms proposed, experimental configurations,
and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
we declare that the entire code used in this work will be released after acceptance.

B THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.

C TRAINING OBJECTIVES OF REASONBRAIN

The training of ReasonBrain comprises two components: fine-tuning the MLLM and optimizing the
diffusion model. Specifically, for fine-tuning the MLLM, we freeze most of its parameters and apply
Low-Rank Adaptation (LoRA) (Hu et al., 2022) for efficient adaptation. The objective is defined as:

LMLLM = −
r∑

i=1

log p{θ∪θLoRA} ([IMGi] | IA(EI(I)), RV , RT , ET (H), [IMG1], . . . , [IMGi−1]) ,

(A1)
where θLoRA denotes the trainable parameters introduced by LoRA. This loss minimizes the negative
log-likelihood of predicting each learnable token [IMGi] conditioned on the fine-grained features
and previously predicted tokens. For image generation, we adopt a latent diffusion objective:

LDM = EEI(Î),EI(I),H,ϵ,t

[∥∥ϵ− ϵδ
(
t, [zt, EI(I)] + R̄visual + R̄text , [ēvisual , ētext ]

)∥∥2
2

]
, (A2)

where ϵ ∼ N (0, 1) is the sampled noise and zt is the noisy latent at timestep t. ϵδ(·) denotes the
denoising network trained to predict the added noise based on the timestep and the provided visual
reasoning guidance. The overall training objective is defined as the sum of the MLLM and diffusion
losses: L = LMLLM + LDM. Moreover, to mitigate hallucination risks, we adopted a context- and
instruction-aware token selection strategy inspired by SID (Huo et al., 2025), combined with the
dynamic token propagation mechanism from TAME (Tang et al., 2025) in the training process of
MLLM.

D SETUPS: DATASETS, METRICS, AND DETAILS

Datasets: We use Reason50K for both training and evaluation. Specifically, for each reasoning
category, 400 samples are randomly selected for validation, while the remaining samples are used
for training. In addition, we assess the reasoning capability of ReasonBrain on two external bench-
marks: ReasonEdit (Huang et al., 2024) and EditWorld (Yang et al., 2024). To evaluate generaliza-
tion on conventional understanding scenarios, we further test on the MagicBrush Test Set (Zhang
et al., 2023) and the Emu Edit Test Set (Sheynin et al., 2024).

Metrics: To evaluate performance under reasoning scenarios, we adopt three metrics: CLIP
Score (Radford et al., 2021), MLLM Score (Yang et al., 2024), and Instruction Alignment (Ins-
Align) (Huang et al., 2024). Here, CLIP Score measures the semantic similarity between the edited
image and the expected output text using CLIP’s image-text embeddings. MLLM Score employs an
MLLM to assess instruction-following performance. Following Yang et al. (2024), we provide the
input description, editing instruction, and output description along with the edited image to Video-
LLaVA. The prompt is defined as: “The input description: [object Object], the editing instruction:
[object Object], and the output description: [object Object]. Please evaluate if the given edited im-
age has been successfully edited. If yes, return 1; if not, return 0.” The final score is the average
of model judgments across all samples. In addition, Ins-Align Score evaluates how well the edited
image aligns with the given instruction. Following Huang et al. (2024), ten human annotators inde-
pendently rated the outputs on the Reason50K dataset, and we report the average alignment score.
For understanding scenarios, we adopt L1 distance, CLIP image similarity, DINO similarity, CLIP
text-image similarity, and CLIP text-image direction similarity as evaluation metrics.
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Implementation Details: During training, we adopt the pre-trained LLaVAv1.1-7B (Liu et al.,
2024b) and QFormer (Li et al., 2023) and employ DeepSpeed (Aminabadi et al., 2022) Zero-2
to perform LoRA (Hu et al., 2021) fine-tuning, with rank and alpha of 8 and 16, respectively. Fol-
lowing (Huang et al., 2024; Fu et al., 2024), we expand the original LLM vocabulary with 32 new
tokens, and the QFormer is composed of 6 transformer layers and 77 learnable query tokens. For
the base editing model, we implement it with Flux (Labs, 2024) using FLUX.1-dev, which consists
of 12B parameters. Models for other qualitative results are implemented using SD series (CompVis,
2022; SimianLuo, 2024; Rombach et al., 2022a; AI, 2022) with their original codebase. Our model
is trained with a batch size of 16, and we use AdamW (Loshchilov & Hutter, 2017) optimizer to
train the model with the weight decay as 1e-2 and the learning rate as 1e-3. All the experiments are
conducted on 16 H20 GPUs. For a fair comparison, all baseline models are fine-tuned on the same
training set used by ReasonBrain.

E MORE QUANTITATIVE RESULTS

Functional group studies: To clarify the pivotal components and avoid fragmented analysis, we re-
organize the ablations into coarse-grained functional groups, focusing on the core reasoning–editing
interaction. As shown in Tab. A1 and visualized in Fig. A1, the Baseline Group (MLLM + dif-
fusion only) produces only minimal or unrelated changes, achieving the lowest Ins-Align Score of
0.388. This demonstrates that simply combining an MLLM with a diffusion model is insufficient
for understanding and executing implicit hypothetical instructions. The FRCE Core Group (Method
IDs 2–3) forms the foundation of reasoning–editing interaction. Without the ID Controller (Method
2), the model produces semantically inconsistent outcomes—such as generating an additional in-
tact egg while also showing partial cracking—indicating a loss of object identity and clear semantic
drift. With the ID Controller added (Method 3, full FRCE Core), the model preserves the correct
object identity and generates a more coherent “dropped-egg” outcome, where the same egg is bro-
ken in a physically plausible way. This raises the Ins-Align Score to 0.758, a 43.3% improvement,
confirming that the ID Controller is crucial for binding reasoning cues to the correct object and pre-
venting unintended identity changes. Finally, the CME Enhancement Group (Method 4) achieves
the strongest overall performance (CLIP: 0.259, MLLM: 0.877, Ins-Align: 0.847). As seen in the
rightmost result of Fig. A1, CME produces a clean, physically plausible “dropped and splattered”
egg consistent with the instruction. CME refines the cross-modal alignment between FRCE-derived
cues and diffusion-based editing features, reducing mismatches between the intended reasoning and
the resulting edits. It acts as a targeted enhancer rather than a standalone reasoning module. In
summary, our framework’s effectiveness relies on two pivotal components: (1) the FRCE Core, with
the ID Controller as the key mechanism for linking reasoning to identity-preserving edits; and (2)
the CME module, which further enforces cross-modal consistency and elevates the overall reasoning
quality.

Table A1: Quantitative results for the functional groups of ReasonBrain.

Functional Group Method ID
with Patch with Region with ID with Vision with Text

CLIP Score↑ MLLM Score↑ Ins-Align Score↑Branch Branch Controller Enchancer Enchancer

Baseline Group 1 × × × × × 0.163 0.752 0.388
FRCE Core Group 2 ✓ ✓ × × × 0.206 0.802 0.529
FRCE Core Group + ID 3 ✓ ✓ ✓ × × 0.239 0.833 0.758
CME Enhancement 4 ✓ ✓ ✓ ✓ ✓ 0.259 0.877 0.847

Computational costs & lightweight alternative: Tab. A2 shows the inference time of our Reason-
Brain alongside all baselines. We find that our model demonstrates strong reasoning capabilities
while maintaining an inference time comparable to that of existing methods. To further accelerate
the model, we explored a lightweight variant, ReasonBrain-3B, by adopting a smaller pretrained
MLLM. The model settings of ReasonBrain and ReasonBrain-3B are listed in Tab. A4. The per-
formance comparison across all four reasoning categories between ReasonBrain-3B and our full
model, ReasonBrain-7B, is illustrated in Tab. A3. We observe that, compared to ReasonBrain-7B,
ReasonBrain-3B is significantly faster but exhibits only a slight performance drop. Nevertheless, it
still outperforms all baselines reported in Tab. 2. This indicates that even in instruction-based rea-
soning scenarios, a lightweight MLLM can not only accelerate inference but also effectively identify
the editing target and execute precise edits, supported by its strong reasoning ability and rich world
knowledge.
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“what would happen if strong wind tearing the kite string?”

“What would happen if it accidentally slipped from the artist's hand and splattered on the canvas?”

“What would happen if the field were set on fire?”

“What happens if someone twirls the spaghetti around a fork to eat?”

Source Image Baseline
+ Patch 
Branch

+ Region 
Branch

+ ID 
Controller

+ Vision 
Enhancer

+ Text 
Enhancer

Source Image With Patch 
Branch Only

With Region 
Branch Only

Combined

“What happens if someone twirls the spaghetti around a fork to eat?”

Source Image Baseline
+ Patch 
Branch

+ Region 
Branch

+ ID 
Controller

+ Vision 
Enhancer

+ Text 
Enhancer

“What happens when the snowman slowly melts?”

“What happens if they accidentally drop it??”

Source Image Baseline 
Group

FRCE Core 
Group

FRCE Core 
Group + ID 

CME 
Enhancement

Figure A1: Qualitative results for the functional component groups of ReasonBrain.

Method Inference Time (s)
InstructPix2Pix 26
MagicBrush 28
MGIE 37
SmartEdit 33
UltraEdit 28
PixWizard 35
Ours 32

Table A2: Comparison of inference times across different methods.

Model CLIP ↑ MLLM ↑ Ins-Align ↑ Inference Time (s)
ReasonBrain-3B 0.238 0.852 0.822 24
ReasonBrain-7B 0.259 0.877 0.847 32

Table A3: Performance comparison of ReasonBrain and its lightweight variant.

Multi-step editing: We extend the original one-step experiments to include 2-step and 3-step editing
scenarios (multi-hop reasoning chains, e.g., ’ice melting → water evaporating → damp ground
forming’). The results (shown in Tab. A5) indicate that the model maintains robust performance
across multiple editing steps, demonstrating the effectiveness of ReasonBrain in handling sequential
multi-step reasoning-based editing. We attribute this to the ID Controller module, which operates
independently at each editing step, enabling effective processing of chained instructions without
causing significant feature drift.

Human evaluation: We randomly select 50 images corresponding to four distinct reasoning sce-
narios. For each image, we obtain the results of InstructPix2Pix, MagicBrush, MGIE, SmartEdit,
UltraEdit and PixWizard. Then, randomly shuffle the order of these method results. For each set
of images, we ask 30 participants to independently select the three best pictures. The first one is
the best picture corresponding to the text prompt (i.e., Instruct Alignment), and the second one is
the picture with the highest visual quality (i.e., Image Quality). The result is shown in Tab. A6.
We found that 75.71% of participants believed ReasonBrain better reflected the correct reasoning
behind the instructions, and 63.55% preferred the results generated by ReasonBrain. In contrast, all
baseline methods received less than 10% on both evaluations.

The influences of the data generation process on the final performance: Let us briefly recall the
key steps in our data generation process (see App. 3.1 and Fig. 3 for details):

(a) Utilizing PhyBench to acquire a target image and its initial prompt;

(b) Extracting candidate objects from the prompt (e.g., object identity, action, attributes);

(c) Using these candidate objects to guide a T2I model to generate candidate source images;

(d) Selecting the best candidate based on a combination of evaluation metrics;

(e) Rewriting the initial prompt into a hypothetical instruction format.

17
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Model Variant MLLM Backbone Diffusion Backbone FRCE Params CME Params Total Trainable Params
ReasonBrain-7B LLaVA-7B SD 2.1 82M 45M 800M (LoRA-tuned)
ReasonBrain-3B LLaVA-3B SD 1.5 41M 22M 320M (LoRA-tuned)

Table A4: Settings of ReasonBrain and its lightweight variant.

Steps CLIP ↑ MLLM ↑ Ins-Align ↑
1-step 0.259 0.877 0.847
2-steps 0.257 0.878 0.848
3-steps 0.260 0.877 0.847

Table A5: Performance comparison under different editing steps.

Method Instruct-Alignment (%) Image Quality (%)
InstructPix2Pix 2.62 2.14
MagicBrush 3.11 5.65
MGIE 3.10 6.68
SmartEdit 3.55 6.85
UltraEdit 6.09 6.11
PixWizard 5.82 9.02
Ours 75.71 63.55

Table A6: Human evaluation results.

Finally, each data sample is composed of a selected candidate image, the rewritten instruction, and
the original target image. We argue that the potential sources of influence on the final performance
include:

• Noise in Source Image Generation (Step a): Some target images may contain distortions
or semantically irrelevant content.

• Missing Object Elements (Step b): Key candidate objects may be omitted during prompt
decomposition.

• Lack of Constraints (Step c): The T2I generation process does not explicitly enforce
identity or background preservation when generating candidate source images.

• Limited Evaluation Dimensions (Step d): The scoring and selection criteria may over-
look fine-grained visual details such as object consistency or scene coherence.

To this end, we conduct a preliminary ablation study to assess how these factors affect model per-
formance. The results are summarized in Tab. A7. We find that when the initial step produces
low-quality target images (error image), the model’s performance drops significantly. Similarly, in
the source image generation step, missing object elements (missing ID text) or ignoring ID corre-
lations (w/o ID adapter) negatively impact performance. Finally, during the selection phase, using
only a single metric (i.e., single selection) results in a considerable performance gap, highlighting
the importance of applying a comprehensive set of evaluation metrics when constructing the final
dataset.

Identity preservation: We followed the identity preservation metric proposed in (Yang et al., 2025)
and conduct an evaluation across multiple baseline methods. The results are summarized in Tab. A8.
As shown, our ReasonBrain achieves the highest score, indicating that it more effectively retains core
elements from the source image while following the instruction. This demonstrates that our model
trained on Reason50K is actually performing reasoning and not just learning a shortcut.

Effectiveness of CME module: To validate the effectiveness of the bidirectional information in-
teraction in our proposed CME module, we conducted two comparative experiments. In Exp 1,
we remove the CME module entirely and directly feed the feature output from QFormer into the
diffusion model. This ablation study is designed to evaluate the effectiveness of the information
interaction introduced by the CME module. In Exp 2, we aim to assess the necessity of bidirectional
information interaction. Specifically, we retain only the cross-attention block on the image feature
branch, discarding all other components of the CME module. As a result, the textual features from
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Setting CLIP ↑ MLLM ↑ Ins-Align ↑
Error Image 0.104 0.425 0.226
Missing ID Text 0.125 0.465 0.233
w/o ID Adapter 0.087 0.312 0.158
Single Selection 0.172 0.705 0.505
Ours 0.259 0.877 0.847

Table A7: Impact of the data generation process on performance.

Method Identity Preservation ↑
InstructPix2Pix 5.13
MagicBrush 7.52
MGIE 7.63
SmartEdit 8.02
UltraEdit 5.68
PixWizard 8.55
Ours 9.72

Table A8: Comparison of identity preservation performance.

QFormer are applied to the image features in a unidirectional manner. The results are presented
in Tab. A9, demonstrating the marginal gains brought by each component and highlighting the over-
all benefit of the complete CME design.

Exp ID Plain Simple CA CME CLIP ↑ MLLM ↑ Ins-Align ↑
1 ✓ 0.239 0.833 0.758
2 ✓ 0.241 0.841 0.766

Ours ✓ 0.259 0.877 0.847

Table A9: Ablation study on different design choices.

Testing on different mapping settings: We conduct an additional ablation study by extending
our original one-to-one mapping to one-to-two and one-to-three mappings. The results are shown
in Tab. A10, we find that incorporating multiple targets (i.e., one-to-two/one-to-three mappings) led
to significant performance degradation across all metrics. These settings introduced training insta-
bility due to conflicting optimization signals from multiple targets for the same input. In particular,
Ins-Align and Identity Preservation dropped significantly, indicating that using multiple targets for
the same input makes it difficult to retain key elements from the source image–further emphasizing
the importance of maintaining a one-to-one structure in our task.

Framework design validation: We conduct additional experiments to further validate the design
of our ReasonBrain, particularly the bidirectional interaction between reasoning and editing within
a unified framework. Specifically, we evaluate the FRCE module and the CME module indepen-
dently. The FRCE module extracts fine-grained reasoning cues (e.g., physical object weight, tem-
poral changes), injects them into the MLLM’s visual-guidance generation, and binds them to the
diffusion model via the QFormer. In contrast, the CME module enables mutual alignment between
MLLM-generated reasoning tokens and diffusion-based editing features. The corresponding results
are provided in Tab. A11 and Tab. A12. Our results show that removing the FRCE–diffusion inter-
action leads to a 12.3% drop in Ins-Align Score and an 8.7% decrease in visual plausibility (human
evaluation). Using CME without bidirectional interaction further reduces the Ins-Align Score by
4.1%. These findings demonstrate the necessity of both modules and highlight the importance of
their bidirectional integration.

F LIMITATIONS

Limitations on Real-world Data Collection. The construction of our dataset Reason50K follows
the common practice in the image editing community (e.g., EmuEdit (Sheynin et al., 2024) and
GPT-Image-Edit (Wang et al., 2025)), relying primarily on synthetic data. While synthetic datasets
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Setting CLIP ↑ MLLM ↑ Ins-Align ↑ Identity Preservation ↑
Ours (one-to-one) 0.259 0.877 0.847 9.72
one-to-two 0.152 0.680 0.315 4.25
one-to-three 0.088 0.258 0.204 1.66

Table A10: Comparison of one-to-many editing settings.

Method CLIP Score (↑) MLLM Score (↑) Ins-Align Score (↑)
ReasonBrain (Full, FRCE + Diffusion Interaction) 0.259 0.877 0.847
ReasonBrain (w/o FRCE-Diffusion Binding, MLLM Only) 0.228 0.801 0.743
Performance Drop -12.0% -8.7% -12.3%

Table A11: Performance comparison: with vs. without FRCE–Diffusion interaction

CME Mode CLIP Score (↑) MLLM Score (↑) Ins-Align Score (↑)
Bidirectional 0.259 0.877 0.847
Unidirectional (Reasoning→Editing only) 0.248 0.842 0.806

Table A12: Performance comparison: bidirectional vs. unidirectional CME

provide semantic clarity and high visual quality, they may not fully capture the complexities, ar-
tifacts, and temporal dynamics inherent in real-world video data. Collecting high-quality datasets
from real-world video sources remains particularly challenging due to the scarcity of suitable im-
age pairs with explicit reasoning logic and the absence of standardized benchmarks or evaluation
protocols for reasoning-based edits. Moreover, prior efforts such as EditWorld (Yang et al., 2024)
show that frames extracted from videos often suffer from low resolution and poor aesthetics, making
them suboptimal for training high-fidelity models. Thus, addressing this gap by curating reasoning-
aligned, high-quality video benchmarks constitutes an important direction for our future work.

G QUALITATIVE COMPARISON: REASONBRAIN VS. ADDITIONAL SOTA MODELS

As shown in Fig. A2, we compare the generation results of ReasonBrain against several more general
models, including Bagel (Deng et al., 2025), Bagel-Thinking, Flux Kontext (Batifol et al., 2025),
and Qwen-Image-Edit (Wu et al., 2025). It is evident that ReasonBrain consistently produces the
most faithful results, achieving superior semantic alignment, more accurate reasoning that reflects
the instruction-implied changes, and overall higher visual coherence.

H MORE QUALITATIVE RESULTS

To further demonstrate the editing performance of ReasonBrain compared to SOTA methods, we
present additional qualitative results in Fig. A3 and Fig. A4, Fig. A5 and Fig. A6. It is evident
that ReasonBrain consistently outperforms other SOTA approaches, producing more coherent and
visually plausible edits. These results highlight ReasonBrain’s ability to reason effectively from
hypothetical instructions and generate outputs that closely align with the transformations implied by
the underlying reasoning.

I BROADER IMPACT AND ETHICS STATEMENT

We plan to make the dataset and associated code publicly available for research. Nonetheless, we
acknowledge the potential for misuse, particularly by those aiming to generate misinformation using
our methodology. We will release our code under an open-source license with explicit stipulations
to mitigate this risk.
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Bagel ReasonBrain(ours)

“What would happen if the elephant and mouse stood on the lawn at the same time on opposite ends of a seesaw?”

“What would happen if the glass was left untouched for a while?”

“What happens when a sudden swarm of bees descends on the flowers?”

Source Image Bagel-thinking Flux Kontext Qwen-Image-edit

Source Image Bagel Bagel-thinking Flux Kontext Qwen-Image-edit ReasonBrain(ours)

Source Image Bagel Bagel-thinking Flux Kontext Qwen-Image-edit ReasonBrain(ours)

Source Image Bagel Bagel-thinking Flux Kontext Qwen-Image-edit ReasonBrain(ours)

“What inner truths does it reveal?”

Figure A2: Qualitative comparison between ReasonBrain and additional SOTA models.
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Source Image

ReasonBrain(ours)

InstructPix2Pix

UltraEdit

SmartEdit

PixWizard

Chatgpt-4o

MagicBrush

“What does it look like 
when the sun melts the 

ice cream into a 
puddle?”

“What would happen if 
a swarm of locusts 
descended on the 

fields?”

“What happens when 
the moon emerges 
from behind the 

clouds?”

Figure A3: Qualitative comparison on Reason50K between ReasonBrain and selected SOTA meth-
ods. 22
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Source Image

ReasonBrain(ours)

InstructPix2Pix

UltraEdit

SmartEdit

PixWizard

Chatgpt-4o

MagicBrush

“What happens as it 
encases itself in a 

chrysalis and 
undergoes 

metamorphosis?”

“What happens as it 
begins to howl, its 
haunting cry echoing 

through the forest and 
signaling its presence in 

the wild?”

“what happens 
when you slice a 

banana?”

Figure A4: Qualitative comparison on Reason50K between ReasonBrain and selected SOTA meth-
ods.
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Source Image

ReasonBrain(ours)

InstructPix2Pix

UltraEdit

SmartEdit

PixWizard

Chatgpt-4o

MagicBrush

“What happens as more 
snowflakes gather and 

accumulate, coating the 
window with a delicate 

layer of frost and 
creating a winter 
wonderland scene?”

“What about crumbling 
feta cheese over 
olives and cherry 
tomatoes for a 

Mediterranean salad?”

“what would happen 
if the sun shines 
directly on it?”

Figure A5: Qualitative comparison on Reason50K between ReasonBrain and selected SOTA meth-
ods. 24
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Source Image

ReasonBrain(ours)

InstructPix2Pix

UltraEdit

SmartEdit

PixWizard

Chatgpt-4o

MagicBrush

“What would 
happen if this 

egg was broken by 
a hard stone?”

“what happens when 
you slice one in 

half?”

“What will happen 
when the toy 

starts to lose its 
squeak?”

Figure A6: Qualitative comparison on Reason50K between ReasonBrain and selected SOTA meth-
ods. 25
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